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Abstract

Pronouns, adverbs and other functional words001
(such as they, her, somewhere, there) are of-002
ten used in language to replace concrete nouns003
or phrases, when their properties – such as004
gender, grammatical number – provide suffi-005
cient information for the given context. Do pre-006
trained transformer models encode such func-007
tional words in a manner that allows them to be008
used like humans do? Can language models rec-009
ognize the syntactic and semantic parallelism010
of sentences such as "The researchers wrote011
the paper" and "They wrote it", which relies on012
such lexical abstraction?013

We map these linguistic questions into the014
embedding space of a pretrained transformer015
model, and compare representations of nouns,016
with the representations of the pronouns and017
adverbs that can replace these nouns, in isola-018
tion and in parallel lexicalized and functional019
sentences. We then probe for shared syntactic020
and semantic structure in the embeddings of021
parallel lexicalized and functional sentences.022

We find that functional words are located cen-023
trally compared to nouns, but are also dis-024
tinct, which is congruent with their behaviour025
as place-holders in a wide variety of contexts.026
The analysis of the embeddings of parallel sen-027
tences shows that they do encode the shared028
syntactic-semantic structure. Moreover, this in-029
formation is encoded in a similar manner in the030
representations of functional and lexicalized031
sentences, thus providing supporting evidence032
that large language models do encode some033
form of lexical abstraction.034

1 Introduction035

Large language models (LLMs) are very successful,036

and much of their success stems from their ability037

to induce word or token representations that encode038

the extremely complex language data, with many039

generative factors (Bengio et al., 2013). It is an040

ongoing quest to understand these representations,041

the kind of linguistic information they encode and 042

the way a system is able to successfully manipulate 043

them to solve a wide variety of tasks. It is difficult 044

to attribute their high performance on numerous 045

linguistic and NLP tasks to the LLMs’ understand- 046

ing of language and its structure (Waldis et al., 047

2024). One of the criteria for judging the degree of 048

language understanding in LLMs is their capacity 049

to “generalize" well. This question is often ap- 050

proached from a technical, rather than a linguistic, 051

perspective. Generalization is considered a crucial 052

property of a learned model, as it ensures trust in 053

its deployment outside of its training environment 054

– whether this application involves a slightly dif- 055

ferent task, out-of-distribution data, a different lan- 056

guage, or some other level of distinction between 057

the application domain and the one it was trained 058

on (Hupkes et al., 2023). 059

We focus here on linguistic generalizations and 060

abstractions. For example, speakers can easily strip 061

down a sentence to a basic syntactic-semantic struc- 062

ture, such as Who did what to whom or She put 063

that there or She does that sometimes. The use 064

of pronouns or adverbs to reduce a sentence to a 065

“skeleton” does not rely on using out-of-vocabulary 066

items, as pronouns and adverbials, such as some- 067

where/sometime, are some of the most frequent 068

words in a corpus, and appear in many shared con- 069

texts, as their frequent use in coreferring expres- 070

sions attests. In semantics, pronominal forms are 071

usually treated as variables, placeholders for more 072

structured lexical elements within a sentence and 073

thus highly abstract entities (Büring, 2019). 074

Is this particular property of functional words 075

– as abstract place-holders for nouns and prepo- 076

sitional phrases – captured in LLMs? We map 077

this question into the embedding space of a pre- 078

trained transformer model. Embedding spaces are 079

built on the assumption that similarity and related- 080

ness between words is equated with closeness in 081

the embedding space. As abstract place-holders, 082
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functional words appear in shared contexts with a083

wide variety of nouns and prepositional phrases,084

thus they are similar to a certain degree. We ex-085

pect them to be somewhere in the center of the086

embedding space, so they can be close to a wide087

variety of nouns and prepositional phrases. In the088

sentence embedding space, we test whether paral-089

lel sentences – such as "The researchers wrote the090

paper" and "They wrote it" – are encoded with em-091

beddings that are close in space as they share syn-092

tactic (the sentence structure and phrase types) and093

semantic properties (semantic roles). If LLMs cap-094

ture linguistic abstraction, this shared information –095

syntactic structure and semantic roles – should be096

encoded in a similar manner regardless of whether097

the phrases contain nouns or functional words.098

We test these expectations uia purposefully gen-099

erated dataset on the causative verb alternation,100

with structure and lexical variation at multiple lev-101

els. We extract data in several formats, to explore102

words in isolation and in context, and the functional103

and lexicalized versions of sentences. We observe104

that functional words are rather central in the em-105

bedding space compared to nouns, but also isolated,106

which matches the expectations arising from their107

behaviour as place-holders in a wide variety of con-108

texts. Analyses of sentence embeddings show that109

while the functional and lexicalized versions in-110

habit different areas in the embedding space, their111

shared syntactic-semantic structure can be detected,112

and is encoded in a similar manner.113

2 Data114

Verb alternations require observing at least two115

related sentences. They show that the same verb116

can appear in different sentential contexts, with117

systematic syntactic-semantic mappings of their118

arguments across the sentences, like a system of119

equations that all share the same variable bindings.120

The dataset is generated from a set of verbs be-121

longing to the change-of-state (COS) and object-122

drop (OD) classes (Levin, 1993). These classes pro-123

vide an argument structure minimal pair: they share124

the same syntactic structure - transitive/intransitive125

alternation - but differ in their argument structure.126

The object of the transitive verbs belonging to the127

COS class bears the same semantic role (Patient) as128

the subject of the intransitive verb (The artist opens129

this door/This door opens). The transitive form130

of the verb has a causative meaning. In contrast,131

for OD verbs the subject bears the same semantic132

role (Agent) in both the transitive and intransitive 133

forms and the verb does not have a causative mean- 134

ing (The artist paints this door/The artist paints) 135

(Levin, 1993; Merlo and Stevenson, 2001). 136

We divide words into lexical and functional. Lex- 137

ical elements, or content words, are an open class 138

of words with a meaningful content, correspond- 139

ing to concepts or entities and events in the world. 140

The role of the closed class of function words, in- 141

stead, is to express grammatical functions. We 142

focus specifically on pronouns, and a subset of ad- 143

verbs, those that can express temporal and spatial 144

concepts. These function words can be used as 145

general placeholders for nouns and prepositional 146

phrases: for instance, The researchers wrote the 147

article last week can also be expressed more ab- 148

stractly as They wrote it then. 149

2.1 Data templates 150

The dataset comprises instances that follow the 151

Blackbird Language Matrices framework (Merlo, 152

2023). Each instance is a multiple-choice puzzle 153

and it consists of (i) a rule-generated context se- 154

quence of sentences that illustrate the encoded phe- 155

nomenon. The rules are of two types: rules that 156

described the linguistic property under study (verb 157

alternation) and rules that are not related to it (e.g. 158

presence or absence of a prepositional phrase). One 159

sentence that would make the sequence complete is 160

missing, and must be chosen from (ii) an answer set 161

of minimally differing contrastive sentences – one 162

correct, and each of the others violating a sub-rule. 163

Context set The syntax-semantics features of the 164

verb alternation, and their combination rules, lead 165

to the construction of the context set. Specifically, 166

(i) the presence of one or two arguments and their 167

attributes (agents, Ag; patients, Pat) ; (ii) the ac- 168

tive (Akt) or passive (Pass) voice of the verb. The 169

phenomenon-external factors include an alternation 170

between a NP introduced (i) by any preposition 171

(e.g., in an instant, henceforth p-NP) and (ii) by 172

the preposition by (e.g., by chance, by-NP), but not 173

agentive (e.g., by the artist, by-Ag/by-Pat), which 174

remains a confounding variable. The OD context 175

minimally differs from the COS in the last sentence 176

of the context: the subject of the intransitive is an 177

Agent, and not the Patient. 178

Answer Set All answers have the same structure: 179

(NP V by-NP) consisting of a verb, two nominal 180

constituents (giving rise to a structure of the type 181

NP V NP) and a preposition (by, or the lack of 182
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the preposition) between the verb and the second183

NP. The candidate answers comprise the correct184

intransitive form of the alternation followed by a185

by-NP which satisfy the rules of the BLM, and the186

contrastive incorrect answers obtained by corrupt-187

ing some properties of the rules (wrong argument,188

wrong voice of the verb, lack of preposition, wrong189

nominal constituent of the PP).1190

The answer set does not change across verb191

classes, only the label of the correct answer: the cor-192

rect answer for COS is an error for OD, and vicev-193

ersa. The BLM-template (context and answers) for194

COS and OD are presented in Figure 1.195

COS CONTEXT
1 Ag Akt Pat p-NP
2 Ag Akt Pat by-NP
3 Pat Pass by-Ag p-NP
4 Pat Pass by-Ag by-NP
5 Pat Pass p-NP
6 Pat Pass by-NP
7 Pat Akt p-NP
? ???

COS ANSWERS
1 Pat Akt by-NP CORRECT
2 Ag Akt by-NP SSM-INT
3 Pat Pass by-Ag PASS
4 Ag Pass by-Pat SSM-PASS
5 Pat Akt Ag TRANS
6 Ag Akt Pat SSM-TRANS
7 Pat Akt by-Ag WRBY
8 Ag Akt by-Pat SSM-WRBY

OD CONTEXT
1 Ag Akt Pat p-NP
2 Ag Akt Pat by-NP
3 Pat Pass by-Ag p-NP
4 Pat Pass by-Ag by-NP
5 Pat Pass p-NP
6 Pat Pass by-NP
7 Ag Akt p-NP
? ???

OD ANSWERS
1 Pat Akt by-NP SSM-INT
2 Ag Akt by-NP CORRECT
3 Pat Pass by-Ag SSM-PASS
4 Ag Pass by-Pat PASS
5 Pat Akt Ag SSM-TRANS
6 Ag Akt Pat TRANS
7 Pat Akt by-Ag SSM-WRBY
8 Ag Akt by-Pat WRBY

Figure 1: BLM COS and OD contexts and answers.

2.2 Levels of lexical abstraction196

To explore generalisation through abstraction, we197

produce two main variants of the data – a lexi-198

calized one (labelled Lex), and a functional one,199

where functional words replace all content words200

except the main verb (labelled Fun). The lexi-201

calised variant comes in different types (type I,202

II, III), with varying amounts of lexicalisation, for203

comparison with the small size inventory of the204

functional words. The groups are exemplified in205

Figure 2, together with the generation process pre-206

sented in the next paragraph. Figure 8 and Figure207

9 in the appendix provide examples for type I data208

for both verb classes.209

2.3 Main Dataset210

The main dataset is built based on thirty (manu-211

ally chosen) verbs from each of the two classes212

1Error types: wrong semantic role on the first constituent
is a syntax-semantic mapping error (SSM), wrong last con-
stituent introduced by the preposition by WRBY, and the other
errors are labelled according to the type of resulting structure
– intransitive, INTR; transitive, TRANS; passive, PASS.

Lexical Seed

Sentence generation

Type I
A breaks B p-NP
A breaks B by-NP
B is broken by A p-NP
B is broken by A by-NP
B is broken p-NP
B is broken by-NP
A breaks p-NP
???

Sampling (3000 instances)

Type II
A breaks B p-NP
C breaks D by-NP
E is broken by F p-NP
G is broken by H by-NP
I is broken p-NP
J is broken by-NP
K breaks p-NP
???

Type III
A breaks B p-NP
C melts D by-NP
E is closed by F p-NP
G is opened by H by-NP
I is improves p-NP
J is baked by-NP
K bends p-NP
???

Verb seed

Lexical Dataset Functional Dataset

Masking Functional seed

Figure 2: Process of generation of the three levels of
lexical variation (type I, II, III), exemplified for COS
data. Type I data contains instances with lexically con-
sistent material, with minimal change across the context
and the answer set. In type II the verb remains the same
while one constituent varies across the context and the
answer set. Type III data displays maximal lexical vari-
ation in both the context sentences and the answer set.

discussed in Levin (1993). See Table 2 in the ap- 213

pendix for the full list. 214

The functional lexicon has been manually se- 215

lected by the authors to maintain the syntactic and 216

semantic acceptability of the sentences2. The lex- 217

ical alternatives were provided by a masked lan- 218

guage model (bert-base-uncased, (Devlin et al., 219

2018)). The models received sentences contain- 220

ing only the masked constituent, the verb and the 221

functional elements. For example, to retrieve the ar- 222

guments for the verb break, two masked templates 223

are used: the patient is masked and the agent is in 224

pronominal form (e.g. she broke (the/a/some/...) 225

<MASK>), and the subject of the transitive is masked 226

and the patient is a pronoun (e.g. (the/a/some/...) 227

<MASK> broke it. Both the lexical seed and the 228

functional seed contain five semantically plausible 229

instances for each constituent class (Ag, Pat, p-NP 230

and by-NP). We ensured a balanced distribution of 231

tense and number across verbal inflections. 232

For our experiment, we sampled 3000 instances 233

(out of 38400 combinations of arguments and 234

verbs) for each type, semi-automatically crafted 235

and manually evaluated for plausibility and gram- 236

maticality. 237

2Following the discussion in Haspelmath (1997), we add
elements like somebody as pronominal elements.
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2.4 Dataset variations238

Starting from the main datasets described above,239

we build several variations that will be used in the240

different experiments.241

Words From each sentence in the type I subset of242

the BLM dataset, we extract the functional words243

and their corresponding nouns and prepositional244

phrases. There are 17 functional words and phrases:245

he, her, him, it, she, somebody, someone, that, that246

one, them, these, these ones, they, this, this one,247

those, those ones and 204 noun phrases.248

Sentences We compile parallel versions of the249

sentences in their lexicalized and functional word250

forms from the FUN and LEX subsets of the type I251

BLM dataset. Each sentence has associated its syn-252

tactic pattern (the syntactic version of the syntactic-253

semantic template shown in Figure 1, e.g. Pron254

Vpass PP PP). From these, we sample 4000 sen-255

tences, split 80:20 between training and testing,256

and use 10% of the training data for validation.257

BLM data Of the thirty verbs, all instances for258

three of the verbs (3x100) are selected for testing.259

Of the instances of the other 27 verbs, 2000 are260

randomly sampled for training. Ten percent of the261

training data is dynamically selected for validation.262

The same 27:3 verb split is used for all Fun/Lex263

and type I/ type II/type III variations. All variations264

have 2000 instances for training, 300 for testing.265

We also produced a variation where the COS and266

OD subtasks are merged. The data is split in a267

similar manner for training and testing.268

3 Analyses and experiments269

We aim to determine whether language models en-270

code the lexical abstraction property of pronouns271

and adverbs relative to nouns and noun phrases. We272

map this question into an analysis of the embed-273

ding space of the words and sentences, and proceed274

in several steps. We investigate the relative posi-275

tions of lexical and functional word embeddings,276

when presented in similar sentential contexts. We277

study the relative positions of the representations278

of two variations of sentences – with nouns, or with279

functional words (Section 3.1). We analyse the rep-280

resentation of functional and lexicalized sentences281

for detecting the shared syntactic structure (Section282

3.2). We deploy the BLM linguistic puzzles, whose283

solution relies on detecting shared structure at the284

level of input sequence and within each sentence285

(Section 3.3).286

We obtain word and sentence representations 287

(as averaged token embeddings) from an Electra 288

pretrained model (Clark et al., 2020)3. We choose 289

Electra because it has been shown to perform better 290

than models from the BERT family on the Holmes 291

benchmark4, and to also encode information about 292

syntactic and argument structure better (Yi et al., 293

2022; Nastase and Merlo, 2024). 294

As a first step of analysis, we analyse 2D UMAP 295

(McInnes et al., 2018) and t-SNE projections of the 296

same data (Hinton and Roweis, 2002). t-SNE is 297

designed to project high-dimensional data into a 298

lower dimensional space while preserving neigh- 299

bourhood information, while UMAP preserves the 300

global structure of the data. Considering that the 301

embedding space was built based on the notion of 302

similarity and similarity metrics, these two types of 303

visualization provide complementary information 304

about the relative position of the words in our data 305

in the embedding space. 306

3.1 Contextual word embeddings 307

We use the parallel versions of the sentences – with 308

content words or functional words – to build con- 309

textualized word embeddings, and verify whether 310

the added constraints of belonging in the same sen- 311

tential contexts brings the word embeddings closer 312

together. Each point in the plots in Figure 3 corre- 313

sponds to the contextual embedding of a functional 314

word or noun in each of the input sentences.5 315

Figure 3: t-SNE and UMAP projections of the embed-
dings of functional words and nouns obtained from par-
allel contexts. Each point is a contextual embedding.

The UMAP plot shows the embeddings of the 316

functional words located centrally, which is con- 317

gruent with their behaviour as place-holders for 318

a wide variety of nouns. The t-SNE plot shows 319

3google/electra-base-discriminator
4The HOLMES benchmark leaderboard: https://

holmes-leaderboard.streamlit.app/. At the time of writ-
ing, the ranks were: Electra - 16, DeBERTa - 21, BERT - 41,
RoBERTa - 45.

5Word embeddings obtained for the words in isolation
show the same profile (see Appendix B).
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them separate from the other nouns, indicating that320

they also have specific characteristic different from321

nouns. These observations match the expectations322

of matching the way these words behave to their323

relative positions in the embedding space.324

3.2 Shared structure in sentence embeddings325

The analysis of the relative positions of functional326

words and nouns in the embedding space supports327

the hypothesis that the language model encodes328

functional words in a manner that matches their be-329

haviour as place-holders for nouns. We deepen the330

exploration by checking whether the embeddings331

of parallel versions of sentences – with functional332

words or nouns and prepositional phrases – encode333

their shared syntactic-semantic information.334

Figure 4 shows the t-SNE and UMAP projec-335

tions of the representations of the two variations336

of each sentence. The functional and lexicalized337

version of the sentences occupy different regions338

of the embedding space, seeming to provide a neg-339

ative answer to our question.340

Figure 4: t-SNE and UMAP projections of sentence
representations (averaged token embeddings) coloured
by their syntactic pattern and the use of lexicalized or
functional words.

Syntactic structure and semantic roles represent341

complex information, which may be encoded by342

weighted combinations of subsets of dimensions343

(Bengio et al., 2013; Elhage et al., 2022). We344

then mine for this information following the ap-345

proach described in Nastase and Merlo (2024),346

which uses a variational encoder-decoder to com-347

press sentences into representations that capture348

syntactic and semantic information. Sentence em-349

beddings from Electra have size 768, and the latent350

layer in the used system has size 5. To encourage351

the desired information – in this case syntactic-352

semantic structure – to be encoded on the latent353

layer, we form instances by pairing an input sen-354

tence si with structure stri with a sentence sj ̸= si355

train on
test on

Fun Lex

Fun 0.976 0.399
Lex 0.487 0.914
Mixed 0.980 0.916

Table 1: F1 scores on predicting the sentence with
the same structure as the input, through a variational
encoder-decoder system. For all experiments the system
uses 2000 training instances, 10% of which are dynami-
cally selected in each experiment for validation.

that has the same structure (strj = stri), and with 356

N negative examples sk that have different struc- 357

tures (strk ̸= stri). In our experiments we use 358

N = 7. The structure information is used to build 359

the dataset and obtain a deeper evaluation of the 360

results, but is not provided to the system. We built 361

separate datasets for Fun and Lex. 362

This approach enables a two-fold evaluation: 363

(i) in terms of performance in detecting the cor- 364

rect structure, by choosing the candidate answer 365

that has the same syntactic-semantic information 366

as the input; (ii) in terms of the compressed repre- 367

sentation on the latent layer, which captures these 368

syntactic and semantic properties. 369

Table 1 shows the averaged F1 scores over three 370

experiments. We note first that training and testing 371

on the same type (Fun or Lex) leads to high results, 372

thus validating the experimental set-up. 373

The results on test data of the same type as the 374

training are very different from those on the test 375

of the other type. This indicates that for each of 376

the Fun and Lex data variations, the system dis- 377

covers different clues to match two sentences with 378

the same structure. The high results when train- 379

ing on the sentences with functional words may 380

also indicate overfitting because of the repetitive 381

vocabulary. Additional information comes from 382

the analysis of the compressed representations on 383

the latent layer, which are expected to capture the 384

sentence structure that is shared by the functional 385

and lexicalized data. 386

The top two plots of Figure 5 show the projection 387

on the latent layer of the sentence representations 388

with functional and content words, when trained on 389

the sentences with functional words (top) or on the 390

sentences with content words (middle). The plots, 391

matching the F1 scores, show clear clusters for the 392

data that matches the training type, but only slight 393

separation for the data points from the other type. 394

To test whether there is a shared level of informa- 395
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Training on Fun

Training on Lex

Training on mixed data

Figure 5: Latent representation analysis: t-SNE projec-
tion of vectors on the latent layer for the sentences in
the training instances.

tion between sentences with functional or content396

words, despite what the plots in Figure 4 indicate,397

we train the system with a dataset containing a398

mixture of lexicalized and functionalized instances.399

If there is shared information, we should observe400

high results on both test sets when training with the401

mixed training data, and overlapping clusters for402

the compressed representations on the latent layer.403

If there is no shared information, the results may404

be high on each test set (because separately they405

have been very well modelled), but the clusters of406

the compressed representations would be separate.407

The results in Table 1 shows very high results for408

both datasets for the mixed data training. The anal- 409

ysis of the representations on the latent layer, at the 410

bottom of Figure 5, shows that the system has dis- 411

covered a shared space between the sentences with 412

functional and those with content words. What 413

these sentences have in common is the syntactic 414

and semantic structure, and the overlapping clus- 415

ters of the compressed representations on the latent 416

layer confirms that the system has uncovered this 417

shared structure. The overlap between the clus- 418

ters induced through joint training also supports 419

the idea that the latent layer encodes structure, 420

rather than simply differentiating seven amorphous 421

classes, as there is no overlap between sentences in 422

the Fun and Lex instances. 423

3.3 Task solving 424

The previous experiments on the dataset of sen- 425

tences has shown that shared structure can be de- 426

tected, but it may be argued that this is a simple 427

clustering due to other types of indicators, and the 428

representation on the latent layer does not actually 429

contain structure and semantic role information. 430

We therefore use the BLM data, to investigate this 431

deeper. The BLM task frames a linguistic phe- 432

nomenon as a linguistic puzzle. Solving this puz- 433

zle relies on detecting the linguistic objects, their 434

relevant properties, and the structure both within 435

each sentence, and across the input sequence. This 436

dataset also allows us to test generalization at sev- 437

eral levels, because of the three levels of lexical 438

variation. We report results on the merged COS- 439

OD dataset (see Section 2.4), as it has an added 440

layer of complexity: the correct answer structure 441

for a COS instance is incorrect for OD, and vice- 442

versa. The two classes of verbs exhibit different 443

semantic frames for the intransitive target answers 444

(e.g., patient or agent subjects), with instances of 445

functional and lexical elements tending to align 446

more with either agent or patient roles. This allows 447

us to test whether in contexts with the two classes 448

of verbs, functional and lexicalized phrases encode 449

the necessary properties. 450

We use the system described by Nastase and 451

Merlo (2024), that solves the BLM problem in two 452

steps: compresses the sentence into a representa- 453

tion that encodes the structure relevant to the BLM 454

puzzle, and uses these compressed representations 455

to solve the multiple-choice puzzle. The system’s 456

two steps are encoded through interconnected vari- 457

ational encoder-decoders, as illustrated in Figure 458

6, which are trained together. The learning objec- 459
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Figure 6: Two-step VAE BLM solver

Figure 7: Results in terms of average F1 over three
runs for solving the type III (maximal lexical variation)
on merged COS and OD BLM tasks. Joint training vs.
separate training.

tive is to maximize the score of the correct answer460

from the candidate answer set, and minimize that461

of the incorrect ones. During testing, the system462

constructs the representation of an answer, then463

chooses the closest one from the given options. All464

potential answers consist of a verb frame filled with465

phrases that play specific roles (Section 2). The466

correct one consists of the combination of phrases467

whose roles fit together for the given verb, while468

the other contain similar pieces, but which violate469

some semantic, syntactic (or both) rules. This set-470

up allows us to test whether specific elements in471

the sentences from the input sequence, and their se-472

mantic roles have been detected and used properly473

in building the correct answer.474

Figure 11 shows the F1 results (as averages over475

three runs) of joint vs. separate training for the476

merged COS+OD BLM task6. The results are for477

type III data, with maximum lexical variation. The478

complete results are in Tables 3 in the appendix.479

Processing separately datasets of sentences with480

and without functional words leads to high results481

within each task, validating the experimental set-482

up, but leads to low results when testing across483

tasks. This shows, as in the analysis of the sen-484

tences datasets, that for each of the Fun and Lex485

subsets, the systems discovers and exploits differ-486

ent regularities in the training data. Using a mixed487

training dataset, instead, encourages all systems488

6Results on the separate tasks in Appendix C.

to find a shared feature space. This shows that 489

the language model encodes the syntactic-semantic 490

structure of functional and lexicalized parallel sen- 491

tences in a similar manner. 492

4 Discussion 493

The primary goal of this paper is to investigate if 494

LLMs encode lexical abstraction. We have trans- 495

lated this question into properties of words and 496

sentence representations in the embedding space. 497

We have analysed the relative positions of func- 498

tional and content words in the embedding space, 499

when considered in isolation, or in (syntactic and 500

semantic) structurally parallel sentences, and we 501

have investigated the kind of information encoded 502

in sentence embeddings. 503

Embeddings of functional words and nouns 504

are mingled in the embedding space, but func- 505

tional words are also distinguishable from the 506

nouns. This result aligns with the functional words 507

behaviour as place-holders for a wide variety of 508

nouns and in many different contexts, but also hav- 509

ing specific characteristics. 7 510

Sentence embeddings of parallel sentence 511

variations occupy different regions of the em- 512

bedding space. This result seems to show that 513

functional and lexical sentence variations do not 514

share much information, as their distance in the 515

embedding space indicates low similarity. 516

We can detect information about the shared 517

syntactic structure in the embeddings of the 518

functional and lexical variations of the same 519

sentences. Our follow-up experiments uncover in- 520

formation about shared information in Fun and Lex 521

variation of sentences, and of a more complex lin- 522

guistic puzzle. Training on only one type of data 523

does not reveal the shared syntactic structure and 524

semantic roles, reflecting the shallow differences 525

noted in the sentence embedding space. Training 526

on mixed data, however, leads to high results on 527

both dataset variations and overlapping clustered 528

representations in the latent space. 529

Contrary to our conclusion that the system has 530

discovered a shared space based on the abstraction 531

of nouns, one might argue that the shared space we 532

find is due only to the shared verb, or shared lexical 533

7It is interesting to remark, in this respect, that the semantic
literature also contains proposals suggesting that pronominal
forms are not place-holders, but are better considered as equiv-
alent to noun phrase (NP) descriptions, where they refer to a
less abstract, fuller expression in context, in relevant environ-
ments (Elbourne, 2002; Lewis, 2022).
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material between the train and test partitions. Had534

that been the case, the cross-testing results, when535

training on separate data types, would have been536

closer to the results on mixed data, given that the537

verb is not replaced by a functional category and538

it remains the same across all types of data and539

sentences. This argument is especially true for the540

type III subset of the BLM task, which has maximal541

lexical variation.542

We think instead that the results indicate that the543

model trained on the functional data, which has544

a very small and consistent vocabulary, relies on545

shallower features, while the model learned on the546

lexicalized data is more robust, but not sufficiently547

abstract. Training the system with mixed data leads548

not only to a model that performs very well on both549

data variations, but all sentences are projected into550

the same compressed embedding space, establish-551

ing the necessary links between nominal expres-552

sions and their functional equivalents that support553

abstraction and generalisation.554

5 Related work555

A generalization taxonomy based on an extensive556

analysis of publications in NLP that deal with the557

topic of generalization is proposed in Hupkes et al.558

(2023). They distinguish five main dimensions for559

generalization analysis: motivation (concerning the560

higher-level aims of the model), generalization type561

(the properties of language or domain or model the562

model is intended to capture), shift type (the kind563

of differences between training and testing data564

distributions), shift source (the source of the differ-565

ence in data distributions) and shift locus (where566

in the pipeline does the shift in data distributions567

occurs). This analysis reflects the focus in the NLP568

community on the model, and its properties from a569

machine learning point of view.570

Language has its own generalization and abstrac-571

tion dimensions, which could be at the lexical level572

(Regneri et al., 2024; Sukumaran et al., 2024), con-573

cern verb frames (Wilson et al., 2023; Yi et al.,574

2022), grammar (Kim and Smolensky, 2021) or575

a combination of these (Wang et al., 2024). The576

results of such investigations do not reveal a clear577

picture. While Kim and Smolensky (2021) observe578

a limited degree of generalization based on gram-579

matical categories, they note that the results may580

not have been driven by abstraction. Yi et al. (2022)581

show that both verb and sentence representations582

encode information about a verb’s alternation class,583

but the linguistic generalization within the verb 584

argument structure is limited, as models fail on 585

unseen contexts. In experiments on an entailment 586

graph that contains abstract concepts entailed by 587

components of events (nouns, verbs, the event as 588

a whole), Wang et al. (2024) show that the LLMs 589

have difficulty understanding abstract knowledge, 590

but they can be improved with fine-tuning. 591

Structural priming is used in Michaelov et al. 592

(2023) to investigate the degree of grammatical 593

abstraction in LLMs for three verb alternations: ac- 594

tive/passive, dative alternation and two forms of 595

possessive. In monolingual and cross-lingual set- 596

tings, they find evidence for abstract grammatical 597

representations of these phenomena. 598

Close to the topic of this paper, Regneri et al. 599

(2024) investigate whether hyponymy is encoded in 600

the transformer by analysing the attention matrices 601

when presented with hyponymous noun pairs. In 602

our work, instead, we have analysed the output 603

of a pretrained language model, and whether the 604

word and sentence embeddings it produces encode 605

particular linguistic information that would allow 606

us to establish a parallel between lexicalized and 607

abstract expressions of a sentence. 608

All this work shows an unclear picture of sen- 609

tence embeddings, and the information – and its 610

degree of abstractness – it encodes. Our work 611

provides further linguistically-oriented evidence to 612

clarify the relation between embeddings, abstrac- 613

tion and generalisation. 614

6 Conclusions 615

Our study contributes to the discussion of general- 616

ization in language models, and in particular stud- 617

ies linguistic generalization. We translate the ques- 618

tion of whether language models capture lexical 619

abstraction into tests of word and sentence embed- 620

dings in the embedding space. We show that the 621

linguistic behaviour of functional words as place- 622

holders for nouns is reflected in the relative posi- 623

tions of their corresponding embeddings. We show 624

that despite the apparent lack of similarity between 625

functional and lexicalized versions of sentences 626

– as shown by their distinct positions in the em- 627

bedding space – a deeper analysis reveals shared 628

syntactic and semantic information. These con- 629

clusions are further reinforced by the results on a 630

problem solving task, the BLM multi-choice prob- 631

lem, whose solution relies on the proper detection 632

of linguistic objects and their relations. 633
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7 Limitations634

Synthetic dataset We use a synthetic dataset, for635

controlled experimentation, which primarily con-636

sists of simple sentence structures. The dataset,637

then, may not fully capture the complexity of lan-638

guage. Future extensions will include many more639

structures and variations. Another limitation is640

the all-or-nothing pronominalisation of sentences,641

where each sentence is either fully categorized into642

a predefined functional element or not. Future work643

will have to modulate the amount of pronominali-644

sation and study different patterns of interactions645

between nominal expressions and their pronominal646

equivalent. Moreover, at the moment, we do not647

have comparable results with a human experiment,648

which could shed light on more human-like abstrac-649

tion processes. Finally, this study relies exclusively650

on English data. While many pronominal systems651

are structured like the one of English, many other652

pronominal systems exist. Future studies should653

add a cross-linguistic dimension.654

Using encoder transformer models Previous re-655

viewers have commented on the fact that we do656

not use multiple LLMs for this task, and in partic-657

ular no generative models. We have justified our658

choice of the model in Section 3, as Electra is one659

of the best performing encoder models, and also660

outperforms XLNet (Yang et al., 2019) and MPNet661

(Song et al., 2020) on GLUE tasks. The embed-662

ding space of different models is different, and we663

chose to study the embedding space of one of the664

best performing encoder-based models. For our665

study we require word embeddings as well as sen-666

tence embeddings. While there are ways to elicit667

approximations of sentence embeddings through668

word-definition like prompts (Jiang et al., 2024;669

Zhang et al., 2024), these are only approximations670

and not direct representations of a target sentence,671

which is important particularly when the sentences672

in our data have specific linguistic and grammati-673

cal properties, and do not have obvious one word674

equivalents.675
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A Data 812

Class Verb
COS bake, bend, blacken, break, brighten, caramelize, chip, close, corrode, crinkle, defrost, empty,

expand, fry, harden, harmonize, heat, improve, increase, intensify, melt, open, propagate, purify,
sharpen, shrink, sweeten, tear, whiten, widen.

OD clean, cook, draw, drink, eat, fish, hum, iron, knead, knit, mend, milk, nurse, paint, play, plow,
polish, read, recite, sculpt, sew, sing, sow, study, sweep, teach, wash, weave, whittle, write.

Table 2: Verbs categorized by class

COSFUN - CONTEXT
1 She broke it with this
2 She broke it by those there
3 It was broken by her with this
4 It was broken by her by those there
5 It was broken with this
6 It was broken by those there
7 It broke with this
? ???

COSFUN - ANSWERS
1 It broke by those there
2 She broke by those there
3 It was broken by her
4 She was broken by it
5 It broke her
6 She broke it
7 It broke by her
8 She broke by it

COSLEX - CONTEXT
1 The archaeologist broke a vase in the lab
2 The archaeologist broke a vase by mistake
3 The vase was broken by the archaeologist in the lab
4 The vase was broken by the archaeologist by mistake
5 The vase was broken in the lab
6 The vase was broken by mistake
7 The vase broke in the lab
? ???

COSLEX - ANSWERS
1 The vase broke by mistake
2 The archaeologist broke by mistake
3 The vase was broken by the archaeologist
4 The archaeologist was broken by the vase
5 The vase broke the archaeologist
6 The archaeologist broke the vase
7 The vase broke by the archaeologist
8 The archaeologist broke by the vase

Figure 8: Examples of FUN and LEX for the English verb break, one of the verbs belonging to COS class.

ODLEX - CONTEXT
1 They paint it with this
2 They paint it by that
3 It was painted by them with this
4 It was painted by them by that
5 It was painted with this
6 It was painted by that
7 They painted with this
? ???

ODFUN - ANSWERS
1 It painted by that
2 They painted by that
3 It was painted by them
4 They were painted by it
5 It painted them
6 They painted it
7 It painted by them
8 They painted by it

COSLEX - CONTEXT
1 These artists paint a portrait with a brush
2 These artists paint a portrait by the lake
3 A portrait was painted by these artists with a brush
4 A portrait was painted by these artists by the lake
5 A portrait was painted with a brush
6 A portrait was painted by the lake
7 These artists painted with a brush
? ???

COSLEX - ANSWERS
1 A portrait painted by the lake
2 These artists painted by the lake
3 A portrait was painted by the artists
4 These artists were painted by a portrait
5 A portrait painted these artists
6 These artists painted a portrait
7 A portrait painted by these artists
8 These artists painted by a portrait

Figure 9: Examples of Type_I FUN and LEX data for the English verb paint, one of the verbs belonging to OD class

B Stand-alone embeddings 813

Figure 10 shows the t-SNE projection of the word embeddings (as averages over the respective token 814

embeddings) for the functional words and noun phrases in our data, obtained in isolation (when presented 815

to the pretrained model alone). Functional words appear isolated in this space, which indicates that the 816

shared information between the functional elements and the nouns they can replace, should there by any, 817

is not to be found at a shallow level. 818
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Figure 10: t-SNE and UMAP projections of the embeddings of functional words and nouns, without a sentential
context.

C BLM task results819

The experiments were run on an HP PAIR Workstation Z4 G4 MT, with an Intel Xeon W-2255 processor,820

64G RAM, and a MSI GeForce RTX 3090 VENTUS 3X OC 24G GDDR6X GPU. The systems were821

trained for 300 epochs, and the results reported are F1 averages (standard deviation) over three runs. The822

training data for all experiments was 2000 instances. For the joint-training set-up, the data was split evenly823

across the variations.824
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test on train on
Joint training

type_I type_II type_III
type_I_Fun 0.866 (0.012) 0.813 (0.039) 0.918 (0.001)
type_I_Lex 0.830 (0.015) 0.784 (0.012) 0.899 (0.002)
type_II_Fun 0.800 (0.013) 0.777 (0.031) 0.877 (0.014)
type_II_Lex 0.773 (0.018) 0.741 (0.006) 0.865 (0.002)
type_III_Fun 0.781 (0.023) 0.791 (0.021) 0.843 (0.010)
type_III_Lex 0.743 (0.005) 0.813 (0.013) 0.838 (0.006)

Training on Fun
type_I_Fun type_II_Fun type_III_Fun

type_I_Fun 0.916 (0.007) 0.927 (0.012) 0.979 (0.009)
type_I_Lex 0.440 (0.025) 0.500 (0.022) 0.553 (0.013)
type_II_Fun 0.832 (0.008) 0.891 (0.005) 0.956 (0.011)
type_II_Lex 0.415 (0.021) 0.472 (0.014) 0.511 (0.013)
type_III_Fun 0.849 (0.014) 0.921 (0.002) 0.948 (0.010)
type_III_Lex 0.409 (0.005) 0.445 (0.012) 0.451 (0.003)

Trainig on Lex
type_I_Lex type_II_Lex type_III_Lex

type_I_Fun 0.247 (0.009) 0.332 (0.029) 0.227 (0.022)
type_I_Lex 0.803 (0.018) 0.808 (0.016) 0.922 (0.004)
type_II_Fun 0.267 (0.006) 0.339 (0.015) 0.249 (0.038)
type_II_Lex 0.713 (0.007) 0.779 (0.006) 0.896 (0.006)
type_III_Fun 0.297 (0.014) 0.303 (0.009) 0.253 (0.024)
type_III_Lex 0.674 (0.005) 0.847 (0.014) 0.883 (0.005)

Table 3: COS and OD merged tasks: Results as averaged F1 (std) over three runs, for three training set-ups: joint
training (training using both Fun and Lex instances), training on Fun instances, training on Lex instances. For all
set-ups we use 2000 training instances. For the joint training these are evenly split between Fun and Lex.
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COS

OD

Figure 11: Results in terms of average F1 over three runs for solving the type III (maximal lexical variation) COS
and OD BLM tasks for three models. Joint training vs. separate training.
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test on train on
Joint training

type_I type_II type_III
type_I_Fun 0.866 (0.010) 0.893 (0.010) 0.871 (0.010)
type_I_Lex 0.861 (0.002) 0.921 (0.013) 0.908 (0.009)
type_II_Fun 0.723 (0.020) 0.812 (0.016) 0.754 (0.010)
type_II_Lex 0.808 (0.006) 0.873 (0) 0.851 (0.002)
type_III_Fun 0.680 (0.009) 0.770 (0.024) 0.686 (0.010)
type_III_Lex 0.790 (0.003) 0.800 (0.021) 0.826 (0.011)

Training on Fun
type_I_Fun type_II_Fun type_III_Fun

type_I_Fun 0.981 (0.006) 0.973 (0.003) 0.992 (0.004)
type_I_Lex 0.404 (0.023) 0.433 (0.014) 0.464 (0.006)
type_II_Fun 0.927 (0.018) 0.933 (0.011) 0.964 (0.009)
type_II_Lex 0.396 (0.014) 0.427 (0.012) 0.459 (0.007)
type_III_Fun 0.898 (0.012) 0.933 (0.005) 0.963 (0.003)
type_III_Lex 0.388 (0.024) 0.414 (0.026) 0.426 (0.011)

Trainig on Lex
type_I_Lex type_II_Lex type_III_Lex

type_I_Fun 0.160 (0.017) 0.117 (0.005) 0.122 (0.019)
type_I_Lex 0.986 (0.006) 0.960 (0.007) 0.973 (0.005)
type_II_Fun 0.240 (0.005) 0.132 (0.011) 0.174 (0.010)
type_II_Lex 0.877 (0.008) 0.908 (0.008) 0.920 (0.007)
type_III_Fun 0.231 (0.007) 0.150 (0.010) 0.147 (0.005)
type_III_Lex 0.809 (0.006) 0.846 (0.010) 0.864 (0.004)

Table 4: BLM-COS: Results as averaged F1 (std) over three runs, for three training set-ups: joint training (training
using both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex.
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test on train on
Joint training

type_I type_II type_III
type_I_Fun 0.979 (0.006) 0.970 (0.007) 0.994 (0.003)
type_I_Lex 0.683 (0.014) 0.764 (0.016) 0.861 (0.014)
type_II_Fun 0.854 (0.023) 0.898 (0.010) 0.927 (0.005)
type_II_Lex 0.603 (0.021) 0.701 (0.023) 0.854 (0.006)
type_III_Fun 0.886 (0.020) 0.947 (0.020) 0.944 (0.004)
type_III_Lex 0.849 (0.011) 0.882 (0.016) 0.920 (0.007)

Train on Fun
type_I_Fun type_II_Fun type_III_Fun

type_I_Fun 1.000 (0) 1.000 (0) 1.000 (0)
type_I_Lex 0.474 (0.011) 0.549 (0.038) 0.489 (0.039)
type_II_Fun 0.923 (0.010) 0.962 (0.008) 0.989 (0.007)
type_II_Lex 0.431 (0.036) 0.476 (0.026) 0.436 (0.022)
type_III_Fun 0.942 (0.014) 0.980 (0.005) 0.993 (0.003)
type_III_Lex 0.365 (0.015) 0.487 (0.017) 0.443 (0.012)

Training on Lex
type_I_Lex type_II_Lex type_III_Lex

type_I_Fun 0.489 (0.037) 0.480 (0.007) 0.442 (0.020)
type_I_Lex 0.746 (0.007) 0.796 (0.015) 0.951 (0.013)
type_II_Fun 0.43 (0.005) 0.467 (0.005) 0.436 (0.018)
type_II_Lex 0.682 (0.026) 0.712 (0.010) 0.943 (0.014)
type_III_Fun 0.501 (0.008) 0.466 (0.011) 0.451 (0.014)
type_III_Lex 0.876 (0.017) 0.899 (0.008) 0.964 (0.009)

Table 5: BLM-OD: Results as averaged F1 (std) over three runs, for three training set-ups: joint training (training
using both Fun and Lex instances), training on Fun instances, training on Lex instances. For all set-ups we use 2000
training instances. For the joint training these are evenly split between Fun and Lex.
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