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Abstract

We introduce PuzzleJAX, a GPU-accelerated puzzle game engine and description1

language designed to support rapid benchmarking of tree search, reinforcement2

learning, and LLM reasoning abilities. Unlike existing GPU-accelerated learning3

environments that provide hard-coded implementations of fixed sets of games,4

PuzzleJAX allows dynamic compilation of any game expressible in its domain-5

specific language (DSL). This DSL follows PuzzleScript, which is a popular and6

accessible online game engine for designing puzzle games. In this paper, we7

validate in PuzzleJAX several hundred of the thousands of games designed in8

PuzzleScript by both professional designers and casual creators since its release in9

2013, thereby demonstrating PuzzleJAX’s coverage of an expansive, expressive, and10

human-relevant space of tasks. By analyzing the performance of search, learning,11

and language models on these games, we show that PuzzleJAX can naturally express12

tasks that are both simple and intuitive to understand, yet often deeply challenging13

to master, requiring a combination of control, planning, and high-level insight.114

1 Introduction15

Games—from board games to card games to video games—have long been used to train and test16

methods in artificial intelligence (AI). While “classic” game-AI research has largely focused on17

search and planning (i.e. for superhuman play of traditional board games [43, 7, 34, 38, 37]), games18

as a whole are diverse enough to test a wide variety of cognitive skills. In recent years, specialized19

game-based benchmarks have been developed to test the capabilities of AI systems in a variety of20

domains [10, 25, 2, 48].21

Relative to other genres (e.g. strategy games, platforming games, arcade games), puzzle games have22

received comparatively less research attention. These games are typically single-player, with full23

or nearly full state observability and relatively modest action spaces. What puzzle games lack in24

dexterity-based challenges, they make up for in tests of logical inference and long-horizon planning.25

Puzzle games also range in the complexity of their observation space from relatively simple (e.g. the26

tile-based levels of Sokoban, Boulder Dash, or Baba is You) to expansive and immersive (e.g. the27

fully-realized 3D worlds of Portal, The Witness, or The Talos Principle). We argue that even simple28

tile-based puzzle games represent an important unsolved frontier in game AI research and help test29

increasingly important aspects of artificial “cognition” in the era of large language models.30

Rather than isolating a single puzzle game or group of games as a target or benchmark, we propose a31

framework for analyzing and evaluating tile-based puzzle games more generally. Our approach builds32

on PuzzleScript, a domain-specific language for expressing 2D tile-based puzzle games already used33

by game developers around the world. We reimplement the core functionalities of PuzzleScript in JAX,34

a modern Python library for hardware-accelerated code. The end result is a benchmark of over 50035

diverse game environments and the capacity to generate and automatically compile completely novel36

1Our code is available at https://anonymous.4open.science/r/script-doctor-BDA4
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(a) In Lime Rick, the player controls a caterpillar-like creature whose head can rise vertically by at most 3 tiles
consecutively. The player must navigate the level using their own body and pushable crates to fight against
gravity and reach the exit.

(b) In Kettle, the player controls multiple walls of policemen—each of which can move in one direction
together—and must strategically sequence moves to push (or “kettle”) a group of civilians into a compact,
confined square.

(c) In Take Heart Lass, the player must reach the exit (red heart) before they are blocked by the gradually-
spreading despair (black tiles). They can push pink hearts to block the despair or unblock hope (pink tiles) which
spreads and consumes despair.

Figure 1: Example games from the framework that showcase the diversity of PuzzleScript games.

rulesets. Our benchmark, PuzzleJAX, avoids the common problem of model overfitting by offering a37

vast array of environment dynamics and objectives while still providing a unified observation and38

action space. PuzzleJAX is completely interoperable with existing PuzzleScript game descriptions,39

giving easy access to thousands of unique and human-authored game environments. PuzzleJAX is40

also fast: by leveraging the power of modern computing hardware, we achieve speed-ups in all the41

tested games ranging from 2× to 16× compared to existing implementations in JavaScript.42

In the following sections, we describe the PuzzleJAX language and implementation in detail, provide43

comparisons to the existing PuzzleScript implementation, and showcase initial examples of planning44

algorithms, reinforcement learning, and LLM-based players interacting with puzzle game environ-45

ments. Preliminary benchmarking results on a subset of human-authored games demonstrate that46

PuzzleJAX environments often present substantial challenges for LLM and RL player agents despite47

being relatively easy to solve via tree search and tractable for human players.48

2 Related work49

In AI research, individual board or video games are often used to benchmark algorithms, such as Tree50

Search [9, 39, 6] and Reinforcement Learning [40]. The ancient board game Go, for example, was51

tackled by the tailor-made algorithm AlphaGO [38], which combined imitation learning, tree search,52

and reinforcement learning. Similarly, AlphaStar [46] defeated professional StarCraft 2 players,53

a game known to be one of the most challenging real-time strategy games, and OpenAI Five [4]54

defeated professional Dota 2 players. Single player video games, for their part, can also serve as55

lasting benchmarks, with AI progress reflected incrementally in terms of increasing score or other56

metrics of in-game progress. The Arcade Learning Environment [3] emulates Atari 2600 games57
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Figure 2: Speed of PuzzleJAX compared against a random agent in the original PuzzleScript engine,
where random actions are carried out internally (NodeJS) or sent from Python (Python-NodeJS).

to serve as a benchmark for learning algorithms, and spurned seminal progress in deep RL [24].58

Minecraft [11], a popular 3D open-world game, has been used as a benchmark for planning and59

learning in RL agents [1, 27]. The classic platformer Super Mario Bros. has also been used as a60

benchmark for AI player agents [14, 17, 29].61

Beyond playing individual games, general game-playing—involving player agents that can play a62

variety of games or generalize to new environments after learning—has been a core interest among63

RL researchers. The General Video Game AI (GVGAI) [32] research effort leveraged the Video64

Game Description Language (VGDL) [13] a Domain Specific Language (DSL) designed to support65

a large set of arcade-style games, and studied the problem of generalization in RL [45, 16, 28].66

Similarly, the NetHack Learning Environment [18] (a port of NetHack) and Crafter [15] (a 2D version67

of Minecraft) were developed to benchmark generalisation in RL algorithms, with their focus on68

procedural generation prohibiting learning methods prone to overfitting. PuzzleJAX follows in this69

line of work, supporting hundreds of existing human games while also providing a DSL that is70

capable of expressing a diverse range of game mechanics.71

Due to the high sample complexity of RL algorithms, previous work utilized JAX (a GPU-accelerated72

language) to speed up the training process. JAX is mostly used to implement problems outside of73

games such as Kinetix [22], a physics-based environment for control tasks. Due to the complexity of74

game mechanics and rules, fewer video game frameworks exist in JAX. Craftax [21] (Crafter [15])75

and XLand-minigrid [26] (XLand [42] in a minigrid [8]) are two of the game benchmarks ported to76

JAX. To the best of our knowledge, PuzzleJAX is the first JAX-compatible DSL for puzzle games.77

Lastly, we contextualize PuzzleJAX’s role in benchmarking the planning and reasoning abilities of78

Large Language Models (LLMs) and Vision Language Models (VLMs). SmartPlay [47] introduced a79

benchmark for LLMs to play 6 games, including Minecraft and Crafter. Dsgbench [41] introduced 680

strategic games to assess decision-making abilities in LLMs in the benchmark. Similarly, Balrog [30]81

introduces a benchmark consisting of 6 learning environments, including Crafter and NetHack82

Learning Environment, for testing agentic capabilities of long-context LLMs and VLMs.83
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3 PuzzleScript84

PuzzleScript, released in 2013 by indie game developer Stephen Lavelle, is a description language85

and game engine for puzzle games. It is implemented in JavaScript and served on a public website,86

including an IDE, a debugger, and an interactive player. The central feature of the PuzzleScript87

description language is its rewrite rules. The mechanics of the classic box-pushing game Sokoban [33],88

for example, are defined by the following rule:89

[ > Player | Crate ] -> [ > Player | > Crate ]90

This indicates that whenever a Player object is in a cell adjacent to a Crate, and moving toward the91

Crate, then the Crate likewise moves in this same direction. In general, these rewrite rules describe92

how spatial patterns of objects and forces distributed over a given game level transform from one93

timestep to the next.94

PuzzleScript games are comprised of a single file, which is broken down into eight sections describing95

different elements of the game:96

The Prelude section includes metadata such as title, author name, website, and certain global97

parameters, like whether rules should “tick” at the beginning of an episode of gameplay, or whether98

the play window should display the entire map or an sub-section of the map centered at the Player.99

The Objects section defines entities—like the Player and Crate above—that may exist in the game100

level and interact with one another via rewrite rules. Each object is given a name, an optional101

single-ASCII-character (for later use in levels), and an optional sprite representation.102

The Legend section can be used to compositionally define meta-objects which can later be referred103

to in rules. For example, one might define both Player and Crate as Moveable by stating Moveable104

= Player or Crate. When Moveable appears in the left-hand-side of a rewrite rule, it indicates that105

either of the component sub-objects is present in the corresponding cell. Similarly, the user can define106

joint-objects that can later be used to indicate the presence of both objects simultaneously.107

The Sounds section defines sound effects that can occur under various conditions, though we ignore108

it, given that sound effects in PuzzleScript games are largely auxiliary.109

The Collision Layers section lists groups of objects (atomic, joint-, or meta-objects) on separate110

lines to indicate that these objects collide with one another and therefore cannot overlap.111

The Rules section defines the mechanics of the game. It includes the left-right pattern rewrite rules112

like the “player pushes crate” rule described above. It may also prepend these rules with keywords113

that define, for example, whether they only apply under certain rotations. Rule suffixes may also114

indicate whether their application triggers a win state, a restart state (e.g. when the player walks115

into lava), or the repeat application of the overall tick function after the current pass. Within rules,116

objects (atomic, meta- or joint-objects) may be modified by relative or absolute force indicators117

(“<,>,∧,∨” and “left, right, up, down” respectively) or other prefixes to indicate e.g. whether an118

object is stationary or absent from a given cell. Left and right rule patterns may detect or project119

overlapping objects, respectively, though the same number of cells must be included in left and right120

patterns. The rules are applied in order from top to bottom and will be repeated by the system until121

no more matching is happening.122

The Win Conditions section describes a set of necessary conditions which, when satisfied, result in123

the player “winning” the level. These conditions take the form: “All ObjectA on ObjectB”, “Some124

ObjectA on ObjectB”, “No ObjectA”, or “Some ObjectA”, indicating that all or at least one (some)125

of a given object (atomic, meta-, or joint-object) must be overlapping with another object type, or126

that none or at least one (some) of a given object type is present in the level.127

Finally, the Levels section defines the game levels’ initial layouts, using a rectangular arrangement128

of ASCII shorthands for atomic or joint objects. This section may also define natural text messages129

to be displayed to the player between levels, normally used by designers to convey to the player130

instructions or narrative elements in the game.131
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Game Solved Levels % # Total Levels Max Search Iterations

Sokoban Basic 100% 2 900
Sokoban Match3 100% 2 1,1620
Limerick 40% 10 1,000,000
Blocks 100% 1 788,146
Slidings 100% 11 12,189
Notsnake 0% 1 42,000
Traveling Salesman 100% 11 2,204
Zen Puzzle Garden 0% 5 1,000,000
Multi-Word Dictionary Game 100% 1 15,875
Take Heart Lass 91.6% 12 1,000,000
Kettle 100% 11 36298
Constellationz 100% 5 193

Table 1: Efficacy of breadth-first search on various PuzzleScript games. For each game, we report the
percentage of solved levels within 1 million iterations (out of the total number of levels) as well as
the maximum number of search iterations reached in any level.

4 PuzzleJAX Framework132

PuzzleJAX is a port of PuzzleScript to JAX. The primary goal of the PuzzleJAX framework is fidelity:133

to faithfully replicate the PuzzleScript engine, unifying a rich, widely-used, and challenging domain134

with cutting-edge advances in hardware acceleration. We therefore focus on covering as much of135

PuzzleScript’s feature space as possible, carefully validating implemented games and mechanics136

against their JavaScript counterparts to ensure identical behavior (see subsection 4.1). We emphasize137

that PuzzleJAX is fully interoperable with PuzzleScript– users and game designers can write novel138

games with their existing workflows and seamlessly compile them into JAX learning environments139

without any modification. Our second goal is speed: we aim to provide state-of-the-art throughput140

on a wide range of novel learning environments. PuzzleScript is actually a natural candidate for141

hardware acceleration on modern GPUs, as games are formulated entirely in terms of local rewrite142

rules that modify the tile-based game state and can be applied simultaneously over the entire board.143

Finally, our third goal is accessibility. We provide interpretable environment code, readable syntax,144

and support for a wide variety of search algorithms, learning frameworks, and reasoning models.145

4.1 Implementing PuzzleJAX146

PuzzleScript game description files can be cast as a context-free grammar [19]. We define such a147

grammar in Lark [36], and use it to transform PuzzleScript game description files into structured148

Python objects. Levels are represented as multihot binary arrays, with channels representing the149

presence of atomic objects and the directional movement or action forces that can be applied to each150

object (with an additional channel indicating cells affected by the player’s last action).151

To apply rewrite rules, we effectively detect the presence of objects and forces in the left pattern by ap-152

plying a convolution to the level, then project the right pattern by passing the resulting array of binary153

activations through a transposed convolution. For rules involving meta-objects or ambiguous forces154

(via the “moving” keyword), we apply custom detection and projection functions to convolutional155

patches of the level, identifying the extant atomic objects or forces at runtime. Alternatively, one156

might expand such abstract rules to a set of atomic sub-rules; the effect of such a decision on run- and157

compile-time given variously compositionally complex rule and object definitions could be explored158

in future work. Rules in PuzzleScript allow for matching the left side to all the possible locations in159

the level, which could be more than one. In general, if all of the distinct input kernels comprising a160

left pattern are present at one or more points in a level, then the rule application function attempts to161

apply all output kernels in the right pattern at whatever points their left-pattern counterparts are active.162

This is implemented in a JITted jax while loop over active indices. If any of these kernel projection163

operations change the level array, then the rule has been applied.164

Generally, rules defined in PuzzleScript files are broken down at compile time into a Rule Group165

comprising 4 rotated variants (or 2 given the rule prefixes “vertical” or “horizontal”; or 1 given the166
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rule prefixes “left”, “right”, “up”, or “down”). Each rule in a group is applied sequentially as many167

times as possible until it no longer has an effect on the level state. Similarly, each rule group is168

applied until it has no effect before moving on to the next. The game file may also manually define169

looping rule blocks by enclosing rule definitions in “startLoop” and “endLoop” lines, in which case170

the enclosed sequence of rule groups is repeatedly executed until ineffective. Finally, a movement171

rule is likewise applied until it has no effect, which rule attempts to move objects one tile in the172

direction of any force assigned to them (and if so, removing the force), attempting to apply such173

forces as they appear in scan-order in the level, and to objects in the order they are defined in the174

game’s collision layers section.175

This hierarchical rule execution sequence can be leveraged to create complex dynamics between176

ticks of the engine, such as gravity moving an object down. PuzzleJAX replicates this rule execution177

logic with a series of nested JAX while loops. Wherever possible, we place logic inside python for178

loop over static variables (i.e., the number of blocks, groups within each block, and rules within179

each group). This comes at a cost in terms of compile time (as JAX effectively “unrolls” for loop180

iterations into distinct blocks of compiled XLA code). Alternatively, we can use JAX switch to select181

from among the list of all rule functions. We found that using the switch significantly affects runtime182

speed, so we decided to go with increasing compilation time, given that our target is deep learning183

algorithms with high sample complexity.184

4.2 PuzzleJAX games185

We tailor a small dataset of sample games, which are mechanically simple and often challenging,186

and which, taken together, give a sense of the breadth of the space of possible games supported by187

PuzzleJAX. We describe some of them here and in Figure 1.188

Blocks is the simplest game with no rules; the game is mainly in the level design where the player189

needs to navigate a maze to reach the exit.190

Sokoban is the canonical PuzzleScript game, based on the game of the same title, in which the player191

must navigate a top-down grid of traversible and wall tiles, pushing crates onto targets. The challenge192

is to sequence moves such that crates do not wind up “deadlocked” in a position (e.g. a corner) from193

which they cannot be moved onto a target tile.194

Sokoban Match 3: as above, but when the player arranges 3 crates in a horizontal/vertical line, they195

disappear (as in Match-3 games like Candy Crush). The goal is to remove all crates from the level.196

In Multi-word Dictionary, the player arranges letters by either pushing or pulling them in different197

directions to correctly spell an English word.198

Travelling salesman involves a player on a graph of nodes projected onto the map grid, with varying199

connectivity patterns (represented by edges connecting the border of two nodes). The player must200

produce a path that touches all nodes once. The player colors nodes once they traverse them, is unable201

to return to colored nodes, and wins once all nodes have been colored.202

Zen Puzzle Garden, similar to the previous game, allows the player to “rake” (similar to coloring203

the tile) each cell in a central square of sand without retracing its steps, while at the same time204

avoiding increasingly complex arrangements of obstacles within the sand patch. The player may205

freely navigate around the border of the sand patch.206

NotSnake also follows the same idea of coloring cells. The player swaps the color of tiles as it207

moves, with the aim of coloring the entire level, but is able to retrace its steps with the consequence208

of flipping these tiles back to their original color.209

In Slidings, the player can control any one of a number of boulders (swapping between them by210

pressing the Action key), which they can “slide” in any direction until it hits an obstacle. The player211

must arrange these boulders onto targets in a fixed number of moves.212

In Constellationz, the player controls a group of objects simultaneously, all of which must be213

moved onto targets (without any target left unoccupied); when player objects move onto special214

teleportation/cloning cells, they disappear, and all unoccupied instances of these cloning cells spawn215

new player objects (this game uses multi-kernel/non-local patterns to implement this mechanic).216
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Figure 3: In Blocks, a PPO Reinforcement Learning agent quickly learns to improve score according
to the heuristic, but falls into a sub-optimal strategy in which one of the Player blocks is trapped in a
dead-end corridor adjacent to the one containing the last remaining target.

In Lime Rick shown in Figure 1a, the player controls a caterpillar creature whose head can rise217

vertically by at most 3 tiles consecutively. The player must navigate the level, using their own body218

and pushable crates to reach the exit against gravity. Gravity affects the player’s unsupported head219

and pushable blocks.220

In Kettle shown in Figure 1b, the player controls multiple walls of policemen, which can each move221

in one direction, and must strategically sequence moves to push (or “kettle”) a group of civilians into222

a compact, confined square.223

In Take Heart Lass shown in Figure 1c, the player must reach the exit (red heart) before they are224

blocked by the spreadable despair (black tiles). They can push pink hearts to block the despair or225

unblock hope (pink tiles) that spread and consume despair.226

Atlas Shrank is a platformer puzzle game in which the player needs to reach the exit. The player227

can’t jump but can move horizontally, vertically, and diagonally (if stair-shaped solids exist). Most228

levels have boulders that the player can carry and place in another place to create a ladder to help229

them navigate the complex level space.230

5 Results231

5.1 Speed profiling232

To compare the speed of the original PuzzleScript engine with PuzzleJAX, we measure frames per233

second under player agents taking uniformly random actions. To this end, we convert PuzzleScript234

into a standalone NodeJS package that can be called from Python without a browser, removing235

GUI-related functionality for rendering text, images, and sounds We profile the original engine in236

two settings. In one, actions are generated in Nodejs. In another, actions are generated in Python and237

sent to Nodejs, which better approximates the RL training scenarios targeted by PuzzleJAX. All the238

experiments were conducted on the same consumer machine with an NVIDIA GeForce RTX 4090239

GPU (for PuzzleJAX) and an Intel Core i9-1100K @ 3.5 GHz CPU (for PuzzleScript in NodeJS).240

In Figure 2, we plot the number of frames per second obtained by PuzzleJAX on the first level241

of various PuzzleScript games at different batch sizes (i.e. number of environments simulated in242

parallel). We see that PuzzleJAX achieves significant speedups over the original PuzzleScript engine243

given modest rule-sets, particularly when integrating the original engine with a Python wrapper. The244

speedup is particularly pronounced at large batch sizes, owing to JAX’s efficient vectorization scheme.245

We note that for games with particularly large numbers of rules random rollouts conducted within the246

original PuzzleScript engine outperform PuzzleJAX (indeed, parallelization via multithreading of the247

original engine may widen this gap). However, PuzzleJAX still handily outpaces the original engine248

when it is forced to communicate with a Python interface. In the context of modern AI methods that249

involve training large neural networks or fine-tuning large pre-trained models, it is this scenario that250

is most relevant. Additionally, training such agents or networks with PuzzleJAX would not incur251

any communication costs between the CPU and GPU because the entire environment is hardware252

accelerated—a fact which would further hamper pipelines relying on the original engine.253
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Figure 4: Average Win Rate of three LLMs across 12 games.

5.2 Tree search254

To probe the complexity of PuzzleScript games, we perform breadth-first search over game states for255

a small set of games and each of their levels. We limit the search to either 1 million environment256

steps or 1 minute of elapsed time and report the number of levels solved as well as the maximum257

number of search iterations reached over all levels in Table 1. We note that the performance of tree258

search is very “all-or-nothing” as games tend to either be simple enough mechanically that brute force259

suffices (e.g. Sokoban or Slidings), or complex enough that even the simplest levels are too difficult260

to solve (e.g. Notsnake or Zen Puzzle Garden). In addition, we find that the number of search steps261

required in a game tends to increase as levels progress, mirroring the increasing levels of planning262

and problem-solving required of human players.263

5.3 Reinforcement learning264

We train standard PPO on individual levels from our set of example games, parameterizing agents as265

simple convolutional and fully connected feedforward networks, feeding them the multihot encoded266

level state as observation, and providing the difference between the distance-to-win heuristics derived267

from the game’s win conditions as reward. This heuristic tries to minimize the distance between player268

and objects required in winning condition and between objects in the winning condition. We find that269

agents quickly learn to generate increased reward, but that this learning almost always converges to270

incorrect solutions Figure 3. Sokoban and Sokoban Match 3, while solvable via brute-force search,271

challenge RL agents that greedily maximize rewards but end up in deadlock states (e.g., pushing272

boxes to blocked targets). In LimeRick, agents may lead players vertically toward the Apple but fall273

into pits, causing deadlocks. Interestingly, these same games can be quickly brute-force by naive274

breadth-first tree search.275

5.4 LLM agents276

In the PuzzleJAX benchmark, LLM player agents operate within a structured information framework277

designed to enable effective puzzle solving without requiring visual interpretation capabilities. The278

framework provides agents with an ascii_state containing both the current game state and a279

dynamic mapping, complemented by its rules, alongside action_space and action_meanings.280

Each experimental setup consisted of 10 independent runs per level with a maximum of 100 steps281

allowed per episode. Figure 4 presents the average win rates across our test suite, and most games282

showed a consistent 0% win rate across all models except for Atlas Shrank with a small probability of283

success and Slidings with a high probability for success for both ChatGPT 4o-mini and Deepseek-chat.284

In Atlas Shrank, this small nonzero win rate is likely owing to the first level being a simple tutorial285

level involving a relatively direct traversal of the map. In Slidings, the small number of movements286

needed to solve each level (with most levels requiring 4/5 movements to win) might have allowed the287

system to stumble upon correct solutions. This demonstrate difficulty in tracking interconnected rules288

and maintaining long-term plans, highlighting a significant gap between current LLM capabilities289

and the specialized problem-solving skills required for structured puzzle environments.290
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6 Discussion291

Puzzle games present uncommon challenges for RL and LLM-based player agents. Specifically,292

efficient solutions require logical inference (e.g., deduction/induction) as well as long-range planning.293

Even apparently simple puzzle games can be fiendishly difficult in practice. This differs qualitatively294

from the challenges posed by video games such as first-person shooters or platform game. In puzzle295

games, heuristics about the “quality” of a state for the player are often less informative than in other296

genres, and following this gradient can be a flawed approach for the player.297

To avoid overfitting or over-tailoring a method to a game, it is crucial to test on a number of games,298

preferably a large number. PuzzleScript fills that need, and PuzzleJAX makes it fast brings it into299

the modern deep learning ecosystem. The results highlight the difficulty of puzzle games in general,300

and offer a challenge to learning based methods—both those based on reinforcement learning and301

on large language models—as the only methods that are successful on multiple games are based on302

tree search. Solving the games as a human would solve them, without excessive testing of states by303

taking actions more or less blindly, is very much an unsolved challenge.304

Crucially, as PuzzleScript is a generative description language rather than just a collection of games,305

this opens the door to automated or partially automated design of puzzle games. This could take306

the form of an AI-assisted game design tool, and/or an open-ended system which combines models307

learning to play games with another model learning to design them, in an evolutionary loop.308

Limitations. Though most of the major features of PuzzleScript are replicated in PuzzleJAX,309

we identify in our dataset of human games certain edge cases which are fail validation against310

the NodeJS version of the original engine. This is true of all games involving randomness, since311

random seeds cannot be controlled and aligned between NodeJS and JAX. Some games surface312

issues in our implementation which still need to be addressed, for example by violating our definition313

of the PuzzleScript DSL as a context-free grammar or causing compile or runtime issues in our314

JAX environment. At the same time, having been designed with fidelity as a first priority, further315

speed optimizations are almost certainly possible. Meanwhile, we apply only simple, off-the-shelf316

algorithms to our domain in this preliminary study. More sophisticated RL algorithms with more317

robust exploration strategies, or more comprehensive LLM prompting strategies including relevant318

history of prior game states, could likely be used to improve performance.319

7 Conclusion320

A well-designed puzzle game invites moments of insight in which the player reframes a problem to321

overcome its increasing complexity. Our framework, PuzzleJAX, seeks to surface a space of problems322

in which apparent functional simplicity is juxtaposed with the surprising depth of thought required to323

arrive at a solution. By reimplementing PuzzleScript, an accessible and expressive game engine and324

Description Language with an active community of casual and professional users and designers, we325

not only gives AI researchers the ability to evaluate agents on hundreds of often carefully designed326

human games, but also provide a concise and expressive means of defining new novel problems.327

PuzzleJAX runs fast on the GPU by expressing rewrite rules as convolutional operations in Python’s328

JAX library, and is by the same token easily connected to existing deep learning pipelines, while all329

the while remaining interoperable with PuzzleScript.330

In preliminary testing, we find that naive breadth-first tree search does surprisingly well on a large331

number of games. Reinforcement Learning can quickly fall victim to local minima representing332

greedy strategies, and Large Language Models often become helplessly stuck in environments333

involving unconventional mechanics. This suggests the need for augmenting learning based methods334

with “insights” derived from search to produce more generally capable AI. PuzzleJAX provides a335

robust and efficient testing ground for such methods, in addition to other learning-based approaches336

focusing on exploration. One possibility is that general agents can only emerge via continual learning337

in a shifting landscape of semantically rich and varied tasks. PuzzleJAX makes such explorations338

possible via its concise description language, and may ultimately serve both as a benchmark for339

competent game-playing agents, and creative game designing agents.340
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A Use of publicly available code and data468

PuzzleJAX is based on the PuzzleScript game engine and Domain-Specific Language, and we further469

include copies of the original code within our repository for the purpose of validating existing470

PuzzleScript games in our engine. Since PuzzleScript is provided with an MIT license, we include471

the same license in the PuzzleJAX repository. We also consulted with PuzzleJAX’s author, Stephen472

Lavelle, during this project’s development.473

To validate our engine, we used a script to scrape over 800 games from an online database [31],474

following links to Github gists containing standalone PuzzleScript game files. We additionally475

validated against the games contained in the PuzzleScript Gallery2, and authored a wide variety of476

minimal test scenarios during implementation of various features. It may also be possible to scrape477

games from the (currently active) PuzzleScript forum3 (e.g. by seeking out Github gist links in threads478

with the “[GAME]” tag), or from Itch.io4 (with these having the additional benefit of metadata such479

as user ratings, comments, and number of plays; though these do not always link to the source code480

in a Github gist, or do not do so in a consistent way). Searching for PuzzleScript game file gists481

directly through the Github REST API may also be possible, given clever use of search keywords to482

circumvent pagination limits.483

In this work, we do not distribute any curated dataset of actual human-authored PuzzleScript games.484

Instead, our contribution is the PuzzleJAX engine itself. The set of PuzzleScript games above are485

used primarily to demonstrate PuzzleJAX’s coverage of a vast array of possible games, and to ensure486

maximum interoperability with the established PuzzleScript DSL. Researchers may either use the487

PuzzleJAX engine to run newly designed PuzzleScript-style games, or to benchmark the performance488

of various methods on extant PuzzleScript games, potentially drawn from one of the sources above at489

their own discretion.490

The examplar PuzzleScript games presented in the main paper are largely drawn from the PuzzleScript491

Gallery, where they are presented with permission from the game authors. We list these examplar492

games below, with links to these games in the PuzzleScript IDE (where they are playable and editable),493

and authorship credits:494

• Sokoban (under Load Example → Tutorial → Basic Example) ported by Stephen Lavelle495

• Sokoban Match 3 (under Load Example → Tutorial → Match 3) by Stephen Lavelle496

• Lime Rick by Tommy Tuovinen497

• Take Heart Lass by Kevin Zuhn498

• Blocks by Liam K Sheehan499

• Kettle by Stephen Lavelle500

• Atlas Shrank by James Noeckel501

• Multi-Word Dictionary Game by Sarah Northway502

• Travelling Salesman by Rabbit from Hell503

• Zen Puzzle Garden by Lexaloffle504

• Notsnake (under Load Example → Elementary → Notsnake) by Terry Cavanagh505

• Slidings by Alain Broebecker506

• Constellation Z (under Load Example → Intermediate → Constellation Z) by Stephen507

Lavelle508

B Ethical considerations509

PuzzleJAX is intended as a benchmark to assist in developing more generally capable and human-like510

AI agents, in particular by surfacing questions about the role of insight to solve a mechanically511

and semantically rich space of diverse puzzle games. We acknowledge that the overarching goal512

2https://www.puzzlescript.net/Gallery/index.html
3https://groups.google.com/g/puzzlescript
4https://itch.io/games/made-with-puzzlescript
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of creating generally capable AI agents may present both dangers and benefits to humanity. While513

these broader questions are out of scope for the present discussion, we believe that benchmarks like514

PuzzleJAX are crucial in understanding AI agents and learning algorithms which appear to have515

super-human abilities in some domains, but whose limitations are often poorly understood. PuzzleJAX516

is particularly relevant because it brings to the fore a swath of domains in which we expect many517

state-of-the-art agents and algorithms are likely to fail in surprising and perhaps counter-intuitive518

ways, even despite the apparent simplicity of the tasks at hand.519

PuzzleScript’s DSL makes it easy, for example, to invert the canonical semantics of a game like520

Sokoban, such that with a simple variation to the game’s rules, the player now pushes a crate forward521

by moving away from it (as in Okosban). We expect that in games with such inverted or otherwise522

alien semantics, LLMs may have particularly difficulty in generating competent strategies (even523

supposing a more robust LLM-player pipeline is developed to address their difficulties in solving more524

canonical puzzles). As such PuzzleJAX can serve as an effective test of the abilities of LLMs to reason525

and problem-solve in the kind of out-of-distribution scenarios they may encounter once deployed into526

the wild, which situations may ultimately be of high consequence of users and designers.527

In terms of PuzzleJAX’s impact on game designers, we hope that by fostering the development of528

more capable puzzle-solving agents, designers of PuzzleScript games may eventually be able to529

automatically playtest their games more effectively. PuzzleScript’s creator has recently expressed530

apprehension around embedding a best-first-search-driven solver agent 5 into the PuzzleScript IDE,531

given that it might lead designers to create games that are significantly complex or challenging from532

the perspective of tree search, but potentially un-interesting or less fun or enjoyable for human players6.533

Given that PuzzleJAX facilitates the development of a wide variety of AI player agents beyond simple534

tree search—such as those based on LLMs, or those involving Reinforcement Learning—we hope that535

developers might ultimately have access to a diverse set of potentially human-like agents, allowing536

them to automatically measure proxies of human enjoyment or satisfaction (granted, this will likely537

require significant algorithmic advances, and benchmarking any such proxy benchmarks against538

actual human playtraces and surveys).539

As alluded to in our Conclusion, PuzzleJAX also potentially facilitates the use of LLMs or genetic540

programming to generate new puzzle games automatically (e.g. by leveraging metrics generated by541

diverse player agents inside an evolutionary loop, as in [44]). Concerns may be raised here around542

the potential for automating away the process of game design, and burying human ingenuity and543

artistry in a barrage of AI-generated content that maximizes superficial metrics of player retention or544

engagement. In this regard, we advocate for the development of design assistant tools that incorporate545

human feedback and allow designers to intervene in the process of automatic game generation, as in546

[12], or as in the general paradigm of design through interactive evolution [35, 23, 5].547

C Additional implementation and validation details548

To validate the fidelity of PuzzleJAX, we use breadth-first search to find solutions for each level of549

each game in our collected dataset. We cap the number of environment steps during search at 100,000550

and set a timeout of 1 minute. Where search does not find a winning state, we return the action551

sequence leading to the highest score, and in case of ties prefer longer action sequences (in hopes552

of exploring more of the game’s state space and thus ensuring a more robust validation). (The full553

results of this search procedure on the collected dataset of games is reported in Table 1.) We then554

initialize each game and level in PuzzleJAX, and replay the action sequence, ensuring that it results555

both in the win conditions being met, and in an equivalent state (in terms of the layout of object in556

the level).557

We report the results of this validation pipeline in Table 2, and find that over 400 existing PuzzleScript558

games are valid in PuzzleJAX. Over 250 games are fully valid in PuzzleJAX (with each level’s solution559

in JavaScript resulting in the same outcome in PuzzleJAX), among these games with over 50 rules.560

Of the over 7, 000 individual levels in our dataset, 1, 781 admit valid solutions in PuzzleJAX. Though561

this already constitutes a wealth of novel tasks for learning and reasoning agents, it means that a large562

number of levels result in errors (or remain unvalidated—most likely due to timeouts or memory563

5Available at https://github.com/Auroriax/PuzzleScriptPlus/blob/master/README.md.
6https://x.com/increpare/status/1905568607410532690
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Total Games 951

Valid Games 414
Partially Valid Games 156

Total Levels 7957

Successful Solutions 2680
Compile Errors 15
Runtime Errors 40
Solution Errors 489
State Errors 2196
Unvalidated Levels 1135

Table 2: Results of validating PuzzleScript games in PuzzleJAX, by using breadth-first search to
generate solutions for each level in JavaScript, then replaying these solutions in JAX, and ensuring
they lead to equivalent end-states.

issues during compilation). A large number of compile errors likely result from PuzzleJAX’s not564

yet capturing the extensive permissiveness of PuzzleScript. Already, we conduct preprocessing to565

clean up some of the syntactic errors which PuzzleScript affords (e.g. in rule definitions, if the cell566

boundary token “|” is contained between kernels—i.e. “] | [”—it is ignored; if the line detector567

token “...”, which can occupy a cell within a kernel to denote that the cells on either side of it may568

be separated by an arbitrary number of tiles, appears between kernels—i.e. “]...[”—the kernels are569

joined and the line detector is placed within its own cell in the kernel), but more examination of those570

games which cause issues with our Lark parser after pre-processing will be necessary to improve571

interoperability with PuzzleScript.572

Solution errors—discrepancies between the win-state resulting from the solution found in JavaScript573

and that resulting from replaying the same solution in PuzzleJAX—usually indicate some difference574

between implementations of mechanics in the JavaScript and JAX engines, and continued development575

will seek to address them. During development of PuzzleJAX, for example, we used such discrepancies576

to ensure that rules were being broken down into rotational variants in the right order (so that, in577

Carnival Shooter!, for example, when the player “shoots” while next to two enemies, the enemy to578

the left of the player will be removed before the enemy to their right).579

The one major feature which, to our knowledge, remains unimplemented in PuzzleJAX is the “rigid”580

keyword, which is used to simulate rigid-body physics. The use of this keyword appears in only581

9 games in our dataset (leading to 9 compilation errors). We omit it for simplicity, given that its582

implementation appears relatively involved, and would require the use of additional channels in our583

level-state representation. The PuzzleScript documentation stresses this point, in fact (with the author584

writing that they “kinda regret adding this keyword to the engine”) and strongly advises the user to585

deploy other strategies to simulate rigid-body physics7.586

In addition to the features described in the body of this paper, we note that we also implement the587

“line detector” feature (denoted in the PuzzleScript DSL as an ellipsis), which recognizes patterns588

separated by an arbitrary number of tiles along a row or column. Under the hood, we treat line589

detectors as a special kind of kernel that detect sub-kernels (the groups of cells on either side of the590

ellipsis) across the board, then detect if these subkernels’ activations fall in some ordered sequence591

along a line. These sequences are considered in order of the least to the most space between the592

subkernels. The line projection function then iterates through these detected lines in order, attempting593

to apply their respective subkernels until this has an effect on the board.594
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Figure 5: Average win rate comparison across different language models and games. The heatmap
shows performance variations where darker red indicates lower performance (0%) and green indicates
higher performance (up to 100%). Each cell represents the average win rate of a specific model on a
particular game task.

D Additional results595

D.1 LLMs596

For our LLM experiments, we employed both reasoning-enabled LLMs and non-reasoning LLMs.597

Based on the experimental results presented in Figure 5, we observe significant performance variations598

across different LLMs when evaluated on 12 distinct games compiled in PuzzleJAX. The findings599

reveal that all model performance is highly task-dependent, with no single model demonstrating600

consistent superiority across all evaluated games. Notably, o3-mini achieved perfect performance601

(100% win rate) on the Slidings puzzle task and demonstrated strong capabilities in several other602

games, including Sokoban Basic (50%), Take Heart Lass (23%), Travelling Salesman, and Sokoban603

match 3 (25%). DeepSeek-R1 exhibited exceptional performance on the Slidings puzzle task (91%604

win rate) while showing moderate success in strategic games such as Take Heart Lass (25%) and605

Travelling salesman (8%). ChatGPT-4o-mini displayed a more balanced performance profile,606

achieving its highest success rate on the Slidings puzzle (74%) and moderate performance on Atlas607

Shrank (8%) and Limerick (2%). In contrast, models such as Qwen-plus and Gemini showed limited608

success across most tasks, with Qwen-plus achieving only 6% on Atlas Shrank and 1% on Kettle,609

while Gemini’s performance peaked at 8% on Atlas Shrank. The results suggest that certain games,610

particularly Slidings puzzles, may be more amenable to current language model capabilities, while611

others such as Multi-Word Dictionary Game, Blocks, Notsnake, and Zen Puzzle Garden, remain612

challenging across all evaluated models.613

D.2 Reinforcement learning614

For our Reinforcement Learning experiments, we use the fully-jitted training loop written in JAX615

provided by [20], allowing us to take advantage of PuzzleJAX’s jitted environment step function. (We616

add utilities for saving model checkpoints and rendering episodes intermittently during training.) We617

use the above repo’s default hyperparameters for PPO, training agents on each level over 5 different618

random seeds for a total of 5 million environment steps each, with a learning rate of 1e−4, 128619

rollout steps per minibatch, with 4 minibatches and 10 update epochs, with a γ = 0.99, an entropy620

coefficient of 0.01 and a value function coefficient of 0.5. We set batch size as large as possible for621

each game and level combination within the constraints of the VRAM available on the GPUs we use622

for training.623

7https://www.puzzlescript.net/Documentation/rigidbodies.html
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Figure 6: Comparison of RL against breadth-first search in Sokoban. Episode rollouts from RL
are pictured on the right. Here, the agent greedily maximizes the heuristic (the sum of manhattan
distances between targets and their nearest crates), preventing discovery of optimal solutions.

Figure 7: Comparison of RL against breadth-first search in Notsnake. Episode rollouts from RL is
pictured on the right.

We use our institution’s high-performance computing cluster for training, and include in our codebase624

scripts for deploying sweeps of training jobs to nodes in this cluster via SLURM (we provide similar625

scripts in order to parallelize the tree search and JAX episode-rollouts in our PuzzleJAX validation626

pipeline). The GPUs on this cluster include the NVIDIA RTX8000, V100, A100, and H100, and the627

AMD MI100 and MI250. (We use a separate consumer machine with an NVIDIA 4090 for our speed628

profiling experiments).629

While RL can be deceived by the heuristic functions of Sokoban Basic (Figure 6) and Limerick (Fig-630

ure 8), in which positive reward can be sparse and optimal solutions may require first moving631

circuitously “away” from rewarding states, it does well in games admitting very short solutions such632

as Slidings (Figure 9) and Kettle (Figure 10), and games that constitute dense reward combinatorial633

optimization problems such as Notsnake (Figure 7), where it even discovers a better solution than634

did breadth-first search after 1 million environment steps (though it still does not discover the exact635

solution). (Note however that this does not necessarily constitute a fair comparison, which would636

arguably require running search for an equal number of environment steps, and/or comparing the637

wall clock times of each algorithm.) In Take Heart Lass (Figure 11), agents perform well in early638

levels which effectively constitute a simple control task involving running away from the encroaching639

despair and toward a goal, whereas on later levels that require efficiently pushing blocks to clear640

paths in the knick of time, or block or undo the propagation of despair tiles, the agent often runs into641

dead-ends or otherwise winds up trapped by despair tiles while attempting to bee-line toward to goal642

tile.643
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Figure 8: Comparison of RL against breadth-first search in Limerick. Episode rollouts from RL are
pictured on the right. Agents only master levels with a relatively straightforward path to the goal.
They do not generally uncover strategies involving significant roundabouts away from the goal, and
can fall prey to “obvious” traps along the more direct path.
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Figure 9: Comparison of RL against breadth-first search in Slidings.
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Figure 10: Comparison of RL against breadth-first search in Kettle. RL agents are able to find optimal
solutions, which involve a short sequence of actions, though the time taken to learn this optimal
strategy steadily increases as levels (and optimal action sequences) grow and complexify.

20



Figure 11: Comparison of RL against breadth-first search in Take Heart Lass. RL can handily find
solutions to early levels which involve effectively evolve running away from encroaching despair
and toward a goal, but it has difficulty in later levels that introduce the use of pushable hearts to
strategically block the despair’s advance.
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Listing 1: Example of a PuzzleScript file (LimeRick)
title Lime Rick644

author Tommi Tuovinen645

homepage http://www.kissmaj7.com/646

647

(Ported with the very gracious permission of Tommi Touvinen648

The first ten levels of a neato game - you can play the full version here649

http://www.kongregate.com/games/KissMaj7/lime-rick650

The full version includes some mechanics that aren’t covered in the levels here,651

but they are supported.)652

653

========654

OBJECTS655

========656

657

Background658

black659

660

Exit661

red662

.000.663

00000664

00000665

00000666

.000.667

668

Apple669

blue670

.000.671

00000672

00000673

00000674

.000.675

676

PlayerBodyH677

green678

.000.679

00000680

0...0681

00000682

.000.683

684

PlayerBodyV685

green686

.000.687

00.00688

00.00689

00.00690

.000.691

692

Crate693

orange694

00000695

0...0696

0...0697

0...0698

00000699

700

PlayerHead1701

lightgreen702

.000.703

0.0.0704

00000705

00000706
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.000.707

708

PlayerHead2709

yellow710

.000.711

0.0.0712

00000713

00000714

.000.715

716

PlayerHead3717

orange718

.000.719

0.0.0720

00000721

00000722

.000.723

724

PlayerHead4725

red726

.000.727

0.0.0728

00000729

00000730

.000.731

732

Wall733

brown734

735

=======736

LEGEND737

=======738

739

Player = PlayerHead1 or PlayerHead2 or PlayerHead3 or PlayerHead4740

Obstacle = PlayerBodyH or PlayerBodyV or Wall or Crate or Player741

PlayerBody = PlayerBodyH or PlayerBodyV742

. = Background743

P = PlayerHead1744

# = Wall745

E = Exit746

A = Apple747

C = Crate748

749

=========750

SOUNDS751

=========752

753

sfx0 3295707 (player jump)754

sfx1 3538707 (player jump to max)755

sfx2 42451307 (player move horizontally)756

endlevel 96434300757

startgame 49875902758

759

================760

COLLISIONLAYERS761

================762

763

Background764

Exit, Apple765

PlayerBody766

Player, Wall, Crate767

768

======769

RULES770

======771
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772

(this game handles all the movement stuff itself - it removes all movements before773

the movement phase has a chance to tick at all)774

775

UP [ UP PlayerHead4 ] -> [ PlayerHead4 ]776

UP [ UP PlayerHead3 | No Obstacle ] -> [ PlayerBodyV | PlayerHead4 ] sfx1777

UP [ UP PlayerHead2 | No Obstacle ] -> [ PlayerBodyV | PlayerHead3 ] sfx0778

UP [ UP PlayerHead1 | No Obstacle ] -> [ PlayerBodyV | PlayerHead2 ] sfx0779

780

horizontal [ > Player | Crate | No Obstacle ] ->781

[ PlayerBodyH | PlayerHead1 | Crate ] sfx2782

783

horizontal [ > Player | No Obstacle ] -> [ PlayerBodyH | PlayerHead1 ] sfx2784

785

[ Player Apple ] [ PlayerBody ] -> [ Player Apple ] [ ]786

[ Player Apple ] -> [ Player ]787

788

[ > Player ] -> [ Player ]789

790

DOWN [ Player | No Obstacle ] -> [ PlayerBodyV | PlayerHead1 ]791

DOWN [ Crate | No Obstacle ] -> [ | Crate ]792

793

==============794

WINCONDITIONS795

==============796

797

some player on exit798

799

=======800

LEVELS801

=======802

803

message level 1 of 10804

805

###################806

#.................#807

#.................#808

#............#....#809

#............#....#810

#.......#...##....#811

#..P....#...##..E.#812

###################813

###################814

..#...#...#...#...#815

#...#...#...#...#..816

###################817

###################818

###################819

###################820

821

(additional levels omitted for clarity)822

message congratulations!823
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