Adaptive Surrogate Gradients for Sequential
Reinforcement Learning in Spiking Neural Networks

Korneel Van den Berghe* Stein Stroobants
Delft University of Technology Delft University of Technology
Vijay Janapa Reddi G.C.H.E. de Croon
Harvard University Delft University of Technology
Abstract

Neuromorphic computing systems are set to revolutionize energy-constrained
robotics by achieving orders-of-magnitude efficiency gains, while enabling native
temporal processing. Spiking Neural Networks (SNNs) represent a promising
algorithmic approach for these systems, yet their application to complex control
tasks faces two critical challenges: (1) the non-differentiable nature of spiking
neurons necessitates surrogate gradients with unclear optimization properties,
and (2) the stateful dynamics of SNNs require training on sequences, which in
reinforcement learning (RL) is hindered by limited sequence lengths during early
training, preventing the network from bridging its warm-up period.

We address these challenges by systematically analyzing surrogate gradient slope
settings, showing that shallower slopes increase gradient magnitude in deeper
layers but reduce alignment with true gradients. In supervised learning, we find
no clear preference for fixed or scheduled slopes. The effect is much more pro-
nounced in RL settings, where shallower slopes or scheduled slopes lead to a x2.1
improvement in both training and final deployed performance. Next, we propose
a novel training approach that leverages a privileged guiding policy to bootstrap
the learning process, while still exploiting online environment interactions with
the spiking policy. Combining our method with an adaptive slope schedule for a
real-world drone position control task, we achieve an average return of 400 points,
substantially outperforming prior techniques, including Behavioral Cloning and
TD3BC, which achieve at most —200 points under the same conditions. This work
advances both the theoretical understanding of surrogate gradient learning in SNNs
and practical training methodologies for neuromorphic controllers demonstrated in
real-world robotic systems.

1 Introduction

Spiking Neural Networks (SNNs) are a class of neuromorphic algorithms [1]] that offer native temporal
processing and significantly outperform conventional deep learning architectures in terms of energy
efficiency across a wide range of applications [2, 3| 4]. However, training SNNs for control tasks
remains challenging due to the non-differentiable nature of spiking neurons, which complicates
gradient-based optimization. Surrogate gradients [S]] are a popular solution to this issue. Gygax and
Zenke [6] demonstrate that the gradient can severely deviate from its true value depending on the
surrogate gradient chosen. Yet, how these deviations affect learning in deep or stacked architectures
remains largely unexplored.
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Moreover, leveraging the temporal processing capabilities of SNNs requires training on sequences
rather than individual transitions. A critical component of this process is a warm-up period, a number
of timesteps during which the hidden states of the network are stabilized before gradients are applied.
Reinforcement Learning (RL) is a framework for sequential decision-making, which has been used
to achieve superhuman performance on Atari games [[7]] and drone racing [8]. However, at its core,
most RL algorithms assume the underlying process to be a Markov Decision Process (MDP), where
the next state depends only on the current state and action. This assumption is often not satisfied in
robotics [9}10]. Frame-stacking acts as a work-around by explicitly adding a history of observations
to approximate an MDP [[L1} 1213} 114]. This approach is inefficient and redundant for SNNs, which
are inherently stateful and capable of encoding temporal dependencies internally.

A major challenge arises in robotic environments, such as drone control. Subpar initial policies often
lead to early episode termination (e.g., due to crashing), preventing the collection of sufficiently long
sequences to bridge the warm-up period. The agent cannot act long enough to gather data that would
allow it to improve. Addressing this issue is key to unlocking the potential of sequence-based training
with SNNs in real-world control tasks.

In this work, we analyze the effect of surrogate gradient settings on the gradient being propagated
throughout the network and investigate the role of surrogate gradients across a spectrum of learning
regimes, from supervised learning to online RL. We introduce a novel RL algorithm tailored for
continuous control with Spiking Neural Networks, explicitly leveraging their inherent temporal
dynamics without relying on frame stacking. As a case study, we demonstrate the efficacy of our
approach by training a low level spiking neural controller for the Crazyflie quadrotor [15]. The
controller is trained entirely in simulation and successfully transfers to the real-world platform,
bridging the reality gap without the need for observation or action history augmentation. This
work contributes both practical insights and theoretical implications for training temporal-aware,
energy-efficient embodied agents.

2 Related Work

Several approaches have been proposed for combining Reinforcement Learning (RL) with Spiking
Neural Networks (SNNs). Early work focused on biologically plausible learning rules, such as
Spike-Timing-Dependent Plasticity (STDP), which have been successfully applied to tasks like
source seeking [[16] and maze navigation [[17]. While these methods demonstrate the potential of
SNNs for solving control tasks, they often lack the scalability and efficiency of modern deep RL
techniques.

To benefit from the advances in deep RL, surrogate gradients can be used to enable end-to-end training
of SNNs with standard RL algorithms. The Deep Spiking Q-Network (DSQN) algorithm [[1 1] adapts
the DQN algorithm [7] to the spiking domain. Although DSQN achieves robust performance and
demonstrates significant energy savings on neuromorphic hardware [18], it is trained on single
transitions and resets the network state at every step. Therefore, it resets the network state at every
environment transition, preventing the model from capturing temporal dependencies across time.
Moreover, as a value-based method, DSQN is inherently limited to discrete action spaces and is not
well-suited for continuous control.

More generally, value-based RL algorithms that leverage recurrent architectures, such as R2D2 [[19]]
rely on a warm-up period to stabilize hidden states before applying updates. This technique assumes
the agent can gather long sequences of experience. However, in robotic control environments, such
as drone flight, poorly initialized policies often result in early termination (e.g., due to crashing),
preventing the network from bridging this period. This limits the practicality of recurrent value-based
methods in high-risk real-world environments.

To address these limitations, policy-based approaches have been explored. SNN-PPO [20] applies the
Proximal Policy Optimization algorithm to train SNNs in an on-policy manner using entire trajectory
sequences. This method has been shown to successfully solve a variety of continuous control tasks
from the MuJoCo suite [21]. However, on-policy methods like SNN-PPO can be challenging to use
when sample cost is high. Furthermore, they do not propose a solution for bridging the warm-up
period.



Off-policy approaches enable reusing past experience stored in the replay buffer. PopSAN [22]
is an off-policy, actor-critic method designed for continuous control with SNNs. By leveraging a
conventional ANN as the critic, PopSAN benefits from the stability of standard deep RL while using
an energy efficient SNN-based actor. It achieves strong performance on several MuJoCo tasks in
simulation and reports up to a 140x reduction in energy consumption compared to non-neuromorphic
implementations [23]]. Nonetheless, similar to DSQN, PopSAN requires the reset of the hidden states
between transitions, limiting its ability to capture temporal dependencies across timesteps.

3 Methods

3.1 Online TD3BC with Jump-Starting Privileged Actor

To address the aforementioned challenges in sequential SNN training, we adapt the Jump-Start
Reinforcement Learning (JSRL) framework [24]]. It leverages a pre-trained guide policy to create a
curriculum of starting conditions for a secondary policy. We implement a privileged, non-spiking
actor, trained for a few epochs through TD3 [25]], training is stopped when the policy can hover the
drone for the warm-up period consistently. Its primary function is to bridge the critical warm-up
period required by the SNN. Both the guiding policy and the non-spiking critic receive privileged
information in the form of action histories.

A replay buffer is continuously populated throughout training with transitions generated by both
the guiding actor (during the initial warm-up phase) and the spiking policy (during subsequent
interactions). This hybrid approach bridges the early training period, where the spiking policy still
gathers short sequences. Therefore, supervised learning from the guiding policy interactions is
effective during early training.

The guide controller, which receives a privileged set of observations, including the action history, is
used for the first 500 — N timesteps, after which the spiking policy interacts for the remaining N
steps, linearly increasing N until the guide policy is only used for the warm-up period. Initially, the
buffer is filled mostly with experience from the guiding policy. This introduces a risk of training
a spiking policy that closely resembles the guide policy, which can be undesirable as the guide is
usually not an expert policy. Therefore, the choice of the BC term weight is crucial to prevent the
spiking policy from overfitting to the guide policy.

Once our spiking policy gains a baseline performance, and generates sufficiently long rollouts, we
want to leverage the reward information, for which online RL is better suited. Inspired by TD3BC
[26], we incorporate a Behavioral Cloning (BC) term into the RL objective function that utilizes
the guide policy demonstrations stored in the replay buffer. The BC weight A decays exponentially,
shifting from imitation to reward-based optimization. The BC term in our approach serves two
purposes: avoiding large changes in policy behavior, improving training stability, and leveraging the
demonstration data efficiently.

We call this approach TD3BC+JSRL, pseudocode can be found in[subsection 8.4} The objective to be
maximized can be defined as:
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Where the history, h ;, is defined as:
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(4, in the first term represents the first critic network, as used in TD3. The variable 7 denotes a
sequence sampled from the replay buffer, with a length of n,., = 100. Within this sequence, s ;
and a, ; correspond to the i™ observation and action, sampled from the replay buffer, respectively.
The hyperparameter A controls the strength of the BC regularization and decays exponentially over
time; the BC coefficient A starts at Ay = 0.2 and decays exponentially (A <— 0.99)\) after each epoch,
shifting emphasis from imitation to reward optimization as training stabilizes. When the guiding



policy is of high quality, a larger A is preferred. Finally, 1;>y,..._., €quals zero during the warm-up
period (Iyarm—up), Which in our case is 50 steps, corresponding to 0.5 seconds in the drone control
task. We zero-initialize hidden states, which causes only marginal performance differences [19]]. The
critic is not time variant and thus does not need a warm-up period.

3.2 Spiking Neural Networks for Continuous Control

Spiking Neural Networks leverage bio-inspired neuron models, which transmit information through
binary spikes. The membrane potential is charged by an input current [;,,, which incrementally
charges its membrane potential U. Over time, the potential decays at a rate determined by the leak
factor 5. When the membrane potential exceeds a defined threshold Uy, the neuron emits a spike, s,
and its potential is subsequently reset. We employ a soft-reset spiking mechanism, which is described
by:

1, ifU[t] > Upyr
0, otherwise

Ult+ 1) = BUt] + Lin[t + 1] — s - Uy, where s = { €))

Hence, the spiking function f(U[t]) is the non-differentiable Heaviside function and calls for surrogate
gradients [3]] to enable gradient based optimization methods. During the backward pass, we act
as if this Heaviside function was a parametrized sigmoid function, o (kz), which is the true when
k — oo. For computational efficiency, the gradient of this parametrized sigmoid is approximated
by the gradient of fast sigmoid (fs(k - z) = HkTmm ) [27]]. To avoid exploding gradients, the actual
gradient of the fast sigmoid is normalized by k, which leaves us with the derivative in
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where a larger k relates to a steeper slope of the parametrized sigmoid, reducing the range of inputs
for which a gradient exists.

SNNs work in a spike-based domain. To encode continuous values to spikes and vice versa, population
based encoding and decoding are used. Specifically, the first linear layer encodes continuous input
values into currents, and a final layer decodes the output spikes into motor commands. This approach
has been proven successful in previous work [28]].

Our controller is a feedforward SNN with input size 18, two hidden layers and 4 output neurons.
The two hidden layers of the network are of size 256 and 128 respectively and make use of Leaky
Integrate-and-Fire neurons. This architecture enables analysis of surrogate gradient effects across
multiple layers, sufficient capacity for continuous control, and is small enough for deployment on the
resource constrained Crazyflie.

3.3 Surrogate Gradients in Deep Networks

Training SNNs via backpropagation requires the use of surrogate gradients to approximate the
derivative of the non-differentiable spike function. A critical hyperparameter in this process is the
slope k of the surrogate function, which determines the sensitivity of the gradient near the spiking
threshold.

We adopt the gradient of a fast sigmoid function, see and examine slope configurations
ranging from shallow (k = 1) to steep (k = 100). We analyze a 4 layer SNN, with all layers having
64 neurons, layer 0 corresponds to the input layer, while layer 4 relates to the output. The results on
the plots are the average of running the test 100 times. As shown in[Figure Ta] steeper slopes closely
resemble the Dirac delta function but restrict non-zero gradients to a narrow input range. In contrast,
shallower slopes lead to a broader range of non-zero gradients. This increases the average gradient
magnitude, particularly in deeper layers (Figure Tb). Note that the average gradient magnitude is
influenced by the proportion of neurons with zero gradients in each layer.

While the surrogate gradient’s slope affects the quantity of weight updates per backward pass, it also
introduces noise into the gradient computation [6]]. Since the true gradient for deeper network layers
does not exist, we analyze the relationship between a steep surrogate gradient (k = 100), which
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Figure 1: Surrogate gradient slope-magnitude-alignment tradeoff in deep SNNs. (la)) Shallow slopes (k=1)
provide gradients over wider input range than steep slopes (k=100). @) This prevents vanishing gradients in
deeper layers, critical for multi-layer SNN training. (1c) However, shallow slopes introduce directional noise
(cosine similarity — 0), which aids RL exploration but hinders supervised convergence. Network: 4 layers of 64
neurons; layer O = first hidden, layer 4 = output.

approximates the true gradient VW; more truthfully than a shallow slope, and shallow surrogate
gradients, denoted as VW, using cosine similarity:
VW, - VW;

cosine similarity = ———=———. (6)
VW, [[[[VWi|

shows that the cosine similarity for shallow slopes reduce to 0, therefore, the weight updates
in deeper networks become essentially random.

We propose an adaptive surrogate gradient scheduling approach. Shallow slopes, which introduce
stochasticity into the gradient computation, can facilitate the update of a broader set of connections in
deeper networks, enhancing exploration in RL, and increase the gradient magnitude. Conversely, steep
slopes yield more precise gradient estimates, which are advantageous once the agent’s performance
stabilizes and fine-tuned optimization is desired. This mechanism provides a natural means of
balancing exploration and exploitation throughout training.

Three schedules are analyzed:

* Fixed: The surrogate gradient slope is held fixed throughout training.
* Interval: The surrogate gradient slope is made steeper according to a fixed time schedule.

* Adaptive: The surrogate gradient slope is adapted as function of the achieved reward.

The adaptive slope scheduler tracks both the reward value and its derivative (see[Equation 7), allowing
the slope to increase when performance improves and stabilize once it saturates. This keeps the
gradient noisy when exploration is needed and sharp when fine-tuning. Note that the term depending
on 7;_; is largely responsible for maintaining the slope when maximum performance is reached, and
thus prevents destroying progress.
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where k; is the slope at time ¢, r;_; is the reward score at time ¢ — 4 and r;_, is the first order
derivative of the reward score at time ¢ — 4. Furthermore, £ is clamped between 1 and 100, the same

limits as used in [Figure 3
3.4 Asymmetric Actor-Critic

While the actor is spiking, the critic is a feedforward ANN, which receives all observed states and an
action history of 32 timesteps. This asymmetric setup has been demonstrated to successfully leverage

Slope Value



the improved training stability of ANN [22| 23]]. The jump-starting actor used in this work, is also
an ANN network with the same privileged inputs as the critic. This critic is only used to stabilize
training, and is not deployed on the drone at inference time.

4 Experimental Setup

4.1 Quadrotor Position Control Task

We validate our approach on low-level quadrotor control, a challenging domain where (1) early crashes
prevent long sequences needed for SNN warm-up, directly testing our TD3BC+JSRL solution, and
(2) the temporal dynamics stress-test surrogate gradient choices across extended rollouts. he Crazyflie
2.1 platform [15] provides 18-dimensional state vectors of position, velocity, orientation, and angular
velocity. The controller outputs motor commands a; € R* at 100 H z, matching the onboard sensor
update rate.

illustrates the information flow between the Crazyflie platform and the spiking controller.

T,Y, 2, »{ Controller (SNN)
Yz) Uy» Uz my, Mg, M3, My
0,¢,9
T
P CrazyFlie [«

Figure 2: The spiking controller receives (x, y, z), linear velocity (vg, vy, v-), orientation angles (6, ¢, 1), and
angular velocities (p, g, r) inputs and outputs motor commands (11, mz2, ms, ma).

Episodes terminate after 500 timesteps (5 seconds) or upon crashes. This limit creates the core
challenge our method addresses: early training policies crash within 100 steps, preventing data
collection beyond the 50-step warm-up period required for stable SNN gradients.

Training completes in 6 hours on an M4 Pro MacBook (24GB RAM). We compare four approaches
(Table I):

Table 1: Method comparison. Only TD3BC+JSRL (ours) combines online learning with warm-up bridging and
demonstration leveraging, enabling sequence-based SNN training despite early crashes.

Method Type Leverages Reward Warm-up Uses Demos
BC Offline X X v
TD3BC Offline v X v
TD3 Online v X X
TD3BC+JSRL (Ours)  Online v v v

4.2 Simulation Environment and Reward Structure

The controller is trained in simulation, relying on a dynamics model which has demonstrated sim-to-
real bridging capabilities [14].

We employ a linear curriculum learning approach where the reward structure increases difficulty as
training advances. The total reward at each timestep is computed using

Ty = Crs - CTpHpt - pdes”2 - Crv”vt - Udes||2 - CT(IHqt - qdesH2 - Cra”at - CrabH27 (8)

where C, is a survival bonus encouraging long episodes, C..,, Cy,, Cr4 penalize deviations from
desired states, such as pyes, and Ciq ||a; — C.qp||? penalizes deviations from hover throttle C..;,. We
apply curriculum learning by linearly interpolating penalty coefficients from lenient to strict values

over training. The reward is explained in detail in



5 Results

5.1 Surrogate Gradients During Training

We now analyze the effect of surrogate gradient slope choices on both fully supervised, Behavioral
Cloning (BC), and fully online training algorithms, TD3 [25]]. To eliminate the effect of the warm-up
during training for this analysis, we do the following. We stack a history of observations, process
multiple forward passes per observation and reset the SNN in between subsequent actions, similar
to previous RL implementations for SNNs. The dataset used for BC has been gathered with the
privileged actor introduced in The following experiments do not use a reward
curriculum, nor learn from the temporal dimension.

While slope choice barely affects supervised learning, online RL strongly prefers shallower slopes
whose induced gradient noise enhances exploration, similar to parameter noise [29], albeit with higher
variability across runs. Poor intermediate updates can corrupt the replay buffer with low-quality
experiences, hindering convergence. Shallower slopes introduce noise in the policy update, and
therefore heighten this risk, making training less stable.

We observe that scheduled slope settings firstly reduces the number of epochs to reach a reward of
100 by a factor x4.5 compared to steeper slopes. Secondly, final performance of the trained agents
lie in the same regime as fixed slope experiments.

Best Reward Achieved (higher better)

Epochs to Reach Reward of 100 (lower better) Methods
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175 -Mes‘:md.z W Slope: 50 I
ope: Slope: 100
B Siope: 50 Interval
150 Slope: 100 I 300 Adaptive
Interval
125 Adaptive g I
8 3 |- mb
2 2
2 100 g ™
7]
< @ I
8 s
o
w 100
50 I
I
25
I 0
, BC D3

> ™ (b) For BC, final performance remains largely invariant

(a) In BC, convergence speed is largely unaffected by
the surrogate slope, as the noisier updates from shal-
low slopes are compensated by broader gradient prop-
agation. In contrast, RL benefits significantly from
shallower slopes, which enhance exploration through
gradient noise. Scheduled slopes achieve competitive
convergence speeds without manual tuning.

to the slope setting, confirming the robustness of super-
vised training. In RL, however, shallow slopes yield
superior asymptotic rewards due to their exploration-
promoting noise. Scheduled slopes, specifically adap-
tive scheduling performs competitively, approaching
the performance of optimally tuned shallow slopes
while improving training stability.

Figure 3: Comparison between fixed and scheduled surrogate gradient slopes for both BC and RL settings.
While BC performance is largely slope-invariant, RL benefits from shallower or scheduled slopes, which improve
exploration and training efficiency. Scheduling effectively balances stability and performance, reducing the need
for extensive slope tuning.

While using an interval or adaptive schedule for the surrogate gradient slope does not always result in
the best performing network, we find that it can stabilize training. Moreover, it achieves a near-optimal
performance on both training speed and final performance. As a result, such schedules eliminate
the need for exhaustive hyperparameter sweeps across different slope settings to identify the best
performing ones.

5.2 Training on Sequences with Reward Curriculum

To fully leverage the temporal processing capabilities of SNNs in RL, we extend training from
single transitions to full sequences (subsection 3.1)) and introduce a reward curriculum that gradually
increases penalties on position, velocity, and action magnitude to encourage stable, robust behavior.



All experiments use an adaptive slope scheduler for surrogate gradient slope adjustment. We compare
BC, TD3BC, TD3, and TD3BC+JSRL. BC and TD3BC are offline RL algorithms trained on dataset
sequences, gathered with the guiding policy used in our TD3BC+JSRL setup, while TD3 and
TD3BC+JSRL are online algorithms sampling sequences from the environment. Unlike TD3, which
starts from scratch, TD3BC+JSRL benefits from a privileged guiding policy during the first n steps
of rollouts. All approaches are evaluated under the same reward curriculum.

Comparison of Test Reward under Curriculum
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(a) Offline methods (BC and TD3BC) struggle as the Training Steps
reward function adapts, failing to generalize beyond (b) While all methods, except TD3, eventually learn to
the initial dataset, due to the lack of online interac- fly, TD3-trained policies frequently terminate early due
tions. TD3BC+JSRL is able to adapt to the curriculum to unstable exploration. TD3BC+JSRL achieves longer

throughout training. and more stable flight trajectories.

Figure 4: Comparison of training approaches under a reward curriculum. All experiments were run with 5
different seeds. As the curriculum increases difficulty of the task, we find that only TD3BC+JSRL is able to
adapt to the changing curriculum. During testing, we average the results from 20 runs.

TD3BC+JSRL achieves 400-point average reward under curriculum learning, while BC, TD3BC, and
vanilla TD3 fail to exceed —200 points (Figureda)). This 600-point gap validates both components of
our approach: leveraging demonstrations (vs. TD3’s from-scratch learning) and online adaptation (vs.
BC/TD3BC'’s static datasets).

As the curriculum tightens, BC and TD3BC, trained on static datasets containing rollouts of the
guiding actor, fail to generalize, as shown in[Figure 4a] While TD3 has access to evolving interactions,
it struggles to gather meaningful sequences early in training, often resulting in premature episode
terminations, as seen on[Figure 4b] failing to bridge the warm-up period. Our proposed TD3BC+JSRL
approach, which leverages new rollouts guided by the policy, demonstrates robust learning even under
a challenging curriculum. The inclusion of online rollouts enables the policy to adapt to the evolving
reward landscape, leading to substantial performance improvements.

The hyperparameters, curriculum and training details used for the experiment are part of the supple-

mentary materials, [subsection 8.

5.3 Bridging the Reality Gap

We quantitatively evaluated the computational efficiency of our sequential SNN approach using Neu-
roBench [2]]. The trained SNN is compared to a feedforward ANN that achieves similar performance,
trained using TD3. This controller requires explicit action history to control the drone successfully.
Results show that temporally-trained SNNs match ANN performance while exhibiting distinct compu-
tational traits. Despite a higher memory footprint, SNNs benefit from activation sparsity and primarily
use energy-efficient accumulates (ACs) instead of energy-hungry multiply-accumulates (MACs),
making them well-suited for neuromorphic deployment. While the number of dense operations of the
SNN is much higher than the ANN to which we compare, the nature of the underlying ACs opens the
opportunity for energy efficient compute. Using the methodology proposed by Davies et al. [30]], we
can compute a rough energy consumption estimate of 9.7 x 10~°m.J, see for further
details.



Table 2: NeuroBench performance comparison between ANN (64-64 architecture) and temporally-trained
SNN (256-128 architecture) using TD3BC+JSRL. While dense operations are computed ignoring activation
and connection sparsity, effective operations reflect the sparsity aware number of operations, as defined in
NeuroBench [2].

Footprint | Activation SynOps SynOps SynOps Requires
Model | Reward ‘ (kb) ‘ Sparsity | Dense ‘ Eff_ MACs | Eff ACs | History
ANN 447 55.3 0.0 13.7 x 10% | 13.7 x 103 0.0 True
SNN 446 158.3 0.79 37.9 x 103 | 4.6 x 10® | 12.2 x 103 False

Figure 5: When deployed on the Crazyflie, the spiking actor exhibits oscillatory behavior but always successfully
performs maneuvers such as circular flight.

When deployed on the Crazyflie, the SNN controller exhibits slightly oscillatory behavior. However,
the SNN is still able to execute complex maneuvers like circles (see[Figure 5), figure-eight and square
trajectories without failure. ANN controllers, benefiting from full action history, show smoother
control. However, when comparing to our SNN to an ANN which does not receive action history, we
find that the ANN can no longer control the drone, as shown in

To improve stability, future work could incorporate angular velocity penalties in the reward function,
use throttle deviation outputs rather than absolute throttle settings, train for longer, or increased
control frequency, as prior work has shown smoother SNN control at higher rates [14, 28].

Compared to ANN controllers from Eschmann et al. [[14], SNNs trained with our approach achieved
lower position error under ideal conditions but had reduced reliability. Notably, while ANNs without
action history failed to control the drone. A demonstration video is available onlin

Table 3: Comparison of neural network models for position control and trajectory tracking tasks. The models
include an ANN with action history, an ANN without action history and an SNN trained with TD3BC+JSRL
without action history. The mean position error of the deployed SNNs is benchmarked against the best-performing
ANN policy [14]. Position error is measured as the average xy-plane error (in meters), and trajectory tracking
error is evaluated as the average error across figure-eight and square-following tasks. The ANN without action
history did not manage to stabilize the quadrotor.

ANN ANN SNN

action history [14] | no action history [14] | no action history [Ours]
Position Error [m] 0.1 0.25 0.04
Trajectory Error [m] 0.21 NA 0.24

5.4 Ablation Study

To analyze the contribution of each component of the algorithm, an ablation study is performed. We
first remove only the BC-term, then only the jump-start period. Lastly, we analyze the result with no
BC-term and no Jump-Start.

Removing the BC term allows the SNN controller to eventually show improvements in performance,
but convergence becomes substantially slower, approximately 15 times more training steps are
required to achieve a reward of 100. In contrast, eliminating the jump-starting actor entirely prevents

https://wuw.youtube.com/playlist?1ist=PLAS2CC1Q48jX2R-tqza9kRPxONW1EfK;j0
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the SNN from collecting sequences long enough to bridge the warm-up period, resulting in the
network failing to learn stable flight altogether. As expected, removing both terms, leads to similar
behavior. We find the BC term to improve training efficiency when the jump-start period allows
bridging the warm-up period, and fills the buffer with several demonstrations from the guiding policy.

Table 4: Ablation study analyzing the impact of the BC-term and Jump-Start period on training performance.
Reported values show the average final reward and the number of environment steps required to reach a reward
of 100.

BC-term Jump-start Reward Steps to 100

Yes Yes 412 £6.72 2200 £ 124
No Yes 334 +£25.59 33030 £ 1600
Yes No 32+1.2 NA

No No 36 +4.1 NA

6 Conclusion

This work addresses key challenges in training Spiking Neural Networks (SNNs) for Reinforcement
Learning (RL) by combining theoretical insights into surrogate gradient slope settings with a novel
RL approach for sequential training. We demonstrate that the surrogate gradient slope plays a critical
role in optimization dynamics, affecting both gradient alignment and the gradient magnitude. We find
that shallower slopes increase the gradient magnitude at the cost of alignment with the true gradient.
In supervised learning approaches, these two effects balance out. However, in RL approaches, we find
a strong preference towards shallower slopes. We propose adaptive slope scheduling strategies that
improve training stability and performance. We demonstrate that adaptive slope scheduling improves
training efficiency by x4.5 compared to a fixed slope of 100.

To address the limitations of standard RL algorithms in temporally extended tasks, we introduce a
jump-start framework that leverages privileged policies to bootstrap training. This enables effective
sequence-based learning in unstable control tasks, such as drone flight, where subpar controllers fail
to generate experience long enough to bridge the warm-up period, which is necessary to efficiently
train stateful networks. We find our method to enable SNNs to achieve a final average reward of 400
points, while other methods fail to surpass a final performance of —200 points. We demonstrate the
performance of our SNN receiving only the latest state information to be competitive to an ANN
which receives explicit action history. A comparable ANN without this action history fails to control
the Crazyflie successfully.

Our method depends on the availability of a guiding policy. Although this policy can be any function,
even one leveraging privileged observations and does not need to be deployable at inference, it must
still produce stable behavior early in training, which might not always be trivial to obtain.

Code Availability
The implementation and experiment scripts used in this work are publicly available at

github.com/korneelf1/SpikingCrazyflie. The repository contains detailed instructions to reproduce all
reported results.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the two main contributions of the paper. A
surrogate gradient analysis, and an RL approach for temporal learning for SNN.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limited stability of the controller, and propose directions of
research to potentially resolve the issue.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We describe the assumptions made in the analysis of the surrogate gradient.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methodology has been described, and specific implementation details are
provided. Supplementary materials will be added, giving insight into specifics such as the
reward curriculum.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The repository containing the code is publically available, including a manual
to reproduce results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The required details to make sense of the results are part of the core paper.
Additional details for reproducability will be included in the supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We believe that where relevant, the error bars are appropriately defined.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were ran on an Apple MacBook Pro M4Pro, with 24GB
RAM.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: All experiments were done in simulation or in a controlled real-world environ-
ment.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

16


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper presents an analysis of surrogate gradients and a reinforcement
learning method for SNNs.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Apart from the Crazyflie simulator, all work has been done by the authors.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper describes an analysis and method but does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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8 Supplementary Materials

8.1 Effect of Surrogate Gradients on Gradient Alignment

When training spiking neural networks (SNNs), the non-differentiability of the spiking function is
often handled by replacing it with a smooth surrogate function. In this section, we formalize how
the slope of the surrogate gradient affects weight updates in deeper networks, supporting the main
paper’s findings on cosine similarity decay. We replace the binary spike with a sigmoid to obtain a
tractable closed-form baseline, however, we believe the qualitative findings hold for spiking neurons
as well.

Network Setup. We consider an ANN feedforward network with two hidden layers and sigmoid
activations. Let x € R"™ denote the input vector. Each layer performs an affine transformation
followed by a nonlinearity:

Z1:W1X+b1, alzo(zl)

zp = Woa; + by, ay =o0(z2)
z3 = W3as + by, a3 =123

Here, o(z) =
activation.

1—5-% is the sigmoid activation. The output layer is a linear layer, not followed by an

Backpropagation and Surrogates. During backpropagation, we can compute § for a neuron 7 in
the layer [ (going from 1 to 3 for the input to output layer) as:

ni41
55 _ Z W,L-g-l+1)(5§-l+1) . O'/(Zé)
j=1
now the weight update is computed as:
oL _ (-1) (5l
ow® J i

When computing the gradient of the sigmoid, we replace the true derivative o’ (z) with a surrogate
gradient:
!/
k
Gp(z) =2 (k 2 ke - (1 - o (k)

where k controls the slope of the surrogate. Since the surrogate gradient involves both scaling the
input by k (to sharpen the activation) and differentiating with respect to that input, the resulting
gradient scales with k& as well, due to the chain rule. Without compensating for this, gradient
magnitudes can explode as k increases. We therefore divide by k to stabilize gradient flow regardless
of the steepness.”

Bias in Gradient Magnitude. The gradient of the second layer weights becomes:
L _ ) [Ny @56 ) s
2) % ZWih o |- or(z7)
8Wj(i ) h=1
Compared to the true gradient using o’(2), the surrogate gradient generally yields:
71 (2) > o'(z) for most 2

This introduces a positive bias in gradient magnitude, as:

bias = E l 8L(2) — 3122) >0
5‘Wji 8Wji

unless k£ = 1, which recovers the original derivative.
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Effect on Deep Layers. In deeper networks, this overestimation accumulates. For example, the
first-layer gradient becomes:

L S (S s® s ooy )| s m
PV Swi Y we ez ) | - on(z)
ji g=1 h=1
, where the sigma’ are larger than their true counterparts. Compared to its counterpart using the true
derivative, the surrogate gradient not only increases magnitude but distorts direction.

Besides increasing magnitude, the surrogate gradient also distorts direction. To quantify this, we
compute the cosine similarity between gradients using surrogate and true derivatives:

VW .-VW
VW] - [[VW]]

As shown in of the main paper, cosine similarity decays toward O in deeper layers when
using shallow slopes (e.g., K = 1). This indicates that surrogate-based gradients become increasingly
misaligned with the true gradient, effectively randomizing weight updates.

cosine similarity =

8.2 Simulator and Training Details

The design of the reward structure and termination conditions plays a critical role in shaping the
learned policy. Overly strict rewards can prevent learning altogether, while rewards that are too
lenient often lead to unsafe or suboptimal behavior. In practice, tuning the reward function is crucial
for the success of reinforcement learning algorithms [31]].

The reward function is described as:
ry = Crs — C?"pHpt - pdes”2 - Crv””t - Udes||2 - C’r"qHQt - QdesH2 - CraHat - OTab||2 )
where:

* p; € R3 is the current position (x, %, 2), paes is the desired hover position

o v; € R3 is the linear velocity (vz, vy, V2 ), Udes 1S the desired velocity

* q; € R? represents the orientation angles (8, ¢, 1), ques is the desired orientation
* a; € R* is the action (motor commands)

* (4 is the survival bonus to discourage early termination

e C,.p 18 a fixed action baseline offset

To encourage stable and progressively more precise control, a reward curriculum is applied by linearly
increasing the penalties during training. The initial and final values are summarized in Table 3]

Crp Crv Ora er C7's Crab

Start 1.0 0.01 0.14 025 1.0 0.667
End 35 0.10 050 025 1.0 0.667

Table 5: Reward parameters used during training. Penalties increase linearly across epochs, updated in six steps.

Drone Dynamics. The simulated drone uses a simple physics model. Motor thrust is derived from
RPM via a second-order polynomial:

T=cy+c-rpm+cy -rpm2
The motor dynamics are modeled using a first-order low-pass filter:

IPMyeq — IPM
T

Arpm =

where 7 represents the motor time constant. Body-frame dynamics are integrated and then transformed
to the world frame, as described by Eschmann et al.[[14].
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Table 6: Training hyperparameters for all methods.

Parameter BC TD3BC TD3BC+JSRL [Ours] TD3
Common Parameters

Hidden sizes [256, 128] [256,256] [256, 128] [256, 128]
Learning rate le-3 le-3 le-3 le-3
Buffer size M M M M
Slope start 2 2 2 2

Slope schedule adaptive adaptive adaptive adaptive
Scheduling order 3 3 3 3
Method-Specific Parameters

Warm-up steps 50 50 50 -
Policy noise 0.0 0.0 0.2 -

Noise clip - 0.5 0.5 -

a (TD3BC) - 2.0 2.0 -

T (Target) - 0.01 0.01 0.01

~ (Discount) - 0.99 0.99 0.99

A (BC coef) - - 0.2 -

BC decay factor - - 0.99 -
Training epochs 300 300 1000 1000
Steps per epoch  — - M M

Training Hyperparameters. Table [6] provides an overview of the hyperparameters used across all
methods. Common parameters are listed first, followed by method-specific values.

8.3 Energy Consumption Analysis

Although we do not have access to neuromorphic hardware small enough to fit on the Crazyflie, the
energy consumption can be estimated using the method proposed by Davies et al. [30], also used in
[32], we see that the total energy per inference would be 9.7 x 10> m.J, which is in line with the
result from Wang et al. [32] (normalized per timestep), and also in line with real-world measurements
from Paredes-Valles et al. [33], who measured 7 x 10~3 mJ for a much larger and deeper vision
network deployed on a neuromorphic system.

An overview of this calculation is given below.

Table 7: Simulation Parameters and Energy Values

Parameter Value
Energy per synaptic spike op Pk 23.6 (pJ)
Within-tile spike energy P, 1.7 (p))
Energy per neuron update P, 81 (p))
Layer sizes [N;,, N1, Na, Noyut] 18,256,128, 4
Activation Sparsity AS 0.79

The total energy per inference is estimated as:

E =[Ny (Py+ Nin - Py)]
+[Ps-(1—AS)- Ny + Ny (P, + Ny - Py)]
+[Ps(1_AS)N2+N0ut(N2Pw)]

~ 9.7 x 107° mJ

Note: The multiply operations of the input encoding are ignored. The output is a linear layer that
accumulates spikes, without explicit output neurons, therefore no energy for neuron updates P, are
accounted for.
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Discussion

A comparison of a conventional method (traditional controller or RNN) versus our method on the
Teensy would not be fair. For realizing the energy efficiency, our method depends on neuromorphic
hardware that leverages sparsity and asynchronous compute, while conventional methods would
not be able to profit as much. Therefore, the hardware implementation section of our paper aims at
demonstrating the feasibility of neuromorphic control, not at showing improved energy efficiency.

8.4 Pseudo Code: TD3BC+JSRL (Sequence-Based Training)

Algorithm 1 TD3BC+JSRL for Online Spiking Policy Training

1: Initialize: Replay buffer D, environment &, guiding policy 7y

2: Initialize: Spiking actor 7, critics Qg,, Q4 , target networks mor, Qg1 , Qg

3: Hyperparameters: o (TD3BC weight), Agc (BC coefficient), 7 (soft update rate), v (discount),
Oexplore (€Xploration noise), twarmup (Warm-up steps), 8 (BC decay)

4: for each training iteration do

5 // Collect trajectories

6: for each rollout do

7.

8

Reset environment: sg ~ &£
for timestept =0to 7T — 1 do

9: if £ < twarmup then
10: at < Tem (St) > Privileged guiding policy
11: mo(st) > Warm up spiking hidden states
12: else
13: ay < mo(st) + € € ~ N (0, Oexplore)
14: ag < Clip(at, —2, 2)
15: end if
16: Execute a;, observe (41, ¢, d:)
17: end for
18: Slice trajectory into overlapping sequences 7 = {(s¢, as, r¢, d¢, s¢41) =, with stride A
19: Add sequences 7 to D
20: end for

21: /I Network updates
22: for each gradient step do

23: Sample mini-batch of sequences {7;}Z ; from D

24: for each sequence 7 = {(s¢, ar, ¢, ds, s¢41) }2q do
25: Critic update: for all timesteps ¢ € [1, L]

26: ye =1+ (1 — di) ming Qg (s¢41, Tor (5¢41))
27: ¢j <—¢j —V¢j||Q¢j(st,at)— 2,f0rj:1,2
28: LAlt $— 71'0(8,5); Qt <— Q¢1 (St, dt)

29: Actor update: only for ¢ > twamup

30: EBC = ||at - &tHQ

31 A = a/mean(|Q;])

32: 0+ 06— Vo(—AQ: + A\scLrc)

33: end for

34: Soft update targets:

35: 9’ — 704+ (1—1)0

36: —7¢;+ (1 —71)¢) forj=1,2

37: end fZ)

38: Decay BC coefficient: \gc < SApc

39: if curriculum learning enabled then

40: & .update_curriculum()

41: end if

42: end for

43: return trained spiking policy g
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