
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BUILDERBENCH – A BENCHMARK FOR GENERALIST
AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Today’s AI models learn primarily through mimicry and sharpening, so it is
not surprising that they struggle to solve problems beyond the limits set by
existing data. To solve novel problems, agents should acquire skills for exploring
and learning through experience. Finding a scalable learning mechanism for
developing agents that learn through interaction remains a major open problem.
In this work, we introduce BuilderBench, a benchmark to accelerate research into
agent pre-training that centers open-ended exploration. BuilderBench requires
agents to learn how to build any structure using blocks. BuilderBench is equipped
with (1) a hardware accelerated simulator of a robotic agent interacting with
various physical blocks, and (2) a task-suite with over 42 diverse target structures
that are carefully curated to test an understanding of physics, mathematics, and
long-horizon planning. During training, agents have to explore and learn general
principles about the environment without any external supervision. During
evaluation, agents have to build the unseen target structures from the task suite.
Solving these tasks requires a sort of embodied reasoning that is not reflected in
words but rather in actions, experimenting with different strategies and piecing
them together. Our experiments show that many of these tasks challenge the
current iteration of algorithms. Hence, we also provide a “training wheels”
protocol, in which agents are trained and evaluated to build a single target
structure from the task suite. Finally, we provide single-file implementations of
six different algorithms as a reference point for researchers.

Can AI models build a world which today’s generative models can only dream of?

1 THE NEED FOR A NEW BENCHMARK

Today’s artificial intelligence (AI) models acquire knowledge by combing through massive collec-
tions of human-generated data, enabling them to generate a wide array of images and write a wide
array of stories. While this recipe has been highly successful in domains like vision and language,
where models can learn from expert human photographers and writers, it is less clear how to apply
this recipe to application areas that humans understand poorly today (e.g., biology, chemistry) (Ying
et al., 2025; Silver & Sutton, 2025). Making progress will require that agents learn not only from
human experience, but also from their own, self-collected experience. Agents will have to actively
explore and run experiments to extract knowledge about the environment (Spelke & Kinzler, 2007).
Agents will then have to consolidate this knowledge and use it to quickly solve novel tasks. Despite
many works recognizing the importance of open-ended exploration and learning through experi-
ence (Stanley, 2017; Team, 2023), most benchmarks for building foundation models today focus on
learning solely from human data.

This is not for lack of trying. There is a long line of interaction and exploration benchmarks built by
researchers in reinforcement learning (RL) (Ecoffet et al., 2021; Tang et al., 2017), control (Plappert
et al., 2018), and developmental robotics (Oudeyer et al., 2007). For example, maze navigation in
ant-maze (Fu et al., 2021) or montezuma’s revenge (Bellemare et al., 2013), or handful of tasks in
the kitchen environment (Gupta et al., 2020). Other than a few exceptions like Minecraft (Guss
et al., 2019), most widely used benchmarks only allow a handful of diverse behaviors (Rajeswar
et al., 2023; Gupta et al., 2020; Fu et al., 2021; Tassa et al., 2018). Agents trained on even the
most complex of these benchmarks (e.g., StarCraft (Vinyals et al., 2019), AI2Thor (Kolve et al.,
2022), NetHack (Küttler et al., 2020)) do not seem to learn the same sort of common sense and
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Figure 1: The BuilderBench Benchmark. (Top Left) Training consists of self-supervised exploration: agents
can collect data to learn to reach various goals via trial and error. Agents are not given any information about
the test-time goals or their distribution. (Right) During evaluation, the agent is given a goal and attempts to
reach that goal by taking actions in the environment. (Bottom Left) For prototyping, we also include a “debug”
mode where agents can learn to reach the test-time goals via trial and error.

reasoning skills that agents trained on human text do acquire (Wei et al., 2022). We argue that the
key reason why, is that, there is not much that can be learned in the current generation of interactive
benchmarks. Existing benchmarks rarely allow agents to practice skills ranging from exploration to
prediction, from low-level control to high-level reasoning.

We envision a benchmark which enables an open-ended stream of interaction (Hughes et al., 2024;
Sigaud et al., 2024), where training could only ever cover a tiny slice of all possible behaviors. In the
same way that vision models today can paint pictures that go well beyond what is in their training
data (e.g., an astronaut mowing the lawn), we envision embodied agentic systems that can solve
tasks that go well beyond the tasks they have practiced solving before. Solving such a benchmark
would require agents to have efficient exploration abilities. Moreover, it requires that exploration
take into account an agent’s generalization capabilities, since it will be impossible to perform all
possible behaviors (Hughes et al., 2024). Agents should, in effect, become scientists, performing
micro experiments in the environment to discover the laws governing the environment. Once these
physical laws have been found, they can be used to make wide-ranging generalizations about how the
entire environment works, and how one should act within it. Our paper constructs an environment
where such exploration is possible. One central insight of our paper is to show that this can actually
be done using a surprisingly simple setup: block-building.

Why block-building? Blocks conceptually form an atomic unit, allowing agents to build diverse
structures. Many children spend years playing with blocks. Research in child development high-
lights that block play builds spatial (Reifel, 1984; Wexler et al., 1998; Casey et al., 2008; Singer
et al., 2006) and arithmetic skills (Verdine et al., 2014; Cheng & Mix, 2014). In addition to being
useful for early human cognitive development, block-building is a mathematically rich area1 with
a deep history in AI and planning (Gupta & Nau, 1992; Ahmad et al., 2019; Russell & Norvig,
2010). Building stable structures with blocks requires long-horizon planning and complex reason-
ing capabilities. While research on reasoning and generalization capabilities has almost become
synonymous with large language models in recent years (Touvron et al., 2023; DeepSeek-AI, 2025;
OpenAI, 2024; Team, 2025), block-building allows us to study whether this sort of reasoning and
generalization can emerge from the ground up, through exploration and trial-and-error learning.

1In 2011, Paterson et al. (2007) was awarded the prestigious David P. Robbins Prize in mathematics for
improving an upper bound on the maximum overhang using identical blocks.
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To this end, we introduce the BuilderBench benchmark. BuilderBench is equipped with a fast sim-
ulator consisting of a robotic hand traversing in space and interacting with blocks, following New-
tonian physics. This simple setup allows to design tasks which span several orders of magnitude of
complexity. Tasks require motor skills like locomotion, grasping and throwing as well as higher-
level skills such as logical reasoning (commutativity and associativity of pick and place ordering),
geometrical reasoning (maximizing overhangs, packing problems) and intuitive physics (gravity,
friction, toppling, balancing). Tasks also require reasoning about counterweights, buttresses, and
temporary scaffolding. During training, agents must discover such skills through practice. During
testing, agents must use those skills to build unseen structures (Figure 1). To succeed in build-
ing a large set of diverse structures, agents must learn general patterns of construction, rather than
memorizing individual actions. Finally, one can easily scale the difficulty of tasks by increasing the
number of blocks.

We summarize the main contributions of this paper below:

• We introduce BuilderBench, a benchmark that uses open-ended block-building to develop
and evaluate agents for efficient exploration, reasoning and generalization abilities.

• The BuilderBench simulator is developed using MuJoCo (Todorov et al., 2012) and
JAX (Bradbury et al., 2018). It is hardware accelerated and allows RL training between 10
to 100 times faster than purely CPU based open-ended benchmarks like Crafter (Hafner,
2022), Minecraft (Guss et al., 2019) or NetHack (Küttler et al., 2020) (see Appendix B for
a speed test).

• We open-source BuilderBench, a task-suite of over 40 tasks to evaluate the performance
of agents. Each task corresponds to a different block structure. Building each structure
requires unique reasoning abilities.

• We open-source single-file implementations of four representative reinforcement learning
(RL) algorithms and three self-supervised data-collection algorithms. Training runs are
extremely fast (e.g., training a PPO agent to stack two blocks takes 30 minutes on a single
GPU), reducing the barrier to entry for frontier RL research.

2 RELATED WORK.

AI benchmarks have driven progress in the field. Benchmarks such as MNIST (Deng, 2012), Im-
ageNet (Russakovsky et al., 2015), Atari (Bellemare et al., 2013), Gym (Brockman et al., 2016),
WMT (Chelba et al., 2014), SWE-bench (Jimenez et al., 2024), ARC-AGI (Chollet, 2019) have pro-
pelled research in deep learning, vision, RL and natural language processing. The aim of Builder-
Bench is to similarly propel research on RL agents. Below we discuss various aspects of this problem
and prior attempts to tackle and benchmark them.

Reinforcement learning (RL) studies agents that learn through interaction. Standard RL bench-
marks (Bellemare et al., 2013; Brockman et al., 2016; Tassa et al., 2018; Hafner, 2022; Küttler et al.,
2020; Koyamada et al., 2023; Bonnet et al., 2024) have agents learn to maximize hand-designed re-
wards to solve a task of interest. These environments require agents to extract their own knowledge
and novel solutions (e.g., endlessly bouncing the ball in breakout from DQN (Mnih et al., 2013) or
the famous move 37 from AlphaGo (Silver et al., 2016)). However, these environments focus on
solving a small range of tasks. As a result, RL agents typically possess narrow or poor generaliza-
tion capabilities (Kirk et al., 2023). The type of generalization that is desired is not just towards
perturbed observations or dynamics (Stone et al., 2021; Cobbe et al., 2020), but towards solving
diverse unseen tasks (Ghosh et al., 2021).

Unsupervised RL is centered on devising objectives that let agents learn through trial and error
without any rewards. Such methods usually try to learn generally useful skills (Gregor et al., 2016;
Eysenbach et al., 2019) or collect exploratory data (Lee et al., 2020; Tang et al., 2017; Osband et al.,
2016). But it is not clear how scalable these objectives are, mainly because the standard unsupervised
RL benchmarks (Rajeswar et al., 2023; Fu et al., 2021; Tassa et al., 2018) contain only a handful
of similar downstream tasks for evaluation. Hence, to properly evaluate generalization properties of
agents, benchmarks need to have sufficiently complex and unseen test tasks.
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Another set of methods that are closely related are ones which treat the problem of efficiently gen-
eralizing to unseen tasks as a learning problem itself. Meta-learning (Caruana, 1998; Finn et al.,
2017; Schmidhuber, 1987) and few-shot learning (Vinyals et al., 2016; Snell et al., 2017) fall under
this category. Initial progress was driven by benchmarks that arranged common supervised learn-
ing tasks episodically, testing how quickly models adapt to new tasks (Lake et al., 2015; Dhillon
et al., 2020). Later work found that self-supervised pre-training on diverse datasets provided enough
prior knowledge to directly solve most of the common supervised learning tasks (Radford et al.,
2021; Brown et al., 2020; Devlin et al., 2018), blurring the boundary between memorizing prior
knowledge and efficiently generalizing. We argue that open-ended domains and tasks are needed to
disentangle the two. ARC-AGI (Chollet, 2019) uses the open-ended domain of discrete puzzles to
measure a model’s ability to efficiently use its priors. ARC tests models on a set of novel puzzles
that require on-the-fly composition of a minimal set of core principles (Chollet, 2019; Spelke & Kin-
zler, 2007). BuilderBench is similarly structured. Solving tasks from the BuilderBench task-suite
not only requires a concrete set of priors (e.g., an understanding of Newtonian physics), but requires
using these priors to build unseen structures on-the-fly. Unlike ARC-AGI, where priors are directly
provided through examples of solved puzzles, in BuilderBench agents have to discover priors on
their own through interaction.

In addition to exploration and generalization, the BuilderBench task-suite highlights how block-
building can also be used to evaluate various types of reasoning abilities (see Section 5.1 for details).
Many of these abilities are typically studied only in isolation. For e.g., intuitive physics is evaluated
in Chow et al. (2025); Riochet et al. (2020), motor skills in James et al. (2019); Melnik et al. (2021),
planning in Valmeekam et al. (2023), mathematical reasoning in Lewkowycz et al. (2022); Ahn et al.
(2024). In recent years, reasoning is almost exclusively studied using language models pretrained
on data. However, BuilderBench allows us to evaluate and visualize reasoning that is not grounded
in language and not learned using human data.

The most similar benchmarks to BuilderBench are recent benchmarks like Kinetix (Matthews et al.,
2025), XLand (Team et al., 2021; Nikulin et al., 2023), and Minecraft (Guss et al., 2019). Kinetix
provides a diverse set of rigid body tasks, constrained to 2D, to test zero shot generalization of
agents. Tasks in Kinetix are procedurally generated. Unlike BuilderBench, these tasks do not
clearly test diverse logical and mathematical reasoning abilities. XLand provides a vast set of multi-
agent video-game like tasks, but is closed source and not readily available for academic research.
Minecraft is a popular open-ended game that revolves around building various artifacts with blocks
that has been used to develop generally capable agents from scratch (Hafner et al., 2024; Ma et al.,
2022; Zhao et al., 2024). While based on the similar block-building foundations and an appealing
benchmark, we believe BuilderBench is better suited for academic research due to the much faster
speed of its simulator and an extensive carefully curated task-suite. Finally, BuilderBench is fully
open source, making all of its components flexible and easy to adapt. In Appendix C, we have added
more discussion on qualitative comparsion of BuilderBench with prior benchmarks.

3 BUILDERBENCH - A BENCHMARK FOR GENERALIST AGENTS

This paper proposes the BuilderBench benchmark, which comes with task-suite of 42 tasks, where
each task is a target block structure carefully curated for evaluating unique abilities. BuilderBench
comes with a fast simulator consisting of an agent interacting with a varying number of blocks. In
the following sections, we will describe the environment (Section 4), the task-suite (Section 5) and
the training and evaluation protocols (Section 6).

4 BUILDERBENCH ENVIRONMENT.

The environment can be formulated as a Markov decision process (MDP) (Sutton & Barto, 2018),
with states st ∈ S and actions at ∈ A and transition dynamics T (st+1 | st, at) and a maximum
episode length H . An additional context parameter n specifies the number of cube-shaped blocks
in the environment. Each environment instance contains a single robot hand which can navigate in
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3D space2 and interact with the n cubes. All interactions approximate real physics simulated using
MuJoCo (Todorov et al., 2012).

State space. The observations include information about the arm and the cubes. For the arm, we
include its global position coordinates (R3), orientation quaternion (R4), linear velocity (R3), and
the distance between its two fingers (R). For every cube, we include the global position coordi-
nates (R3), orientation quaternion (R4), linear and angular velocity (R6).

Action space. The agent can manipulate its environment using a 5 dimensional action space. The
first three actions control its position actuators, enabling navigation along the standard basis vectors.
The fourth action controls the agent’s yaw, enabling it to rotate about the global z-axis. The fifth
action controls the finger actuators, which allows the agent to change its pinching width.

Task specification. Each task corresponds to a physically stable target structure built using cubes.
To specify this structure, we provide a vector of target cube positions (R3k), where k ≤ n is the
number of cubes in the target cube structure. This allows us to specify target structures that contain
fewer cubes than the environment (see Figure 5 for an example).

As we will see in the next section, despite this seemingly simple setup, tasks can be arbitrarily
complex and long-horizon. Qualitatively, we will see that solving tasks require multiple steps of
high-level reasoning.

5 BUILDERBENCH TASK SUITE

The BuilderBench task suite contains a total of 42 tasks. In this section, we describe these tasks in
detail and the design philosophy behind the task-suite. The task-suite is meant to be open-ended and
address the challenges highlighted in Section 1. We start with a case-study of five different tasks
from the BuilderBench task-suite, which is meant to showcase how each task requires the agent
to unlock at least one distinct reasoning ability and compose various high-level skills sequentially.
As described in Section 4, during evaluation, agents only have access to the positions of the masked
cubes in the target structure. The complete list of tasks, along with visualizations and the capabilities
required to solve them, is provided in Appendix E.

5.1 A CASE STUDY OF FIVE TASKS

(A) (B) (C)(A) (B) (C)

Figure 2: T-Block (Left) and Four Cube Packing (Right)

Example 1: T-Block. This task requires building a simple T shaped structure with one cube at the
base, and two cubes on top (Figure 2). The second frame (B) shows what many people envision as
the solution to this task. However, as show in the frame, this configuration isn’t stable. Solving this
task requires the reasoning insight to rotate the bottom cube by about 45◦. Since the diagonal of
the cube’s top surface is longer than its edge length, the rotated base provides sufficient support for
both top cubes, enabling a stable T-shaped structure (see third frame).

Example 2: Four Cube Packing. This task tests geometric reasoning and spatial packing. The
target structure is an arrangement of four cube centers placed at some distance along the four
cardinal directions on the floor (see (A) of Figure 2). The distance is chosen such that the placement
is impossible with the default cube orientation: the cubes overlap (see (B)). This results in a packing
problem of arranging the cubes such that its centers form the target structure. To solve this, the
agent needs to rotate each cube by 45◦ before placing it, which ensures the centers align correctly

2We do not include the entire robot because inverse kinematics is a solvable and orthogonal problem. This
also significantly increases the reach of the robotic arm. This robot can be conceptually thought of as a crane.
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without collision (see (C)). Due to the two fingered morphology of the robot, this task cannot be
solved using pick and place primitives, but would require nudging the final block in place.

(A) (B) (C) (D) (E) (F)

Figure 3: Hexagonal Portal

Example 3: Hexagonal Portal. This task requires constructing a hexagonal, portal-like structure
using eight cubes and two extra cubes placed on the floor on either side. (Figure 3). A direct attempt
to place the yellow or indigo cubes leads to toppling (see (B)). To stabilize them, the agent must
first build two supporting scaffolds (see (C)). After the first two layers are in place, the pink and
green cubes cannot be added independently since each would collapse inward (see (D)). Because
no additional blocks remain, another scaffold cannot be used for support. Instead, the agent must
discover a non-trivial maneuver – lifting and placing the pink and green cubes simultaneously (see
(E)). Finally, the temporary orange and light-blue scaffolds must be carefully removed and placed
in their desired position to complete the structure (see (F)). This task requires long-horizon planning
and learning emergent skills like building scaffolds and learning to pick two cubes at once.

(A) (B) (C) (D) (E) (F)

Figure 4: Leaning Tower

Example 4: Leaning Tower. The target is a leaning tower composed of seven blocks and two extra
cubes placed on the floor (see (A) of Figure 4). Solving this task demands building two scaffolds
and re-using the first one for the main tower. It also requires an understanding of the concept of
counterweights for generating a stable overhang (an outward extension). The solution itself requires
multiple steps of high level planning. After building the base, the yellow block in the second layer
must be supported by a temporary scaffold (see blue cube in (B)). To stabilize the structure, the
agent needs to add counterweights (the indigo and green cubes in (C)) and only then remove the
scaffold (see (D)). To build the third and fourth layer, the agent has to build another set of scaffolds
and counterweights. In particular, placing the pink block in the third layer requires a two-cube
vertical scaffold (see (E)). Finally, the tower is completed by adding the counterweights (the green
and orange cubes in (F)) and removing and repositioning the last scaffold (see (G)).

(A) (B)

Figure 5: Maximum overhang problem

Example 5: Maximum Overhang Problem. In this
task, the environment contains five cubes, but the task
only specifies the target positions for three cubes (see (A)
of Figure 5). But to put those three cubes in the target
location, the agent will need to use all five blocks. To cor-
rectly place the green and the yellow cubes (whose target
positions are not specified) in order to complete the task,
the agent needs to solve the popular maximum overhang
problem (see Paterson et al. (2007) for the solution). The
main intuition is that at any level, the collective center
of the mass of all the cubes above, should not be on the
right of the level’s boundary. Without such a placement,
the task is impossible to solve. The pink cube is specified
to “distract” the agent from simply holding the indigo cube in place.
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This case-study illustrates how a block-building setup with a handful of blocks can result in open-
ended tasks that can be used to test high-level reasoning abilities. Agents which do not have access to
these tasks have almost no chance of encountering them during training. For solving these tasks, we
anticipate that agents would have to learn key knowledge priors via exploration (Spelke & Kinzler,
2007), and learn mechanisms to efficiently use them on the fly (Chollet, 2019). In the next section,
we outline the general design principles that underlie the tasks in the BuilderBench task-suite.

5.2 DESIGN PHILOSOPHY BEHIND THE BUILDERBENCH TASK-SUITE.

The primary goal of the task-suite is to capture the main challenges in evaluating open-ended explo-
ration and generalization (highlighted in Section 1) and provide a meaningful feedback signal for
algorithmic research. To best support these goals, we followed the following design principles:

Solving different tasks should require distinct skills. For example, once an agent learns how to
pick and place two blocks, extending this to three or more independent blocks does not qualitatively
require an additional ability. We have designed tasks such that they demand a range of motor skills,
including grasping, nudging, and throwing. Importantly, tasks also require logical reasoning skills,
such as commutativity and associativity of blocks (pick and place ordering), induction (stacking n
blocks vs stacking n+ 1 blocks), geometry, and intuitive physics.

Most tasks should be solvable by humans. To ensure that solving the tasks is theoretically pos-
sible, we manually solved most tasks using the same action space as the agent. We also provide
scripts that allow researchers to explore the environments and attempt to solve tasks themselves.

Tasks should range from very easy to extremely hard. This is an important feature of Builder-
Bench, meant to provide breadcrumbs of feedback to go from current algorithms capable of solving
only the simplest tasks and agents that can build anything.

Tasks should include some whose solutions are unknown even to the authors. One aim of
BuilderBench is also to see if artificial agents can come up with solutions to problems whose solu-
tions are unknown. Hence, we have included a small minority of tasks which we were not able to
solve.

6 TRAINING AND EVALUATION PROTOCOLS.

To evaluate open-ended exploration and generalization, we design the multi-task self-supervised
protocol. Because this protocol contains various challenges, we also provide a debug single-task
supervised protocol meant to provide additional feedback for researchers. We describe both
protocols below and provide additional details in Appendix A.

Multi-task self-supervised protocol. The agent interacts with the environment, but does not receive
any task specification during training. The agent’s goal is to explore its environment to acquire
general knowledge and skills that might help it to solve future tasks. The agent has to learn a
task conditioned policy (Kaelbling, 1993), which can take as input a state (R11+13n) as well as a
task specification (R3k). Each environment has a number of hand-designed tasks associated with
it Appendix E. The agent is evaluated by running its task-conditioned policy on these tasks and
measuring the reward obtained by it.

During training, it is highly unlikely that the agents will have seen these hand-designed tasks. Hence,
to solve this protocol, agents will have to learn general reusable skills and concepts through purely
self-supervised interaction. Many of these tasks are very difficult and unsolvable by the initial
algorithms we tried. To provide additional feedback for algorithmic development, we also provide
a simpler “training-wheels” protocol.

Single-task supervised protocol. In this standard RL protocol, the agents interact with a single
environment to solve a single task from the task-suite. Each environment comes with a reward rt.
For each task, we currently support two types of reward functions – dense vs sparse, and permutation
variant vs invariant to the cube order. By default, the rewards used are dense and permutation
invariant to the cube order. Exact details of the reward functions are provided in Appendix A.2. The
agent’s objective is to learn a policy that maximizes the expected sum of rewards (Sutton & Barto,
2018).
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Figure 6: Self-supervised evaluation on BuilderBench task-suite. We evaluate MEGA (Pitis et al., 2020)
and SFL (Rutherford et al., 2024) on 12 of the lowest complexity (yet still difficult) tasks from our task suite.
The results show that directly using these algorithms out of the box only succeeds for the simplest tasks.
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Figure 7: Training on the test goals. Training on the test goals improves both the returns and success
achieved by the best agents. However as the number of cubes and the complexity of the tasks increase, current
algorithms are not able to achieve a non zero success.

Although this setup does not directly evaluate generalization, it makes the problem of building gen-
eral agents much more approachable. For instance, researchers could study various design choices
or estimate whether an architecture is even capable of representing the solution to a complex task.
Finally, because of the diversity of tasks, spanning a wide range of difficulties and reward formu-
lations, this protocol is itself a useful benchmark for many RL fields such as goal conditioned,
hierarchical and multi-task RL.

7 BENCHMARKING AND DISCUSSION.

In our experiments, we present benchmarking results for existing algorithms suited for the self-
supervised as well as the supervised protocol. All experimental results are reported across three
seeds. We also attempt to solve tasks using large language models. In Appendix B, we plot the
training speed of various environments in BuilderBench.

Multi-task self-supervised protocol. We implemented four algorithms, sampling for learnabil-
ity (SFL (Rutherford et al., 2024)), maximum entropy gain exploration (MEGA (Pitis et al., 2020)),
upside down RL (UDRL) (Schmidhuber, 2020) and random network distillation (RND) (Burda
et al., 2018). SFL and MEGA sample autotelic goals from previously visited states, for the agent
to learn to reach them. SFL is an unsupervised environment design (Dennis et al., 2020) algorithm,
which samples goals with the highest learnability (variance of success). MEGA is an unsupervised
goal sampling (Florensa et al., 2018; OpenAI et al., 2021) algorithm, which samples goals inversely
proportional to their visitation density. Both algorithms are implemented using proximal policy op-
timization (PPO) (Schulman et al., 2017).UDRL and RND are self-supervised algorithms. UDRL
learns to reach previously explored goals using hindsight relabelling (Andrychowicz et al., 2018)
and RND explores the environment using an intrinsic reward bonus. Both of these algorithms sam-
ple data collection goals using MEGA. All algorithms are trained in environments with one, two and
three cubes and the learned policies are tested on the respective tasks from the task-suite Appendix E
at various points during training. We report normalized episodic success and returns in Figure 6.
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As seen in Figure 6, both algorithms achieve trivial performance on tasks with three cubes. MEGA
is able to complete both tasks with one cube, and shows improvement on tasks with two cubes.
While these results indicate that the tested algorithms are not directly scalable to complex tasks,
it primarily underscores the inherent difficulty of the task setup itself. We believe that research in
developing new algorithms (or revisiting old ones) is required to solve these tasks.

Single-task supervised protocol. For this protocol, we benchmark six RL algorithms, proxi-
mal policy optimization (PPO) (Schulman et al., 2017), soft actor critic (SAC) (Haarnoja et al.,
2018), contrastive RL (CRL) (Eysenbach et al., 2022), random network distillation (RND) (Burda
et al., 2019), bigger-regularized-optimistic (BRO) (Nauman et al., 2024) and graph-attention-
network (GNN-ATT) (Ghasemipour et al., 2022). The benchmarking results on 17 tasks are pro-
vided in Figure 7. All experiments use dense rewards.

7.1 EVALUATING LARGE LANGUAGE MODELS

It has been shown that scaling pretraining and inference-time compute can significantly
enhance the reasoning abilities of language models (Kaplan et al., 2020). To test
whether the latest proprietary models can solve tasks from our task-suite, we evaluated
ChatGPT-53 and Gemini 2.5 Pro (Team, 2025) on all five tasks discussed in Section 5.1.

Figure 8: Evaluating language models on Builder-
Bench.

Task Name ChatGPT-5 Gemini 2.5 Pro

T block ✗ ✗
Four cube packing ✗ ✗
Hexagonal Portal ✗ ✗
Leaning tower ✗ ✗
Maximum Overhang ✗ ✗

Each model was provided with a descrip-
tive prompt about the environment and the
task. The goal of the model was to provide
a high-level open-loop plan in language,
such that following this plan would stably
build the target structure. A simple exam-
ple task with a correct solution was also
included in the prompt (see Appendix D
for the exact prompts and solutions). Fig-
ure 8 shows that both models, despite us-
ing inference-time compute, are not able
to provide the correct high-level plan to solve any of the tasks. While this is not meant to be an
extensive evaluation of current models’ abilities, it highlights how solving our tasks requires non-
obvious steps of reasoning that are beyond what current models can achieve through scaling alone.

8 LIMITATIONS AND CONCLUSION

Although BuilderBench contains tasks that require diverse and open-ended skills, it does not fo-
cus on evaluating other problems like stochasticity, partial observability, or multi-agent learning.
However, we expect extending BuilderBench to incorporate these settings should be easy. Another
limitation is that we have not provided implementations for all approaches for open-ended explo-
ration which exist in the literature (see discussion in Section 2). This is outside the scope of the
paper. The main aim of the paper is to present an effective benchmark to accelerate research on
scalable and generalizable learning through open-ended exploration.

Developing agents that can learn through open-ended exploration and generalize across diverse tasks
remains an open problem in AI. Current AI models are pretrained on human generated data. As a
result, they largely lack the ability to explore and learn through interaction. We have designed
BuilderBench, to accelerate research towards agents that learn to explore in an open-ended envi-
ronment and generalize to diverse tasks. Tasks in BuilderBench are designed to elicit long-horizon
planning and reasoning abilities, many implicitly requiring agents to solve problems in physics and
mathematics. BuilderBench provides a common framework for studying problems like open-ended
exploration, generalization and embodied reasoning. We expect that the resulting research will ad-
vance the development of agents that solve problems by interacting with the real world.

3https://openai.com/index/introducing-gpt-5/
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9 REPRODUCIBILITY STATEMENT

All experiments in this paper are completely reproducible. We have attached our code for the simu-
lator, the task-suite and the implementation of all algorithms as a part of the supplemental materials.
Additionally, BuilderBench is based on MuJoCo (Todorov et al., 2012) and Jax (Bradbury et al.,
2018) both of which are open-sourced libraries. For experiments using proprietary language mod-
els, we have provided the exact models Section 7.1 and the prompts Appendix D which were used
for experiments.
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Outline of Appendices. In Appendix A, we include details about the tasks including reward func-
tions, episode length. In Appendix B, we add speed tests for two algorithms trained using the
BuilderBench simulator. In Appendix D, we provide the exact prompts and the answers provided by
LLMs for experiments in Section 7.1. Lastly, in Appendix E, we provide a visualization of all tasks
in the BuilderBench task-suite.

A ENVIRONMENT DETAILS

A.1 EPISODE LENGTHS

The episode length depends on the number of cubes present in the environment (N ). For supervised
tasks, the episode length is 100 + 100 × N and for self-supervised tasks, the episode length is
500×N .

A.2 REWARD FUNCTIONS

There are two types of reward functions provided in the benchmark, sparse and dense. The sparse
reward is equal to -1 for all timesteps where the cubes do not form the target structure and 0 if the
cubes form the target structure. Cubes are said to form the target structure if the distance between
each cube and its corresponding target is less than 2 centimeters. At each timestep, every cube
is assigned a specific target position from the target structure. This assignment is calculated such
that the total sum of distances between the cubes and their assigned targets is minimized. This is a
convex optimization problem and can be solved efficiently with GPUs using the hungarian algorithm
implemented in jax Bradbury et al. (2018). The sparse rewards are calculated by checking whether
the best assigned distances are all less than 2 centimeters. The dense rewards are calculated by
applying 1− tanh(x) to the best assigned distances and summing them over all cubes. As distances
tend to zero, the reward tends to N (number of cubes in the environment).

The permutation sensitive variants of both the sparse and dense rewards are calculated similarly, but
without solving the assignment problem. Each cube is already assigned a specific target position by
the task, and this assignment is used to estimate both the dense and the sparse rewards.

B TRAINING SPEED.

1 2 3
number of cubes
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S 

(1
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)
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number of cubes
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48
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Figure 9: Environment steps per second
during PPO and MEGA training runs

In Figure 9, we plot the average environment steps per
second for PPO (Figure 7) and MEGA (Figure 6). The
PPO experiments were run on a single A100 GPU with
12 CPU threads and the MEGA experiments were run on
a single A6000 GPU with 12 CPU threads. The speed
of the training depends on many factors like number of
parallel environments, the update to data ratio, type of
GPU and the number of CPU threads. The speed also
depends on the environment step-time, number of cubes
and the type of interactions in the environments (interac-
tions with more active contacts typically take longer time
to execute). An example of this can be seen in the right
plot in Figure 9. For the self-supervised protocol, the environment step-time is set to be small for
better physics approximation. MEGA with one block learns to pick the block up and move it around
which we found to be inversely correlated with speed. The speeds could be scaled with more CPU
threads, parallel environments, and faster algorithms for physics approximation.

Although not precise, comparing these speeds with fig. 2 from Matthews et al. (2024) shows that
BuilderBench is between 102 − 103 times faster than Minecraft (Guss et al., 2019), 2 − 20 faster
than Nethack and Procgen (Küttler et al., 2020; Cobbe et al., 2020), and 10− 102 times faster than
Crafter (Hafner, 2022).
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Table 1: Qualitative Comparison of BuilerBench with previous benchmarks

Benchmark
Extensive
reasoning
task-suite

Hardware
accelerated Primary Focus

BuilerBench
(ours)

✓ ✓
1. Self-supervised exploration
2. Zero shot reasoning
3. Learning from scratch

ManiSkill
(Mu et al., 2021)

✗ ✓
1. Robot learning
2. Fast simulation and training for

manipulation tasks.

FurnitureBench
(Heo et al., 2023)

✗ ✗
1. Long-horizon assembly
2. Imitation learning and

Offline RL

BabyAI
(MCB et al., 2019)

✗ ✗ 1. Human in the loop learning
2. Language grounded reasoning

Kinetix
(Matthews et al., 2025) ✗ ✓ 1. Zero shot reasoning

2. Unsupervised environment design

Craftium
(Malagón et al., 2025) ✗ ✗

1. LLM based agents
2. Code based environment

generation

MiniGrid
(MCB et al., 2023)

✗ ✗ 1. Exploration
2. Curriculum Learning

C QUALITATIVE COMPARISON WITH PRIOR WORK.

In this section, we provide a qualitative comparison of BuilderBench with prior work. Table 1
compares the primary focus of BuilderBench with various benchmarks, highlighting the need for a
new benchmark that focuses on learning to reason via exploration and trial and error from scratch.

We argue that the components of BuilderBench are necessary to facilitate research on this problem:

Tasks which demonstrably require reasoning. We have provided an extensive task suite which
require skills such as logical reasoning (commutativity and associativity of pick and place ordering),
geometrical reasoning (maximizing overhangs, packing problems) and intuitive physics (gravity,
friction, toppling, balancing). Tasks also require reasoning about counterweights, buttresses, and
temporary scaffolding. Designing such tasks is not trivial. In comparison, benchmarks like Man-
iSkill (Mu et al., 2021) focus on simpler tasks which require pick and place primitives.

Scaling interaction speed. Training agents to solve such complex problems will presumably require
large amounts of interaction data. While there are complex environments like MineCraft (Guss et al.,
2019; Malagón et al., 2025) that are also centered around building blocks, the simulators for these
environments are about 102 − 103 times slower that BuilderBench.

Focus on training from trial and error. BuilderBench focuses on agents that learn purely from trial
and error whereas benchmarks like FurnitureBench (Heo et al., 2023) focus on solve long-horizon
assembly using demonstrations and offline data.
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D EVALUATING LANGUAGE MODELS: PROMPTS AND SOLUTIONS

D.1 T BLOCK

User

You are an agent that controls a two-finger robotic gripper (Robotiq 2F-85) which can
navigate a constrained 3D space using position actuators for controlling x,y,z directions
and yaw. The robot hand has two fingers with maximum width equal to 0.085 meters. The
environment consists of a variable number of cubes of size 0.04 meters. The environment
is implemented in MuJoCo and approximates Newtonian physics. All length position
coordinates have units in meters and the yaw will be measured in radians.

Problem description - You will be given the positions and the orientations of all the N cubes
in the environment. You will also be given the target center positions of K cubes, where K
can be less or equal to N. The target center positions correspond to a target structure that
you need to build such that it always remains stable. The structures which are in unstable
equilibria, that would fall apart after applying minimal perturbation, are not considered
stable. Your goal is to provide high level language instructions for the gripper to follow
such that it can build the stable target structure. All steps should be physically possible
and implementing those steps one after the other should stably result in building the target
structure. Only provide a list of an open loop plan consisting of simple instructions, for
example, pick cube 1, place cube 1 at 0.1,0,0.02 with yaw 0, rotate cube 2 by pi/3 radians,
nudge the cube at [0.1,0,0.02] to [0.12,0,0.02], etc. You can think before providing the final
answer but please separate the final answer by saying “Final answer:” before providing the
ordered plan of high level instructions.

The following is an example of a simple task followed by its solution:

Task:
N = 1
K = 1
Start location = [0.05, 0.0, 0.02]
Target location = [0.1, 0.0, 0.02]

Final answer:
1) Pick up the cube from [0.05, 0.0, 0.02].
2) Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.

Here is the task:
N = 3
K = 3
Start location = [ [ 0.05, -0.08, 0.02], [ 0.05, 0. , 0.02], [ 0.05, 0.08, 0.02] ]
Target location = [ [ 0.1, 0.02, 0.06], [ 0.1 , -0.02, 0.06], [ 0.1 , 0. , 0.02] ]

ChatGPT-5

Pick up the cube from [0.05, 0.0, 0.02].
Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.08, 0.02].
Place the cube at [0.1, -0.02, 0.06] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.08, 0.02].
Place the cube at [0.1, 0.02, 0.06] with a yaw of 0 radians.
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Gemini 2.5 Pro

Pick up the cube from [0.05, 0.0, 0.02].
Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.08, 0.02].
Place the cube at [0.1, -0.02, 0.06] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.08, 0.02].
Place the cube at [0.1, 0.02, 0.06] with a yaw of 0 radians.
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D.2 FOUR CUBE PACKING

User

You are an agent that controls a two-finger robotic gripper (Robotiq 2F-85) which can
navigate a constrained 3D space using position actuators for controlling x,y,z directions
and yaw. The robot hand has two fingers with maximum width equal to 0.085 meters. The
environment consists of a variable number of cubes of size 0.04 meters. The environment
is implemented in MuJoCo and approximates Newtonian physics. All length position
coordinates have units in meters and the yaw will be measured in radians.

Problem description - You will be given the positions and the orientations of all the N cubes
in the environment. You will also be given the target center positions of K cubes, where K
can be less or equal to N. The target center positions correspond to a target structure that
you need to build such that it always remains stable. The structures which are in unstable
equilibria, that would fall apart after applying minimal perturbation, are not considered
stable. Your goal is to provide high level language instructions for the gripper to follow
such that it can build the stable target structure. All steps should be physically possible
and implementing those steps one after the other should stably result in building the target
structure. Only provide a list of an open loop plan consisting of simple instructions, for
example, pick cube 1, place cube 1 at 0.1,0,0.02 with yaw 0, rotate cube 2 by pi/3 radians,
nudge the cube at [0.1,0,0.02] to [0.12,0,0.02], etc. You can think before providing the final
answer but please separate the final answer by saying “Final answer:” before providing the
ordered plan of high level instructions.

The following is an example of a simple task followed by its solution:

Task:
N = 1
K = 1
Start location = [0.05, 0.0, 0.02]
Target location = [0.1, 0.0, 0.02]

Final answer:
1) Pick up the cube from [0.05, 0.0, 0.02].
2) Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.

Here is the task:
N = 4
K = 4
Start location = [ [0.05, -0.12, 0.02], [0.05, -0.04, 0.02], [0.05, 0.04, 0.02], [0.05, 0.12, 0.02]
]
Target location = [ [0.1, 0.02828427, 0.02], [0.1, -0.02828427, 0.02], [0.12828427, 0.0,
0.02], [0.07171573, 0.0, 0.02] ]

ChatGPT-5

Pick up the cube from [0.05, -0.12, 0.02].
Place the cube at [0.1, -0.02828427, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.12, 0.02].
Place the cube at [0.1, 0.02828427, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.04, 0.02].
Place the cube at [0.07171573, 0.0, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.04, 0.02].
Place the cube at [0.12828427, 0.0, 0.02] with a yaw of 0 radians.
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Gemini 2.5 Pro

Pick up the cube from [0.05, -0.12, 0.02].
Place the cube at [0.1, 0.02828427, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.04, 0.02].
Place the cube at [0.1, -0.02828427, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.04, 0.02].
Place the cube at [0.12828427, 0.0, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.12, 0.02].
Place the cube at [0.07171573, 0.0, 0.02] with a yaw of 0 radians.
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D.3 HEXAGONAL PORTAL

User

You are an agent that controls a two-finger robotic gripper (Robotiq 2F-85) which can
navigate a constrained 3D space using position actuators for controlling x,y,z directions
and yaw. The robot hand has two fingers with maximum width equal to 0.085 meters. The
environment consists of a variable number of cubes of size 0.04 meters. The environment
is implemented in MuJoCo and approximates Newtonian physics. All length position
coordinates have units in meters and the yaw will be measured in radians.

Problem description - You will be given the positions and the orientations of all the N cubes
in the environment. You will also be given the target center positions of K cubes, where K
can be less or equal to N. The target center positions correspond to a target structure that
you need to build such that it always remains stable. The structures which are in unstable
equilibria, that would fall apart after applying minimal perturbation, are not considered
stable. Your goal is to provide high level language instructions for the gripper to follow
such that it can build the stable target structure. All steps should be physically possible
and implementing those steps one after the other should stably result in building the target
structure. Only provide a list of an open loop plan consisting of simple instructions, for
example, pick cube 1, place cube 1 at 0.1,0,0.02 with yaw 0, rotate cube 2 by pi/3 radians,
nudge the cube at [0.1,0,0.02] to [0.12,0,0.02], etc. You can think before providing the final
answer but please separate the final answer by saying “Final answer:” before providing the
ordered plan of high level instructions.

The following is an example of a simple task followed by its solution:

Task:
N = 1
K = 1
Start location = [0.05, 0.0, 0.02]
Target location = [0.1, 0.0, 0.02]

Final answer:
1) Pick up the cube from [0.05, 0.0, 0.02].
2) Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.

Here is the task:
N = 8
K = 8
Start location = [ [0.05, -0.24, 0.02], [0.05, -0.18, 0.02], [0.05, -0.12, 0.02], [0.05, -0.04,
0.02], [0.05, 0.04, 0.02], [0.05, 0.12, 0.02], [0.05, 0.18, 0.02], [0.05, 0.24, 0.02] ]
Target location = [ [0.1, 0.02, 0.02], [0.1, -0.02, 0.02], [0.1, 0.04, 0.06], [0.1, -0.04, 0.06],
[0.1, 0.02, 0.1], [0.1, -0.02, 0.1], [0.1, 0.1, 0.02], [0.1, -0.1, 0.02] ]

ChatGPT-5

Pick up the cube from [0.05, 0.18, 0.02]. Place the cube at [0.1, 0.02, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.24, 0.02]. Place the cube at [0.1, 0.1, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.12, 0.02]. Place the cube at [0.1, 0.04, 0.06] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.04, 0.02]. Place the cube at [0.1, 0.02, 0.1] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.18, 0.02]. Place the cube at [0.1, -0.02, 0.02] with a yaw of
0 radians.
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Pick up the cube from [0.05, -0.24, 0.02]. Place the cube at [0.1, -0.1, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.12, 0.02]. Place the cube at [0.1, -0.04, 0.06] with a yaw of
0 radians.
Pick up the cube from [0.05, -0.04, 0.02]. Place the cube at [0.1, -0.02, 0.1] with a yaw of 0
radians.

Gemini 2.5 Pro

Pick up the cube from [0.05, -0.24, 0.02].
Place the cube at [0.1, 0.02, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.18, 0.02].
Place the cube at [0.1, -0.02, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.12, 0.02].
Place the cube at [0.1, 0.1, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, -0.04, 0.02].
Place the cube at [0.1, -0.1, 0.02] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.04, 0.02].
Place the cube at [0.1, 0.04, 0.06] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.12, 0.02].
Place the cube at [0.1, -0.04, 0.06] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.18, 0.02].
Place the cube at [0.1, 0.02, 0.1] with a yaw of 0 radians.
Pick up the cube from [0.05, 0.24, 0.02].
Place the cube at [0.1, -0.02, 0.1] with a yaw of 0 radians.
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D.4 LEANING TOWER

User

You are an agent that controls a two-finger robotic gripper (Robotiq 2F-85) which can
navigate a constrained 3D space using position actuators for controlling x,y,z directions
and yaw. The robot hand has two fingers with maximum width equal to 0.085 meters. The
environment consists of a variable number of cubes of size 0.04 meters. The environment
is implemented in MuJoCo and approximates Newtonian physics. All length position
coordinates have units in meters and the yaw will be measured in radians.

Problem description - You will be given the positions and the orientations of all the N cubes
in the environment. You will also be given the target center positions of K cubes, where K
can be less or equal to N. The target center positions correspond to a target structure that
you need to build such that it always remains stable. The structures which are in unstable
equilibria, that would fall apart after applying minimal perturbation, are not considered
stable. Your goal is to provide high level language instructions for the gripper to follow
such that it can build the stable target structure. All steps should be physically possible
and implementing those steps one after the other should stably result in building the target
structure. Only provide a list of an open loop plan consisting of simple instructions, for
example, pick cube 1, place cube 1 at 0.1,0,0.02 with yaw 0, rotate cube 2 by pi/3 radians,
nudge the cube at [0.1,0,0.02] to [0.12,0,0.02], etc. You can think before providing the final
answer but please separate the final answer by saying “Final answer:” before providing the
ordered plan of high level instructions.

The following is an example of a simple task followed by its solution:

Task:
N = 1
K = 1
Start location = [0.05, 0.0, 0.02]
Target location = [0.1, 0.0, 0.02]

Final answer:
1) Pick up the cube from [0.05, 0.0, 0.02].
2) Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.

Here is the task:
N = 9
K = 9
Start location = [ [0.05, -0.3, 0.02], [0.05, -0.24, 0.02], [0.05, -0.16, 0.02], [0.05, -0.08,
0.02], [0.05, 0.0, 0.02], [0.05, 0.08, 0.02], [0.05, 0.16, 0.02], [0.05, 0.24, 0.02], [0.05, 0.3,
0.02] ]
Target location = [ [0.1, 0.0, 0.02], [0.1, -0.04, 0.02], [0.1, 0.02, 0.06], [0.1, -0.02, 0.06],
[0.1, 0.04, 0.1], [0.1, 0.0, 0.1], [0.1, 0.01, 0.14], [0.1, 0.12, 0.02], [0.1, 0.16, 0.02] ]

ChatGPT-5

Pick up the cube from [0.05, -0.3, 0.02]. Place the cube at [0.1, -0.04, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.24, 0.02]. Place the cube at [0.1, 0.0, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.24, 0.02]. Place the cube at [0.1, 0.12, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.3, 0.02]. Place the cube at [0.1, 0.16, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.16, 0.02]. Place the cube at [0.1, -0.02, 0.06] with a yaw of
0 radians.
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Pick up the cube from [0.05, -0.08, 0.02]. Place the cube at [0.1, 0.02, 0.06] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.0, 0.02]. Place the cube at [0.1, 0.0, 0.10] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.08, 0.02]. Place the cube at [0.1, 0.04, 0.10] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.16, 0.02]. Place the cube at [0.1, 0.01, 0.14] with a yaw of 0
radians.

Gemini 2.5 Pro

Pick up the cube from [0.05, -0.3, 0.02] and place it at [0.1, -0.04, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.24, 0.02] and place it at [0.1, 0.0, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.16, 0.02] and place it at [0.1, 0.12, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.08, 0.02] and place it at [0.1, 0.16, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.0, 0.02] and place it at [0.1, -0.02, 0.06] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.08, 0.02] and place it at [0.1, 0.02, 0.06] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.16, 0.02] and place it at [0.1, 0.0, 0.1] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.24, 0.02] and place it at [0.1, 0.04, 0.1] with a yaw of 0
radians.
Pick up the cube from [0.05, 0.3, 0.02] and place it at [0.1, 0.01, 0.14] with a yaw of 0
radians.
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D.5 MAXIMUM OVERHANG

User

You are an agent that controls a two-finger robotic gripper (Robotiq 2F-85) which can
navigate a constrained 3D space using position actuators for controlling x,y,z directions
and yaw. The robot hand has two fingers with maximum width equal to 0.085 meters. The
environment consists of a variable number of cubes of size 0.04 meters. The environment
is implemented in MuJoCo and approximates Newtonian physics. All length position
coordinates have units in meters and the yaw will be measured in radians.

Problem description - You will be given the positions and the orientations of all the N cubes
in the environment. You will also be given the target center positions of K cubes, where K
can be less or equal to N. The target center positions correspond to a target structure that
you need to build such that it always remains stable. The structures which are in unstable
equilibria, that would fall apart after applying minimal perturbation, are not considered
stable. Your goal is to provide high level language instructions for the gripper to follow
such that it can build the stable target structure. All steps should be physically possible
and implementing those steps one after the other should stably result in building the target
structure. Only provide a list of an open loop plan consisting of simple instructions, for
example, pick cube 1, place cube 1 at 0.1,0,0.02 with yaw 0, rotate cube 2 by pi/3 radians,
nudge the cube at [0.1,0,0.02] to [0.12,0,0.02], etc. You can think before providing the final
answer but please separate the final answer by saying “Final answer:” before providing the
ordered plan of high level instructions.

The following is an example of a simple task followed by its solution:

Task:
N = 1
K = 1
Start location = [0.05, 0.0, 0.02]
Target location = [0.1, 0.0, 0.02]

Final answer:
1) Pick up the cube from [0.05, 0.0, 0.02].
2) Place the cube at [0.1, 0.0, 0.02] with a yaw of 0 radians.

Here is the task:
N = 5
K = 3
Start location = [ [0.05, -0.16, 0.02], [0.05, -0.08, 0.02], [0.05, 0.0, 0.02], [0.05, 0.08, 0.02],
[0.05, 0.16, 0.02] ]
Target location = [ [0.1, 0.0, 0.02], [0.1, 0.031, 0.14], [0.1, 0.16, 0.14] ]

ChatGPT-5

Pick up the cube from [0.05, 0.0, 0.02]. Place the cube at [0.1, 0.0, 0.02] with a yaw of 0
radians.
Pick up the cube from [0.05, -0.08, 0.02]. Place the cube at [0.1, 0.031, 0.02] with a yaw of
0 radians. (bottom of the pillar)
Pick up the cube from [0.05, 0.08, 0.02]. Place the cube at [0.1, 0.031, 0.06] with a yaw of
0 radians. (middle of the pillar)
Pick up the cube from [0.05, -0.16, 0.02]. Place the cube at [0.1, 0.031, 0.10] with a yaw of
0 radians. (top of the pillar)
Pick up the cube from [0.05, 0.16, 0.02]. Place the cube at [0.1, 0.031, 0.14] with a yaw of
0 radians. (target at z=0.14 realized)
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Gemini 2.5 Pro

It is not possible to generate a plan for this task. The target structure is physically unstable.
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E TASKS AND CHALLENGES IN BUILDERBENCH

Task name Task visualization Abilities

cube-1-task1 1. Pick and Place

cube-1-task2 1. Pick and hold

Table 2: Tasks with 1 cube.

Task name Task visualization Abilities

cube-2-task1 1. Motor skills

cube-2-task2 1. Sequential-logic
2. Motor skills

cube-2-task3
1. Solving a packing problem

2. Sequential-logic
3. Motor skills

cube-2-task4
1. Two cube lift maneuver

2. Sequential-logic
3. Motor skills

cube-2-task5
1. Two cube lift maneuver

2. Sequential-logic
3. Motor skills

Table 3: Tasks with 2 cubes.
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Task name Task visualization Abilities

cube-3-task1 1. Sequential-logic
2. Motor skills

cube-3-task2
1. Stable equilibria
2. Toppling
2. Motor skills

cube-3-task3
1. Three cube lift maneuver
2. Sequential-logic
2. Motor skills

cube-3-task4
1. Solving a packing problem
2. Sequential-logic
3. Motor skills

cube-3-task5
1. Building support structures
2. Sequential-logic
3. Motor skills

Table 4: Tasks with 3 cubes.
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1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-4-task1 1. Sequential-logic
2. Motor skills

cube-4-task2 1. Sequential-logic
2. Motor skills

cube-4-task3

1. Solve a packing
problem
2. Sequential-logic
2. Motor skills

cube-4-task4
1. Unconstrained Maximum overhang
2. Sequential-logic
3. Motor skills

cube-4-task5
1. Building support structures
2. Sequential-logic
3. Motor skills

Table 5: Tasks with 4 cubes.
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1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-5-task1 1. Sequential-logic
2. Motor skills

cube-5-task2 1. Sequential-logic
2. Motor skills

cube-5-task3 1. Sequential-logic
2. Motor skills

cube-5-task4
1. Maximum overhang
2. Sequential-logic
3. Motor skills

cube-5-task5
1. Building support structures
2. Sequential-logic
3. Motor skills

Table 6: Tasks with 5 cubes.
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1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-6-task1 1. Sequential-logic
2. Motor skills

cube-6-task2 1. Sequential-logic
2. Motor skills

cube-6-task3
1. Two cube lift
2. Sequential-logic
2. Motor skills

cube-6-task4
1. Building support structures
2. Sequential-logic
3. Motor skills

cube-6-task5
1. Temporary bi-scaffolding
2. Sequential-logic
3. Motor skills

Table 7: Tasks with 6 cubes.
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1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-7-task1 1. Sequential-logic
2. Motor skills

cube-7-task2
1. Building a support structure
2. Sequential-logic
2. Motor skills

cube-7-task3
1. Building a support structure
2. Sequential-logic
2. Motor skills

cube-7-task4
1. Temporary bi-scaffolding
2. Sequential-logic
3. Motor skills

cube-7-task5
1. Temporary bi-scaffolding
2. Sequential-logic
3. Motor skills

Table 8: Tasks with 7 cubes.
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1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-8-task1 1. Sequential-logic
2. Motor skills

cube-8-task2
1. Building a support structure
2. Sequential-logic
2. Motor skills

cube-8-task3
1. Temporary bi-scaffolding
2. Sequential-logic
2. Motor skills

cube-8-task4
1. Temporary bi-scaffolding
2. Sequential-logic
3. Motor skills

cube-8-task5
1. Three cube lift
2. Sequential-logic
3. Motor skills

Table 9: Tasks with 8 cubes.
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1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Task name Task visualization Abilities

cube-9-task1 1. Sequential-logic
2. Motor skills

cube-9-task2 1. Sequential-logic
2. Motor skills

cube-9-task3

1. Temporary mono-scaffolding
2. Mono-scaffold reuse
3. Sequential-logic
4. Motor skills

cube-9-task4

1. Temporary tri-scaffolding
2. Bi-scaffold reuse
3. Sequential-logic
4. Motor skills

cube-9-task5
1. Building a support structure
2. Sequential-logic
3. Motor skills

Table 10: Tasks with 9 cubes.
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