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Abstract

Large language models (LLMs) have achieved remarkable success in nat-
ural language tasks, but their inference incurs substantial computational
and memory overhead. To improve efficiency, parallel decoding methods
like Skeleton-of-Thought (SoT) decompose prompts into sub-problems for
concurrent processing. However, these methods significantly compromise
answer quality by treating semantically linked sub-problems as indepen-
dent. We propose Plato, a novel approach that co-designs algorithms and
systems for semantic-aware parallel decoding. Plato leverages LLMs to or-
ganize sub-problems into a dependency graph based on logical and causal
relationships, enabling concurrent decoding of non-dependent nodes while
preserving answer coherence and quality. To further enhance efficiency,
Plato pipelines planning and node decoding stages, implements a global
context cache, and carefully structures node inference prompts to maximize
key-value cache reuse and minimize overhead. Our evaluations show that
Plato improves throughput by up to 68% over autoregressive decoding
while achieving a 40% net win rate in answer quality. Compared to SoT,
Plato demonstrates a remarkable 90% quality net-win rate. Ablation studies
reveal that our pipeline design improves speedup by 29%, while our KV
cache reuse optimization reduces overhead by 75%.

1 Introduction

Large language models (LLMs) (Guo et al., 2025; Grattafiori et al., 2024; Jaech et al., 2024)
have demonstrated remarkable performance across a wide range of tasks (Nam et al., 2024;
Cascella et al., 2023), becoming increasingly important in daily life. A key contributor to
the success of LLMs is the transformer architecture, which efficiently models relationships
among a large number of context tokens and generates responses token-by-token in an
autoregressive manner. However, this autoregressive decoding process inherently limits
generation throughput and increases latency, ultimately affecting the user experience (Wang
et al., 2024).

Various approaches (Leviathan et al., 2023; Chen et al., 2023; Cai et al., 2024; Fu et al., 2024)
have been proposed to improve generation throughput through parallel sampling which
generates multiple consecutive tokens at the same time. However, research exploring an
orthogonal approach—exploiting parallelization opportunities directly within the semantic
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space—remains limited. When humans compose responses to complex questions, they
typically begin by creating an outline that defines the answer structure, then develop the
full response following this framework (Hadi et al., 2024). This approach enhances logical
flow and ensures comprehensive coverage of the topic. Such outlines naturally decompose
autoregressive generation tasks into distinct sub-problems in the semantic space, creating
opportunities to increase efficiency by generating independent components in parallel.

A state-of-the-art contribution in this direction is Skeleton of Thought (SoT) (Ning et al.,
2023), which uses prompting techniques to decompose the original problem into indepen-
dent sub-problems (i.e., the skeleton) and then inferences all sub-problems in parallel. While
SoT improves generation efficiency, it often sacrifices response quality because its inde-
pendence assumption frequently fails in practice. Dependencies commonly exist between
sub-problems, particularly when addressing questions requiring strong logical reasoning in
domains such as mathematics and programming. For instance, as illustrated in Figure 1,
SoT produces five sub-problems where only the first two are truly independent, while the
others have dependencies on previous node results to correctly reason through the answer.
When these interdependent nodes are inferenced independently, as in SoT’s approach, the
coherency and correctness of the final answer are compromised.

1. Calculate x2 - x1--> 10-2=8.
2. Calculate y2 - y1--> 4-(-2)=6.
3. Calculate (x2 - x1)^2--

>8^2=64.
4. Calculate (y2 - y1)^2--

>6^2=36.
5. Calculate (x2 - x1)^2 + (y2 -

y1)^2-->64+36=100.
6. Calculate the square root of

the sum-->The square root of
100 is 10.

If the endpoints of a line segment are
(2, -2) and (10, 4), what is the length of the segment?

1 2 3 4 5

1. Find delta x--> 10 - 2 = 8.
2. Find delta y-->(4 - (-2)) = 6.
3. Square each result-->You

should calculate (delta x)^2
and (delta y)^2.

4. Add squared results-->
Taking the sum of (delta x)^2
and (delta y)^2, which are the
results from step 3.

5. Find square root-->Taking
the square root of the sum of
the squared delta x and delta
y, which will give us the
length of the line segment.

1

2
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4
5 6

Skeleton of Thought Plato

Results Format: 
(Node ID. Node Description--> Inference results.) 

Figure 1: An example to demonstrate the dif-
ference between SoT and Plato.

Contribution. This paper presents Plato
(Plan to Efficiently Decode), an inference
framework that leverages effective paral-
lelism in the semantic space to enhance in-
ference efficiency. Unlike previous methods,
Plato first prompts the LLM to create a struc-
tured plan that decomposes the original
problem into nodes (sub-problems) while
explicitly identifying the dependencies be-
tween these nodes. Subsequently, Plato
constructs a Directed Acyclic Graph (DAG)
based on these dependencies and exploits
the parallelism within the graph structure
to perform batched inference. Nodes with-
out unfinished dependencies are submitted
to inference asynchronously, enabling par-
allel execution while maintaining logical co-
herence. This design ensures high-quality
answers while significantly boosting effi-
ciency.

Additionally, we co-designed the inference
system to optimize for the Plato workflow.
Our system pipelines the planning and
node inference stages, significantly reduc-
ing latency by ensuring planning doesn’t
block node inference. Nodes are immediately added to a waiting queue as they are parsed
from the planning inference stream. For the nodes in the waiting queue, once all their
dependencies are satisfied, they are submitted for inference with results from previously
completed nodes as context. To further enhance efficiency, we implement a global context
cache and strategically design node inference prompts to maximize key-value cache reuse
across requests, substantially reducing computational overhead and improving throughput.

We conducted extensive experiments on nearly 300 questions across 28 skill types to eval-
uate Plato performance compared with SoT and Autoregressive (AR) inference baselines.
Our results show that Plato achieves the optimal balance between speedup and quality.
Compared to AR baselines, Plato improves throughput by up to 68% while achieving a 40%
net win rate in answer quality. When compared to SoT, Plato demonstrates a remarkable
90% quality net-win rate. Through detailed ablation studies, we show that our pipeline
design improves speedup by 29%, while our KV cache reuse optimization reduces overhead
by 75%, resulting in just 1.33% total overhead.
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In summary, we propose Plato, a novel inference framework that efficiently exploits paral-
lelism within the semantic space to enhance LLM inference efficiency without compromising
response quality. Our approach is complementary to existing multi-token consecutive par-
allel decoding methods (Leviathan et al., 2023; Chen et al., 2023; Cai et al., 2024; Fu et al.,
2024), offering an orthogonal optimization dimension. Through the co-design of algorith-
mic and system components, Plato effectively maximizes throughput while minimizing
computational overhead, advancing the state-of-the-art in LLM inference systems.

2 Related Work

2.1 Efficient LLM Inference Algorithm

Consecutive multi-token parallel decoding. Various sampling algorithms have been pro-
posed to enhance generation throughput by parallel sampling multiple consecutive tokens
simultaneously, breaking the token-by-token autoregressive generation nature of LLMs.
Speculative Decoding algorithms (Leviathan et al., 2023; Chen et al., 2023; Li et al., 2024)
employ a smaller model to generate a draft of multiple tokens, which are then verified in
parallel by a larger target model, effectively improving the throughput of the sampling
process. Similarly, multi-token parallel decoding methods (Cai et al., 2024) decode multi-
ple consecutive tokens simultaneously by fine-tuning the base LLM to generate multiple
prediction heads. Lookahead decoding methods (Fu et al., 2024) concurrently extract and
verify n-gram tokens in parallel. These approaches collectively improve LLM decoding
throughput by generating multiple consecutive tokens at once.

Parallelism opportunities in semantic space. Research exploring parallel opportunities
directly within the semantic space to enhance inference efficiency remains limited. A notable
work in this direction is Skeleton of Thought (SoT) (Ning et al., 2023), which improves LLM
generation efficiency by decomposing the original problem into several independent sub-
problem nodes that can be decoded in parallel as a batch. However, SoT does not account
for potential dependencies among these sub-problem nodes, leading to quality degradation
in complex reasoning tasks. Our work further pushes the boundary of this direction by
considering necessary dependencies across semantic space, thereby efficiently utilizing
semantic parallelism during decoding.

2.2 Prompting for Higher Quality

To better exploit the reasoning ability of LLMs, many methods have been proposed to
construct more informative and helpful prompts for LLMs to solve complex problems.
Chain-of-Thought (CoT) (Wei et al., 2022; Wang et al., 2023) introduces intermediate steps
between inputs and outputs as demonstrations in prompts, improving generation quality
on complex tasks. Tree-of-Thought (ToT) (Yao et al., 2023) advances LLMs’ reasoning
capabilities by representing the reasoning process as a tree, with nodes representing different
solutions. Graph-of-Thought (GoT) (Besta et al., 2023) extends ToT structure by considering
a graph-based approach, introducing aggregation operations on different sub-solutions to
further improve reasoning. These methods focus on improving response quality for complex
prompts, but ignore generation efficiency; in contrast, our work focus on improving the
generation efficiency while not sacrificing quality by only parallelizing independent subtasks
by only parallelizing independent subtasks.

3 Background

3.1 Attention and KV cache

The attention mechanism (Vaswani et al., 2017) is a fundamental component of LLMs that
helps models understand relationships between tokens in a sequence. KV cache is an
optimization technique that makes LLM inference faster.

The attention mechanism transforms input sequences into query (Q), key (K), and value
(V) representations through learned weights: Q = XWQ, K = XWK, V = XWV . It then
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Figure 2: Plato begins with a planning phase where the LLM decomposes the original
question into nodes (sub-problems) with their logical dependencies. As each node is
generated, it enters a waiting queue. Nodes become eligible for inference when all their
dependencies have been satisfied. For example, in the figure, Node 1 and Node 2 have no
dependencies, so they are immediately launched for inference upon generation. Node 3,
however, depends on both Node 1 and Node 2, so it must remain in the waiting queue
until both dependency nodes complete their inference. This dependency-aware scheduling
ensures generation quality while maximizing parallel execution opportunities.

computes attention scores as Attention(Q, K, V) = softmax
(

QKT√
dk

)
V, where dk is a scaling

factor for stability.

Without a KV cache, models inefficiently recalculate keys and values for all previous tokens
at each generation step. The KV cache optimization stores these computed values, requiring
only calculation of the query for the new token, computing its key and value, and updating
the cache. This significantly reduces redundant computations during inference.

Additionally, current state-of-the-art LLM inference engines and services (Zheng et al., 2023b;
Kwon et al., 2023; OpenAI, 2024b; Anthropic, 2024; Deepseek, 2024) have implemented
prompt caching mechanisms. These systems store previously computed KV caches from
prior conversations in GPU, CPU memory, or disk (Jin et al., 2024). When subsequent
requests contain identical prompt prefixes, the system can reuse these cached KV values,
eliminating redundant computation and reducing latency. In Plato design, we leverage this
KV cache reuse opportunity to improve overall throughput.

3.2 Prefill and Decode Stages in LLM Inference

Current state-of-the-art inference systems (Kwon et al., 2023; Zheng et al., 2023b) divide
LLM inference into two distinct stages: the prefill stage and the decode stage. The prefill
stage processes the entire input prompt at once, computing and storing the KV cache for all
prompt tokens in parallel. This highly parallelizable computation efficiently utilizes GPU
resources, though it becomes computation-bound with very long sequences. In contrast, the
decode stage generates tokens autoregressively, incrementally updating the KV cache with
each new token. This process is primarily memory-bound, as it requires repeatedly loading
the KV cache and model weights into GPU memory for each token generation, preventing
full utilization of the GPU’s computational capacity.

To improve efficiency, systems can batch multiple independent requests together, allow-
ing shared model weights to reduce per-request memory I/O load and enhance inference
throughput. The design of Plato exploits these characteristics by identifying and decoding
multiple parallelizable sub-problems in a batch, significantly improving throughput com-
pared to traditional autoregressive approaches while maintaining logical coherence between
dependent components.
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4 Design of Plato

Plato co-designs its algorithm and inference system to maximize efficiency. As illustrated in
Fig. 2, Plato employs a planning step that exploits parallel opportunities in the semantic
space by decomposing the original question into subquestions together with their depen-
dencies on the previous nodes. It then builds a dependency graph on these subquestion
nodes and performs parallel batched inference based on this graph structure. To further
enhance performance, we design a specialized inference system that improves throughput
by overlapping the planning and node inference phases. Additionally, to reduce prefill over-
head during node inference, we design a global context cache together with a cache-aware
prompting technique that maximizes the utilization of previously generated KV cache.

4.1 Core Stages of Plato

Plato operates through two primary stages: a planning stage that decomposes the original
question into sub-question nodes and constructs a dependency graph, followed by a node
inference stage that exploits the graph’s parallel structure to process multiple independent
nodes concurrently.

In the planning stage, Plato decomposes complex answering tasks into multiple nodes
(subtasks) while preserving their logical dependencies. Prior work (Ning et al., 2023),
which treats all subtasks as independent, often fails to capture the intricate relationships
between reasoning steps. This can lead to inconsistent or incorrect answers,, as illustrated
in Fig. 1. To address this challenge, Plato models subtask relationships as a Directed
Acyclic Graph (DAG). During the planning stage, the LLM generates both the content and
corresponding dependencies for each subtask node. This dependency-aware approach
ensures that information flows correctly through the reasoning process.

In the node inference phase, Plato improves throughput while ensuring quality. Plato
enforces logical dependencies by processing nodes in the proper order. A node is launched
for inference only after all its dependencies have been satisfied. For instance, if node B
depends on node A, Plato first completes node A, then incorporates A’s results into B’s
context before performing inference on B. This structured approach maintains consistency,
significantly improving answer quality compared to when all nodes are treated as indepen-
dent. Additionally, within this graph structure, nodes whose dependencies are satisfied
will be launched for inference asynchronously in parallel to improve the system’s overall
throughput.

4.2 Inference System Optimization

Beyond leveraging the inherent parallelism in the graph structure, Plato implements spe-
cialized system-level optimizations that exploit the unique characteristics of its workflow to
significantly enhance efficiency.

4.2.1 Pipelining Planning and Node Inference

One key insight in Plato is that we can improve throughput and reduce end-to-end latency by
pipelining the planning and node inference stages rather than executing them sequentially.
Traditional approaches like SoT execute these stages in strict sequence, where node inference
only begins after the planning stage is completely finished. This sequential execution
creates a substantial bottleneck, as the planning stage introduces non-negligible latency and
negatively impacts the system’s overall throughput.

To eliminate this bottleneck, we implement a pipelining architecture that overlaps planning
with node inference. This is possible due to the autoregressive nature of node generation:
earlier nodes cannot depend on later nodes (which haven’t been generated yet), while later
nodes may depend on earlier ones. This unidirectional dependency pattern allows us to
begin processing early nodes without waiting for the complete plan.

Our implementation uses real-time token streaming during the planning stage. As tokens
are generated, Plato continuously analyzes the output buffer, identifying completed nodes
that match our structured format:
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Node ID. Node Content. [Dependency List]

As soon as a complete node is detected in the buffer, it is immediately extracted and dis-
patched to the waiting queue—without waiting for the entire planning phase to complete.
Nodes in the waiting queue whose dependencies have already been satisfied are immedi-
ately dequeued and launched for inference, creating a pipeline where planning and node
inference overlap to hide latency.

This pipelined execution design transforms a sequential process into a concurrent one,
where early nodes in the dependency graph can begin inference while later nodes are still
being generated. This results in a substantial reduction in overall latency and more efficient
utilization of computational resources throughout the inference process.

4.2.2 KV Cache Reuse Optimization

During the node inference stage, each node requires a comprehensive prompt containing
the original question and all relevant context information. However, the prefill operations
needed to generate KV cache for these lengthy prompts introduce non-negligible compu-
tational overhead. To address this challenge, we carefully design the prompt structure
combined with a global context cache module. This approach maximizes KV cache reuse
across different nodes while minimizing redundant prefill computations by leveraging the
prefix caching capabilities of modern LLM inference engines (as described in § 3.1).

We carefully structure the prompt to facilitate efficient KV cache reuse across the node
inference requests. It includes four critical components, arranged to maximize caching
benefits: (1) the original question, (2) instructions, (3) the global context cache containing
all previously generated context, and (4) the specific subtask the current node addresses.
By placing the shared contents (1,2,3) at the prefix of the prompt, we ensure the KV cache
corresponding to these elements are cached and reused across nodes, significantly reducing
redundant computations. The details of the prompt are described in Fig. 6.

Additionally, we design the global context cache module to maintain a consistent context
prefix across nodes, maximizing the KV cache reuse opportunities. As each node completes
its inference, its output is appended to this cache. An example of the cache content is
illustrated in Fig. 2. Subsequent nodes incorporate relevant context from this cache, ensuring
accurate information flow and efficient KV cache reuse.

Counterintuitively, using all previous node results (global context cache) in the context
is more efficient than only including dependent nodes’ results. To illustrate, consider a
sequence of nodes A → B → C → D, with an additional dependency B→D. The original
question and instructions prompts together are represented as P. When Plato starts inference
on A, the prefix prompt will be P. After prefill, P’s corresponding KV cache will be stored
in memory. Once node A finishes, its output A∗ is stored in the global context cache, and
the system starts Node B’s inference. The prompt for Node B has prefix P+A∗. Since P’s
KV cache is already computed, the inference engine loads it and only needs to perform
prefill on A∗, generating and saving A∗’s KV cache for future reuse. Similarly, when node
B completes, its output B∗ is added to the cache, and node C’s prompt becomes P+A∗+B∗.
The system can reuse the KV cache for P+A∗ and only needs to perform prefill computation
on B∗. When node D’s inference begins, its prompt prefix will be P+A∗+B∗+C∗, and the
system already has KV cache for P+A∗+B∗, requiring prefill computation only for C∗.

In contrast, if we were to include only the direct dependencies in each node’s context (e.g., for
node D, only including outputs from nodes B and C), the prompt would be P+B∗+C∗. This
approach would significantly reduce KV cache reuse, as KV cache values depend on tokens’
positions in the sequence. Since B∗ and C∗ would appear at different positions compared to
their locations in the global context, the system would need to perform additional prefill
operations, generating entirely new KV caches. This selective context approach would be
less efficient than our global context strategy.

From this analysis, we can see that the global context cache maintains a consistent prefix
order across nodes, maximizing KV cache reuse opportunities. Each node’s output only
needs to be prefilled once, after which its KV cache can be reused. In contrast, without our
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cache alignment, generating the i-th node would typically require re-prefilling all outputs
from nodes 1 through i − 1, incurring a cumulative overhead of 1 + 2 + · · ·+ (N − 1) =
O(N2) for N nodes. By ensuring each node’s output is added to the cache exactly once
and reused thereafter, our approach reduces prefill computation to O(N), significantly
minimizing overhead.

5 Experiments

We comprehensively evaluate our proposed method aiming to answer the following research
questions: (1) How much does Plato affect generation efficiency and quality compared
to baseline methods in general? (2) How does Plato perform across different question
categories? Which categories benefit most from Plato, and which are less suitable? (3) What
benefits does our pipelining planning and node inference optimizations provide? (4) How
much overhead does Plato incur?

5.1 Experiments Setups

Dataset. We evaluate our method using two comprehensive datasets. The primary dataset
is Vicuna (Chiang et al., 2023), which contains 80 diverse questions across nine categories.
Additionally, we evaluate Plato on WizardLM (Xu et al., 2023), a larger dataset with 218
questions spanning 28 different skill types including academic writing, code debugging,
historical analysis, and more. Since the evaluation results on both datasets yield similar
conclusions, we focus our discussion on the Vicuna results in the main evaluation section,
while WizardLM results are presented in Appendix C.

Models. We evaluate three state-of-the-art open-source models of different sizes: Phi-4 (Ab-
din et al., 2024), Qwen2.5-32B (Team, 2024), and Llama3.1-70B (Meta, 2024). Details regarding
the model sizes, API endpoints, and model repositories can be found in Appendix A.

System Setups. We build Plato inference system on top of SGLang (Zheng et al., 2023b)
v0.4.3 and running inference on two 80 GB NVIDIA A100 GPUs with tensor parallelism.

Baselines. We compare our solutions to three different baselines: autoregressive generation
(AR), chain-of-thought prompting (CoT) (Wei et al., 2022), as well as the state-of-the-art
semantic-space parallel decoding technique: Skeleton-of-Thought (SoT) (Ning et al., 2023).
Other consecutive multi-token parallel decoding methods (Leviathan et al., 2023; Chen et al.,
2023; Cai et al., 2024; Fu et al., 2024) are orthogonal and complementary to our work as they
focus on token-level parallelism rather than semantic-space parallelism, and can be applied
to improve the efficiency of either our planning stage or node inference stage.

Evaluation Metrics. We evaluate answer quality using the LLM-as-a-judge frame-
work (Zheng et al., 2023a). For each evaluation, the judge is presented with the question
and a pair of answers generated by two different decoding techniques on the same model.
To mitigate position bias, we swap the order of the two answers and call the judge twice for
each comparison. We use GPT-4o-mini (OpenAI, 2024a) as the judge, which achieves similar
judging performance as GPT-4o (Hurst et al., 2024) but is 20x cheaper (Tan et al., 2024).
We report net win rates (Ning et al., 2023) for each model, calculated as (#wins - #loses) /
#questions, where 0% indicates similar answer quality and higher values indicate better
answers. For efficiency evaluation, we measure throughput speed-up by calculating the
total number of generated tokens divided by the total processing time across all questions.
This metric provides a fairer assessment of inference system performance (Kwon et al., 2023;
Zhong et al., 2024; Sheng et al., 2023) compared to end-to-end latency, which can be affected
by randomly varying answer lengths.

5.2 Overall Evaluation

We evaluate different decoding approaches using Autoregressive (AR) generation as our
baseline. Figure 3 presents the throughput speed-up and answer quality for each model
compared to AR. Our results demonstrate that Plato achieves an optimal balance between
quality and efficiency. It not only produces higher quality answers than AR with an average
net win rate of 40%, but also delivers inference speed-ups of up to 1.68x.
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Figure 3: [Overall Evaluation]: Answer
quality and speed-up compared to normal
autoregressive generation (AR) on Vicuna.
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Figure 4: [Overall Evaluation]: Quality of
answers across all models between differ-
ent methods on Vicuna.

Model Phi4-14B Qwen2.5-32B Llama3.1-70B
Method SoT Plato SoT Plato SoT Plato
coding -100% 14% -100% -43% -86% -57%

common-sense -10% 80% -90% 50% -80% 30%
counterfactual -60% 100% -100% 50% -80% 100%

fermi -60% 40% -90% 40% -80% 30%
generic -40% 100% -90% 40% -90% 80%

knowledge -60% 90% -80% 70% -80% 80%
math -100% -67% -100% -100% -67% -67%

roleplay -30% 20% -100% 50% -60% 50%
writing -90% 10% -90% -20% -90% 10%

Table 1: [Category Breakdown]: Net win
rate of answer quality over AR across all
models on each question category.

Model Phi4-14B Qwen2.5-32B Llama3.1-70B
Method SoT Plato SoT Plato SoT Plato
coding 2.87 1.79 2.49 1.34 3.02 1.25

common-sense 3.89 1.70 3.17 2.03 3.64 2.00
counterfactual 3.82 1.90 3.14 1.83 3.80 1.46

fermi 3.43 1.54 3.19 1.32 3.71 1.41
generic 3.87 1.54 3.39 2.01 3.87 1.75

knowledge 4.14 1.34 3.23 1.88 3.91 1.74
math 2.79 1.41 2.49 1.23 2.71 1.14

roleplay 3.95 1.50 3.15 1.57 3.76 1.54
writing 3.79 1.98 3.42 1.50 4.04 1.34

Table 2: [Category Breakdown]: Speedup
over AR across all models on each question
category.

In contrast, while SoT achieves the greatest speed-up by processing all sub-question nodes in
parallel, its answer quality is significantly worse than AR methods. This quality degradation
is expected due to SoT’s assumption of complete independence between nodes, which
substantially reduces answer coherence and effectiveness.

We also observe that CoT prompting actually degrades performance compared to standard
AR generation. This aligns with previous findings that CoT is an emergent ability highly
dependent on model scale, primarily benefiting models with approximately 100B parameters
or larger (Wei et al., 2022).

Figure 4 further illustrates the win/tie/loss rates across all models when comparing methods
pairwise. The results are striking: Plato thoroughly outperforms SoT with a 90% net win
rate, while AR achieves a 76% net win rate over SoT. Overall, Plato consistently delivers the
highest quality responses, while SoT produces the lowest quality outputs despite its speed
advantages.

5.3 Category Breakdown

We further analyze performance across different question categories to understand which
types of questions are most suitable for Plato and SoT. Table 1 breaks down answer quality
and Table 2 shows the speed-up. Both methods are compared against the baseline AR
decoding.

From Table 1, we observe that Plato improves quality across most question categories, while
SoT decreases quality across all categories. Plato performs worst on tasks with strong
sequential dependencies that require holistic outputs, such as coding and math. In these
categories, Plato also achieves the least speedup as these tasks offer fewer parallel inference
opportunities, with solutions that must be developed step by step.

Upon closer examination of these challenging categories, we find that for coding tasks, Plato
tends to produce code fragments with detailed explanations rather than generating complete,
cohesive code examples. For math questions, Plato often produces verbose explanations
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Model Phi4-14B Qwen2.5-32B Llama3.1-70B
Metric TP PD IE TP PD IE TP PD IE

SoT 307.81 10.86 28.34 125.59 7.86 15.98 75.10 8.21 9.15
Plato 136.46 3.87 35.26 67.05 2.01 33.36 31.57 2.37 13.32

Table 3: [Compare with SoT]: Average
throughput (TP: token/sec), parallel degree
(PD) and inference efficiency (IE: TP/PD)
of Plato and SoT over all questions in Vi-
cuna.

Optimization Pipeline [seconds] KV Prefill [#tokens]
Model P4 Q2.5 L3.1 P4 Q2.5 L3.1

Before Opt. 16.21 17.30 49.73 4375 3495 4580
After Opt. 11.49 12.68 35.51 1165 850 1048
Reduction 29% 27% 29% 73% 76% 77%

Table 4: [Ablation Study]: Overhead reduc-
tion after applying optimization in §4.2.1
and §4.2.2. P4, Q2.5, L3.1 are abbreviations
of Phi-4, Qwen2.5 and Llama3.1.

Model Phi4-14B Qwen2.5-32B Llama3.1-70B
AR 95.5% 96.0% 93.0%
SoT 63.5% 65.0% 55.0%

Plato 94.5% 94.0% 91.5%

Table 5: Correctness rate of AR, SoT, and
Plato on GSM-8K.

Model Phi4-14B Qwen2.5-32B Llama3.1-70B
SoT 2.10× 2.11× 2.41×

Plato 1.16× 1.23× 1.12×

Table 6: Speedup of AR and SoT on GSM-
8K over AR.

where several steps could ideally be condensed into one. The LLM judge penalizes this
redundancy, resulting in lower scores even when the final answer is correct.

To validate this, we conducted additional experiments on the first 200 samples of the GSM-
8K dataset (Cobbe et al., 2021). We directly compared the correctness of the numerical results
with the ground-truth answers using Deepseek-V3-0324 (DeepSeek-AI, 2024), rather than
assessing overall answer quality. As shown in Table 5, while SoT’s accuracy drops sharply
on math problems, Plato maintains a correctness rate comparable to AR. Furthermore,
Table 6 shows that, despite the highly sequential nature of math solutions, Plato can still
exploit limited parallelism, achieving up to a 1.23× speedup over AR.

Additionally, Plato excels in both quality and efficiency for questions requiring breadth
rather than sequential reasoning. For these tasks, Plato can generate more comprehensive
answers in parallel, incorporating more examples and covering broader aspects of the topic,
thus simultaneously improving both quality and speedup.

We provide three case studies in Appendix E for a deeper analysis of the differences in
generation results between AR, SoT, and Plato.

5.4 System-level Inference Efficiency Comparison

To understand the overall system-level inference efficiency, we compare Plato with SoT in
Table 3, reporting throughput, parallel degree, and inference efficiency.

For Plato, we define the parallelism degree as the total number of nodes divided by the
maximum path length in the DAG graph generated during the planning phase. For SoT,
the parallelism degree equals the number of nodes in the skeleton. We also introduce an
inference efficiency (IE) metric, calculated as speed-up divided by parallelism degree, to
evaluate how efficient the inference is independent of parallelism benefits. A higher IE
indicates a more optimized system.

The results show that Plato significantly outperforms SoT in terms of inference efficiency,
with improvements ranging from 24% to 108%. This demonstrates the effectiveness of
Plato’s approach in co-designing algorithms and systems to achieve superior efficiency.

5.5 Ablation Study on System Optimization

We evaluate the impact of our system optimizations on both inference speedup and KV
cache prefill overhead.

Pipeline Optimization. The left side of Table 4 shows the inference latency before and
after applying our pipeline design that overlaps planning and node inference stages. This
optimization yields a consistent 27-29% speedup (latency reduction) across all models,
demonstrating the effectiveness of our pipeline approach.
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KV Cache Reuse. A significant overhead in Plato comes from prefill computations during
multi-node inference. The right side of Table 4 shows that our KV cache reuse strategy
reduces the number of additional prefill tokens by approximately 75% across all models. This
substantial reduction in prefill overhead contributes significantly to the overall efficiency of
Plato while maintaining answer quality.

Additionally, we report the exact overhead percentage caused by prefilling additional
tokens. Thanks to the KV cache reuse optimization in §4.2.2, Plato introduces minimal
latency overhead—less than 1.6% of the total generation time across all tested models. The
detailed overhead analysis for different models is presented in Table 10.

6 Conclusion

In this paper, we propose Plato, which pushes the boundary of semantic space parallelism
to enhance inference efficiency. Plato codesigns the inference algorithm together with the
system, significantly improving both answer quality and generation speed. Our comprehen-
sive evaluations demonstrate that Plato achieves an optimal balance between speedup and
quality, with a 90% quality net-win rate over SoT while improving throughput by up to 68%
compared to autoregressive baselines. Our pipeline design improves speedup by 29%, and
KV cache reuse optimization reduces overhead by 75%, demonstrating the effectiveness of
our algorithm-system co-design approach.

Looking ahead, Plato’s principles can extend to multi-agent systems, complex reasoning,
and collaborative AI workflows. By modeling dependencies between sub-problems and
leveraging semantic space parallelism, Plato advances LLM inference efficiency and ef-
fectiveness, opening new research avenues at the intersection of algorithmic design and
systems optimization.
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Model Hugging Face Path or API Model Name

GPT-4o-mini (OpenAI, 2024a) gpt-4o-mini
Phi4-14B (Abdin et al., 2024) microsoft/phi-4
Qwen2.5-32B (Team, 2024) Qwen/Qwen2.5-32B-Instruct
Llama3.1-70B (Meta, 2024) meta-llama/Meta-Llama-3.1-70B-Instruct

Table 7: Hugging Face or API Model Name of all used models.

A Models Details

We summarizes Hugging Face Hubs’ repos of the open-source models and the GPT model
we used in Table 7. We run the open-source models using SGlang (Zheng et al., 2023b) v0.4.3
with 2xA100 80G.

For all LLM-as-a-judge (FastChat) (Zheng et al., 2023a) evaluations, we use GPT-4o-mini as
the judge LLM with the API model name gpt-4o-mini.

B Prompt Details

Plan Generation Prompt We demonstrate our plan generation prompt for Plato in Figure 5.

To ensure the generation of node dependency graphs that are both informative and straight-
forward to parse, we define the expected output format at the beginning of the prompt.
This specification serves to align the Large Language Model (LLM) output with our parsing
requirements, thereby ensuring that the generated skeletons are easy to parse. Then we
provide guidelines to instruct the LLM to generate a comprehensive and cohesive plan while
maximizing the parallelism of decoding. To complement this specification, we provide an
illustrative example that serves as one-shot learning instance.

We also observe that models like Qwen2.5-32B and Phi-4 follow the instructions well.
Meanwhile, Llama3.1-70B produces unstable outputs from time to time.

Node Inference Prompt We demonstrate our node inference prompt for Plato in Figure 6.

The node inference prompt helps the LLM focus on the subtask it is assigned to, and
provides detailed and in-depth answer to it, making the overall response better.

The template begins by reminding the LLM of the main question, which helps to keep the
answer focused and on track. Then we state the requirements for answering the subtask.
Following this, we append the description and results of all finished subtasks at this
point. Because the generation waits until its dependent subtasks are finished, the relevant
information has been included in the context. Instructions and contexts are only prefilled
once, as their KV cache will be reused repeatedly during parallel node inference. After the
context, we add the description of the subtask.
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Planning Prompt of Plato.

<|im start|>system
Decompose the given problem into subtasks with dependencies, optimizing
for parallel execution (shortest critical path). Format each subtask as (each
line is a subtask):

<id>. Subtask description.[dependency ids]

Guidelines:
- Conciseness: Keep descriptions short and action-oriented (e.g.,

”Calculate X”, ”Summarize Y”).
- Dependencies: Only specify dependencies if a subtask requires

outputs from others.
- Readability: Ensure the final concatenated answer flows logically

(e.g., analysis follows data generation).
- Parallelism: Maximize independent subtasks; minimize critical path

length.
- Comprehensiveness: Explore any relevant aspects of the given

problem in parallel.
- Structure: Ensure a clear logical flow between subtasks and avoid

redundancy and fragmentation.
- Completion: End with a synthesis subtask to reach a *very short*

and cohensive final answer.
Example:
Problem: ”Compare the average GDP growth of Country A and B over 5
years, then recommend investments.
Response:

1. Fetch GDP data for Country A (2019-2023).[]
2. Fetch GDP data for Country B (2019-2023).[]
3. Calculate average GDP growth for Country A.[1]
4. Calculate average GDP growth for Country B.[2]
5. Compare growth rates and identify higher-performing
country.[3,4]
6. Recommend investment strategy based on comparison.[5]

Note: Subtasks 1-2 and 3-4 can run in parallel; 1/2-3/4-5-6 form the critical
path. <|im end|>
<|im start|>user
[Insert Question Here] <|im end|>
<|im start|>assistant

Figure 5: Plan generation prompt of Plato.
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Node Inference Prompt of Plato.

<|im start|>system
You are an AI assistant that can answer questions.<|im end|>
<|im start|>user
Your team is solving the question: [Insert Question Here]
Your task is to complete one specific subtask in a processing plan.
You are an expert solving a subtask as part of a larger workflow. Follow
these rules:

- Conciseness: Answer in 1-3 sentences if possible.
- Depth: Include key insights/calculations (e.g., formulas, reasoning,

examples).
- Consistency: Consider the logic flow from previous results and the

question and be cohensive.
Previous results: [Global Contexts]
Directly state your answer to the subtask: [Subtask Descrip-
tion].<|im end|>
<|im start|>assistant

Figure 6: Node inference prompt of Plato.
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Model Phi4-14B

Method SoT Plato

Result Win Tie Lose Net win rate Win Tie Lose Net win rate

Academic Writing 0 2 2 -50% 3 0 1 50%
Art 0 3 2 -40% 4 1 0 80%

Biology 2 2 2 0% 4 1 1 50%
Chemistry 0 0 2 -100% 2 0 0 100%

Code Debug 0 3 7 -70% 6 4 0 60%
Code Generation 0 2 16 -89% 4 9 5 -6%
Common-Sense 1 6 2 -11% 8 1 0 89%

Complex Format 1 0 11 -83% 3 2 7 -33%
Computer Science 0 3 12 -80% 10 3 2 53%

Counterfactual 1 6 1 0% 8 0 0 100%
Economy 0 1 4 -80% 3 2 0 60%

Entertainment 2 2 1 20% 4 1 0 80%
Ethics 1 2 3 -33% 4 2 0 67%

History 0 1 3 -75% 2 2 0 50%
Law 2 1 2 0% 5 0 0 100%

Literature 0 1 4 -80% 3 2 0 60%
Math 1 4 15 -70% 8 10 2 30%

Medicine 0 1 4 -80% 3 2 0 60%
Multilingual 0 1 6 -86% 3 2 2 14%

Music 1 1 3 -40% 4 1 0 80%
Physics 0 3 2 -40% 1 3 1 0%

Reasoning 1 4 8 -54% 8 4 1 54%
Roleplay 0 3 3 -50% 4 2 0 67%

Sport 0 1 4 -80% 3 2 0 60%
Technology 0 2 4 -67% 4 2 0 67%

Toxicity 1 2 1 0% 4 0 0 100%
TruthfulQA 1 3 1 0% 3 2 0 60%

Writting 0 2 16 -89% 13 2 3 56%

Overall 15 62 141 -58% 131 62 25 49%

Table 8: Answer quality of SoT and Plato compared with auto-regressive (AR) across
different categories on WizardLM. The answers are generated by Phi-4.

C Evaluation on WizardLM

In addition to the Vicuna dataset, we also evaluate Plato on a larger dataset, WizardLM (Xu
et al., 2023). It contains 218 questions covering a wide range of skills, such as academic
writing, code-debug, history, etc. We use standard autoregressive (AR), Skeleton-of-Thought
(SoT), and Plato to answer these questions and evaluate the output using LLM-as-a-judge
(FastChat) (Zheng et al., 2023a). We present the results in Table 8 and Table 9 with detailed
breakdown across different categories.

Across all the subjects and models, Plato achieves positive total net win rate over AR while
SoT suffers from significant quality drop, showing that Plato effectively maintains answer
quality while improving the token generation speed.
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Model Qwen2.5-32B

Method SoT Plato

Result Win Tie Lose Net win rate Win Tie Lose Net win rate

Academic Writing 0 0 4 -100% 0 4 0 0%
Art 1 1 3 -40% 2 3 0 40%

Biology 0 1 5 -83% 4 1 1 50%
Chemistry 0 0 2 -100% 1 1 0 50%

Code Debug 0 0 10 -100% 4 6 0 40%
Code Generation 0 0 18 -100% 2 4 12 -56%
Common-Sense 1 3 5 -44% 4 4 1 33%

Complex Format 0 1 11 -92% 0 5 7 -58%
Computer Science 0 0 15 -100% 5 6 4 7%

Counterfactual 0 1 7 -88% 5 2 1 50%
Economy 0 0 5 -100% 4 1 0 80%

Entertainment 0 1 4 -80% 2 1 2 0%
Ethics 1 2 3 -33% 5 1 0 83%

History 0 0 4 -100% 2 2 0 50%
Law 0 0 5 -100% 1 4 0 20%

Literature 0 1 4 -80% 1 3 1 0%
Math 0 3 17 -85% 2 12 6 -20%

Medicine 0 0 5 -100% 3 2 0 60%
Multilingual 0 1 6 -86% 2 4 1 14%

Music 0 2 3 -60% 3 2 0 60%
Physics 0 1 4 -80% 1 3 1 0%

Reasoning 0 4 9 -69% 6 5 2 31%
Roleplay 0 0 6 -100% 5 1 0 83%

Sport 0 0 5 -100% 2 1 2 0%
Technology 0 3 3 -50% 5 1 0 83%

Toxicity 0 1 3 -75% 2 2 0 50%
TruthfulQA 0 0 5 -100% 2 2 1 20%

Writting 2 1 15 -72% 11 5 2 50%

Overall 5 27 186 -83% 86 88 44 19%

Table 9: Answer quality of SoT and Plato compared with auto-regressive (AR) across
different categories on WizardLM. The answers are generated by Qwen2.5-32B.
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Model Phi4-14B Qwen2.5-32B Llama3.1-70B

Avg. prefill time [s] 0.13 0.19 0.47
Avg. total time [s] 11.49 12.68 35.51

Overhead 1.17% 1.52% 1.32%

Table 10: Overhead of Plato after applying KV cache reuse optimization. Time is averaged
over all questions in Vicuna.

D Overhead Analysis

We present the latency overhead results across different models in Table 10.

E Case Studies

We present three case studies to compare answers from AR, SoT, and Plato generated by
different models in details.

E.1 Comparison of Answers Generated by Phi4-14B

Question: What are the main differences between Python and JavaScript programming
languages?

(Concise) AR Answer: Python and JavaScript are both popular programming languages,
but they have distinct characteristics and use cases. Here are some of the main differences
between the two:

• Design and Syntax: - Python: Known for its clean and readable syntax, Python uses
indentation to define code blocks, which enhances readability. It follows a philosophy
of simplicity and minimalism. - JavaScript: Uses curly braces ‘{}‘ to define code blocks
and semicolons ‘;‘ to end statements. Its syntax can be more verbose and less intuitive for
beginners compared to Python.

• Typing: - Python: Dynamically typed, but with optional type hints (introduced in Python
3.5), allowing for some static type checking. - JavaScript: Also dynamically typed, but
with the addition of TypeScript, a statically typed superset that provides optional static
type checking.

• Execution Environment: - Python: Primarily a server-side language, but also used for
scripting, data analysis, and machine learning. It is executed in a variety of environments
including standalone scripts, web servers (e.g., Django, Flask), and data science platforms.
- JavaScript: Originally designed for web browsers to add interactivity to web pages. It is
now widely used on both the client-side (browsers) and server-side (Node.js) with the
rise of full-stack JavaScript development.

• Concurrency: - Python: Uses a Global Interpreter Lock (GIL) that can be a bottleneck for
CPU-bound multithreading. However, it supports asynchronous programming with
‘asyncio‘ and can leverage multiprocessing for parallelism. - JavaScript: Utilizes an event-
driven, non-blocking I/O model, making it highly suitable for asynchronous operations.
It uses Promises and ‘async/await‘ to handle asynchronous code more easily.

• Use Cases: - Python: Commonly used in web development, data science, artificial intel-
ligence, scientific computing, automation, and scripting. - JavaScript: Primarily used
for front-end web development, but also for back-end development with Node.js. It is
essential for building interactive web applications.

• Libraries and Frameworks: - Python: Rich ecosystem with libraries like NumPy, Pandas,
TensorFlow, and frameworks like Django and Flask. - JavaScript: Extensive library
ecosystem with tools like React, Angular, Vue.js for front-end development, and Ex-
press.js, Koa.js for server-side development.
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• Community and Support: - Both languages have large, active communities and extensive
documentation, but the focus of their communities differs based on their primary use
cases.

These differences highlight the distinct roles and strengths of Python and JavaScript, making
them suitable for different types of projects and development needs.

(Concise) SoT Answer:

• Language type. key concept: Python is primarily an interpreted, high-level programming
language focused on code readability and simplicity, often used for scripting and rapid
application development. JavaScript is a lightweight, interpreted or JIT-compiled pro-
gramming language with first-class functions, primarily used for client-side scripting in
web browsers.

• Execution model. key concept: Python is an interpreted language, typically executed line-
by-line, which can make debugging easier but may result in slower execution. JavaScript,
originally designed for web browsers, is also interpreted but often compiled just-in-time
(JIT) by modern engines like V8, enhancing performance.

• Syntax differences. key concept: Python emphasizes readability with its use of indentation
to define code blocks, while JavaScript uses curly braces and semicolons, allowing for
more flexible syntax styles.

• Use cases. key concept: Python is widely used in data science, machine learning, and scien-
tific computing due to its extensive libraries like NumPy and Pandas, while JavaScript is
predominantly used for web development, enabling dynamic and interactive web pages
through frameworks like React and Angular.

• Typing system. key concept: Python is dynamically typed with optional type hints, allowing
more flexibility, while JavaScript is also dynamically typed but has introduced TypeScript,
a statically typed superset, to enhance type safety and development experience.

• Concurrency model. key concept: Python uses the Global Interpreter Lock (GIL) which limits
execution to one thread at a time, whereas JavaScript employs an event-driven, non-
blocking I/O model with an event loop, allowing for efficient handling of asynchronous
operations.

• Libraries and frameworks: Python boasts a rich ecosystem with libraries like NumPy
and frameworks like Django for web development, while JavaScript is renowned for
its extensive libraries such as React and frameworks like Angular and Vue.js, catering
primarily to front-end development.

• Community and support: Both Python and JavaScript have large, active communities, but
Python is often praised for its emphasis on readability and simplicity, which attracts
beginners, while JavaScript’s community is heavily focused on web development and
rapidly evolving with frameworks like React and Node.js.

• Performance characteristics. key concept: Python is generally slower than JavaScript due
to its interpreted nature and dynamic typing, while JavaScript, especially with the V8
engine, is optimized for high performance in web environments.

• Browser support. key concept: JavaScript is natively supported by all web browsers, making
it essential for client-side web development, while Python is not directly supported in
browsers but can be used server-side or through transpilers like Brython or Pyodide for
client-side scripting.

(Concise) Plato Answer (dependent nodes are in []):

• Identify core use cases of Python []: Python is primarily used for web development, data
analysis, artificial intelligence, scientific computing, and automation scripting. Its sim-
plicity and readability make it popular in data science and machine learning. Python’s
extensive libraries, like NumPy, Pandas, and TensorFlow, support its use in scientific and
analytical applications. Additionally, frameworks such as Django and Flask facilitate
web development, while its versatility allows use in automation and backend server
applications.
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• Identify core use cases of JavaScript []: JavaScript is primarily used for web development,
enabling dynamic and interactive content on websites through client-side scripting. It is
essential for front-end development, interacting with web browsers via the Document
Object Model (DOM), and is also used in back-end development with platforms like
Node.js. Additionally, JavaScript is utilized in building mobile applications through
frameworks like React Native and in desktop applications using Electron.

• Analyze syntax differences between Python and JavaScript []: Python and JavaScript have
distinct syntax differences. Python uses indentation to define code blocks, promoting
readability, whereas JavaScript relies on curly braces ‘{}‘. Python’s syntax is generally
more concise and clean, with dynamic typing and simpler function definitions, while
JavaScript supports both functional and object-oriented programming with a more com-
plex syntax including semicolons and explicit type declarations. Additionally, Python
uses ‘def‘ to define functions, whereas JavaScript uses the ‘function‘ keyword or arrow
functions (‘=¿‘).

• Compare performance characteristics of Python and JavaScript []: Python and JavaScript
have distinct performance characteristics due to their design and use cases. Python is
typically slower than JavaScript in execution speed because it is an interpreted language,
often requiring optimization or using extensions like Cython for performance-critical
applications. In contrast, JavaScript, especially with modern engines like V8, is designed
for fast, efficient execution in web browsers and server environments (Node.js), benefiting
from just-in-time (JIT) compilation. While JavaScript can handle asynchronous operations
efficiently, particularly with its non-blocking I/O model, Python requires additional
frameworks (such as asyncio) to achieve similar asynchronous capabilities.

• Evaluate ecosystem and library support for Python []: Python boasts a robust ecosystem
with extensive library support, particularly strong in data science, machine learning,
and scientific computing. Libraries such as NumPy, Pandas, and TensorFlow provide
powerful tools for numerical analysis, data manipulation, and deep learning. For web
development, frameworks like Django and Flask offer comprehensive solutions for
building complex web applications, and libraries such as Requests facilitate network
operations. Python’s package manager, pip, simplifies the installation and management
of these libraries, ensuring a rich and versatile development environment. Overall,
Python’s ecosystem is well-integrated and continuously evolving, making it a preferred
choice for a wide range of applications.

• Evaluate ecosystem and library support for JavaScript []: JavaScript has a robust ecosystem
and extensive library support, primarily driven by its use in web development. Key
libraries and frameworks include React, Angular, and Vue.js for front-end development,
which enable the creation of dynamic user interfaces. For back-end development, Node.js
allows JavaScript to run on the server-side, supported by libraries like Express.js for
building web applications. Additionally, Electron provides tools for building cross-
platform desktop applications, and React Native extends JavaScript’s reach to mobile app
development. The npm (Node Package Manager) registry further bolsters JavaScript’s
ecosystem, offering one of the largest collections of open-source libraries and tools,
facilitating extensive community support and rapid development.

• Compare learning curves and community support for both languages []: Python and JavaScript
both have extensive community support and resources, but their learning curves differ
due to syntax and use cases. Python is often considered easier for beginners due to its
simple, readable syntax and emphasis on code readability, making it ideal for learning
programming fundamentals. It has a large community, with comprehensive documen-
tation and numerous educational resources available, which aids in learning. On the
other hand, JavaScript’s learning curve can be steeper due to its more complex syntax,
including asynchronous operations and prototypal inheritance, which may require a
deeper understanding of web technologies. . . .

• Synthesize findings into a concise comparison of Python and JavaScript [3,4,5,6,7]: Python and
JavaScript are both versatile languages with distinct core use cases. Python excels in
data analysis, scientific computing, and artificial intelligence, supported by libraries like
NumPy and TensorFlow, and is favored for its readability and simplicity. JavaScript, on
the other hand, is primarily used for web development, enabling dynamic content on
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websites and supporting both front-end and back-end development through frameworks
like React, Node.js, and React Native. . . .

Findings: We find that the AR answer provides a clear, structured overview of Python
and JavaScript differences but lacks synthesis and in-depth technical insights (e.g., JIT com-
pilation, browser support). SoT answer is more comprehensive but is overly granular and
fragmented. The Plato answer systematically breaks down key aspects (syntax, performance,
ecosystems) and synthesizes them into a cohesive comparison, avoiding redundancy while
maintaining depth.

E.2 Comparison of Answers Generated by Qwen2.5-32B

Question: Can you explain the basics of quantum computing?

(Concise) AR Answer: Certainly! Quantum computing is a type of computing that uses
quantum mechanics to process information. It leverages the principles of superposition and
entanglement to perform operations on data.

• Qubits: Unlike classical bits, which are the basic unit of information in classical computing
and can be either 0 or 1, quantum bits or qubits can exist in multiple states simultaneously
thanks to superposition. This means a qubit can be 0, 1, or any quantum superposition of
these states.

• Superposition: This principle allows a quantum system to be in multiple states at the same
time. For example, a qubit can be in a state that is a combination of both 0 and 1 until it
is measured. The act of measurement collapses the qubit into one of its possible states,
which could be 0 or 1.

• Entanglement: This is a phenomenon where quantum particles become interconnected
and the state of one (no matter the distance) can depend on the state of another. For
instance, if two qubits are entangled, the state of one qubit instantly influences the state
of the other. This property is crucial for many quantum computing operations and can
be used to perform certain computations much faster than classical computers.

• Quantum Gates: In classical computing, logic gates (like AND, OR, NOT) manipulate bits
to perform logical functions. Quantum gates manipulate qubits in similar ways but use
quantum operations that can take advantage of superposition and entanglement. These
gates can perform complex operations on multiple qubits simultaneously, which is one
of the reasons quantum computers have the potential to be significantly more powerful
than classical computers for certain tasks.

• Quantum Algorithms: Algorithms like Shorś algorithm for factoring large numbers and
Groverś algorithm for searching unsorted databases are examples of algorithms that
exploit quantum mechanical phenomena to solve problems much faster than any classical
algorithm could.

• Challenges: Quantum computing faces significant challenges, such as decoherence (loss of
quantum behavior due to interaction with the environment) and error rates, which are
higher than those in classical computing. Quantum error correction techniques are being
developed to address these issues.

Quantum computers are particularly promising for solving problems in cryptography,
optimization, and simulation of quantum systems, which are currently infeasible for classical
computers. However, practical large-scale quantum computers are still in the early stages of
development and research.

(Concise) SoT Answer:

• Quantum bits (qubits).: Qubits are the fundamental units of quantum information, analo-
gous to classical bits, but capable of existing in multiple states simultaneously due to the
principle of superposition.

• Superposition principle. key concept: The superposition principle allows qubits to exist in
multiple states simultaneously, represented as a combination of both 0 and 1, enabling
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quantum computers to process vast amounts of information more efficiently than classical
computers.

• Entanglement phenomenon. key concept: Entanglement occurs when qubits become corre-
lated in such a way that the state of one (whether it’s 0 or 1) can depend on the state of
another, no matter the distance between them, allowing for instantaneous state changes
that are crucial for quantum computing operations.

• Quantum interference. key concept: Quantum interference allows constructive or destructive
interference of probability amplitudes, enabling quantum algorithms to amplify correct
answers and cancel out wrong ones, thus optimizing computational outcomes.

• Quantum gates. key concept: Quantum gates are operations performed on qubits to manip-
ulate their states, analogous to classical logic gates, but they can also create superposition
and entanglement, enabling quantum computations.

• Quantum algorithms. key concept: Quantum algorithms, such as Shor’s and Grover’s,
leverage quantum properties to solve problems more efficiently than classical algorithms,
offering exponential speedups for specific tasks.

• Decoherence challenges. key concept: Decoherence refers to the loss of quantum behav-
ior in qubits due to interaction with the environment, leading to errors in quantum
computations and posing a significant challenge in maintaining quantum state integrity.

• Quantum supremacy. key concept: Quantum supremacy refers to the point where a quantum
computer can solve a problem that a classical computer cannot solve within a reasonable
time frame, demonstrating the superior computational power of quantum systems.

(Concise) Plato Answer (dependent nodes are in []):

• Define quantum bits (qubits) []: Quantum bits, or qubits, are the fundamental units of
quantum information, analogous to classical bits but capable of existing in a superposition
of states, representing both 0 and 1 simultaneously until measured. This property
stems from the principles of quantum mechanics, enabling qubits to perform multiple
computations at once, potentially offering significant speedups for certain tasks.

• Explain superposition [1]: Superposition in quantum computing allows a qubit to exist in
multiple states simultaneously, not just binary 0 or 1 as in classical computing. Mathemat-
ically, a qubit can be represented as a linear combination α|0⟩+ β|1⟩, where α and β are
complex numbers such that |α|2 + |β|2 = 1, encapsulating the probabilities of measuring
the qubit in state |0⟩ or |1⟩.

• Describe entanglement [1]: Entanglement is a quantum phenomenon where qubits be-
come interconnected such that the state of one (whether it’s 0 or 1) cannot be described
independently of the state of another, no matter the distance separating them. This inter-
connection allows operations on one qubit to instantaneously affect another, enabling
complex quantum algorithms and secure quantum communication protocols.

• Introduce quantum gates [1]: Quantum gates are the basic building blocks of quantum
circuits, analogous to classical logic gates but operating on qubits. These gates manipulate
the state of qubits using unitary transformations, enabling the creation of superpositions,
entanglements, and interference, which are crucial for quantum algorithms. Examples
include the Hadamard gate, which creates superposition, and the CNOT gate, which
generates entanglement.

• Summarize quantum algorithms [2,3,4]: Quantum algorithms leverage the principles of
superposition, entanglement, and quantum gates to perform specific computational tasks
more efficiently than classical algorithms. Notable examples include Shor’s algorithm for
factoring large integers exponentially faster than the best-known classical algorithms, and
Grover’s algorithm for unstructured search problems, providing a quadratic speedup.
These algorithms exploit quantum parallelism and interference to achieve their speedups.

• Compare quantum computing with classical computing [5]: Quantum computing funda-
mentally differs from classical computing in its ability to leverage superposition and
entanglement, allowing qubits to exist in multiple states simultaneously and become
interconnected in ways that classical bits cannot. This enables quantum computers to
perform certain operations in parallel and process complex computations more efficiently
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than classical computers for specific tasks, such as factoring large numbers and searching
unstructured databases.

• Outline potential applications of quantum computing [5]: Quantum computing has the po-
tential to revolutionize several fields by solving complex problems more efficiently. Key
applications include cryptography, where quantum computers could break current en-
cryption methods but also enable quantum key distribution for secure communication;
optimization in logistics and finance, where quantum algorithms can find optimal so-
lutions faster; and simulation of quantum systems in chemistry and materials science,
enabling the development of new drugs and materials.

Findings: We find that all three methods give a comprehensive introduction to quantum
computing, while Plato uses concrete examples to elaborate concepts. Plato also provides a
clear and structured logical flow with comparison and summarization, making the whole
answer coherent, while the answer from SoT is fragmented.

E.3 Comparison of Answers Generated by Llama3.1-70B

Question: How many times does the average human blink in a lifetime? Try to explain
your answer. Your explanation should take the reader through your reasoning step-by-step.

(Concise) AR Answer:

• Step 1: Determine the average blink rate per minute: Research suggests that the average
person blinks around 12-15 times per minute. Let’s use a conservative estimate of 13
blinks per minute.

• Step 2: Calculate the number of blinks per hour: There are 60 minutes in an hour, so we can
multiply the average blink rate per minute by 60 to get the number of blinks per hour: 13
blinks/minute × 60 minutes/hour = 780 blinks/hour.

• Step 3: Calculate the number of blinks per day: Assuming an average of 16 hours of wakeful-
ness per day (accounting for 8 hours of sleep), we can multiply the number of blinks per
hour by the number of hours spent awake: 780 blinks/hour × 16 hours/day = 12,480
blinks/day.

• Step 4: Calculate the number of blinks per year: There are 365.25 days in a year (accounting
for leap years). We can multiply the number of blinks per day by the number of days in a
year: 12,480 blinks/day × 365.25 days/year ≈ 4,555,200 blinks/year.

• Step 5: Estimate the average human lifespan: According to the World Health Organization
(WHO), the average human lifespan is approximately 72 years (based on global data
from 2019).

• Step 6: Calculate the total number of blinks in a lifetime: Finally, we can multiply the number
of blinks per year by the average human lifespan: 4,555,200 blinks/year × 72 years ≈
327,971,200 blinks/lifetime.

• Conclusion: Therefore, the average human blinks approximately 327,971,200 times in a
lifetime, assuming an average blink rate of 13 blinks per minute, 16 hours of wakefulness
per day, and an average human lifespan of 72 years. Keep in mind that this is a rough
estimate and actual blink rates may vary from person to person. Nonetheless, this
calculation should provide a reasonable ballpark figure.

(Concise) SoT Answer:

• Average blinks per minute: According to various studies, the average person blinks around
12-15 times per minute. This rate can vary depending on factors such as attention,
environment, and eye health, but 12-15 blinks per minute is a commonly cited estimate.

• Minutes per day: Assuming an average person sleeps for 8 hours a day, that leaves 16
hours of wakefulness, which translates to 960 minutes per day.

• Days per year: Assuming a non-leap year, there are 365 days in a year, and for a leap year,
there are 366 days, so we can take the average of the two, which is approximately 365.25
days per year.
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• Years in lifetime: Assuming an average human lifespan of around 80 years, we can use
this as a rough estimate for our calculation.

• Calculate total blinks: To calculate the total number of blinks, we multiply the average
blinks per minute (point 1) by the minutes per day (point 2) and then by the days per
year (point 3) and finally by the years in a lifetime (point 4). This gives us a preliminary
estimate of total blinks in a lifetime.

• Consider blinking variations: We must account for variations in blinking rates due to factors
such as age, activity level, and environment, which can significantly impact the average
blink rate.

• Estimate lifetime blinks: Based on these calculations, the estimated total number of blinks
in a lifetime is approximately 415 million, assuming an average lifespan of 80 years.
However, this is a rough estimate and actual numbers may vary significantly from person
to person.

(Concise) Plato Answer (dependent nodes are in []):

• Determine the average human lifespan []: Based on global data, the average human lifespan
is approximately 72 years (70 years for males and 74 years for females), according to
the World Health Organization (2019). This estimate takes into account factors such as
mortality rates, life expectancy, and population demographics. I will use this value as a
baseline for subsequent calculations.

• Calculate the average number of blinks per minute []: The average number of blinks per
minute is approximately 15-20 blinks per minute (bpm). This rate can vary depending
on factors like age, environment, and activity level, but 17.5 bpm is a commonly cited
average. This rate will serve as the basis for further calculations to determine the total
number of blinks in a lifetime.

• Estimate the average number of minutes spent awake per day []: Based on typical adult sleep
patterns, I estimate the average number of minutes spent awake per day to be around
960 minutes (16 hours). This assumes 7-9 hours of sleep per night and 24 hours in a day.

• Calculate the average number of blinks per day [2,3]: Based on the estimated average number
of minutes spent awake per day (960 minutes) and the assumed average blink rate (17.5
blinks per minute), the average number of blinks per day can be calculated as: 960
minutes/day * 17.5 blinks/minute = 16,800 blinks/day.

• Calculate the average number of blinks per year [4]: To calculate the average number of blinks
per year, we can multiply the average number of blinks per day (16,800 blinks/day) by
the number of days in a year (365.25, accounting for leap years). This results in: 16,800
blinks/day * 365.25 days/year ≈ 6,133,800 blinks/year.

• Multiply the average number of blinks per year by the average human lifespan [1,5]: Multiplying
the average number of blinks per year (6,133,800 blinks/year) by the average human
lifespan (72 years), we get: 6,133,800 blinks/year * 72 years ≈ 441,652,800 blinks in a
lifetime. This represents the estimated total number of blinks an average human would
make over the course of their life.

Findings: We find that all three answers are close. However, Plato answer delivers the
most rigorous and structured reasoning process, leveraging logic dependency to ensure
coherence and transparency. For SoT answer, although the value makes sense, doesn’t have
a cohesive explanation process, which directly retrieves the final results.
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