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Abstract

Recent advancements in static feed-forward scene reconstruction have demon-
strated significant progress in high-quality novel view synthesis. However, these
models often struggle with generalizability across diverse environments and fail to
effectively handle dynamic content. We present BTimer (short for BulletTimer),
the first motion-aware feed-forward model for real-time reconstruction and
novel view synthesis of dynamic scenes. Our approach reconstructs the full scene
in a 3D Gaussian Splatting representation at a given target (‘bullet’) timestamp by
aggregating information from all the context frames. Such a formulation allows
BTimer to gain scalability and generalization by leveraging both static and dynamic
scene datasets. Given a casual monocular dynamic video, BTimer reconstructs
a bullet-time1 scene within 150ms on 256 × 256 resolution while reaching state-
of-the-art performance on both static and dynamic scene datasets, even compared
with optimization-based approaches.

1 Introduction
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Figure 1: Rendering quality vs. speed. Our
model can reconstruct and render dynamic scenes
at a much faster speed than existing approaches
with a competitive quality. Numbers are reported
on NVIDIA Dynamic Scene Dataset [1]

Multi-view reconstruction and novel-view syn-
thesis are long-standing challenges in com-
puter vision, with numerous applications rang-
ing from AR/VR to simulation and content cre-
ation. While significant progress has been made
in reconstructing static scenes, dynamic scene
reconstruction from monocular videos remains
challenging due to the inherently ill-posed na-
ture of reasoning about dynamics from limited
observations [2].

Current methods for static scene reconstruc-
tion can be broadly divided into two cate-
gories: optimization-based [3, 4] and feed-
forward [5, 6] approaches. However, extending
both of these to dynamic scenes is not straightforward. To reduce the ambiguities of scene dynamics,
many optimization-based methods aim to constraint the problem with data priors such as depth and

∗/†: Equal contribution/advising.
1In this paper, we define bullet-time as the instantiation of a 3D scene frozen at a given/fixed timestamp t.
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optical flow [2, 7, 8, 9]. However, balancing these priors with the data remains challenging [10, 11].
Moreover, per-scene optimization is time-consuming and thus difficult to scale.

On the other hand, to avoid the lengthy per-scene-optimization, recent feed-forward approaches [12,
13, 14, 15, 16, 5] explored learning generalizable models on large-scale datasets to directly perform
static scene reconstructions, thereby learning strong priors from data. These inherent priors could help
resolve ambiguities due to complex motion, but none of previous approaches have yet been extended
to dynamic scenes. This limitation stems from both the complexity of modeling dynamic scenes
and the lack of 4D supervision data. The only feed-forward dynamic reconstruction model [17] is
thus trained on synthetic object-centric datasets, requires fixed camera viewpoints and multiview
supervision, and cannot generalize to real-world scene scenarios.

In this work, we aim to answer the question: How can one build a feed-forward reconstruction
model that can handle dynamic scenes effectively? We build upon the recent success of the pixel-
aligned 3D Gaussian Splatting (3DGS [18]) prediction models [5] and propose a novel bullet-time
formulation for feed-forward dynamic reconstruction. The core idea is simple yet effective: we
add a bullet-time embedding to the context (input) frames, indicating the desired timestamp for the
output 3DGS representation. Our model is trained to aggregate the predictions of context frames to
reflect the scenes at the bullet timestamp, yielding a spatially complete 3DGS scene. This design not
only naturally unifies the static and dynamic reconstruction scenarios, but also enables our model
to become implicitly motion-aware while learning to capture scene dynamics. In particular, the
proposed formulation (i) allows us to pre-train our model on large amounts of static scene data, (ii)
scales effectively across datasets, without being constrained by duration and frame rates of input
videos, and (iii) outputs volumetric video representations that inherently support multiple viewpoints.
Meanwhile, in the presence of fast motions, we additionally introduce a Novel Time Enhancer (NTE)
module to predict the intermediate frames before feeding them to the main model.

In summary, we present BTimer, the first feed-forward model for real-time reconstruction and novel
view synthesis of dynamic scenes. To achieve this goal, we introduce the core bullet-time formulation
and develop a curriculum training strategy that enables the learning of a highly generalizable model on
a large, carefully curated dataset comprising both static and dynamic scenes. Furthermore, we present
an additional NTE module to effectively handle fast motions, enhancing the model’s robustness in
challenging scenarios. Our method is highly efficient: feed-forward inference with 12 context frames
of 256× 256 resolution only costs 150ms on a single GPU, and the output 3DGS can be rendered
in real-time. BTimer is capable of handling both static and dynamic reconstructions. It achieves
competitive results on various reconstruction benchmarks, even surpassing many expensive per-scene
optimization-based methods, as illustrated in Fig. 1.

2 Related work

Dynamic 3D representations. Depending on the tasks at hand, typical choices of 3D representations
include voxels [19, 20], implicit fields/NeRFs [21, 3, 22], and point clouds/3D Gaussians [23, 18].
Representing dynamics on top has an even larger design space: One existing line of works directly
builds a ‘4D’ representation to enable feature queries at arbitrary positions and timestamps from
an implicit field [24, 25] or via marginalization at a given step [26, 27], with the extensibility to
higher dimensions such as material [28]. Another line of work first defines a canonical 3D space, and
learns a deformation field to warp the canonical space to the target frame. While these methods learn
additional information about shape correspondences, their performance heavily relies on the quality
and topology of the canonical space.

Dynamic novel view synthesis. For tasks that require a relatively smaller view extrapolation, the
problem of novel view synthesis can be tackled without explicit 3D geometry in the loop, using depth
warping [1] or multi-plane images [29]. Otherwise, the study of novel view synthesis of dynamic
scenes [30, 4] is mainly on (1) effectively optimizing the 3D representation through input images
through monocular cues [31, 8, 11, 10] or geometry regularizations [32, 33], and (2) being able to
render fast with grids [34], local-planes [35], or dynamic 3D Gaussians [36] formulation. Our method
aims to provide a dynamic representation that is fast to build within hundreds of milliseconds while
reaching competitive rendering quality as the above optimization-based methods.

Feed-forward reconstruction models. In many applications where the reconstruction speed is
crucial, most optimization-based reconstruction methods become less preferable. To this end,one line
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Figure 2: BTimer. The model takes as input a sequence of context frames and their Plücker
embeddings, along with the context timestamp and target (‘bullet’) timestamp embeddings. It then
directly predicts the 3DGS representation at the bullet timestamp.

of work that starts to emerge is fully feed-forward models that directly regress from 2D images to 3D,
represented as either neural field [13, 37], triplanes [12], 3D Gaussians [14, 5, 15], sparse voxels [38],
or latent tokens [16]. Crucially, while feed-forward reconstruction models for static scenes have
seen development, the extension to dynamic scenes is still challenging. Existing methods either
require hard-to-acquire consistent video depth as input [39], do not support rendering [40], or only
work on object-scale data [17]. In contrast, our method supports reconstructing from a monocular
video containing dynamic scenes in a fully feed-forward manner, and is able to render at arbitrary
viewpoints and timestamps.

3 Method

Overview. Given a monocular video (image sequence) represented by I = {Ii ∈ RH×W×3}Ni=1

with N frames of width W and height H , along with known camera poses P = {Pi ∈ SE(3)}Ni=1,
intrinsics, and corresponding timestamps T = {ti ∈ R}Ni=1, our goal is to build a feed-forward
model capable of rendering high-quality novel views at arbitrary timestamps t ∈ [t1, tN ].

The core of our approach is a transformer-based bullet-time reconstruction model, named BTimer,
that takes in a subset of frames Ic ⊂ I (denoted as context frames) along with their corresponding
poses Pc ⊂ P and timestamps Tc ⊂ T , and outputs a complete 3DGS [18] scene frozen at a specified
bullet timestamp tb ∈ [minTc ,maxTc ] (§ 3.1). Iterating over all tb ∈ T results in a full video
reconstruction represented by a sequence of 3DGS. We further introduce a Novel Time Enhancer
(NTE) module that synthesizes interpolated frames with timestamps t /∈ T (§ 3.2). The output of
the NTE module is used along with other context views as input to the bullet-time model to enhance
reconstruction at arbitrary intermediate timestamps. To effectively train our model, we carefully
design a learning curriculum (§ 3.3) that incorporates a large mixture of datasets containing both
static and dynamic scenes, to enhance motion awareness and temporal consistency of our models.

3.1 BTimer reconstruction model

Model design. Inspired by [5], our BTimer model uses a ViT-based [41] network as its backbone,
consisting of 24 self-attention blocks with LayerNorms [42] applied at both the beginning and the
end of the model. We divide each input context frame Ii ∈ Ic into 8× 8 patches, which are projected
into feature space {f rgb

ij }HW/64
j=1 using a linear embedding layer. The camera Plücker embeddings [43]

derived from the camera poses Pi ∈ Pc and the time embeddings (detailed later) are processed
similarly to form the camera pose features {f pose

ij } and the time features {f time
i } (shared for all

patches j). These features are added together to form the input tokens for the patches of the context
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frame {fij}HW/64
j=1 , where fij = f rgb

ij + f pose
ij + f time

i . The input tokens from all context frames are
concatenated and fed into the Transformer blocks.

Each corresponding output token f out
ij is decoded into 3DGS parameters Gij ∈ R8×8×12 using a

single linear layer. Each 3D Gaussian is paramaterized by its RGB color c ∈ R3, scale s ∈ R3,
rotation represented as unit quaternion q ∈ R4, opacity σ ∈ R, and ray distance τ ∈ R, resulting
in 12 paramaters per Gaussian. The 3D position of each Gaussian µ ∈ R3 is obtained through
pixel-aligned unprojection as µ = o+ τd, where o ∈ R3 and d ∈ R3 are the ray origin and direction
obtained from Pi.

Time embeddings. The aforementioned input time feature f time
i is obtained from: (i) context

timestamp ti that is separate for each context frame Ii, and (ii) bullet timestamp tb that is shared
across all context frames i. Both timestamp scalars are encoded using standard Positional Encoding
(PE) [44] with sinusoidal functions, and then passed through two linear layers to obtain the features
f ctx
i and f bullet

i respectively. Finally, we set f time
i = f ctx

i + f bullet
i .

BTimerNovel Time Enhancer

Bullet-time GaussiansPredicted 
Bullet-time

Frame

Figure 3: NTE Module. It takes as input the target
bullet time embedding, target pose, as well as adja-
cent frames to directly predict corresponding RGB
values. The predicted frame is then used in BTimer
as bullet frame for novel time reconstruction.

Supervision loss. Our model is supervised only
by losses defined in the RGB image space, by-
passing the need for any source of 3D ground
truth that is hard to obtain for real data. The
final loss is a weighted sum of Mean Squared
Error (MSE) loss and Learned Perceptual Image
Patch Similarity (LPIPS) [45] loss between the
images rendered from the 3DGS output and the
ground-truth image:

LRGB = LMSE + λLLPIPS, (1)

with λ = 0.5.

Careful selection of input context frames and
corresponding supervision frames (at the bullet
timestamp) during training is essential for sta-
ble training and good convergence. In practice,
we find the combination of the following two
strategies particularly effective: (i) In-context
Supervision where the supervision timestamp is randomly selected from the context frames, en-
couraging the model to accurately localize and reconstruct the context timestamps. For multi-view
video datasets, images from additional viewpoints can also contribute to the loss. (ii) Interpolation
Supervision where the supervision timestamp lies between two adjacent context frames. This forces
the model to interpolate the dynamic parts while maintaining consistency for the static regions. The
interpolation supervision significantly impacts our final performance (cf . § 4.4 for details); without it,
the model falls into a local minima by positioning the 3D Gaussians close to the context views but
hidden from other views.

Inference. Our bullet-time formulation makes it straightforward to reconstruct a full video, which
only involves iteratively setting the bullet timestamp tb to every single timestamp in the video, and
can be done efficiently in parallel. For a video longer than the number of training context views |Ic|,
at timestamp t, apart from including this exact timestamp and setting tb = t, we uniformly distribute
the remaining |Ic| − 1 required context frames across the whole duration of the video to form the
input batch with |Ic| frames.

3.2 Novel time enhancer (NTE) module

While our BTimer model can already reconstruct the 3DGS representation for all observed timestamps,
we notice that forcing it to reconstruct at a novel intermediate timestamp, i.e. performing interpolation
at tb /∈ T , leads to suboptimal results. In such cases, the exact bullet-time frame cannot be included
in the context frames as it does not exist. Our model specifically fails to predict a smooth transition
between adjacent video frames when the motion is complex and fast. This is mainly caused by the
inductive bias of pixel-aligned 3D Gaussian prediction. To mitigate this issue, we propose a 3D-free
Novel Time Enhancer (NTE) module that directly outputs images at given timestamps, which are
then used as input to our BTimer model, as illustrated in Fig. 3.
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NTE module design. The design of this module is largely inspired by the very recent decoder-only
LVSM [16] model. Specifically, NTE copies the same ViT architecture from the BTimer model,
but the time features of input context tokens only encode their corresponding context timestamps
(i.e. we set f time

i = f ctx
i ). Additionally, we concatenate extra target tokens to the input tokens, which

encode the target timestamp and the target pose for which we want to generate the RGB image.
Following [16], we use QK-norm to stabilize training. Implementation-wise we apply an attention
mask that masks all the attention to the target tokens, so KV-Cache (cf . [46]) can be used for faster
inference. From the output of the Transformer backbone, we only retain the target tokens, which we
then unpatchify and project to RGB values at the original image resolution using a single linear layer.
The interpolation model is trained with the same objective as the main BTimer model (see § 3.1), but
the output image is directly decoded from the network and not rendered from a 3DGS representation.

Integration with BTimer. While the NTE module can be used on its own to generate novel views,
we empirically find the novel-view-synthesis quality to be inferior (§ 4.4). We hence propose to
integrate it with our main BTimer model. To reconstruct a bullet-time 3DGS at tb /∈ T , we first
use NTE to synthesize Ib at the timestamp tb, where the target pose Pb is linearly interpolated from
the nearby context poses in P , and the context frames are chosen as the nearest frames to tb. To
accelerate the inference of the interpolation model, we use the KV-Cache strategy. In practice we
observe that the interpolation model adds negligible overhead to the overall runtime.
3.3 Curriculum training at scale

One important lesson people have learned from training deep neural networks is to scale up the
training [47, 48], and the model’s generalizability is largely determined by the data diversity. Since
our bullet-time reconstruction formulation naturally supports both static (by equalizing all elements
in T ) and dynamic scenes, and requires only RGB loss for weak supervision, we unlock the potential
of leveraging the availability of numerous static datasets to pretrain our model. We hence aim to
train a kitchen-sink reconstruction model that is not specific to any dataset, making it generalizable to
both static and dynamic scenes, and capable of handling objects as well as both indoor and outdoor
scenes. This is in contrast to, e.g., GS-LRM [5] or MVSplat [14] where one needs different models
in different domains.

Notably, we apply the following training curriculum to BTimer and the NTE module separately, but
during inference they are used jointly as explained in § 3.2.

Stage 1: Low-res to high-res static pretraining. To obtain a more generalizable 3D prior as
initialization, we first pretrain the model with a mixture of static datasets. Time embedding will
not be used in this stage. The collection of datasets covers object-centric (Objaverse [49]) and
indoor/outdoor scenes (RE10K [50], MVImgNet [51], DL3DV [52]). The datasets cover both the
synthetic and real-world domains and consist of 390K training samples. We normalize the scales of
different datasets to be bounded roughly in a 103 cube. Due to the complex data distribution, our
training starts from a low-resolution few-view setting that reconstructs on 128× 128 resolution from
|Ic| = 4 context views. To further increase the reconstruction details, we fine-tune the model from
128× 128 by first increasing the image resolution to 256× 256, and then fine-tune to 512× 512.

Stage 2: dynamic scene co-training. After the training on static scenes, we start fine-tuning the
model along with time embedding projection layers on dynamic scenes with available 4D data that
contains monocular or multi-view synchronized videos. We leverage Kubric [53], PointOdyssey [54],
DynamicReplica [55] and Spring [56] datasets for training. Due to the scarcity of 4D data, during
this stage we keep the static datasets for co-training which provides more multi-view supervision
and stabilizes the training. Additionally, we build a customized pipeline to label the camera poses
from Internet videos (detailed below), and add them to our training set to further enhance the model’s
robustness towards real-world data.

Stage 3: long-context window fine-tuning. Including more context frames is vital when reconstruct-
ing long videos. Therefore, as a final stage, we increase the number of context views from |Ic| = 4
to |Ic| = 12 to cover more frames. Note that this stage does not apply to NTE as it only takes nearby
frames as input.

Annotating internet videos. We randomly select a subset from the PANDA-70M [57] dataset, and
cut the videos into short clips with ∼20 s duration. We mask out the dynamic objects in the videos
with Segment Anything Model [58] and then apply DROID-SLAM [59] to estimate the camera poses.
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Model Rec. Time PSNR↑ SSIM↑ LPIPS↓

TiNeuVox [63] 0.75h 14.03 0.502 0.538
NSFF [2] 24h 15.46 0.551 0.396
T-NeRF [64] 12h 16.96 0.577 0.379
Nerfies [32] 24h 16.45 0.570 0.339
HyperNeRF [4] 72h 16.81 0.569 0.332

PGDVS [39] 3h† 15.88 0.548 0.340
Depth Warp – 7.81 0.201 0.678

BTimer (Ours) 0.98 s 16.52 0.570 0.338

(a)

Model Rec. Time Render FPS PSNR↑ LPIPS↓

HyperNeRF [4] 64h 0.40 17.60 0.367
DynNeRF [65] 74h 0.05 26.10 0.082
RoDynRF [33] 28h 0.42 25.89 0.065
4D-GS [66] 1.2h 44 21.45 0.199
Casual-FVS [9] 0.25h 48 24.57 0.081

PGDVS [39] 3h† 0.70 24.41 0.186
Depth Warp – – 12.63 0.564

BTimer (Ours) 0.78 s 115 25.82 0.086

(b)

Table 1: Quantitative comparisons on dynamic datasets. (a) DyCheck iPhone dataset [64]
comparison. (b) NVIDIA Dynamic Scene dataset [1] comparison. The results are rendered on
480 × 270 resolution. ‘Rec. Time’ is per-scene reconstruction time. †: Video-consistent depth
estimation step included. We highlight the best , second best , and third best results.

Low-quality videos or annotated poses are filtered out by measuring the reprojection error. The final
dataset contains more than 40K clips with high-quality camera trajectories.

4 Experiments

In this section we first introduce necessary implementation details in § 4.1. We evaluate the perfor-
mance of BTimer extensively on available dynamic scene benchmarks § 4.2, and demonstrate its
backward compatibility with static scenes § 4.3. Ablation studies are found in § 4.4.

4.1 Implementation details

Training. Our backbone Transformer network is implemented efficiently with FlashAttention-3 [60]
and FlexAttention [61]. We use gsplat [62] for robust and scalable 3DGS rasterization since the
total number of 3D Gaussians generated by our model can be very large. For BTimer, the numbers
of training iterations are fixed to 90K, 90K, and 50K for Stage 1 training on 1282, 2562, and 5122

resolutions, and are 10K and 5K for Stage 2 and Stage 3 dynamic scene training respectively. We use
the initial learning rates of 4× 10−4, 2× 10−4 and 1× 10−4 for the three stages, and apply a cosine
annealing schedule to smoothly decay the learning rate to zero. Training is conducted on 32 NVIDIA
A100 GPUs. The learning rate, training GPU numbers and training schedules mainly follow [16, 5].
Training cost analysis and ablation on batch size can be found in the Supplement. We use the same
training strategy for NTE. The numbers of iterations are 140K, 60K, and 30K for the progressive
training in Stage 1, and are 20K for Stage 2, with the same learning rate schedule as above. As
introduced in § 3.3, we use a mixture of multiple datasets for training [49, 51, 50, 52, 53, 54, 55, 56]
along with our 40K annotated dataset on PANDA-70M [57]. Note that we make sure that none of the
testing scenes we show below is included in the training datasets.

Inference cost. Our model can be flexibly applied to different resolutions and numbers of context
views. Measured on a single NVIDIA A100 GPU, BTimer takes 20ms for 4-view 2562 reconstruction,
150ms for the same resolution with 12 views, and 1.55 s for 12-view 5122 reconstruction. It requires
less than 10 GB memory, which easily fits on a commercial-grade GPU (Result shown in Supplement).
Please note that our model inference can be parallelized and the overall time overhead remains
constant given sufficient memory.

4.2 Dynamic novel view synthesis

4.2.1 Quantitative analysis

We provide quantitative evaluations on two of the largest dynamic view synthesis benchmarks.

DyCheck benchmark [64]. The benchmark includes a dataset that contains 7 dynamic scenes
recorded by 3 synchronized cameras. Following the protocol in [64], we take images from the iPhone
camera as our context frames and use the frames from the 2 other stationary cameras for evaluation
(totaling 3928 images of resolution 360 × 480). Our baselines include per-scene optimization-
based methods, i.e., TiNeuVox [63], NSFF [2], T-NeRF [64], Nerfies [32] and HyperNeRF [4]. We
additionally compare to a pseudo-feed-forward approach PGDVS [39].
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Figure 4: Visualizations on DAVIS dataset [67]. We show our renderings on novel combinations
of view poses and timestamps, with the correspondending references shown on the left. The lower-
left/right corner shows the rendered depth map for each example.

T-NeRF HyperNeRFNerfies OursGT RoDynRF 4D-GSMonoNeRF OursGT

Figure 5: Qualitative results on DyCheck [65] (left) and NVIDIA dynamic scene [1] (right)
benchmarks.

We report masked Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM) [68], and LPIPS following the benchmark protocol [64] in Tab. 1a, and show visualiza-
tions in Fig. 5. Note that since multi-frame inference can run in parallel, for our model we report
single-frame reconstruction time regardless of video lengths. It is encouraging to observe that even
without per-scene optimization, BTimer achieves a very competitive performance compared to the
baselines, ranking 2nd in both SSIM and LPIPS scores. Our model surpasses PGDVS across all 3
metrics without the need of consistent depth estimate. This demonstrates our model’s efficiency and
strong generalization capability, being capable of providing sharper details and richer textures.

NVIDIA dynamic scene benchmark [1]. NVIDIA Dynamic Scene dataset contains 9 scenes captured
by 12 forward-facing synchronized cameras. Following the protocol in DynNeRF [65], we build the
input by selecting the frames at different timestamps in a ‘round-robin’ manner. Then we evaluate
the novel view synthesis quality at the first camera view but at different timestamps. We compare
against HyperNeRF [4], DynNeRF [65], RoDynRF [33], 4D-GS [66], Casual-FVS [9] as per-scene
optimization baselines.

Our results are shown in Tab. 1b and Fig. 5. Our model demonstrates performance that is competitive
or exceeds that of previous optimization-based methods, ranking 3rd among all baselines in terms
of PSNR. Compared to the explicit 3DGS-based representation [66, 9], our approach outperforms
their performance by 5% on PSNR (25.82dB vs. 24.57dB). In terms of training and rendering speed,
NeRF-based methods [65, 6] require multiple GPUs and/or >1 day for optimization. Compared to
[66, 9], our feed-forward bullet-time formulation is significantly faster, requiring no optimization
time and rendering in real-time.

4.2.2 Qualitative analysis

To assess the performance of our method in real-world scenarios, we select multiple monocular
videos from the DAVIS dataset [67] for testing. Camera poses for the videos were estimated using
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MVImageNetRE10KGT BulletTimerDL3DV All Static
(f)(a) (d) (e)(c)(b)

Figure 6: Left: Qualitative comparison of models trained on different datasets and evaluated
on the out-of-distribution Tanks & Temples benchmark [69]. Right: (a) model w/o 3D Pretrain,
(b) model w/ Re10K only 3D Pretrain, (c) model w/o static Co-train in Stage 2, (d) model w/o
interpolation supervision, (e) Novel Time Enhancer model, (f) our full model. The upper two scenes
are from NVIDIA dataset, and lower two scenes are from DAVIS dataset.
the same annotation technique as detailed in § 3.3. Fig. 4 shows a visualization of the results. Our
model demonstrates strong generalization capabilities in real-world captures, producing high-quality,
sharp renderings across a variety of objects with complex motions while maintaining robust temporal
and multiview consistency.

4.3 Compatibility with static scenes

Model LPIPS↓

GPNR [70] 0.250
PixelSplat [15] 0.142
MVSplat [14] 0.128
GS-LRM [5] 0.114

Ours-Static 0.070

Ours-Full 0.089

(a)

Model Datasets LPIPS↓

GS-LRM∗ [5] RE10K 0.310

Ours-Static

Objaverse 0.668
MVImageNet 0.343
DL3DV 0.278
All Static 0.093

Ours-Full +Dynamic 0.093

(b)

Figure 7: Quantitative comparisons on static
datasets. (a) results on the RE10K bench-
mark [50]; (b) results on the Tanks and Tem-
ples benchmark [69]. We highlight the best ,
second best , and third best models. ∗: Our re-

produced results.

Although our model is primarily designed to
handle dynamic scenes, the formulation and the
training strategy enable it to be still backward
compatible with static scenes. In this section, we
show that the same model achieves competitive
results on static scenes.

RealEstate10K (RE10K) benchmark [50].
We evaluate our model on the RE10K dataset
and compare with several state-of-the-art mod-
els [70, 15, 14, 5]. To ensure comparability with
baseline models, we train and test our model us-
ing 256×256 resolution. Fig. 7a presents a quan-
titative comparison on LPIPS, where our static
model outperforms all the baselines. Please re-
fer to the Supplement for more comparisons on
other metrics and visualizations.

Tanks & Temples benchmark [69]. We further evaluate our model on an unseen test dataset, the
Tanks & Temples [71] subset from the InstantSplat [69] benchmark, which consists of 10 scenes. We
use the state-of-the-art novel view synthesis model [5] as our baseline, reproducing their model since
the original code and weights are not publicly available. Additionally, we include our pretrained
static model from Stage 1 as an additional baseline.

To analyze the impact of our mixed-dataset pretraining strategy, we also train single-dataset models
using the same training schedule as further baselines. All models utilize 4 context views. Quantitative
results (Fig. 7b) demonstrate that our pretrained static model with mixed-dataset training substantially
outperforms the single-dataset models, highlighting the crucial role of multi-dataset training for
generalization to unseen domains. Even when incorporating the dynamic scene datasets, BTimer
achieves comparable result to our best static models. § 4.2.1 provides a qualitative comparison,
showing that BTimer consistently generates sharper outputs that closely align with the ground truth.

4.4 Ablation study

We study the effect of different design choices. 1) Context frames. We visualize the reconstruction
results as we progressively add 3DGS predictions from more context frames across multiple different
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Figure 8: (a) Illustration of bullet-time reconstruction from multiple context frames. Increased
number of frame predictions leads to progressively more complete scene reconstruction on target
views. (b) Ablation on the NTE module. The middle frame is in between the 1st frame and the 2nd

frame. Results are rendered from the view of the 1st frame.

timestamps in Fig. 8a, where increasing the number of context frame leads to progressively more
complete scene reconstruction. This demonstrates the flexibility of our bullet-time reconstruction for-
mulation: during the inference stage, we can arbitrarily select spatially-distant frames that contribute
to a more complete view coverage of the scene. 2) Curriculum training. We show in § 4.2.1 the
effect of our curriculum training strategy. Without Stage 1 of pre-training on static scenes, the model
struggles to produce results of correct geometry and sharp details. Pretraining on multiple diverse
datasets is also crucial, which we demonstrate by just training on RE10K dataset, and non-negligible
distortions are observed in the results. Similarly, even in Stage 2 of our curriculum, we still need
to co-train on static scenes which provide more multi-view supervisions, thus maintaining the rich
details and reasonable geometries. Quantitative ablation results are shown in the Supplement. 3)
Interpolation supervision. Shown in § 4.2.1 (with more results in the Supplement), interpolation
supervision (introduced in § 3.1) plays a significant role, without which the model tends to produce
white-edge artifacts. This occurs because without interpolation loss, the model often generates 3DGS
that are positioned too close to the camera with low depth values to cheat the loss. In contrast, adding
the interpolation supervision requires the model to account for scene dynamics and encourages
consistency across multiple views. 4) NTE. As demonstrated in Fig. 8b, our NTE module enhances
the bullet-time reconstruction model’s ability to handle scenes with fast or complex motions, largely
reducing the ghosting artifacts. Additional video results are provided in the supplementary material.
Although 3D-free design enables NTE to handle complex dynamics and produce smooth transitions
between adjacent frames, the model struggles to produce novel views that are far from the input
camera trajectory (As illustrated in § 4.2.1).

5 Conclusion
In this paper we present BTimer, the first feed-forward dynamic 3D scene reconstruction model for
novel view synthesis. We present a bullet-time formulation that allows us to train the model in a more
flexible and scalable way. We demonstrate through extensive experiments that our model is able to
provide high-quality results at arbitrary novel views and timestamps, outperforming the baselines in
terms of both quality and efficiency.

Limitations. Our method is mainly targeted for novel view synthesis, and the recovered geometry
(hence the depth map) is usually not as accurate. Correspondences between frames are implicitly
modeled by the neural network, and our pixel-aligned Gaussian representation cannot represent
temporal deformations. Although practically we observe temporally coherent results, additional
post-processing steps have to be introduced to recover the explicit motion of the geometry.

9



Broader Impact. BTimer can transform posed casual videos into realistic dynamic 3D assets.
However, it should be used with caution, particularly concerning privacy, copyrights, and the potential
for malicious impersonation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction (§ 1) accurately reflect the paper’s
core contributions, including the introduction of BTimer, the first real-time feed-forward
bullet-time reconstruction model for dynamic scenes. The text clearly outlines the bullet-
time formulation, Novel Time Enhancer module, and curriculum training strategy, and these
are consistently supported by results in § 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are explicitly discussed in § 5. The paper acknowledges that while
BTimer excels at novel view synthesis, the recovered geometry may lack accuracy due to
the pixel-aligned 3D Gaussian formulation. It also notes that temporal deformations are not
explicitly modeled and that additional post-processing may be needed for extracting motion.
Ethical concerns, such as privacy and potential misuse, are also briefly mentioned.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: § 4.1 provides detailed training and inference settings, including hardware
setup, training stages and schedules, learning rates, architecture details (e.g., ViT backbone
with FlashAttention-3), and data sources. Although code is not yet released, the described
information is sufficient to reproduce key results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Due to institutional constraints, we are not able to release the code until it is
fully reviewed by the legal team. We do not have an ETA for this process. We will update
the paper with a link to the code as soon as it is available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: § 4.1 thoroughly describes training stages, dataset splits, hyperparameters,
learning rate schedules, optimizer configurations, and model scaling. It also details how
real-world videos are processed. The ablations in § 4.4 complement this by clarifying the
effect of each design choice.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the high computational cost of training large models over multiple
GPUs and datasets, statistical significance tests (e.g., error bars) are not provided. However,
ablation studies and comparisons across multiple datasets offer strong empirical support for
the claims.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to § 4.1 for more details on compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided relevant discussions in § 5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The paper uses several publicly available datasets and tools (e.g., Objaverse,
RE10K, PANDA-70M, DROID-SLAM, FlashAttention, gsplat), all of which are cited
appropriately. The terms of use and licenses are respected, as discussed in § 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not include experiments nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiments involving human subjects were conducted, and no IRB process
is applicable to the methodology or data used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not include usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material
In this supplementary material, we provide additional details on the datasets used in our experiments
(§ F) and our training cost and more ablation studies (§ G). On the results side, we first show more
qualitative static and dynamic reconstruction results (§ H, § I). We further justify our choice of the
bullet-time formulation by showing that our reconstruction is temporally smooth (§ J), as well as an
simple extension to unlock the power for estimating dynamic deformations (§ K).

F Dataset Details

The static datasets used in our training are as follows: OBJAVERSE [49] is a synthetic object-centric
dataset, and we use the 80K-object subset from [72]. MVIMGNET [51] is a real-world object-centric
dataset that has 220K objects. RE10K [50] is a real-world scene dataset that has 80K video clips.
DL3DV [52] is a real-world scene dataset that has 10K video. We sample DL3DV 10 times more
frequently than other datasets to balance the number of training samples. We use a spatial scale of 8
for Objaverse and scale 1 for all other datasets.

The dynamic datasets used in our training are as follows: KUBRICMV is a synthetic multi-vew video
dataset that has 3K scenes. We rendered this dataset using the Kubric [53] engine. The scene setup
follows Movi-E [53] and videos are rendered from all camera poses in the camera trajectory so it
produces a multi-view video. POINTODYSSEY [54] is a synthetic monocular dataset with 131 scenes.
DYNAMICREPLICA [55] is a synthetic stereo video dataset with 484 training sequences. SPRING [56]
is a synthetic stereo video dataset with 37 scenes. PANDA-70M [57] is a real-world monocular
video dataset. We use around 40K clips filtered from a random subset. We use scale 6 for Spring and
DynamicReplica and 1 for other datasets. More details can be found in Tab. S2

Dataset Dynamic Subject Domain #Views #Frames #Scenes #Multiplies #Scale

RE10K [50] S Real - 10M 80K 1 1
MVImgNet [51] O Real - 6.5M 220K 1 1
Objaverse [49] O Synthetic - 4M 80K 1 8
DL3DV [52] S Real - 51M 10K 10 1
PointOdyssey [54] ✓ O+S Synthetic 1 6K 131 3e3 1
Kubric-MV [53] ✓ O+S Synthetic 24 70K 3K 2e2 1
DynamicReplica [55] ✓ O+S Synthetic 2 145K 484 8e2 6
Spring [56] ✓ O+S Synthetic 2 200K 37 1e4 6
PANDA-70M [57] ✓ O+S Real 1 19M 40K 10 1

Table S2: Datasets. Dynamic indicates if the dataset is dynamic or static. Subject indicates if the
dataset is object-centric (O) or scene-centric (S). Domain indicates if the dataset is captured from the
real world or is synthesized. #Views denotes the number of synchronized views for a dynamic video.
#Frames and #Scenes are the numbers of image frames and unique scenes in the dataset respectively.
#Multiplies denotes the number of multiplies we sample the dataset (by scene) in training for balance.
#Scale is the scale we applied to the dataset so that all datasets have approximately the same metric
scale.

G Training Cost Analysis and Effect of Batch Size

The full training of BulletTimer takes ∼4 days on 32 NVIDIA A100 GPUs. As illustrated in Fig. S9,
the training cost is comparable to existing feed-forward 3D reconstruction methods, such as LVSM
[16] and LRM [12] (384 GPU-days) or GS-LRM [5] (192 GPU-days). Like these methods, our work
also functions as an amortized algorithm: once trained, the inference cost becomes negligible. Taking
inference cost also into consideration, per-scene optimization quickly becomes more expensive, with
the difference becoming more pronounced with the growing number of scenes.

Fig. S10 shows the results of training our model with 1 GPU, 8 GPUs, and 32 GPUs. Although
inference fits on a single GPU, our training benefits from large batch sizes so we used 32 GPUs (each
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Figure S10: Batch-size ablation.
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Figure S11: Comparison on static scene dataset. We compare our renderings with the baseline
models, trained and tested on the RE10K dataset.

GPU holds a single batch). The same number of GPUs was also used in both LVSM and GS-LRM. In
line with other fields (LLMs, GenAI), we regard the scalability of our method one of its key strengths.
For ease of reproduction and fine-tuning, we will release our source code and pretrained checkpoints.
To provide a more rigorous assessment of runtime, we have conducted an additional study varying
both the number of context frames and the input resolution (see Tab. S8). The results show that
BTimer consistently remains in the second range (even at 512×512 resolution with 12 context frames),
and is still several orders of magnitude faster than per-scene optimisation pipelines.

H More Results on Dynamic Scenes

H.1 Qualitative Results

We have provided video results on the DyCheck Benchmark [65] and NVIDIA Dynamic Scene
Benchmark [2] on our project webpage https://research.nvidia.com/labs/toronto-ai/
bullet-timer/. Additionally, we include novel view synthesis videos for the DAVIS dataset,
DyCheck iPhone dataset, and SORA scenes. We also showcase a video demonstrating the effects of
the NTE module, along with our video results on the Tanks & Temples static scenes.

H.2 Additional Quantitative Results

In this section, we compare our method with more sota models on DyCheck iPhone dataset [64] (see
Tab. S5a) and NVIDIA Dynamic Scene dataset [1] (see S5b). All previous models require hours
of per-scene optimization, whereas our method performs inference in real time with comparable
accuracy. We also compare with DynIBaR[8] using DynIBaR’s protocol, which demonstrates strong
performance on the NVIDIA Dynamic Scene Benchmark(see Tab. S4). While our approach performs
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Model PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [73] 20.43 0.589 0.550
GPNR [70] 24.11 0.793 0.250
AttnRend [74] 24.78 0.820 0.213
MuRF [75] 26.10 0.858 0.143
PixelSplat [15] 25.89 0.858 0.142
MVSplat [14] 26.39 0.869 0.128
GS-LRM [5] 28.10 0.892 0.114

Ours-Static 26.49 0.886 0.096
Ours-Static† 28.91 0.920 0.070

Ours-BTimer 26.82 0.891 0.089

Table S3: Quantitative comparison of models performance on RE10K test set. To be consistent
with the baselines, we adopt the 256× 256 resolution. Our Bullet Timer has been trained on both
static and dynamic scenes, while the other model is only trained on RE10K training set. We highlight
the best , second best and third best models. †: 4 input views.

slightly worse in terms of reconstruction quality, DynIBaR relies on extensive per-scene optimization
(approximately 300 hours per NSFF sequence) and leverages additional supervision signals such as
optical flow and depth. In contrast, BTimer is a fully feed-forward system: it reconstructs a scene in
just one second and is trained solely with a photometric loss.

Model PSNR↑ SSIM↑ LPIPS↓
DynIBaR [8] 30.86 0.957 0.027
Ours-BTimer 26.31 0.852 0.0730

Table S4: Quantitative comparison on NSFF benchmark using DynIBaR’s protocol

I More Results on Static Datasets

We provide a comprehensive qualitative comparison of our method against the baselines, MVS-
plat [14] and PixelSplat [15], on the RE10K dataset, as shown in Fig. S11. For each scene, the figure
also displays the input views provided to the networks. Compared to the baselines, our method
produces sharper outputs and more closely aligns with the ground-truth renderings. Note that all
the methods used for the evaluation in this figure are trained exclusively on RE10K. Additionally,
we use two views as context for all methods to ensure fairness in evaluation and to align with the
setup of the baselines. Tab. S3 presents a quantitative evaluation against the baselines under the same
settings. While our static model achieves the best performance among the baselines, our dynamic
BTimer model, trained for the dynamic task, also demonstrates strong performance on the static task,
ranking third on the static benchmark.

Our complete static model, trained across all datasets, is capable of reconstructing a highly diverse
set of environments. Fig. S12 showcases our model’s reconstructions across a wide variety of scenes,
including outdoor forward-facing, outdoor drone shots, outdoor 360-degree views, indoor 360-degree
views, and indoor forward-facing scenes, as well as object-centric synthetic scenes. Notably, all these
reconstructions are achieved using a shared set of weights, demonstrating that our model, trained
across multiple datasets, generalizes effectively to different scenarios.

To further demonstrate the importance of training on multiple datasets for generalization to unseen
datasets, we conduct an ablation study on the datasets used to train our static model. Tab. S6 compares
the performance of our model when trained individually on a single dataset—RE10K, MVImageNet,
DL3DV, or Objaverse—against its performance when trained on all these datasets simultaneously.
The evaluation is conducted on a completely unseen dataset, the Tanks & Temples split from the
InstantSplat [69] paper. Our model, whether static or dynamic, trained on all datasets significantly
outperforms the single-dataset models.

25



Model PSNR↑ SSIM↑ LPIPS↓

4D GS [66] 13.64 - 0.428
Gauss.Marbles [76] 16.72 - 0.413
DyBluRF [77] 17.37 0.591 0.373
D-NPC [78] 16.41 0.582 0.319
Shape-of-Motion [10] 17.32 0.598 0.296
MoSca [79] 19.32 0.706 0.264

PGDVS [39] 15.88 0.548 0.340
Depth Warp 7.81 0.201 0.678

BTimer (Ours) 16.52 0.570 0.338

(a)

Model PSNR↑ LPIPS↓

D-NeRF [30] 21.49 0.232
NR-NeRF [80] 19.69 0.323
TiNeuVox [63] 19.74 0.285
NSFF [2] 24.33 0.199
MonoNeRF [6] 25.62 0.106
DynPoint [81] 26.53 0.068
D-NPC [78] 25.64 0.109
MoSca [11] 26.72 0.070

PGDVS [39] 24.41 0.186
Depth Warp 12.63 0.564

BTimer (Ours) 25.82 0.086

(b)

Table S5: Additional quantitative comparisons on dynamic datasets. (a) DyCheck iPhone
dataset [64]. (b) NVIDIA Dynamic Scene dataset [1].

Figure S12: A diverse set of scenes reconstructed using our static model, trained on multiple datasets
and capable of generalizing to various scenarios.

J Evaluation of Temporal Smoothness

Since our method reconstructs each timestamp individually, it is necessary to understand its temporal
smoothness. In this section, we quantitatively evaluate the temporal smoothness of the reconstructed
dynamic scenes, with results shown in Tab. S9. We render the reconstructed DyCheck [65] scenes
from one of the evaluation fixed cameras and evaluate the rendered video using the Temporal
Flickering metric in VBench [83]. Concretely, the metric computes the pixel-wise Mean Absolute
Error in every two adjacent frames and averages over all pixels and frames:

Sflicker =
1

N

N∑
i=1

(
1

T − 1

T−1∑
t=1

MAE (f t
i , f

t+1
i )), (S.2)

where N is the number of videos, T is the number of frames per video, f t
i is the frame t in video

i, and MAE is the Mean Absolute Error between two consecutive frames over all pixel locations.
Finally, the metric is normalized into the range of 0 to 1:

Sflicker-norm =
255− Sflicker

255
. (S.3)

The higher the metric, the less flickering will be observed in a video. BTimer achieves the second
best on the Temporal Flickering metric, which suggests that our bullet-time prediction, though not
explicitly associated across frames, still achieves a better temporal smoothness than other baselines
that decode from some temporal representations.
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Model Datasets PSNR↑ SSIM↑ LPIPS↓
GS-LRM∗ [5] RE10K 17.56 0.546 0.310

Ours-Static

Objaverse 7.00 0.363 0.668
MVImageNet 17.75 0.530 0.343
DL3DV 17.92 0.566 0.278
All Static 24.22 0.807 0.093

Ours-Full +Dynamic 24.13 0.806 0.093

Table S6: Baseline comparisons on the Tanks & Temples dataset (InstantSplat split). Test views
are 512 × 512. LPIPS are compuated on 256 × 256. We highlight the best , second best and
third best models. ∗: Our reproduced results.

Method PSNR ↑

w/o 3D Pretrain 17.94
w/ Re10K only 3D Pretrain 21.29
w/o static Co-train 22.79
w/o interpolation supervision 20.54

Full model 24.00

Table S7: Quantitative ablation results on
NVIDIA Dynamic Scene Benchmark. Abla-
tion models are trained with 4 context frames.

#Ctx. Res. Time Mem.

4 2562 0.02s 1.42G
12 2562 0.15s 2.60G
12 5122 1.55s 9.68G

Table S8: Inference cost. Model is evaluated
on a single NVIDIA A100 GPU.

K Visualization of Learned Deformation

While BTimer is primarily intended for novel view synthesis at the bullet timestamp, in order to
demonstrate that our model design can be also targeted for building explicit temporal correlations,
we train a variant of BTimer that predicts the canonical positions (XYZ) of Gaussians instead of the
pixel-aligned depths on the Objaverse4D [17] dataset. The 4 input images are taken from different
camera poses and different timestamps. In Fig. S13, we render the reconstructed dynamic object
from a fixed viewpoint and find that the model successfully recovers the 3D motion by predicting
the positions of the Gaussians at the correctly warped locations. This is further justified by keeping
only the partial reconstruction from the 3DGS associated with one of the input images, and we find
out that the model learns to warp the Gaussians according to different timesteps. Canonical XYZ
prediction is commonly used in object-centric cases for being bounded (LGM [72], L4GM [17]),
however pixel-aligned prediction is popular in large unbounded scene for being easy to optimize
(pixelSplat [15], GS-LRM [5]). Applying canonical XYZ prediction to scene data is a valuable
direction that we would like to explore in future work.

L Visualization of Learned Scene Flow

Although BTimer is not trained with scene flow supervision, we show that our model effectively
model scene flows under the hood in the process of learning dynamic reconstruction. We treat the
Gaussian associated with each pixel in the input images as a point and treat its trajectory over time as
a scene flow. The visualization in Fig. S14 suggests that the learned scene flows closely represent the
actual object motion.
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Model apple block windmill space spin teddy wheel Average

Ground Truth 0.9878 0.9767 0.9940 0.9939 0.9829 0.9759 0.9650 0.9823

TiNeuVox [63] 0.9807 0.9814 0.9879 0.9949 0.9832 0.9782 0.9695 0.9823
T-NeRF [64] 0.9831 0.9791 0.9866 0.9907 0.9828 0.9730 0.9624 0.9797
Nerfies [32] 0.9817 0.9791 0.9868 0.9918 0.9809 0.9720 0.9609 0.9790
HyperNeRF [4] 0.9825 0.9784 0.9865 0.9914 0.9821 0.9720 0.9584 0.9787
PGDVS [39] 0.9719 0.9738 0.9956 0.9903 0.9816 0.9649 0.9517 0.9757

BTimer (Ours) 0.9835 0.9760 0.9884 0.9881 0.9789 0.9746 0.9745 0.9806

Table S9: Temporal Flickering [82] evaluation on the DyCheck [65] dataset.. There are 7 scenes
and we report their average. We highlight the best , second best and third best .

t=1 t=2 t=3 t=4 t=1 t=2 t=3 t=4

Input

Recon.

Partial
Recon.

Input

Recon.

Partial
Recon.

Figure S13: Learned deformation visualization. In each example, the first row shows the 4 input
images captured from different viewpoints and timestamps, the second row is our reconstruction
rendered from a fixed viewpoint, and the third row keeps only Gaussians associated from one of the
input images.
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t=1

t=2

t=3

View 1 View 4View 2 View 3 View 1 View 4View 2 View 3

Figure S14: Learned scene flow visualization. We color the Gaussians by the pixel positions
they associate with. As the Gaussians move, their trajectories are considered as scene flows. Our
model learns meaningful scene flows that closely represent the object motion without any scene flow
supervision.
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