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Figure 1: Comparison across various text-to-image models before and after integrating our method.
The proposed approach consistently enhances prompt fidelity in generation results.

ABSTRACT

Most text-to-image customization techniques fine-tune models on a small set of
personal concept images captured in minimal contexts. This often results in the
model becoming overfitted to these training images and unable to generalize to
new contexts in future text prompts. Existing customization methods are built on
the success of effectively representing personal concepts as textual embeddings.
Thus, in this work, we resort to diversifying the context of these personal con-
cepts solely within the textual space by simply creating a contextually rich set of
text prompts, together with a widely used self-supervised learning objective. Sur-
prisingly, this straightforward and cost-effective method significantly improves
semantic alignment in the textual space, and this effect further extends to the im-
age space, resulting in higher prompt fidelity for generated images. Additionally,
our approach does not require any architectural modifications, making it highly
compatible with existing text-to-image customization methods. We demonstrate
the broad applicability of our approach by combining it with four different base-
line methods, achieving notable CLIP score improvements.

1 INTRODUCTION

Diffusion-based generative models (Ho et al., 2020; Song et al., 2020a; Dhariwal & Nichol, 2021;
Song et al., 2020b) have made significant progress in image synthesis, achieving improved diversity
and expressiveness in generated outputs. Extending these breakthroughs, diffusion-based text-to-
image models (Rombach et al., 2022; Podell et al., 2023; Balaji et al., 2022; Saharia et al., 2022; Xue
et al., 2024) that leverage large-scale text-image pairs (Schuhmann et al., 2021) have demonstrated
impressive capabilities in translating the text into visual content.

More recently, leveraging the strong prior knowledge acquired by the pretrained text-to-image gen-
erative models, numerous approaches have been proposed to fine-tune the models for customization
to specific concepts (Gal et al., 2022; Ruiz et al., 2023; Kumari et al., 2023; Voynov et al., 2023;
Avrahami et al., 2023). Typically, these methods use 4-5 images containing personal concepts to
obtain token embedding aligned with the given images, which are then integrated into the novel text
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prompts for image generation. While demonstrating its potential, existing models often suffer from
the concept overfitting when fine-tuned on a small set of images with limited contexts. This over-
fitting often causes the customized model to generate images that are highly similar to the training
images, and fail to faithfully follow the text prompts during inference (Figure 1).

Our study indicates that introducing diverse contexts during model fine-tuning can mitigate the con-
cept overfitting (Zeng et al., 2024). As diversifying text-image tuning pairs can be costly and often
impractical, in this paper, we propose to diversify the context of personal concepts solely within the
textual space, by first simply constructing a set of contextually diverse text prompts with concept to-
kens, nearly at no extra cost (Figure 2, left). As the customization aligns the personal concept with a
concept token, this proposed approach can be a highly cost-effective way of context diversification.
Then, we further adopt a self-supervised learning objective, Masked Language Modeling (MLM)
(Devlin et al., 2018), which drives the concept embedding to learn proper relations to its contexts
(Figure 2, right).

We later both theoretically and empirically show that adopting the MLM objective with a contextu-
ally diverse text prompt set during customization significantly alleviates the concept overfitting, and
leads to semantic enhancement in textual representation, which ultimately extends to higher prompt
fidelity in image generation. We conduct extensive experiments to demonstrate the effectiveness of
our approach.

Context Learning
[vdog] Watching TV 

with Einstein

Image Domain
[vdog] chasing the 

ball

[vcat] wearing 
a santa hat

Alignment

[vtoy] on the 
beige sofa

[vbackpack] on a 
green suitcase

[vdog] 

[vtoy] 

[vcat] 

[vbackpack] 
Wearing a Santa hat

Text Domain

[vbackpack] worn 
by a robot

[vcat] 

[vcat] at Eiffel 
Tower On the

Beige sofa

[vtoy] 

In the snow

Wearing a rainbow scarf
Chasing

The ball

[vdog] 

On top of pink fabric

On the beach

OursBaseline

SEMANTIC
ENHANCEMENT

Figure 2: Conceptual illustration of the proposed approach. Left: We propose to diversify the
context of the personal concept solely within the textual space, by simply constructing a context-
rich text prompt set with a concept token. Right: In our method, the concept token embeddings are
effectively guided to learn the relationship between the surrounding tokens in diverse contexts. This
leads to the semantic enhancement of text representation by preserving the contextual information,
which ultimately leads to higher text prompt fidelity in image generation. The proposed method is
demonstrated both theoretically and empirically in the paper.
We summarize our contributions as follows,

• We propose a highly cost-effective text-to-image customization method that significantly
improves context diversification of personal concepts via masked language modeling, lead-
ing to higher prompt fidelity in generated images.

• We theoretically illustrate that the proposed approach effectively helps to mitigate con-
cept overfitting by regularizing the loss of contextual information and learning of diverse
contexts.

• We further empirically show consistent image generation improvements while integrating
our approach with four different text-to-image baseline methods, demonstrating its broad
applicability.

2 RELATED WORKS

Text-to-Image Generation. The introduction of diffusion models (Ho et al., 2020; Nichol &
Dhariwal, 2021; Song et al., 2020a) has paved the way for a series of text-to-image generative
models (Saharia et al., 2022; Rombach et al., 2022; Balaji et al., 2022; Ramesh et al., 2021; 2022;
Ding et al., 2022) that have achieved significant success. GLIDE (Nichol et al., 2021) demonstrated
that using classifier-free guidance (Ho & Salimans, 2022) can enhance both the photorealism and
caption alignment of generated images. DALLE-2 (Ramesh et al., 2022) further improved the pro-
cess by leveraging CLIP (Radford et al., 2021) embeddings to derive an image prior from a text
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caption, which is then decoded using diffusion models. Stable Diffusion (Rombach et al., 2022)
proposed a way to improve the efficiency by applying the diffusion process in the lower dimensional
latent space, and SDXL (Podell et al., 2023) has been proposed to make improvements over SD by
updating the model architecture. ControlNet (Zhang et al., 2023) proposed to incorporate additional
input conditions to improve the controllability of the T2I model using zero-convolutional layers. In
our work, we mainly focus on baseline methods that are based on Stable Diffusion.

Personalized Text-to-Image Genearation. Textual inversion (Gal et al., 2022) pioneered a
method to convert personal concept images into token embeddings, enabling the use of tokens for
tailored text-to-image generation. DreamBooth (Ruiz et al., 2023) extended TI by fine-tuning the
diffusion UNet along with the prior-preservation loss to prevent forgetting of prior concepts. Since
the introduction of the pioneering works, a line of work has been proposed to make further improve-
ments. XTI (Voynov et al., 2023) proposed to invert the concept into multiple token embeddings,
each specialized for a different layer of the diffusion network. CustomDiffusion (Kumari et al.,
2023) proposed to fine-tune the cross-attention layer in diffusion UNet for efficient training. Break-
A-Scene (Avrahami et al., 2023) proposed to learn multiple concepts included in the same scene by
utilizing masked diffusion loss. There is also a growing interest in developing methods specialized
for facial images. (Yuan et al., 2023) constructed a set of basis tokens corresponding to celebrities
and optimized their weights to synthesize a given image. (Peng et al., 2024) proposed to augment
the concept token embedding by extracting facial features using a facial recognition model. (Shi
et al., 2024) have proposed a test-time finetuning-free method where a learnable image encoder is
deployed to convert the input images into a textual token. (Chen et al., 2024) also proposed an instant
method where an apprentice diffusion model learns to imitate the behaviors of multiple expert mod-
els specialized for each concept. Similarly, (Wei et al., 2023) proposed to use a CLIP image encoder
to encode personal images and then utilize global and local mapping networks to obtain enhanced
representations of the concept. (Chen et al., 2023) proposed a method to avoid the entanglement of
identity-irrelevant features by utilizing learnable masks and multi-task training objectives.

3 PRELIMINARIES

3.1 TEXT-TO-IMAGE GENERATION

We apply our approach to various text-to-image baseline models (Gal et al., 2022; Ruiz et al., 2023;
Voynov et al., 2023; Kumari et al., 2023) that are based on Stable Diffusion (SD) (Rombach et al.,
2022). SD consists of a CLIP text encoder Γ that encodes an input text t into a sequence of input
token embeddings, denoted as Tokenize, P = Tokenize(t), then outputs corresponding text embed-
ding C = Γ(P) using self-attention layers. A Variational Auto Encoder (VAE) of SD E encodes an
image x to a lower dimensional latent z = E(x).
During training, given a timestep t ∼ Uniform[0,T − 1], a random noise map ϵ ∼ N (0, I) is added
to the latent map to get a noised latent map zt = αtz+ σtϵ. Then, the diffusion U-Net ϵθ is trained
to minimize the following objective for denoising,

EC,ϵ,t,z||ϵ− ϵθ(zt, t,C)||22. (1)

3.2 FINETUNING FOR TEXT-TO-IMAGE CUSTOMIZATION

Utilizing a text prompt t̃ that incorporates a concept token ∗ (e.g., “a picture of a [*] dog”), the
tokenized input embedding is encoded C̃ = Γ(P̃). Following the text encoding, the denoising
objective is computed as below,

LCustom(zt, t, C̃) := EC̃,ϵ,t,z||ϵ− ϵθ(zt, t, C̃)||22, (2)

where LCustom denotes the denoising loss utilized for model customization, with z = E(x) encoding
an image x sampled from a small set of personal concept images. Depending on the baseline method,
a different set of parameters are optimized. For Textual Inversion (TI) (Gal et al., 2022), only the
concept token embedding is optimized with respect to Eqn. 2. Our method does not require any
architectural modification, hence it is highly compatible with existing methods. We demonstrate
this applicability by applying our method to different baselines. Unless otherwise specified, we
illustrate our method using TI.

4 METHOD

Text-to-image customization methods (Gal et al., 2022; Voynov et al., 2023; Ruiz et al., 2023; Ku-
mari et al., 2023), typically trained on 4-5 images with limited context, are prone to be overfitted to
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Figure 3: Illustration of the proposed text-to-image customization process. The MLM loss LMLM is
computed, along with the denoising loss LDiff, to align the special concept image with the concept
token, For MLM, we sample text prompts from a contextually diverse prompt set. The sampled
prompt is then tokenized and mapped to a prompt embedding P. Subsequently, a subset of the
input tokens are masked to yield Pmasked, and fed into CLIP text encoder to output Cmasked. Then,
the masked embedding is contextualized with the surrounding tokens, including the concept token
and the context tokens, by self-attention layers. After that, the masked token is predicted. As the
concept token is trained to predict the best semantically aligned token with LMLM, the concept token
embedding effectively learns its context. For computing LDiff, we use the context-simple caption,
the same as the baseline. Textual Inversion (Gal et al., 2022) is used as an example baseline here.

the training set. To address this issue, we propose contextual diversification solely within the textual
space by constructing a context-rich text prompt set. To effectively guide the concept embedding
to learn the proper contextual semantics, we adopt masked language modeling (MLM) during cus-
tomization (Section 4.1 and 4.2), which leads to semantic enhancement in both textual (4.3) and
image space (Section 4.4).

4.1 MASKED LANGUAGE MODELING

In order to enhance the concept token embedding with context-rich text prompts, we adopt Masked
Language Modeling (MLM) during the model customization. The overall process is illustrated in
Figure 3. We elaborate on the corresponding details in the following steps,

(i) A text prompt t, drawn from a contextually diverse prompt set that includes the concept token,
e.g., [Vdog], is tokenized and mapped to a prompt embedding,

P = Tokenize(t), (3)

where P ∈ RL×d, L is the number of tokens, d is the feature dimension of prompt embeddings.

(ii) A subset of prompt embedding P is randomly selected and those selected tokens are replaced by a
mask token embedding pmask with the probability ρmask, yielding Pmasked = RandomMask(P, ρmask).
Then, text embedding is obtained from CLIP text encoder Γ,

Cmasked = Γ(Pmasked), (4)

where Cmasked = {ci}, with ci ∈ Rd denoting one element in token embedding.

(iii) Finally, we predict the label of the masked token ŷ = ψ(Cmasked) and calculate the MLM loss,

LMLM = E
[
CrossEntropy(y, ŷ)

]
, (5)

where ψ denotes the classification network with self-attention layers.

Notably, the attention layer computes the output token embedding O as the linear combination of
input embeddings, with the weights determined by the self-attention map Aself ∈ RL×L, implying
that the output is the contextualization of the input. For the im-th output token, i.e., the masked
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token, it can be formulated as below,

O[im, :]︸ ︷︷ ︸
Output Mask

=

L∑
j=1

Aself[im, j]V[j, :] =

L∑
j=1
j ̸=j∗

Aself[im, j]V[j, :]︸ ︷︷ ︸
Context

+Aself[im, j∗]V[j∗, :]︸ ︷︷ ︸
Concept

, (6)

where j∗ is the index of the concept token, and V is the value matrix.

By optimizing the concept token embedding to minimize LMLM, the concept token is guided to
learn the diverse context, as the MLM encourages the utilization of surrounding contexts for mask
prediction. The overall process is illustrated in Figure 3. We later show that customization with
this additional objective results in regularizing the text embeddings from overfitting to the concept
token, which eventually leads to semantically enhanced image generation (Section 4.4).

Algorithm 1 Training Procedure of Contextualizer

1: Load parameters Γ {Γ: CLIP text}
2: Random initialize ψ, pmask {ψ: Contextualizer, pmask: mask embedding}
3: Set ρmask {ρmask: masking probability}
4: repeat
5: Sample t from rich prompt set, P=Tokenize(t)
6: Pmasked, y = RandomMask(P, ρmask) {y: masked token label}
7: Compute LMLM = Ey,Pmasked

[
CrossEntropy((y, ψ(Γ(Pmasked))))

]
8: Gradient descent optimization on ∇ψ,pmaskLMLM
9: until optimized

4.2 CUSTOMIZATION WITH DIVERSE CONTEXT

Prompt Set Construction. To achieve customization with diverse contexts, we construct a set of
context-rich prompts that incorporate the special concept token. Inspired by recent work (Brooks
et al., 2023), we leverage a pretrained large language model (OpenAI, 2023; Brown et al., 2020)
to minimize the effort in manually crafting a large set of prompts. For this, we query the LLM to
generate a list of contexts of different types, e.g., background or subjection variation. For detailed
descriptions of the prompt set construction process, refer to the Appendix Section A.2.

Pretraining. Although the CLIP text encoder of SD has the linguistic capability of comprehending
text prompts, it is solely trained with contrastive learning objectives (Radford et al., 2021), and does
not support MLM. Therefore, before proceeding with fine-tuning for customization, we first pretrain
a network, namely, a contextualizer ψ to incorporate the MLM capability. We provide the pretraining
procedure of the contextualizer ψ in Algorithm 1. During the pretraining of ψ, the concept token is
not involved. We only train the mask embedding and the layers of the contextualizer. The CLIP text
encoder and diffusion U-Net remain fixed.

Finetuning. Utilizing the contextually diverse prompt set, we proceed with the model customization
(Figure 3). The model optimized by minimizing the denoising objective LDiff (Eqn. 2) and the
MLM loss LMLM (Eqn. 5). Two different types of prompts are utilized for each objective. Text
embeddings C̃ encoded from a context-simple text prompt t̃ (e.g., “a picture of [v] dog”) for LDiff,
and text embedings Cmasked encoded from a text context-rich text prompt t (e.g., “a [v] dog at Eiffel
Tower”) for LMLM. The overall learning objective can be formulated as follows,

LDiff(zt, t, C̃) + λLMLM(Cmasked), (7)
where z denotes the noised latent of personal concept image, t denotes the timestep, and λ denotes
the weight for the MLM loss. Note that, as the MLM objective does not require any images, the
concept token embedding learns contextual semantics without constructing corresponding images.
Additionally, our approach does not require any architectural modification of SD, it is highly com-
patible with existing text-to-image approaches. Hence, we combine our approach with different
baseline methods and demonstrate its generalizability. The overall training procedure is described
in Algorithm 2. We refer to Appendix Section A.1 for additional details of training.

4.3 SEMANTIC ENHANCEMENT IN TEXTUAL SPACE

In this section, we illustrate how adopting the MLM with diverse contexts during the model cus-
tomization leads to semantically enhanced textual representation, which ultimately translates to
improved image generation. We first validate the following to explain how our method leads to
semantically enhanced textual representation,

5
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Algorithm 2 Training Procedure of Text-to-Image Customization

1: Load parameters θ, ψ, Γ, and E {θ: U-Net, ψ: contextualizer, Γ: CLIP text, E : VAE}
2: Fix ψ and pm {pm: mask embedding}
3: Set λ and ρmask {ρmask: masking probability}
4: Select trainable params Θ ⊂ {θ,Γ} {Selection based on baselines}
5: repeat
6: Sample t ∼ Uniform[0,T − 1], ϵ ∼ N (0, I)
7: Sample x,P and encode z=E(x), c = Γ(P)
8: Get noised latent, zt = αtz+ σtϵ
9: Pmasked, y = RandomMask(P, ρmask) {y: masked token label}

10: Compute LDiff = EC,ϵ,t,z||ϵ− ϵθ(zt, t,C)||22
11: Compute LMLM = Ey,Pmasked

[
CrossEntropy(y,Γ(Pmasked))

]
12: Gradient descent optimization on ∇Θ

[
LDiff + λLMLM

]
13: until optimized

• The model overfits to the personal concept, when the semantics of the context tokens (i.e.,
non-personal) become similar to the concept token.

• The semantics of the context tokens get distinct from the concept token as the diverse
contextual semantics are learned with MLM.

[v] dog running [MASK] the ball

disassociateassociate

Baseline Ours

TowardsMLM

[v] Dog at Eiffel Tower [v] Dog at Eiffel Tower

distinct

Training

Inference

similar

picture of [v] dog

associated

picture of [v] dog

Similar

Training

dissimilar

[v] dog running [MASK] the ball

Similar

Inference

Figure 4: Illustrative comparison between the baseline approach and ours. Left: The baseline
approach is prone to losing the semantics of the contexts, as the concept token embedding only
learns to associate the tokens within limited contexts that correspond to the same concept image. As
a result, the semantics of the distinct subject tokens become similar, leading to concept overfitting.
Right: In contrast, MLM regularizes the loss of contextual semantics, as their elimination leads to
ineffective mask predictions. Also, by deploying MLM with diverse contexts, the concept token
embedding learns to both associate and disassociate the context tokens. By learning to disassociate
the distinct subject, the contextual semantics are preserved.

Most customization methods that fine-tune the model with limited context (Gal et al., 2022; Ruiz
et al., 2023; Voynov et al., 2023; Kumari et al., 2023) often suffer from concept overfitting (Zeng
et al., 2024), resulting in generated images that primarily contain the personal concept without ad-
hering to the prompt. We next analyze that concept overfitting leads to a high similarity between
the text embeddings of context tokens and the concept token, ultimately causing a loss of contextual
semantics.
Proposition 1. The model overfitting to the concept token makes the attention map mostly attend to
the concept token, i.e., A[i, j∗] ≫ A[i, j],∀j ̸= j∗, where j∗ is the index of the concept token. The
distance between the context embeddings ci and the concept embedding ci∗ is bounded,

||ci − ci∗ ||2 ≤ δV . (8)

In contrast, the MLM regularizes the loss of contextual information and guides the learning of di-
verse contexts (Figure 4, right). Specifically, we focus on two types of text embeddings for the
concept token: (i) the embedding derived from the prompt with the concept token, referred to as
cb, which represents the embeddings obtained through a typical customization method; and (ii) the
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embedding from the prompt without the concept token, denoted as ĉb, which are the proposed em-
beddings with a low MLM loss, i.e., the desired embeddings we aim to achieve.
Proposition 2. Optimizing the concept token p∗ with the MLM loss LMLM, the minimized dis-
tance between the text embedding of context token cb and ĉb is the necessary condition to minimize
LMLM(cb), i.e.,

LMLM(cb)− LMLM(ĉb) ≤ δg||cb − ĉb||2. (9)
Remark 3. According to Proposition 1, solely optimizing the concept token tends to produce text
embeddings of context token cb that closely resemble the text embedding of concept token c∗ but
deviate from desired embeddings ĉb. However, as outlined in Proposition 2, incorporating MLM
can significantly align cb with ĉb.

We provide the proof of Proposition 1 and 2 in Appendix A.4.

To empirically validate this, we provide a cosine similarity analysis using a set of 200 text prompts
with concept tokens and varying context tokens (Table 1). We analyze the cosine similarity, sim1 =
cos(ci∗ , cb), and sim2 = cos(cb, ĉb), respectively. The result shows that the baseline approach leads
to high similarity between the concept-context tokens (sim1) and low similarity in the context token
from the two prompts (sim2). The baseline result implies that the contextual semantics are not only
getting similar to the concept (high sim1) but also implies that the context token loses its semantics
as it becomes dissimilar to the semantics that are preserved in the context token (low sim2). In
contrast, we observe the opposite trend (low sim1 and high sim2), which implies that the MLM
mitigates the concept overfitting and encourages the contextual semantics to be distinct.

Method sim1 ↓ sim2 ↑ SKL ↑
Baseline 0.5047 0.3864 1.5932

Ours 0.4072 0.7386 2.3536

Table 1: Cosine similarity be-
tween the concept and context to-
ken from the same prompt (sim1)
and the context tokens from dif-
ferent prompts sim2 are reported.
SKL denotes the symmetric KL di-
vergence between the cross atten-
tion maps of the concept token and
the context token.

a [v] cat at the Eiffel Tower

a [v] cat at the Eiffel TowerBaseline

Ours

Similar

Distinct

Figure 5: Visualization of 16 × 16 attention maps
from cross-attention layers. Top: Baseline. Bot-
tom. Our approach results in cross-attention maps of
the concept token and the context token being more
distinctively distributed, leading to semantically en-
hanced image generation.

4.4 SEMANTIC ENHANCEMENT IN IMAGE SPACE

The cross-attention map plays a key role in controlling the overall image generation (Hertz et al.,
2022; Chefer et al., 2023), where the attended region corresponds to the area most influenced by the
token. Next, we provide an analysis of the cross-attention map to illustrate how the aforementioned
semantic enhancement in textual space can be transferred to image space, thereby improving the
prompt fidelity of image generation.

Let QI , KT and VT denote the Query, Key and Value of the cross attention layer, projected from
image I, and text T . During the denoising process, the cross attention map Across = Softmax(QIK⊤

T√
d

)

is computed between QI ∈ R|queries|×d and KT ∈ RL×d, where |queries| denotes the number of
image tokens, L denotes the number of text tokens, and d denotes the dimension of each image/text
token embedding.
Proposition 4. Denote the correlation between the text embedding ci and image embeddings as
M[:, i] = QIKT [i, :]. M[:, i] and M[:, j] are bounded by the distance between their corresponding
text embeddings ci and cj ,

||M[:, i]− M[:, j]||2 ≤ α||ci − cj ||2, (10)
where α = ||QI ||F ||WK ||F .
Remark 5. For the baseline method, Proposition 1 shows that the distance between text embeddings
of context tokens cb and concept token c∗ are bounded by a small value, which means cb and c∗
are similar. Furthermore, Proposition 4 suggests the image embedding corresponding to cb highly
resembles the one corresponding to c∗. This suggests that the generated images are likely to focus
solely on the object of the personal concept, overlooking the context.
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Table 2: Evaluation results of the proposed approach combined with baselines. The winning result
between the baseline and ours is denoted in bold.

TI XTI DB CD
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

CLIP-T↑ 0.279 0.305 0.297 0.305 0.306 0.309 0.322 0.326
DINO↑ 0.556 0.543 0.586 0.594 0.667 0.655 0.618 0.615

DINO-FG↑ 0.661 0.658 0.692 0.710 0.783 0.775 0.737 0.736

Remark 6. For our method, Proposition 2 shows that the distance between the text embeddings of
concept token cb and the text embeddings of desired concept token ĉb should be small. The image
embedding corresponding to cb should highly resemble the one corresponding to ĉb. This indicates
that the contexts in the generated images will remain consistent with their text prompts.

We provide the proof of Proposition 4 in Appendix A.5.

We visualize the cross-attention maps of the tokens and compare the results of the baseline (Gal et al.,
2022) and ours to further validate our claims (Figure 5). The result indicates that concept overfitting
of the text embedding in the baseline approach leads to cross-attention maps of the concept token
and the context token being more closely distributed, leading to semantically degraded image gener-
ation. Using a prompt set of size 200 containing both context token and concept token, we measure
the symmetric KL divergence between the cross-attention maps of the concept tokens c∗ and the
context tokens cb within the same prompt: SKL = 1

2DKL(Across[:, ∗]||Across[:, b]) + 1
2DKL(Across[:

, b]||Across[:, ∗]), where DKL is the Kullback-Leibler (KL) divergence, Across[:, k] ∈ R|queries| de-
notes the cross attention map of the k-th token. The results show that the baseline approach pro-
duces a more similar distribution of the cross-attention maps between the concept and context tokens
(Table 1, SKL). This finding, along with our visual evidence (Figure 4), indicates that semantic en-
hancement in textual space leads to enhancement in image space, resulting in improved prompt
fidelity of the image generation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines. We apply our approach to four different baselines. Apart from the adoption of the
MLM objective during model customization, the remaining training configuration remains the same
for the baselines and ours. Textual Inversion (TI) (Gal et al., 2022), XTI (Voynov et al., 2023),
Dreambooth (DB) (Ruiz et al., 2023) and CustomDiffusion (CD). For each baseline, the train-
ing parameters are chosen following the original configuration. For TI and XTI, only the personal
concept embeddings are updated. For DB, we finetune the entire parameters of the U-Net and the
CLIP text encoder. For CD, we train the personal concept embedding and the Key/Value projection
matrices of cross-attention layers of the U-Net. For all the prompts, we use a joint phrase that com-
bines the special token with the prior concept (e.g., ‘[v] dog’). We do not mask the special tokens,
and we set the ρmask = 15% following (Devlin et al., 2018). we use AdamW (Loshchilov, 2017)
optimizer to update the parameters on a single NVIDIA RTX 3090 GPU. We provide additional
implementation details of the baseline methods in Appendix Section A.1.

Table 3: Evaluation results with varying λ.
The best results are denoted in bold.

λ CLIP-T↑ DINO-FG↑
Baseline 0.279 0.657
0.00001 0.292 0.659
0.0001 0.305 0.658
0.0005 0.311 0.654

Table 4: Ablation study on masking proba-
bility. The best results are denoted in bold.

ρmask% CLIP-T↑
Baseline 0.279

15 0.305
50 0.304
90 0.299

Dataset. We use a mixture of 15 different subjects adopted from DB (Ruiz et al., 2023), TI
(Gal et al., 2022) and CD (Kumari et al., 2023). We use 11 subjects from DB (Ruiz et al.,
2023) composed of: [backpack,backpack dog, cat, cat2, cat3, cat3, cat6,
duck toy, poop emoji, rc car, teapot, teddybear], and we use 3 subjects from
(Kumari et al., 2023): [pet cat1, pet dog1, wooden pot]. Finally, we use 1 subject from
(Gal et al., 2022): [cat toy]. For each subject, utilize 4 to 5 images are provided. For bench-
mark prompts, a benchmark prompt set from DB is utilized. This prompt set contains 25 prompts,
and we generate 8 images per prompt. In total, 3,000 images are generated for each experiment.
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Evaluation Metrics. Following the literature (Ruiz et al., 2023; Gal et al., 2022; Kumari et al.,
2023) we first measure the text prompt fidelity. For this measure, the average pairwise cosine simi-
larity between the input prompt and the generated image encoded by the CLIP text/vision encoder is
used (CLIP-T). We also measure the subject fidelity. For this measure, the average pairwise cosine
similarity between the personal concept image and the generated image encoded by the ViT-S/16
DINO (Caron et al., 2021) embeddings is used (DINO). Following Kim et al. (2024), we measure
the subject fidelity by computing DINO (Caron et al., 2021) score on the segmented foreground
region (DINO-FG). We obtain segmentation masks with Grounded-SAM (Ren et al., 2024) condi-
tioned on the subject’s class name. As it removes the influence of the background, this leads to more
accurate measuring of subject fidelity.

5.2 QUANTITATIVE RESULTS

Comparison with Baseline Method. We combine the proposed approach with four different base-
lines and present the quantitative comparisons (Table 2). Notably, for all baseline methods, we
achieve consistent improvement in semantic alignment between the generated images and the input
prompts, as we observed improvement in CLIP-T score for all baselines. Compared to the methods
that update the parameters other than the personal token embeddings (DB and CD), the ones that
do not update them show higher improvement. We hypothesize that as the model that trains U-Net
still utilizes the contextually limited text-image pairs for the denoising objective, this leads to over-
fitting of the cross-attention layers. As a result, the enhancement property of our method can not be
faithfully transferred to the image space. For the subject fidelity measure, we observe a difference
from the baseline methods. We later show that prompt-subject fidelity trade-off can be achieved by
different λ (Section 5.3).

[v] dog on the Beach [v] dog Wearing a santa hat

[v] car in the snow [v] car in racing track

Ba
se

lin
e

O
ur

s
Ba

se
lin

e
O

ur
s

Input

Input

Target Concept - Dog

Target Concept - Car

Figure 6: Customization on multi-concept images. Along with the simple text prompt (e.g., “a
picture of [v] dog”) for the denoising objective LDiff, we construct a set of prompts tailored to
the concept for the MLM objective LMLM(e.g., “a man is petting a [v] dog”). The result clearly
indicates that our method drives the concept embedding to focus on the target concept.

5.3 ABLATION STUDY

In this section, we conduct ablation studies to provide deeper insights into our method and validate
its effectiveness. To solely compare the effect of adjusting the textual space, we have UNet and
CLIP fixed and only update the concept token embedding.

Impact of λ. We first study the impact of MLM objective weight (Table 3). We adopt TI as our base-
line and compare the prompt and subject fidelity with the model trained with different λ. We note
the general trend of improved CLIP-T score as the model is trained with increased λ. Additionally,
the result indicates as the λ increases, subject fidelity can be slightly decreased. We hypothesize that
this trade-off arises due to the model prioritizing textual context alignment over subject preservation
at higher λ values, as the MLM objective encourages the model to focus more on capturing the
semantic relationships of the contexts.

Impact of Contextual Semantics in Customizing Multi-concept Images. We study whether the
proposed method effectively guides the personal concept token to utilize the contextual semantics,
by applying our method to learn a single concept from images containing multiple concepts (Fig-
ure 6). For this, we construct a set of 50 prompts that contextual semantics of the concept is highly
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specific to the concept (e.g., “a man petting a [v] dog” for a dog). Surprisingly, applying our ap-
proach leads to successful learning of the targeted concept within the multiple concepts, leading to
disentanglement results. This result indicates that, by training the concept embedding to predict the
word that best aligns with its contexts, the concept embedding is driven to be semantically aligned
with the context. As the overall semantics of the prompt set are highly specific to the concept (e.g.,
a dog), the concept embedding converges toward representing that specific concept (i.e., a dog).

Impact of Masking Probability. We train the model with different masking probabilities and study
its impact. Table 4 shows that the performance is relatively insensitive to the masking probabil-
ity, however, excessively high values lead to degradation. This result validates the importance of
contextual information, as excessively high masking value leads to contextual semantics removal.

5.4 ADDITIONAL QUALITATIVE RESULTS

DB CDXTITI Ours Ours Ours Ours

On the beach With the Eiffel Tower 
in the background

In the snow Wheat field in the 
background

On a cobble stone 
street

Wearing a red hat purple In a chef outfit

Wearing a santa hat On top of a pink fabric Wearing a pink 
sunglasses

With a mountain in the 
background

Wheat field in the 
background

With a blue house in 
the backgroun

With a mountain in the 
background

With Eiffel Tower in 
the background

purple With a city in the 
background

With Eiffel Tower in 
the background

On top of a white rug

Figure 7: Additional qualitative comparison of the proposed method with the baselines. Our method
is highly compatible with different methods. In general, compared to baseline approaches, the gen-
erated images from our approach show higher semantic alignment with the input prompt.

We present the additional qualitative comparison results of the proposed method in (Figure 7). In
general, the baseline method that integrates our approach leads to improvement in prompt fidelity.
In this visualization results, the baseline approach shows a higher tendency to neglect the context
semantics. We analyze that the baseline approach loses the semantics of the context in textual space,
which leads to the loss of semantics of the generated images. In contrast, the adoption of MLM
leads to the preservation of the contextual semantics in text embedding, resulting in images with
enhanced semantics with higher prompt fidelity. This visualization results further support our claim.
We provide additional qualitative results of the proposed method in Appendix Section A.6.

6 CONCLUSION

In this paper, we proposed a highly cost-effective text-to-image customization method that enhances
the semantics of the textual representation, thereby improving the semantic quality and prompt fi-
delity of the generated images. Our analysis revealed that the context overfitting problem in existing
approaches stems from fine-tuning with limited contexts. We addressed this issue by diversifying
the context of the personal concept solely within the textual space. By integrating our approach
with different text-to-image customization methods, we observed consistent improvement in CLIP
scores. The effectiveness of the proposed method is demonstrated through both theoretical analysis
and extensive experimental validation.
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