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Abstract

Current image-to-3D approaches suffer from high com-
putational costs and lack scalability for high-resolution out-
puts. In contrast, we introduce a novel framework to di-
rectly generate explicit surface geometry and texture using
multi-view 2D depth and RGB images along with 3D Gaus-
sian features using a repurposed Stable Diffusion model.
We introduce a depth branch into U-Net for efficient and
high quality multi-view, cross-domain generation and in-
corporate epipolar attention into the latent-to-pixel decoder
for pixel-level multi-view consistency. By back-projecting
the generated depth pixels into 3D space, we create a
structured 3D representation that can be either rendered
via Gaussian splatting or extracted to high-quality meshes,
thereby leveraging additional novel view synthesis loss to
further improve our performance. Extensive experiments
demonstrate that our method surpasses existing baselines in
geometry and texture quality while achieving significantly
faster generation time.

1. Introduction

The task of generating 3D assets from single images [29,
43, 46, 51, 54, 57] is pivotal in several application domains,
such as 3D content creation, virtual reality, augmented real-
ity, as well as 3D aware image generation and editing. How-
ever, building a 3D model from a sparse set of images, let
alone just one, is a highly ill-posed problem. There are in-
herent ambiguities in this inverse rendering problem, and
the greatest challenge is effectively “hallucinating” unseen
portions of the object in terms of geometry and texture. Re-
cent cutting-edge generative AI approaches (e.g. diffusion
models, transformers) attempt to overcome these obstacles
by learning powerful 3D priors and show promising results.

A major technical challenge for 3D generation is how
to represent 3D objects / scenes that can be easily mod-
eled. Recent techniques seek for volumetric representation,
such as Neural Radiance Fields (NeRF) [29, 52] or triplane
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Figure 1. We present our approach that generates high-resolution
(x512), textured 3D asset from a single image. From left to right:
input in-the-wild images downloaded from the internet, generated
3D textured meshes, novel view synthesis via Gaussian splatting.

[3, 22]. Such volumetric representation typically has high
computational and memory complexity which inhibits its
scalability towards high-quality and high-resolution gener-
ation. In pursuit of efficient explicit representation, recent
works directly generate point clouds [50, 54, 76, 102] or
meshes [48]. Although explicit generations significantly
reduce computational complexity compared to volumet-
ric representations, they represent 3D quantities in a do-
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Figure 2. Overview. Our method is a feed-forward image-to-3D model. Given an input image, we generate depth and RGB latent images
from six orthographic views via simultaneous multi-view diffusion. The process is conditioned on input latent, input CLIP embedding, and
cameras. We incorporate a branched U-Net for efficient and high-quality cross-domain diffusion. For each view, we channel-concatenate
depth and RGB latents and decode it to depth, RGB, and Gaussian features in pixel space (512x512 resolution). We add epipolar attention in
the decoder, which is crucial for generating pixel-level multi-view consistent depths. We lift our output (RGB and opacity from Gaussians)
into 3D space via depth unprojection, creating high-quality textured mesh via Poisson surface reconstruction. Additionally, our lifted
surface-aligned 3D Gaussians enable novel view synthesis via Gaussian splatting, allowing additional gradient decent loss from NVS.

main which significantly deviates from that of natural im-
ages, posing great challenges in borrowing strong 2D priors
from contemporary foundation models such as Stable Dif-
fusion (SD) [62]. Recently, an alternative two-stage strat-
egy [18, 46, 49] was proposed that first generates multi-
view images and subsequently fits a 3D representation out
of them. However, effectively enforcing consistency across
multiple views remains a challenge. Methods that only gen-
erate RGB images [18, 46] typically require dense views to
form extensive coverage of the scene/object, which can be
computationally expensive.

To address the aforementioned challenges, we propose
to directly generate explicit surface geometry and tex-
ture using multi-view 2D RGB, depth and Gaussian fea-
ture images. We believe that this representation offers a
more scalable approach towards high-resolution and detail-
preserving generation, and we hypothesize that depth maps
capture geometry information more effectively than other
alternatives like normals. We repurpose the Stable Diffu-
sion [36, 62] model and additionally introduce a branched
U-Net with expert blocks for efficient and high quality
multi-view image generation. To ensure pixel-level multi-
view consistent depth maps, we incorporate epipolar atten-
tion [24, 80, 92] in the latent decoding process. Our rep-
resentation is versatile and can be easily converted to other
formats. In particular, we immediately obtain a structured
3D representation when we back-project multi-view depth,

RGB images and additional Gaussian features to 3D, i.e.
dense surface-aligned point cloud or Gaussians. This 3D
representation can be either extracted to high-quality tex-
tured mesh via Poisson surface reconstruction [32] or ren-
dered efficiently using Gaussian Splatting [34] for novel
view synthesis (NVS), thereby leveraging additional NVS
loss to further improve our performance

In summary, our main contributions are:
• We propose a novel streamlined framework to predict

multi-view depth maps along with RGB and Gaussian
features by fine-tuning a pre-trained 2D diffusion model.
Our representation offers a compact encoding of the 3D
models and scales well towards high-resolution genera-
tion, enabling high-fidelity content creation.

• We develop a branched U-Net that learns to efficiently
generate multi-view RGB and depth images while lever-
aging cross-domain similarities.

• To enforce pixel-level multi-view consistent depths, we
incorporate epipolar attention in latent-to-pixel decoder
following geometric insights.

• We demonstrate significant improvements in quality and
speed over existing benchmarks, marking a major ad-
vancement in single-view 3D generation.

2. Related Work
Representation of 3D models. A fundamental issue to
address when formulating 3D generation is how to repre-



sent the 3D model, which can be either explicit surface-like
representation or implicit volumetric representation. Typi-
cal examples of explicit representation include Point-E [54]
and LION [76] that train diffusion models to generate point
clouds, or MeshDiffusion [48] that generates parametrized
3D meshes. One drawback of directly generating explicit
representation is that it becomes difficult to reuse 2D image
priors due to the domain gap between images and explicit
representation formats such as point clouds or meshes. In
contrast, our method predicts depth images which enable a
shared 2D latent representation and facilitate incorporation
of 2D priors.

Since the popularity of NeRF [52], many recent tech-
niques adopt volumetric representation such as neural fields
[1, 6, 10, 17, 20, 22, 29, 31, 35, 53, 55, 79, 97], triplane
[3, 25, 26, 84, 90, 102], etc. However, these approaches typ-
ically require expensive volumetric rendering, posing great
challenges on scaling up to high-resolution predictions. For
example, LRM [26] has triplane resolution of just 64x64,
relying on low resolution features to render high resolution
images. In contrast, our method predicts multiple sparse
views which naturally scale towards high-resolution.

Some recent feed-forward methods [70, 72, 89, 91, 98,
102] also propose to generate Gaussians as 3D representa-
tion. However, our approach primarily focuses on generat-
ing pixel-perfect multi-view depth maps, leading to signifi-
cantly improved generation quality.
Generation with Score Distillation Sampling. Generation
of 3D objects / scenes from single or sparse input views is
an inherently ambiguous problem. Recent advancements
in 3D generation endeavored to leverage large 2D genera-
tive models [60, 62, 63] as strong image priors by refor-
mulating the problem into 2D domains. These 2D gener-
ative models are trained on extensive internet-scale image
datasets, which generalizes over diverse scenarios. A no-
table innovation in this area has been introduced by Dream-
Fusion [56] which introduced Score Distillation Sampling
(SDS). The core methodology involves optimizing a pa-
rameterized 3D representation, e.g. NeRF [52], SDF, or
mesh using a pre-trained 2D prior model to supervise ren-
dered views. This technique has been later successfully ap-
plied to both text-to-3D and image-to-3D synthesis tasks
[2, 7, 9, 28, 41, 58, 65, 66, 74, 78, 83, 87, 95, 101], demon-
strating its versatility and effectiveness. Despite the early
promise of this approach, the generated 3D objects of-
ten lack 3D consistency. In addition, it requires a time-
consuming per-scene optimization process which limits its
application in real-time scenarios.
Generation and Fusion of Multiple Views. Another re-
search direction focuses on generating multi-view images
from a single image [4, 15, 18, 19, 38, 43, 44, 71, 73, 75,
77, 85, 88, 93, 96, 100]. Zero123 [43] pioneers in adapt-
ing the pre-trained 2D diffusion model for multi-view im-

age synthesis by incorporating camera conditions into the
model. While this approach delivers promising results, it
lacks constraints across different views and hence struggles
with consistency across the generated multi-view images.
To mitigate this, SyncDreamer [46] introduces a volume-
based multi-view information aggregation module using 3D
CNN and spatial attention. One-2-3-45 [42] aims to com-
bine 2D generative models and multi-view 3D reconstruc-
tion. Some other works [49, 67] leverage 2D dense cross-
view attention to enhance 3D consistency. With the gener-
ated multi-view images available, these methods then fit a
3D representation via the reconstruction loss. While these
methods offer qualitative improvement and an alternative
path to SDS, they still struggle with multi-view consistency
and may fail to produce high-quality meshes.

In addition, many such techniques only predict RGB im-
ages and thus require abundant views to form a dense cov-
erage of the 3D models. Therefore, the subsequent opti-
mization process can be time-consuming, typically lasting
at least several minutes per scene. Among recent attempts
[33, 69] to embrace depth prediction, MVD-Fusion [27]
was proposed that leverages intermediate low-resolution
depth maps as fusion guidance. However, it does not pro-
duce high-resolution depth maps as end predictions, which
we believe is important for high-quality 3D reconstruction.

Other methods explore alternative 3D related images
[40, 47] including normals [49]. For normal maps, we find
it is difficult to derive depth discontinuities out of normal
values, and 3D reconstruction from multiple normal maps
typically require a dedicated optimization process. In con-
trast, depth maps faithfully capture geometric details, en-
abling high-fidelity reproduction of object shapes.

3. Preliminaries
3D Gaussian splatting performs novel view synthesis us-
ing Gaussians as a 3D representation. Each Gaussian in 3D
is defined by a center x ∈ R3, a color feature c ∈ RC , an
opacity value α ∈ R, a scaling factor s ∈ R3, and a rotation
quaternion q ∈ R4. Renderings are performed via alpha
composition using differentiable rasterization in real time.
Pixel-aligned 3D Gaussians. The Gaussian center x can be
replaced by depth pixels t ∈ R. Suppose that rayo and rayd
represent the ray origin and ray direction, respectively; the
Gaussian center is then inferred as x = rayo + t · rayd. The
final output can be obtained by merging the 3D Gaussians
from N views, resulting in N ·HW Gaussians.

4. Method
Given an input image, our goal is to generate the 3D shape
with high-resolution textures and high-fidelity geometry.
We propose to directly generate explicit surface geome-
try by decomposing the 3D representation into multi-view



consistent outputs, each of which contains a depth map,
an RGB image, and a Gaussian feature map. Predictions
from different views are used to construct a 3D point cloud,
which can be extracted into a textured mesh or rendered us-
ing 3D Gaussian splatting [34], enabling natural support for
novel view synthesis (NVS) and taking advantage of addi-
tional NVS loss to further improve our performance.

An overview of our method is illustrated in Fig. 2.

4.1. Multi-view Generation in Latent Space

Reconstructing 3D objects from one single input view is an
ill-posed problem in general. Injecting prior knowledge is
critical to resolving the inherent ambiguity. To this end,
we re-purpose the Stable Diffusion model [62], which pos-
sesses rich domain knowledge through internet-scale pre-
training, to predict multi-view latents. Since Stable Dif-
fusion generates each view independently, it could poten-
tially generate inconsistent views, causing blurriness or dis-
tortions in the generated 3D objects. We follow prior works
[46, 49, 67] to extend the self-attention layer in the Stable
Diffusion U-Net into dense cross-attention among different
views, so that features are not only attended spatially but
also across views. Thus, we obtain multi-view consistent
generation in latent space.

4.2. Enforcing Cross-view Depth Consistency with
Epipolar Attention

Using the pre-trained VAE decoder in the Stable Diffusion
framework, we decode multi-view latents back to multi-
view RGB images. Although the dense cross-view attention
is done in the latent space, we and prior works [46, 49, 67]
also observe good consistency for the decoded multi-view
RGB images.

Thus, a natural solution to predict multi-view depth maps
is to follow the same framework: one could simply finetune
the decoder to decode the multi-view latents back to multi-
view depth maps. However, as shown in Fig. 7 and Tab. 3
(”w/o Epipolar Attention”), we find this naive approach
fails to produce 3D consistent depth maps, resulting in bad
mesh extractions. The reason is that we use decoded images
for explicit geometry representation, which requires higher
pixel-level value accuracy and 3D consistency. This sug-
gests dense cross-view attention in the latent space achieves
consistency in RGB images but still falls short to estimate
pixel-level accurate and multi-view consistent depth maps.

To address this problem, we propose adding epipolar at-
tention [24, 30, 80, 82, 92], which is much more compu-
tationally efficient than the cross-view attention used in U-
Net. It borrows insights from multi-view geometry, which
dictates that corresponding pixels from different views are
constrained to lie on certain lines called epipolar lines [23].
In implementation, we modify the attention transformer
component to reduce the number of computations, as de-
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Figure 3. An illustration of the epipolar attention in the decoder.
We utilize epipolar geometry to facilitate efficient multi-view in-
formation exchange among views.

picted in Fig. 3. Each token in the query image only attends
to tokens from other views along the epipolar line. Since
our approach predicts six othogonal views of front, back,
left, right, top and bottom, the epipolar attention can be sim-
plified as efficient row or column attention [39] because any
pair of our output views is either parallel or perpendicular
to each other.

4.3. Efficient Cross-domain Denoising via Expert
Branch

Although epipolar attention greatly improves 3D consis-
tency for the decoded depth maps, we find that the result-
ing depth maps lack details, as shown in Fig. 7 and Tab. 3
(”w/o Depth Latent”). This suggests that relying solely on
the RGB latent for decoding both RGB and depth, is insuf-
ficient for producing detailed depth maps. To mitigate this
problem, we modify the latent U-Net to also output latent
depth images along with latent RGB images. In practice,
we find that channel-concatenating RGB and depth latents
and feeding them to the decoder produces high-quality RGB
and depth maps.

We observe that following Wonder3D’s [49] architecture
of using domain switch to infer RGB and depth images,
doubles the required diffusion inference resources by em-
ploying separate labels for RGB and depth. As this pro-
cess is time and memory intensive, instead, we implement a
modified version of expert branch strategy proposed in Hy-
perHuman [45] where we train for both RGB and depth la-
tents simultaneously instead of successively. This improves
the training and inference time significantly. As demon-
strated in Fig. 4, we modify the U-Net so that each domain
(RGB and depth) has its dedicated expert branch for the first
DownBlock and the last UpBlock. We input noisy RGB and
depth latents into their respective first DownBlocks. Then,
the extracted features from RGB domain traverse the U-Net
middle layers. These RGB features are then fed into the last
UpBlock of different domain expert branches along with
residual features from respective first DownBlocks. This
produces individual branch outputs, i.e. denoised RGB and
depth latent. Additionally, we find this individual empha-
sis on RGB features effectively prevents catastrophic model



RGB
Latent

CLIP

Depth
Latent

Depth
Latent

RGB
Latent

XT XT-1

Figure 4. An illustration of the branched U-Net for cross-domain
latent diffusion. We add two blocks (green) as the depth branch for
latent depth prediction. By sharing most weights with the original
model that predicts RGB latents, we achieve efficient and high-
quality depth prediction in a single inference.

forgetting in training. After obtaining RGB and depth la-
tents, we channel-concatenate them together and forward it
to the decoder.

4.4. Efficient Rendering with 3D Gaussian Splatting

We find that when we extend the decoder to predict ad-
ditional Gaussian features and assign them to our colored
point cloud, we essentially create pixel-aligned 3D Gaus-
sians [5, 8, 70, 72, 86, 91, 98] that are also surface-aligned
due to our multi-view consistent depth design. We find this
simple decoder extension enables high-quality novel view
synthesis through Gaussian splatting [34]. Thus, our de-
coder training can benefits from additional supervision via
novel view synthesis loss, enhancing the performance.
Predicting pixel-aligned Gaussians. Using the generated
RGB and depth images, we can create a dense colored
point cloud by back-projecting all pixels into 3D space. We
choose to further expand the output of the decoder to in-
clude additional 8 channels (1-channel opacity, 3-channel
scale, and 4-channel rotation quaternion). Because we pro-
duce surface-aligned Gaussians [21], we restrict their scales
to be near 1 pixel using 0.01 · Sigmoid(s) + 2.5 · (1 −
Sigmoid(s)) where s is the output scale without activation,
similar to [91].

4.5. Textured Mesh Extraction

From the generated multi-view outputs, we utilize RGB,
depth, and opacity from Gaussian features for textured mesh
extraction. First, we find the gradients of our generated
depth map provides good approximation of surface nor-
mals. In addition, we mask out pixels with corresponding
opacity values smaller than 0.1 and back-project the masked
RGB/depth/normal pixels into 3D to create an oriented col-
ored point cloud. We apply screened Poisson surface recon-
struction [32] to extract the mesh. Laplacian smoothing is
applied to smooth the stair-case appearance. We generate
texture coordinate using xatlas [94], then assign color val-
ues on texture map by projecting color values from point

cloud. Because our method produces pixel-perfect depth
maps, our mesh extraction from point cloud (3D Gaussians)
is accomplished without the need for any complex neural
optimization processes, unlike methods such as LGM [72].

4.6. Implementation Details

We fine-tune the U-Net from Stable Diffusion Image Vari-
ation [36, 62]. We initialize the depth branch of the U-Net
with the weights of the first DownBlock and last UpBlock
of the pre-trained U-Net and fine-tune all parameters of the
U-Net. To enable high-resolution training with faster con-
vergence, we first fine-tune U-Net on 256x256 resolution
with a batch size of 512 for 30K iterations, and then fine-
tune it on 512x512 resolution with a batch size of 96 for
100K iterations.

We fine-tune the VAE decoder together with our epipo-
lar attention design from Stable Diffusion [62]. The fine-
tuning is done on 512x512 resolution with a batch size of 8
for 90K iterations. We utilize a combination of regression
loss and rendering loss for decoder training. After decoding
multi-view outputs, we compute Mean Square Error (MSE)
loss and LPIPS loss [99] for decoded RGB images and LL1

loss and gradient matching loss Lgm [61] for decoded depth
maps. We also back-project depths and Gaussian features
to 3D and render the Gaussians via differentiable Gaussian
splatting [34]. We randomly render 10 novel views and
compute MSE loss and LPIPS loss for rendered RGB im-
ages and MSE loss for rendered alpha images. The overall
loss function is:

L = LReg + LNVS,

LReg = Lrgb
MSE + λLPIPSLrgb

LPIPS + Ldep
L1

+ λgmLdep
gm ,

LNVS = Lrgb - nvs
MSE + λLPIPSLrgb - nvs

LPIPS + Lalpha - nvs
MSE ,

(1)

where Lrgb and Ldep stand for losses over RGB and depth
images across the six views, whereas Lrgb - nvs, Ldep - nvs and
Lalpha - nvs denote losses over synthesized novel views of
RGB, depth and alpha images respectively. We set λLPIPS
as 0.5 and λgm as 2.

For both U-Net and decoder training, we use a learning
rate of 1e-4. Our U-Net is conditioned by the CLIP em-
bedding [59] of the input image via cross attention. The
noisy RGB and depth latents are channel-concatenated with
the input latent and then sent to U-Net for denoising [43].
We learn camera embeddings, transform them with an MLP,
and add them to U-Net’s timestep embeddings [43, 49, 67].
We utilize Xformers [37] and FlashAttention [12, 13] in
U-Net and decoder training to enable fast and memory-
efficient attention. For latent diffusion inference, we use
a guidance scale of 3 and the number of diffusion steps is
set to 50 using the DDIM [68] scheduler. Our image camera
view follows Wonder3D’s input view related system.
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Figure 5. Qualitative results on GSO dataset. We visualize the input single image and the resulting 3D mesh (with and without textures)
for our method and baselines. Our approach achieves higher mesh quality in terms of both geometry and texture.

5. Experiments

Datasets. For model training, we leverage the LVIS sub-
set of the Objaverse dataset [14], similar to previous works
[42, 49]. This dataset contains around 46K objects in 1,156
categories. To generate ground-truth data, we normalize the
objects to fit within a unit sphere. We use Blender [11] to
render depth and RGB images from six orthogonal views:
front, back, left, right, top and bottom. Additionally, ran-
dom rotations are applied to objects to enrich the dataset.
For evaluation, we follow prior research to use the Google
Scanned Objects (GSO) dataset [16]. We employ the same
evaluation dataset as previous works [46, 49], consisting of

30 common objects used in daily life. For each object, we
render an image to serve as the input for our evaluation pro-
cess. We also evaluate our method using additional object
images collected by other methods [49, 51]. The image res-
olution is set to 512×512 for both training and evaluation.

Metrics. We follow the standard evaluation protocol in
[46, 49, 84] for single-image 3D reconstruction. We report
the Chamfer distance (CD) and the volume IoU between the
reconstructed mesh and the ground-truth mesh. We also re-
port depth map error (absolute distance) from mesh render-
ing as a measure of surface error. In experiment, we process
each method’s predictions using scale adaptive ICP [64] to
refine the alignment of the reconstructed mesh to ground



Method Chamfer Dist.↓ Volume IoU↑ Depth Error↓ PSNR↑ SSIM↑ LPIPS↓ Time ↓
Realfusion [51] 0.1015 0.2882 0.394 12.44 0.764 0.373 ∼1 hour
Zero123 [43] 0.0627 0.4451 0.327 14.90 0.808 0.296 ∼30 mins
Magic123 [57] 0.0564 0.3988 0.282 10.50 0.770 0.386 ∼1 hour
Wonder3D [49] 0.0236 0.6731 0.134 15.21 0.824 0.269 2-3 mins
SyncDreamer [46] 0.0234 0.6464 0.134 15.92 0.833 0.202 5-10 mins
Point-E [54] 0.0520 0.2445 0.308 13.73 0.807 0.314 1-2 mins
Shap-E [29] 0.0438 0.3430 0.223 12.67 0.793 0.318 8-20 s
LGM [72] 0.0396 0.4538 0.210 14.09 0.833 0.328 ∼1 min
CRM [84] 0.0334 0.5594 0.173 14.02 0.835 0.309 ∼30 s
One-2-3-45 [42] 0.0282 0.6131 0.143 16.51 0.838 0.217 ∼45s
InstantMesh [90] 0.0264 0.6584 0.143 16.51 0.842 0.205 ∼30s
OpenLRM [25] 0.0186 0.7054 0.108 14.62 0.844 0.254 ∼20s
MVD-Fusion [27] 0.0362 — — — — — ∼35s
Ours 0.0135 0.7339 0.073 17.85 0.851 0.159 15-25s

Table 1. Quantitative evaluation on the GSO dataset. We report performance of baselines and our results on textured mesh generation.
We classify the baselines into three categories: SDS optimization-based methods (first three rows), multi-view image (normal) generation-
based optimization (lines 4-5), and direct feed-forward 3D generation methods (lines 6-14). We mark the best scoring methods with bold.

OursLGM TGS GTInput MVD-Fusion

Figure 6. Qualitative comparisons for novel view synthesis. Our generated 3D Gaussians deliver higher visual quality and capture more
intricate details.

truth. To measure texture quality, we render 512x512 im-
ages from the output mesh and the ground-truth mesh us-
ing 36 fixed camera views per object and report the average
PSNR, SSIM [81] and LPIPS [99].

For novel view synthesis, we directly render 36 images
via 3D Gaussian splatting from our output surface-aligned
Gaussians and report PSNR, SSIM, and LPIPS metrics, fol-
lowing [34].

Baselines. We compare to state-of-the-art single image-
to-3D methods including Zero123 [43], RealFusion [51],
Magic123 [57], SyncDreamer [46], Wonder3D [49], Point-
E [54], Shap-E [29], One-2-3-45 [42], CRM [84], In-
stantMesh [90], OpenLRM [25], LGM [72], TGS [102] and
MVD-Fusion [27]. We use their official implementations,
except for LRM [26] which only has open-sourced im-
plementation OpenLRM [25] available. For MVD-Fusion,
since it produces coarse point clouds from low-resolution
depth maps (32x32) and the textured mesh generation is not

Method PSNR↑ SSIM↑ LPIPS↓
LGM [72] 14.3465 0.8191 0.2991
MVD-Fusion [27] 16.5586 0.8314 0.2071
TGS [102] 17.5151 0.8612 0.2234
Ours 18.1698 0.8621 0.1586

Table 2. Quantitative comparison for novel view synthesis on
the GSO dataset. We report performance of baselines and our
results and mark the best scoring methods with bold.

available, we only report its Chamfer distance for 3D recon-
struction, following the original paper.

5.1. Comparisons with SOTA Methods

3D Reconstruction. Our approach demonstrates supe-
rior performance compared to state-of-the-art methods in
single-image 3D reconstruction, both qualitatively as shown
in Fig. 5 and quantitatively as shown in Tab. 1. Com-
pared to other baselines, our method consistently generates
meshes with better texture fidelity and geometric accuracy.



Method CD↓ IoU↑ PSNR↑ LPIPS↓
Full 0.0135 0.7339 17.85 0.159
w/o Epipolar Attn. 0.0323 0.4518 15.12 0.262
w/o Depth Latent 0.0249 0.6010 15.40 0.238
w/o NVS loss 0.0136 0.7286 17.77 0.166

Table 3. Quantitative ablations on our design choices. We mark
the best scoring methods with bold.

Notably, our approach performs exceptionally well in cap-
turing intricate details because we generate high-resolution
depth maps with multi-view consistency at the pixel level.
Furthermore, our method also achieves competitive genera-
tion speed compared to other feed-forward methods, second
only to Shap-E but showing much better geometric quality.
Novel View Synthesis. Our method also outperforms
other baselines in novel view synthesis as shown in Tab. 2
and Fig. 6. Compared to LGM [72] and TGS [102], which
also produce 3D Gaussians, our renderings exhibit supe-
rior visual quality. We observe that MVD-Fusion [27],
despite utilizing depth-aware 3D attention, still results in
multi-view inconsistencies. In contrast, our method gener-
ates dense, surface-aligned Gaussians, ensuring multi-view
consistency and yielding detailed and accurate renderings.

5.2. Ablation Study

Method CD↓ IoU↑ PSNR↑ GPU↓ Time↓
Ours 0.0152 0.7303 17.19 9 GB 20 s
w/o Branch 0.0166 0.6716 17.20 11 GB 24 s

Table 4. Ablations on our branched U-Net design. We replace
our branched U-Net design with domain-switch [49] for cross-
domain latent denoising. Note that the study was performed at
256x256 resolution due to compute resource constraints.

Method CD↓ IoU↑ PSNR↑ LPIPS↓ Time↓
Wonder3D 0.0236 0.6731 15.21 0.269 3min
OursNormal 0.0194 0.6930 15.43 0.261 3min
Ours 0.0152 0.7303 17.19 0.171 20s

Table 5. Depth maps vs. normal maps as the representation.
Note that the study was performed at 256x256 resolution due to
compute resource constraints.

We conduct ablation studies on the GSO dataset, as
shown in Tab. 3 and Fig. 7. First, we show that remov-
ing epipolar attention in the depth decoder leads to a ma-
jor drop of all quantitative metrics, due to the severe in-
consistent multi-view depth maps and distorted mesh ex-
traction, highlighting the indispensable role of epipolar at-
tention. Second, without learning to generate the depth la-
tent and provide it as additional input for latent decoding,
i.e. only generating RGB latent and feed it to the decoder,
we observe that the predicted depths are of lower quality

w/ Depth Latentw/o Depth Latent

Epipolar Attention

Depth Latent Input
w/ Epipolar Attn.w/o Epipolar Attn.

Figure 7. Qualitative ablations on the GSO dataset. We show
back-projected depth points for 1 (yellow) or 2 views (yellow,
cyan) and the final mesh.

and are inaccurate. In addition, to validate our branched U-
Net design that performs simultaneous multi-domain latent
denoising, we experiment replacing it with domain-switch
technique from Wonder3D [49] which performs successive
multi-domain denoising, as shown in Tab. 4. Our branched
U-Net achieves 20% faster in inference and uses 18% less
GPU memory, with no degradation in quality.

Is depth representation better than normal maps
within the same framework? Our approach outperforms
both in terms of generation quality and efficiency compared
to predicting normal maps using our framework or Won-
der3D (Tab. 5), which also predicts multi-view RGBD for
3D reconstruction. Normals do not represent depth discon-
tinuities and require optimization to reconstruct the geome-
try, which often results in incorrect or blurry geometry.

6. Conclusion
We present an approach to directly predict explicit surface
geometry and texture for single-image 3D reconstruction.
Experiments show that our method significantly improves
the speed and quality of 3D reconstructions compared to
other benchmarks.
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