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ABSTRACT

Reinforcement learning with human feedback (RLHF), which learns a reward
model from human preference data and then optimizes a policy to favor preferred
responses, has emerged as a central paradigm for aligning large language models
(LLMs) with human preferences. In this paper, we investigate exploration
principles for online RLHF, where one seeks to adaptively collect new preference
data to refine both the reward model and the policy in a data-efficient manner.
By examining existing optimism-based exploration algorithms, we identify a
drawback in their sampling protocol: they tend to gather comparisons that fail
to reduce the most informative uncertainties in reward differences, and we prove
lower bounds showing that such methods can incur linear regret over exponentially
long horizons. Motivated by this insight, we propose a new exploration scheme
that directs preference queries toward reducing uncertainty in reward differences
most relevant to policy improvement. Under a multi-armed bandit model of
RLHF, we establish regret bounds of order 7(P+1/(6+2)  where 3 > 0 is a
hyperparameter that balances reward maximization against mitigating distribution
shift. To our knowledge, this is the first online RLHF algorithm with regret scaling
polynomially in all model parameters.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range
of natural language tasks, yet aligning their behavior with human preferences remains a central
challenge. A widely adopted solution is reinforcement learning with human feedback (RLHF),
which fine-tunes a pretrained LLM using human preference data (Christiano et al., 2017; Ziegler
etal., 2019; Bai et al., 2022). The standard RLHF pipeline involves three stages: (i) supervised fine-
tuning (SFT) on human-written demonstrations to produce a baseline model; (ii) training a reward
model from human preference comparisons (Bradley & Terry, 1952); and (iii) optimizing the LLM
with reinforcement learning against the learned reward. This framework has been instrumental in
the success of instruction-following LLMs such as InstructGPT (Ouyang et al., 2022) and ChatGPT
(OpenAl, 2023), enabling models to produce responses that are more helpful, safe, and aligned with
human expectations.

Despite this progress, most existing RLHF implementations are offline (Zhao et al., 2023; Rafailov
et al., 2024; Azar et al., 2024): the preference data is collected once from static policies, and the
reward model is trained on this fixed dataset (Ivison et al., 2023; Zhu et al., 2024; Shi et al., 2025).
While effective, offline RLHF has inherent limitations—It cannot adaptively explore the enormous
space of natural language, leading to inefficient use of expensive human feedback. In contrast, online
RLHF offers a more powerful alternative: the policy iteratively collects new preference data, updates
the reward model, and improves itself based on these updates (Guo et al., 2024; Xiong et al., 2023;
Chen et al., 2024; Rosset et al., 2024; Dong et al., 2024; Feng et al., 2025). This interactive loop has
the potential to greatly improve both alignment quality and sample efficiency. However, realizing
this potential requires principled approaches to exploration, i.e., deciding which comparisons to
query in order to most effectively reduce uncertainty in reward estimation.
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A natural candidate for encouraging and guiding exploration is the principle of optimism (Lai &
Robbins, 1985; Lattimore & Szepesvari, 2020), which acts as if the environment is more optimistic
than currently estimated, within the limits of statistical uncertainty based on all data that has been
observed so far. It is usually implemented by adding an uncertainty-based bonus to reward or
value estimates, thereby prioritizing actions whose values are uncertain but potentially high. This
has yielded provably efficient algorithms in standard RL (see e.g., Jin et al. (2018); Zanette &
Brunskill (2019); Russo & Van Roy (2013); Azar et al. (2017)). However, extending this principle to
RLHF introduces new difficulties, where feedback comes not as a single reward but as a difference
between rewards of two actions. The key challenge is to determine the action pairs with the large
uncertainties most relevant to policy improvement. A few recent works achieved important progress
towards designing sample-efficient online RLHF algorithms based on the optimism principle (Cen
et al., 2025; Zhang et al., 2025; Xie et al., 2025). However the existing theoretical guarantees still
exhibit exponential dependency on certain model parameters, which potentially leads to inefficient
exploration.

With this context, this paper makes contribution towards designing efficient online exploration
schemes for RLHF with provable guarantees. By analyzing the existing algorithms in the seminal
works (Cen et al., 2025; Xie et al., 2025; Zhang et al., 2025), we discuss their inadequacy
in exploring the action pairs with the large uncertainties most relevant to policy improvement,
and construct lower bounds to show that the exponential dependency on certain parameters is
unavoidable in their regret. Based on these insights, we propose a new exploration scheme for RLHF
that adopts a different sampling protocol, and establish a regret bound that depends polynomially on
all model parameters.

2 MODEL SET-UP

Preliminaries. In RLHF, the prompt space X refers to the collection of all possible inputs or
queries that a user might provide to the model. The answer (or action) space A is the set of all
possible outputs the model can generate in reply to a given prompt. A language model is a policy
m : X = A(A) that defines a probability distribution 7 (- | 2) over A conditioned on a prompt
r € X, specifying how likely the model is to produce each potential response. The pipeline of
RLHF starts with supervised fine-tuning (SFT), where a reference policy mr : X — A(A) is
obtained by fine-tuning a pre-trained LLM on a dataset of prompts paired with high-quality answers
written by humans. SVT provides an initialization that stabilizes and improves the effectiveness of
the subsequent training stages that aligns the LLM with human preferences.

Reward modeling. To translate human preferences into a trainable objective, one need to model
how an oracle (e.g., a human annotator) rank two answers a; and ay given prompt . Following a
line of prior works (e.g., Cen et al. (2025); Xie et al. (2025); Zhang et al. (2025)), we assume that
preferences follow the Bradley-Terry model (Bradley & Terry, 1952)

exp(r*(z,ay))

Plar - as|z) = exp(r*(x, a1)) + exp(r*(z, az))

=0 (r*(z,a1) — r*(z,a2)). (2.1)

Here 7* : X x A — R is an underlying reward function of an answer given a prompt, a1 > as
means the answer a; is preferred compared to az, and o (z) = (1 +e~%)~! is the sigmoid function.
We also define a policy 7yf to characterize human preference:

exp(r*(z,a))
wen exp(r(z, a))’

me(alx) = 5

The reward function is unknown and can be learned from e.g., an offline dataset D = { (2, a’,,a’ )}
comprised of independent preference data samples using maximum likelihood estimation (MLE):

T

argmax{(r,D) where {(r,D) = Z logo(r(z',a’) — r(z’,a")), 2.2)
D

where a preference data sample denoted by (x, a4, a_) means that ay > a_ given prompt .
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RL fine-tuning. Given a reward model r, we seek to fine-tune the policy 7 to balance reward
maximization with maintaining similarity to the original model 7,f from the SFT stage. Towards
this, we define the KL-regularized reward objective

J(ﬂ-a T 7Tcal) = Emwp [ECLNT((‘ | z) [T(xa a)] - anﬂca|(- | x) [’I"(I, a’)] - 5K|—(7T( | 517) ” 7Tref(' | x)z%:;)
Here p is the prompt distribution, and 5 > 0 is the regularization parameter reflecting the strength
of the KL regularization. In practice, /3 is typically chosen to be small; for instance, in InstructGPT
(Ouyang et al., 2022) the optimal value is reported to be around 0.01 and 0.02. This objective
function includes a calibration policy 7, to eliminate the shift ambiguity of the reward function, as
two reward functions r(x, @) and r(x, a) + c¢(z) lead to the same preference model (2.1). Given any
reward function 7, the optimal policy 7, := arg max, J(m,r; 7ca) admits a closed-form expression
(Rafailov et al., 2024)

Tref(a | ) exp(r(z,a)/B)
Z,(x)
where Z,(xz) = >, mef(alz) exp(r(z,a)/F) is the normalizing factor. Notice that the selection

of 7. does not affect the optimal policy 7,- given the reward function . Our target is the optimal
policy 7* that maximizes the objective (2.3) under the true reward function r = r*, namely

m-(a|z) = 2.4

7 = arg max J (7, r*; Teal)- (2.5)

Offline RLHF. The above framework leads to offline RLHF methods that relies on the preference
dataset D for training. Initial approaches (Christiano et al., 2017; Ouyang et al., 2022) first
estimate a reward function 7 based on the preference dataset D using MLE, then optimize the KL-
regularized objective (2.3) with respect to 7. Another approach introduced by Rafailov et al. (2024)
condensed these two steps into one single step, known as direct preference optimization (DPO),

which optimizes
maleogo(ﬁ(log 7r(y+i‘l‘) ~log W(y7i|x) ))
T 5 7"'r'ei’(y-~- | ) Tref (YL | 7)

The above objective avoids explicitly estimating the reward function, which can be obtained by
expressing the reward function 7 in the MLE formulation (2.2) with the associated optimal policy
m, using the closed-form expression (2.4). However, as discussed in e.g., Xie et al. (2025); Zhang
et al. (2025), the efficiency of offline RLHF is limited by the coverage of the offline dataset D, and
online exploration with active data collection is necessary to achieve sample efficiency.

Online RLHF. We consider reward learning and policy learning iteratively, where in the ¢-th
iteration we use the current policy (), obtained from previous iterations, to sample new data and
subsequently update both the reward estimate and the policy. This setup enables online exploration
in RLHF by refining the reward model and policy in tandem as new preference data is collected. We
aim to minimize the regret

T
R(T) = Z [J(w*;r*,wca|) — J(ﬂ'(t); r*77rca|)]. (2.6)

t=1

It is worth mentioning that the choice of 7w, does not affect the regret. We define the following
function J* that measures the optimal objective value for a given reward r:

J*(r; Teal) = max J(m, 15 7cal) = J (T, 75 Teal)- 2.7

This function plays an important role in the exploration algorithms.

3 RLHF WITH ONLINE EXPLORATION

Three recent algorithms for online RLHF are most closely related to this work: VPO (Cen et al.,
2025), XPO (Xie et al., 2025), and SELM (Zhang et al., 2025). In this section, we first analyze and
discuss these approaches, and then introduce our proposed exploration scheme.
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3.1 INADEQUACY OF EXISTING APPROACHES

We begin by reviewing the procedure and intuition behind VPO (Cen et al., 2025). Fix a calibration
policy mc,i and an initial policy 7(1). For t = 1,2, ..., T, the t-th iteration of VPO consists of the
following steps:

1. Sample a prompt z* ~ p and two answers a’,al ~ 7 (-|zt). Query the preference oracle

to obtain pairwise comparison a’, - a’. Update the preference dataset D) = D=1

{(2*, ! al)}.

2. Update the reward model (**1) and the policy 7 (**1) using the updated preference dataset D*):

P = argmax  £(r, DY) 4+ aJ* (r; Teal), (3.1a)
7: X X A—[0,Tmax]
7Y = arg max J (7, 7Y wy), (3.1b)

where a > 0 is a regularization parameter, and step (3.1b) admits closed-form solution (2.4).

To illustrate the rationale behind VPO, consider the bandit case with no prompt. Step (3.1a) applies
the optimism principle, encouraging exploration based on the uncertainty in estimating the reward
difference between each action a and the calibration policy 7, . Formally, it can be viewed as the
Lagrangian form of the constrained optimization problem

max Eqor[r(a)] — Bqur, [r(a)] — BKL(7 || mef) st £(r, DY) > maXZ(T,D(t)) -B

for some B > 0. After the change of variable r'(a) = r(a) — Eqmn,[r(a)], this becomes
max B[ (a)] — BKL(7 || mref) st £(r", D) > max (', DP) = B, Equr[r'(a)] = 0.
r’,m r’

Here, the constraint set can be interpreted as a confidence region reflecting the uncertainty in
estimating each 7/(a) from D®). Consequently, the updated policy 7(**1) depends both on the
true reward gap r(a) — Eqr,[7(a)] and on the uncertainty in estimating this gap for each action
ac A

For intuition, suppose mca = 1,, for some ag € A, and assume that the true reward gaps are small.
In this case, 7(**1) favors actions with higher estimation uncertainty relative to ao, i.., those a where
the estimate of 7(a) — 7(ag) is most uncertain. However, comparing two actions ay,ag ~ w(+1)
reduces the uncertainty between them, rather than the (potentially larger) uncertainty relative to ag.
This misalignment can lead to inefficient exploration, as illustrated in the following example.

Example 1. Consider the bandit setting with three actions A = {ag, a1, as}, where the true rewards
are r*(ag) = 1 and r*(a1) = r*(ag) = 0. Let the reference policy Tt be uniform over A, and the
calibration policy be ey (a1) = Teal(az) = p and weai(ag) = 1 — 2p for some 0 < p < 1/4.

The following proposition shows that VPO may fail to explore efficiently in this setting The proof
can be found in Appendix A.

Proposition 1. Consider the setup in Example 1. Let the initial policy 7 of VPO be the uniform
distribution over A. Assume that Ty /B > 3. For any o > 0, with probability at least 4/(9¢), we
have

1
J(Tr*, T*§ 7Tca|) - J(ﬂ-(t)v T*; 7Tcal) > 5
holds for any 1 < t < exp(rmax/B)/2-
Let’s discuss the idea behind Proposition 1 with 7w, = 1,,. If the calibration action ag is

not visited during the first ¢ iterations, then 7(**1) will continue to favor a; and ay, since both
gaps r(a1) — r(ap) and r(ag) — r(ag) remain highly uncertain. In particular, we establish that
7D (ag) < exp(—Tmax/S), which is exponentially small, implying that ag is unlikely to be
sampled in iteration ¢ + 1. As a result, with constant probability, ay will not be sampled within
the first O(exp(rmax/0)) iterations, and the resulting highly suboptimal policy incurs linear regret
over an exponentially long horizon. This example highlights an algorithmic drawback: although
VPO acknowledges uncertainty in the reward gaps between a; and a( (and between as and ag), it
continues to encourage sampling a; and a9, leading primarily to comparisons between them that fail
to reduce their uncertainty relative to ag.
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Algorithm 1: Uncertainty-based RLHF exploration.

Input: initial policies 7(°), 7(1), regularizaton parameters {a}i>1.
fort=1to 1 do
Sample a prompt z* ~ p and two answers a} ~ 7=V (.| zt), ab ~ 7 (- | 2?).
Query the preference oracle to obtain pairwise comparison a’, > a’ and update the
preference dataset D = DD U {(at,at,, a" )}
Update the reward model 7(#+1) and the policy 7(**1) using D®:
rD = argmax  L(r, DY) + . J* (r; D), (3.2a)
r:X X A—[0,7max]

£ _ g max J(m, D 200) (3.20)

| where the policy update (3.2b) admits closed-form solution (2.4).
Output: {7 : 1 <t < T}

3.2 OUR APPROACH: EXPLORATION BASED ON UNCERTAINTY

A natural modification to address the issue above is to change the sampling scheme so that a} ~ 7®
and a, ~ 7. The intuition is that 7(*) encourages to explore actions with higher estimation
uncertainty relative to the actions favored by the calibration policy 7., . To effectively reduce this

uncertainty, it is sensible to compare one action drawn from () with another drawn from 7).
Indeed, the XPO and SELM algorithms (Xie et al., 2025; Zhang et al., 2025) can be viewed as
taking mca| = Tref-

However, if the fixed calibration policy 7, is highly suboptimal for reward maximization (for
example, if it concentrates on a few low-reward actions), then the comparison will almost always
favor a! ~ 7(!) against al, ~ 7.y, yielding little useful information. This issue is illustrated in the

following example.

Example 2. Consider the bandit setting with three actions A = {ag, a1, as}, where the true rewards
are *(ag) = 0, 7*(a1) = rmax and r*(az) = Tmax — 2. Let the reference policy be m.f(ag) =
1 —2/k, mef(a1) = mref(az) = 1/k for any k > 4.

The following result shows that, when « is large (as we will see in Assumption 1, this corresponds
to the case where the reference policy deviates from human preference), this modified sampling
schemes can lead to inefficient exploration in this setting. The proof is deferred to Appendix B.
Proposition 2. Consider the setup in Example 2. Assume that 5 < 1 and k < exp(rmax/S)-
For any initial policy #") and any a > 0, with probability at least 1 /64, the modified exploration
scheme which samples a'; ~ ") and a'y ~ 7. satisfies

J(@%, 775 mref) — J (78 1% mer) > 0.01
forany 1 <t < min{x, exp(Tmax)/2}.

This lower bound suggests that relying on a fixed calibration policy can lead to inefficient exploration
over an exponentially long horizon. We will come back to this example in Section 4 after presenting
our algorithm and theoretical guarantees. This observation motivates us to update the calibration
policy in each iteration adaptively.

Uncertainty-based exploration. We propose an exploration scheme where the calibration policy
evolves with the iterations. In the ¢-th iteration, instead of a fixed 7., , we use 7(t) as the calibration
policy when optimizing r(**1) and 7(t+1):

) = argmax  £(r, DY) + oy J* (r; 7)),
X X A—[0,7max]

7D = arg max J (mr, r+D; 7 (0),
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The key advantage is that 7(*) improves over time, guiding exploration away from uninformative
comparisons. Since 7(*) emphasizes actions with higher uncertainty relative to 7(*~1)_ it is natural
to compare a} ~ 7= and af ~ 7(*). This yields preference data that more directly reduces
uncertainty, leading to more efficient exploration. Our full exploration scheme is summarized in
Algorithm 1.

4 THEORETICAL RESULTS

We establish theoretical guarantees for Algorithm 1 under the multi-armed bandit setting (i.e., X =
@) with A = | A|. We begin with a general regret bound, whose proof is deferred to Section 5.

Theorem 1. Let oy > AlogT be non-decreasing in t. There exists a universal constant C > 0
such that, with probability at least 1 — O(T~1°), the cumulative regret of running Algorithm 1 for
T iterations satisfies

T
Arpalog T
R(T) < CrmaA’y/Tlog T + C S ’"aiog + CA%apr2,, @.1)
t=1 ¢

_B_
+ Clrmp+logT) Y min {WF(MOW% (Tw(a—> ) R }
r*(ay)>r*(a_) T(-HF(ai) 7Tref(G,+)

We now discuss the implications of Theorem 1. When 8 = 0, which corresponds to the case where
only reward maximization matters, the regret bound (4.1) simplifies to

t

R(T) = 6((A3/2Tr?;1/au2x + A2Tn1ax)ﬁ) when ap < AlogT + Y .
TIII&X

When S > 0, the performance of the exploration algorithm becomes more intricate due to the
trade-off between reward maximization and similarity to the reference policy. To interpret the
general regret bound in this regime, we introduce the following assumption to capture the interaction
between human preference myr and the reference policy myef.

Assumption 1. There exists «, 7 > 1 such that, for any action pair (a4, a_),

7rref(a—&-) > 1
Wref(a,) -

THF (a+)

>T7T =
WHF(G,)

Intuitively, Assumption 1 requires that whenever a. is substantially more preferred than a_ under
human preference, the reference policy does not assign disproportionately higher weight to a_ than
to ay. This is reasonable, since s is obtained from the SFT step, where a pretrained LLM is
fine-tuned on human demonstrations already broadly aligned with preference. The quantities « and
T capture the degree of alignment between s and wyg, and their size reflects the influence of
the reference policy on RLHF. We note that the illustrative Example 1 satisfies Assumption 1 with
k, 7 = O(1), and the parameter « in Example 2 is consistent with the x here. Under this assumption,
we obtain the following simplified regret bound, whose proof is deferred to Appendix D.

Proposition 3. Suppose that Assumption 1 holds. Let
T'max ) 7 ( log T ) e
K A(rmax + logT) '

o :AlogT+tﬁ(

Then with probability at least 1 — O(T~10), we have

R(T) $ (7 + K T5%) poly(A, T, log T),
where the degree of the polynomial factor does not depend on (3.

Remark 1. When & is large, namely the reference policy deviates significantly from the human
preference, it is natural to choose a small KL regularization parameter (3 to reduce the influence of
the reference policy. In this regime, Algorithm 1 remains robust, since the regret bound scales only
with . By contrast, the lower bound in Proposition 2 suggests that the sampling protocols in prior
works (Xie et al., 2025; Zhang et al., 2025) would incur regret at least linear in . This demonstrates
that our strategy accommodates scenarios with small 3, where the reference policy is poorly aligned
with human preference.
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Remark 2. In Appendix E, we present an alternative assumption linking human preference and the
reference policy, together with the corresponding regret guarantee.

Proposition 3 establishes a regret bound of order O(T %), with only polynomial dependence on
the other parameters. This stands in sharp contrast to prior works (Cen et al., 2025; Xie et al., 2025;
Zhang et al., 2025), which achieved the more standard O(+/T) regret but at the cost of exponential
dependence on terms such as ry.x/3. We conjecture that, for RLHF, eliminating exponential
dependence inevitably requires a slower rate in 7', with the exponent governed by . This trade-off
is intuitive: online exploration primarily serves to learn human preference, and as the regularization
parameter [3 increases, greater emphasis is placed on preserving similarity to the reference measure.
This constraint naturally slows convergence.

5 PROOF OF THEOREM 1

5.1 STEP 1: REGRET DECOMPOSITION

In view of the optimality of r® (cf. equation (3.2a)), we have
0D, DU T (r s 70Dy > (e, DU g T (20D,
Rearrange terms to get

1
g (t) D(t—l) _g * D(t—l) > J* *, _(t—1) _J* (t). (t—1)
L, D) — 57, DOD)] 2 1700 < 7 r0570D)
9 max J(m, % wY —max J(m, r®; 7(t-1)

(i)
> J(F*,T*;ﬂ'(t_l)) - J(W(t),r(t);w(t_l)). 5.1

Here step (i) follows from the definition of J* (cf. equation (2.7)), while step (ii) follows from the
optimality of 7(*) (cf. equation (3.2b)). This allows us to reach the following decomposition:

Regret, = J(m*, r*;7(¢~Y) — J(z® p*; 2(t-1)
< a;l [((r(t)7D(t)) — E(r*,D(t))] + J(ﬂ'(t),r(t); W(t_l)) — J(?T(t),T*; F(t_l)). (5.2)

=0, =y

In view of the definition of J (cf. equation (2.3)), we can further decompose
% = Earnr [1(0)] = Egrore=n [V (@)] = Eqrno [1* ()] + Eqromee—n [1* (a)]
=70 (ah) = rD(af) = 1*(ah) + r*(a}) + &
where &, is the martingale difference sequence
& = Equneo [PV (@)] = (ah) = Egroreen [r ()] + 7 ()
— Eqroro [r*(a)] + 77 (a3) + Eqonce—n [r*(a)] = 7 (a]).

Therefore we have

T T T T
Regret = » "Regret, <> 0i+ > &+ [rW(ab) —rD(a}) —r*(ab) + *(al)]. (5.3)
t=1 t=1 t=1 t=1

N~ Y~~~
=:0 =:£ =:¢

It is straightforward to bound the second term £. Notice that |£;| < 87pax holds deterministically
for any 1 <t < T. By the Azuma-Hoeffding inequality, with probability exceeding 1 — O(T~1?)
we have

T
f = th < Ch7max V TIOgT 5.4)
t=1
for some universal constant C; > 0. In what follows, we bound the other two terms 6 and (.
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5.2 STEP 2: BOUNDING LIKELIHOOD RATIOS

To bound 6, we need to analyze the regularized MLE. Notice that

((r®, DO — ¢(r*, DY) ol Zlo o(r®(zt,al) —r®(z?,a’))

0, = . .
k oy o(r*(a?,a’.) — r*(az%,a"))

The following lemma is crucial for the subsequent analysis. The proof can be found in Appendix C.1.
Lemma 1. For any given rewardfunction r: A= [Ernax] and any 1 < t < T, define

Bl = 3 log ) Z KL (o “(ab)) | o(r(ad) — r(ab).

P o(r(a’y) —

There exists some universal constant Co > 1 such that for any fixed r, with probability at least 1 — 6,

logt

|A(r)] < Cq ZrmaxKL(o(r*(aﬁ) —r*(ad)) || o(r(al) — r(ad))) log1 el +C9T max log —— 5

i=1 0

Equipped with the concentration bounds in Lemma 1, we can use the standard covering argument to
derive an uniform upper bound, whose proof is deferred to Appendix C.2.

Lemma 2. There exists some universal constant Cs > 0 such that with probability exceeding 1 —
o(T=9),

((r, DY) —¢(r* D) < —

Z KL (o r*(ab)) || o(r(a}) — r(a}))) + C3Armax log T

N} \

holds for any r : A — [trmax] and 1 <t < T.

As an immediate consequence of Lemma 2, with probability exceeding 1 — O(T~?),
((r® D) — ¢(7*, DY) < C3 Arpay log T

holds for any 1 < ¢ < T'. Therefore

r® DOy D) T CaAr loeT
9_Zet Z< )~ U7 D)y~ OaArmanlog T 55)

« (0%
t =1 t

5.3 STEP 3: BOUNDING REWARD ERRORS
We first notice that

a;l[f(r(t),D(t_l)) —L(r* , Dt~ 1))] > max J(m, r* st 1)) max J (7, P p(t= 1))

(i>i) J(m® ) — (70 0 7 (70
D Eporo [rV(a) = 7 (0)] = Eqero—n [r? () — r*(a)]
Z _4rmax~ (56)

Here step (i) is an intermediate step of (5.1); step (ii) follows from the optimality of 7® (cf. (3.2b));
step (iii) follows from the definition of J (cf. (2.3)). This combined with Lemma 2 implies that

> KL(o((ay) = (a3) || o(r ¥ (a}) — ) (a3)) (57)

< —2[€(r(t),D(t)) — f(r*,D(t))] + 205 Armax log T < CyoyTmax,

as long as a; > AlogT and C4 > 8 4+ 2C5. This implies that for any ¢ € [T] and any action pair

((Z+, (LL_),
C4atrmax

KL(o(r* (ar) = r*(a-)llo(rO(ay) = r(a-)) < ot

(5.8)
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where N;(ay,a_) is the number of comparison for (ay,a_) up to time ¢. This motivates us to
decompose ¢ according to whether Ny (ay,a_) > qyrmax: let 7 := 100C a1 rmax and denote by
tn(a4,a_) the time of the n-th comparison for (a4, a_), we have

NT(a+,a_)

C < 27_"427ﬂmax + Z Z |T(t")(a+) - r(tn)(a’*) - T*(a+) + T*(a*)‘v

re(ay)=r(a") _ n=T

—¢(at,a-)

where we denote by ¢,(at,a_) the time of the n-th comparison for (ai,a_), and the first
summation is taken over all action pairs (ay,a_) satisfying 7*(a1) > r*(a—). To bound each
¢(ay,a_), we need the following technical lemma. The proof can be found in Appendix C.3.

Lemma 3. Consider any action pair (ay,a_) and time to such that Ny, (ay,a_) > 1. There
exists universal constant Cs > 0 such that, for any tg < t1 < to < T, with probability exceeding
1 —O(T19) we have

(2

Niy(asoas) = Ny(apa) <G > DTk (00 (0y) = (0o 0 (a) = D (a)))

=ty 1 Tref (a4 )

+o(r*(a_) — r*(aﬁ)ﬂ + Cs5+/TlogT.

Equipped with Lemma 3, we can bound each (a4, a_) using both density ratios regarding human
feedback mue(ay)/mue(a—), and regarding the reference policy mef(a—)/mref(as). The proof is
deferred to Appendix C.4.

Lemma 4. There exists universal constant Cg > 0 such that, for any action pair (a4, a_), with
probability exceeding 1 — O(T~%) we have

_B_
) mhe(ay) ( 7rref((l—)) T g g
ay,0_) < Cg(Tmax +logT) min{ ————apTmax, | T ————= o rax
C( + ) 6( g ) {WHF(G/) T 7Tref(CL+) T
AN VlogT
+ Cs ( r(a4,a-)log + \/TlogT) Tmax-
ar
This immediately implies that
AT logT
C S 27—1427rlmax + CG (ang + A2 V Tlog T> Tmax (59)

8
+ CG(Tmax + log T) Z mln {ﬂ-HF(aJr)aT,rmaX’ (TﬂMa)) B+1 aﬁ/rg }
r(ag)>r*(a-) mhF (a-) Tref(a+)

Putting the regret decomposition (5.3) and the bounds (5.4), (5.5) and (5.9) collectively yields the
desired regret bound (4.1).

6 DISCUSSION

In this paper, we investigated the problem of efficient exploration in online RLHF. By a careful
analysis of the existing optimism-based exploration strategies, we identified a conceptual drawback
in their sampling protocol, and we proved lower bounds to show that they can lead to inefficient
exploration. We then proposed our algorithm that explicitly targets uncertainty in reward differences
most relevant for policy improvement. Under a multi-armed bandit setup of RLHF, we establish
regret bounds of order 7(3+1)/(8+2) " which scales polynomially in all model parameters.

Our work opens several avenues for future investigation. An immediate question is whether the rate
TB+1)/(5+2) js minimax optimal, or if faster rates can be achieved. Another important direction is
to refine the dependence on parameters such as A and 7y, which may be improved with sharper
analysis or alternative exploration schemes. Finally, our theoretical results are restricted to the bandit
setting; extending the analysis to richer environments that incorporate a prompt space would be an
exciting step toward bridging theory and practice in online RLHF.
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LLM USAGE

In preparing this paper, large language models (LLMs) were used as an assistive tool for minor
language polishing. All technical contributions, results, and conclusions are solely the work of the
authors.

A PROOF OF PROPOSITION 1

For each t > 1, define the event
&t == {no ap is sampled in the first ¢ samples}.

We will show that for any ¢ > 1,

P(&) > = (1 — exp(—rmax/B)) """, (A.1)

O i~

Conditional on &, it can be seen that £(r, D®)) only depends on 7(a;) —7(az). Now we study when
we fix r(a;) — r(ag) = d such that £(r, D®)) is fixed, when is J (7, ; o)) maximized over both 7
and r. By symmetry, we can assume without loss of generality that § > 0. We can compute

J(Wan Teal) = Ea~ﬂ[r(a)] — Eonren [T(a)] - BKL(W H Trref)
= [m(a1) = pl[r(a1) — r(ao)] + [7(az) — p][r(az) — r(ag)] — BKL(T || mrer)
= [r(a1) + m(az) — 2pl[r(a1) — r(ao)] — d[m(az) — p| — BKL(T || mref)-

For fixed m, we check which reward function » maximizes J (7, 7; cal).

* When 7(a1) + m(az) > 2p, we know that
max J (7, 7; Teal) = rmax|[7(a1) + w(az) — 2p] — d[w(az) — p] — BKL(7 || 7ref), (A2)

which is maximized at 7(a1) = Tmax, 7(@2) = max — ¢ and r(ag) = 0.
* When 7(a1) + m(az2) < 2p, we know that
max J(m, 75 7cal) = (Tmax — 0)[2p — w(ay) — w(a2)] — d[m(az) — p] — BKL(7 || mref), (A.3)
which is maximized at r(a1) = §, r(az) = 0 and 7(ag) = Tmax-
In addition, for any policy 7 such that (a1 )+ m(az2) < 2p, by considering another policy 7’ defined
as ' (a1) = 2p — w(az) and 7’ (ag) = 2p — m(ay), we have
max J (7', 7; Teal) — max J (7, 7; Teal)
= Tmax[7'(a1) + 7' (a2) — 2p] — 6["(az) — p] — BKL(7 || 7rer)
— (Fmax — 0)[2p — m(a1) — 7(a2)] + 0[m(az) — p] + BKL(T || Teer)
= BIKL(7 || rer) — KL(7" || ref)]-
Here the first relation follows from (A.2), (A.3) and the fact that 7'(ay) + 7’(a2) > 2p. Letx =
m(a1) and y = 7(ag). Let
fa,y) = KL(7 || Trer) — KL(7" || rer)
=zlogr +ylogy + (1 — 2 —y)log(l -z —y) — (2p — x) log(2p — )
—(2p—y)log(2p—y) — (1 —4p+ 2z +y)log(l +z +y — 4p).

By elementary analysis, it is straightforward to check that f(x,y) > 0 for any x,y > 0 satisfying
z + y < 2p. Therefore we have

max J (7', 7 Teal) > max J(m, 7; Tear)-
T T

Therefore in order to maximize ¢(r, D)) + a.J*(r; ), the following statement always holds
regardless of the value of §:

T(t+1)(a0) = ()7 max {r(t+1)(a1),7‘(t+1)(a2)} = Tmax-

12
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This immediately implies that

W(t-&-l)(a ) = eXP(T(Hl)(aO)/ﬁ) <
0 exp(r(tt (ag)/B) + exp(rtt(ay)/B) + exp(rtt(az)/B) ~ 2 + exp(rmax/B) "

Therefore conditional on &, we know that

1
1 + exp(_rmax/ﬁ

P(Ery1l&) > (1 - 7r(tﬂ)(ao))2 2 < )) > (1- eXp(""max/B))z'

This relation, together with

P(€0) = (rV(ar) + 7V (a2))* = =

establishes the statement (A.1). This immediately implies that, for any ¢ < exp(rmax/5)/2,

4 _ 4 x<p(r 4
B(€) 2 5 (1 = exp(=rmax/B) " 2 5 (1= exp(=rinae/8) "7 = = 2 016,
€

9
Finally, when &; holds, we have
J(T5 1% Teal) — J(W(t);r*, Teal) = 7 (ag) — W(t)(ao) — BKL(7*||7rref) + BKL(W(t)Hmef).

We have
exp(1/p) 1

77*(&0) = exp(l/ﬁ) i 27 Tr*(a’l) = W*(ag) = exp(l/ﬁ) ¥ 2
Therefore we have

KL(7* || 7rvef) = log 3 4+ 7% (ap) log m*(ag) + 7 (a1) log 7* (a1) + 7* (az) log 7* (asz)
exp(1/8) | e(1/8) 2
exp(1/8)+2 “exp(1/8)+2 exp(1/8)+2 " exp(1/8)+2

exp(1/8)
W — loglexp(1/8) + 2].

In addition, when £~ happens, we know that

=log3 +

=log3+p7!

KL(7® || 7ref) = log 3 + 7Y (ag) log 7™ (ag) + 71 (a1) log 7™ (a1) + 7* (az) log 7 (az)
70 (ay) + 70 (ay)
2

@
> log 3 4 7 (ag) log 7™ (ag) + [ﬂ(t) (a1) + W(t)(ag)] log

1—7®
=1log3 + 7 (ag) log 7 (ag) + [1- ﬂ(t)(ao)] log +W

(i)
> log3 —log2 — 0.16.
Here step (i) uses Jensen’s inequality for convex function f(x) = xlogz; step (ii) holds since the

function g(z) = zlogz + (1 — ) log(1 — z)/2 is monotonically decreasing for 0 < = < 1/3, and
we have

(t)
™ (a0) < 2 + exp(Tmax/B) = 2 + exp(3)

provided that r,,x /8 > 3. We have

< 0.046

T % meal) — J (0 0% meal) = 7 (a0) — 71 (a0) — BKL(T || 7rer) + BKL(TD || mer)
> Blog (exp(1/B) +2) — (log 2 + 0.16)3 — 0.046
>1/2,

where the last relation holds for any 3 > 0.

13
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B PROOF OF PROPOSITION 2

Let T' = min{k, exp(rmax)/2}, and define the events
A= {ag =qgforalll <t < T}

and
E:={al = aboral =adlforall1 <t <T}.
We can check that when k > 5,
1
]P)(A) = [ﬂ'ref(ao)]T < (1 - 2/{71)“ > T6

Conditional on A, we know that when 7, > 1,

P(E]A) > ( exp(Tmax — 1) ))T . ( exp(Tmax — 1) )exp('rmax)/Q .

1
1+ exp(rmax — 1 1+ exp(rmax — 1) 4
Conditional on A and &, for any 1 < ¢t < T —1, all the preference data in DO are of form al = ab.
In this case, it is straightforward to check that the reward function that maximizes ¢(r, D)) +
aJ* (r; Tref) is
rt Y (ag) =0, VD (a1) =Y (ay) = rpax.
This immediately implies that
K—2
Kk — 24 2exp(rmax/B)’
On the other hand, we know that

7 (qy) = 70D (gy) = exp(rmax/ /%)

(t+1) =
™ ((10) K—2+2 eXp(rmax/ﬁ) '

. _ K—2
) = e Dl B) T 5> = D/B)
Tr*(a;l) — eXp(/rmaX//B) ,
K — 2+ exp(Tmax/B) + exp((Tmax — 2)/5)
™ (az) = exp((rmax — 2)/B)

K — 2+ exp(rmax/B) + exp((rmax — 2)/8)
For any 2 <t < T, we first lower bound
J(ﬂ'*; T*a 7Tref) - J(Tr(t); T*7 7Tref) > J(ﬂ'g*;T*, 7"'ref) - J(Tr1§ T*a 7Tref) (B.1)

for any 0* € [0, 1], where we define 7y = O 4+ (1 — #)x*, and the above relation follows from
the optimality of 7*. Recall the definition

2

T a;
J(T‘-; 71*7 7Tref) = 7T(afl)rmax + W(GQ)(Tmax - 2) - 6 Z 7'('(0/1‘) IOg - E(a)) )
i=0 re (3
we can compute
r*(ag) — Blog[m(ao)/mer(ao)] — B
Vo (m;r*, Tef) = | 17%(a1) — Blog[m(ayr)/mer(a1)] —
r*(az) — Blog[m(az)/mef(az)] — B
and
V2 J (7%, Tef) = —Bdiag {7 (ao), W(al),w(ag)}_l )
It is straightforward to check that
0 1
Vad(m® % me) =1 0 | +const- | 1 |. (B.2)
-1 1

14
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Since 7 (ag) < 7*(ap), 7™ (a1) < 7 (a1) and 7® (ay) > 7*(az), we know that for any 6 €
[0,0%]

V2J(Tg; 7%, Tref) = —Bdiag{ﬂ(t)(ao),ﬂ(t)(al), 0*m(®) (a2) + (1 — 9*)77*((12)}_1. (B.3)

Therefore we have

@)
J(mge; 77, Tpef) — J (1377, Tref) > O*VWJ(Tr(t); 7 Tref) | (T — W(t))
ﬁe*Q

5 (m ﬂ(t))Tdiag{w(t)(ao),W(t)(al), 07 (ag) + (1 — 9*)77*(@2)}_1(77* — )
2 0 n0 (@2) - (@2)] ~ T [ (a0) & 7 (on) + 367 (a2)/07]
= 0°n 0 a2) — 7*(a2)] — 580" 7" (az) — T (1~ 7" (a2)

= (1 — 9/8) G*W(t)(ag) _ (1 _ B§*> 9*71'*(0,2) _ 502*2

i (3 B30 BO*2 ) 15 0+2
3_9 Pa®(ag) - P02 D By 0y _ 07 B4
(4 /3+8) (2) - T~ 2 20w az) — (B.4)

Here step (i) follows from the Taylor expansion and (B.3); step (ii) utilizes (B.2) and as well as the
following relations
ﬂ'(t)(ao) < 71 (ap) < QW(t)(ao), 7® (a1) <7(a1) < 27r(t)(a1)

and when 3 < 1,
2
*
< -
T S A T

steps (iii) and (iv) follows from (B.5) and § < 1. When x < exp(rmax3), we have

1
W(t)(az) < Zﬂ(t)(ag); (B.5)

max max ]'
70(ay) = —BUmax/D) ., _ODUmax/ D) 1 (B.6)
Kk —2+2exp(Tmax/B) ~ 3exp(Tmax/8) —2 ~ 3
By taking (B.1), (B.4) and (B.6) collectively, we have
5 9*2 25
(7% 7% Tref) — J(Tf'(t);T*,ﬂ'ref) > 3—20* -5 2 72048 > 0.01
where we take 0* = 5/32.
C PROOF OF AUXILIARY LEMMAS
C.1 PROOF OF LEMMA 1
We first express
o(r*(al) —r*(al)) o(r*(ay) —r*(a3)) : o(r*(ay) — r*(af)
X; = log - - =1{a} = ab}log - %+ 1{aj < a3} log > T
o(r(ay) —r(al)) b o(r(ay) —r(a3)) b o(r(a3) —r(ay))
It is straightforward to check that
» o i iy ot (al) —1*(ah)) o(r*(ay) —r*(a}))
E X K3 K3 — ]P) 1 1 1 1 1 = _ ]P) 1 -
[ Z|a’17a’2} (al - a2|a1’a2) og O'(T aji) 7 7’(0412)) + (al = a2|a17a2) og O'(T(aé) T(all))
i s i o(r*(at) — r*(at i X o(r*(ab) — r*(a’
= o(r*(a}) — *(a3)) log U\ =B g1 — g (a)) Lo T 12 1 (01)
o(r(ay) —r(ay)) o(r(ay) —r(al)

= KL(o(r*(a}) — 7*(a5)) || o(r(a}) — r(a3)))-
and _ '
| X < |10g (1 +exp(—r(aly) + r(a’_)))’ < 27max-



Under review as a conference paper at ICLR 2026

In addition, we can compute the variance

Var (Xi|at, ab) = o(r*(a}) — r*(ab))o (r*(ab) — r*(a})) [log

= o(r*(a}) = r* (a)o (1" (ab) — *(a)) [r(al) — r(ab) — *(a}) + " (a})
In view of Lemma 5, we have
KL(o(r* (a}) — " (a})) || o(r(a}) = r(a3)))
> 100 (@) — (@) (ah) — *(a})
min {[r(a}) = r(ag) = r*(a}) +r*(@d)], [r(a}) = r(ag) = r*(a}) +*(a})]}

= 167‘1Inax o(r*(a}) = r*(ah))o(r* (ab) — *(a})) [r(a}) — r(ab) — r*(a}) +1*(a)],
(.1)

where the last step follows from |r(a%) — r(ab) — r*(a%) + r*(a})| < 4rmax. Therefore we have
Var (Xiaj, a5) < 167maxKL(0(r*(a}y) — 77 (al)) || o(r(a}) — 7(al))).

In addition, we have the following deterministic bound

ZVar X |a1,a2) < 16tr2
=1

max*

By the Freedman’s inequality (cf. Lemma 6), for any fixed r, with probability exceeding 1 — 4,

i(xi—za[xinaaam\

i=1

[A(r)] <

=1

¢
. , A . lo logt
< CQ\I ZrmaxKL(a(r*(aﬁ) —r*(ad)) || o(r(al) — r(a}))) log ? + Cormax log ?
for some sufficiently large constant Co > 0.

C.2 PROOF OF LEMMA 2

For any fixed r : A — [£7max], With probability exceeding 1 — ¢ we have

) i _ A . . log T log T

'At‘”'SCQJZ’"maXKL(W*(aa)—r*(aa» I o(rah) — (@) log 5T 4 Corine,log 2%
=1

(u) 1 i ‘ logT

<32 Kol r(ah) || o(r(a}) = 7(a3))) + 205 rmax log =

Here step (i) follows from Lemma 1, and step (ii) utilizes the AM-GM inequality. This immediately
implies that

((r, DY) — ¢(r*, D) Zlog olr ‘.F) r(ai_‘))
o(r*(a’) —r*(a™))

— 3Kl (ah) = ) | o) — r(e}) - A
i=1
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t
x( q i i log T
3K —1*(a})) || o(r(a}) = 7(a$))) + 203 rimalog 5.

(C2)

l\’)\»—t

Then we explore the Lipschitzness continuity of the above functionals of r. For any two fixed reward
functions r, " : A — [£rmax], we have

¢(r, D) D) = Z llog[o(r(a’,) — r(a’))] — loglo(+" (a%,) — r'(a’))]|

< Z Ir(a®) —r(as) —r'(a’) + ' (a")| < 2T||r — ||y (C.3)

where the penultimate step follows from dlog(o(z))/dz = o(—x) < 1. Similarly, for any x,y,d €
R, we have

o(y+0) 1—0o(y+9)
[KL(o(2) | 0(y)) = KL(o(2) [ oy +9))| = |o () log )t (1—o(x))log Tl
<o(@)|0] + (1 - o(z))lo] = [4].
This implies that
—1*(ay)) | o(r(a}) — r(a3)))
— > KL(o(r*(a}) —r*(ay) || o(r'(a}) — ' (a3))| < 207 —"|cc- (C4)
i=1

Let AV be an e-net of [—rpax, rmax]A (or equivalently, the function space of r : A — [£7max))
under the /., norm such that [NV.| < (2ryax/c)?. By standard union bound argument and (C.2),
with probability exceeding 1 — 4,

, , Nc|log T
t(r, D) — t(r*, D) Z KL(o (@) | o(r(a}) —r(a3))) + 203 log NoLET
(C5)

holds for any r € A;. This implies that for any r : A — [£rypax], there exists 7o € N; such that
lr — 7’| < e, hence

(1)
((r, DO — £(r*, D) < (1, DD — £(+*, DD + 2T¢

a1 */ d *( i i i Ne|log T

< 9 Z KL(U(T (a1) —1*(a3)) || o(ro(ai) — 7’0(@2))) + 2021 pax log | |5 4+ 9Te
i=1

i) 1 o A , , ‘ log T

< -5 Z KL(o(r*(a}) —r*(ab)) || o(r(a}) — r(ab))) + 2C5Tmax log We|log T +4Te

2 i=1 )

W 1 .

< _5 Z KL(U(T*(G’ZI) -r ( )) || U al) - T(GQ))) + C3ATmax log T
i=1

Here step (i) utilizes (C.3); step (ii) follows from ry € N, and the uniform concentration bound
(C.5); step (iii) uses (C.4); step (iv) holds as long as C3 > 2C2, where we let € = Arp,,, /T and
§ = T~1Y. This completes the proof.

C.3 PROOF OF LEMMA 3

When Ny(a4,a_) > 100C 07 max, we have

KL(o(r*(ay) = *(a-)) | o(r®(as) =D (a_))) < . (C56)

17
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Now we assert that () (a_) — r®)(a;) < 0.5 for any t > to. This is because, if r(a_) —
r®(ay) > 0.5, we have

KL(o(r*(at) = r*(a)) || o(r®(ay) =P (a-))) = KL(o(r*(a-) = r*(ay)) || o(r (a=) =1 (ay)))
> KL(c(0) || 0(0.5)) > W]Lo'
Here we use the fact that r*(a_) — r*(a4.) < 0. This contradicts with (C.6). Hence we have
r®(a_) —r®(ay) < 0.5. (C.7)

Letp = o(r*(a_) —r*(ay)) and ¢ == o(r®(a_) — r®(a,)). We have

exp(r®(a_) — r(a4)) € 30(-(a_) — 1D (ay)) = 3¢ < 6p+ KL(p || 0) ©8)
— 60 (r*(a_) — r*(ag)) + 24KL(o(r(az) — *(a_)) || o(rO(ay) — 7O (a_)).

Here step (i) follows from (C.7), while step (ii) holds trivially when ¢ < 2p, and when ¢ > 2p we
have

p 1-p _ (g—p)
KL(p || ¢) = plog = + (1 — p) log >
(»lla) . ( ) ¢ o

OOM—A

Finally, for any g < t1 < to < T, we can upper bound

to
Ny, (ay,a_) — Ny (ag,a-) < Z X; where X;:=1{a_ is sampled in the i-th iteration}.
i=t1+1

It is straightforward to check that X; — E[X;|F;_1] is a martingale difference sequence, and by the
Azuma-Hoeffding inequality, with probability exceeding 1 — O(T~1%) we have

to

> (=B, 700)) < Oy TlogT

i=t1+1

for some universal constant C > 0. In addition, we have

) . @) (a_) 7r(ifl)(ai)
E[X,|x® 7D < T . _ : .
el S ) a0y T R () A0 (ay)

For each t € [T'], we have

7®(a_) 0 7Tref( _)exp(r(a_)/B)

7 0(a) +70(ay) ~ mrer(a) exp(r®(a-)/8) + mer(as) exp(r®(a)/5)
Tref(a_) _®
< Ty e (1) =) /)
< T G0 (0-) = r* () + 24KL(o(r*a) (0 ) | o) = )]
7"'ref(a+)

Here step (i) utilizes (2.4), while step (ii) follows from (C.8). Hence we have

t2 ()
™ a_
Ntz(a+aa*)_Nt1(a+ua*)§2 Z ) ( ) +2CleOg

t=t1+1 (a-) + 7 (a

<oy M[KL(W(M—r*<a_>>||a<r<f><a+>—r<t><a_>>>%

Tref(ay)

+o(r*(a-) — r*(aQ)ﬂ + C5+/TlogT

for some sufficiently large constant C'5 > 0.

18
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C.4 PROOF OF LEMMA 4

Let t( be the first iteration such that
1
Niy(ay,a_) > min {QNT(a+, a_), 10()C4aTrmaX} . (C.9

In what follows, we establish the desired result under two different cases: N (a4, a_) being larger
or smaller than ¢y exp(r*(ay) — r*(a—))arTmax for some sufficiently large constant co > 0.

Case1l. When Nr(ay,a_) < coexp(r*(ay) —r*(a—))arrmax, it is straightforward to show that

THE(a4) o

C(a-i-a a—) < NT(a-i-’ Cl_)’l“max < 06 eXp(r*(a+) - T*(a—))aTrr?nax = C6 AT T max-
WHF(G,)
(C.10)
In addition, we have
COTT"max
o(r*(a_) —r"(a <exp(r(a_) —r*(a < — =T
(r*(a-) = r*(04)) < exp(r () = r*(a) € S
In addition, for any ¢y <t < T, we can use (5.8) to show that
C max 2C max
KL(o(r*(ay) — r* (a_)[lo (r® (a4) — 1O (a_))) < oot 1T (1)

~ Nylay,a_) =~ Nr(ag,a_)’
By taking t; =ty — 1 and t3 = T in Lemma 3, we have

(i)
Nr(as,a-) < 2[Np(aga-) — Neg_1(a.a-)

(i) 7Tref(a,_) Cs max{co, 204}04T7"max /8
< 4T ( )"+ 205/ TlogT.
S Nl \/Tlog T

Here step (i) follows from the definition of ¢y (cf. (C.9)), while step (ii) uses the above two bounds
and Lemma 3 with ¢; = tg — 1 and ¢, = T'. This immediately implies that

B

71—ref(a—) el 1
NT(CL+,CL_) <C; | T——= (aTTmax) B+1 —|—C7\/T10gT

Tref (a4

for some sufficiently large constant C'; > 0. This leads to

Tref (a-) 7 7 e
C(ay,a_) < Np(ay,a_)rmax < Cr <Tﬂ_ @ )> artrhix + Cr/Tlog Trmax. (C.12)
ref (U4

Case 2. When Np(aq,a_) > coexp(r*(as) — r*(a_))aprmax, we have

. 1 i 2
exp(r*(a+) — r*(a—))arrmax < %NT(G-HG—) < a[NT(CMma—) — Niy—1(aq,a-)]
) 1/8
(1_<1) 205/ Tﬂ'ref(a_)
o Treflag)
(i) 4 _ 2C!
< — max{Cs, 2C4C5/co}1/BTM exp(r*(a_) — r*(ap))"/? + =2 /TlogT.
Co 7Tref(a-‘,-) Co

2C! max \ /8 2C

o(r*(a_) —r*(ayp))V/P + (NT(a+ ) TlogT

Co

Here step (i) follows from the definition of ¢y (cf. (C.9)); step (ii) utilizes Lemma 3 with t; =ty — 1
and t; = T, as well as (C.11); step (iii) holds since o (r*(a_) — r*(a4)) < exp(r*(a—) — r*(ay))
and

20407 T max 20407 T max 2C,

Nr(ara ) = aep(lar) — (@ arme = e o0 )T

This immediately implies that for some sufficiently large constant Cs > 0, we have

e (ag) N . Tref(a—)T A VT logT
—_— = —_ _ < —_— E——— .1
Thr(a—) exp(r(ay) —r*(a-)) < Cs(mef(a+)awmax> +Cs QT max ©13)
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Similar to (C.1), we can show that

KL(o(r*(at) = r*(a))|lo(r(as) = r(a-))) = KL(a(r*(a-) — r*(as)) o (r(a-) — r(at)))

(g 167"];113)(0—(7”*(017) — ’r'*(a+))[1 — O'(’f’*(a,) _ T*(G’Jr))”r(adr) _ r(a,) o ’I’*(a+) + ?"*(a,)]Q
> 647“1max exp(r*(a-) = r*(as))[r(as) — r(a=) — " (ay) +r*(a-)*.

Here step (a) follows from Lemma 5; step (b) makes use of the fact that r*(a_) < r*(a4.). Hence
we have

[r(ay) = r(a-) —r*(ay) + 7 (a-))?
< 64rmaXMKL(U(r*(a+) — () | o(r(ay) —r(a_))).  (C.14)
WHF(G,)
In addition, we have
¢ A , ‘ NG

> KL(o(r*(a}) = r*(ad)) | o(rP(a}) — rD(ah))) < =2[€(r, D) — £(r*, D1)] + 2C5 Argmay log T

=1
(i)
< 204y 4 203 Armax log T

Here step (i) follows from Lemma 2, while step (ii) utilizes (5.6) and the definition of 7, (cf. (5.2)).
This immediately implies that

2047t + 203 ATmax log T

KL(U(T*(a+) —r*(a_)) |l U(r(t) (ay) — r(t)(a,))) < N(ar,a) (C.15)
Therefore for any 1 < ny < ng < Np(a4,a—), we have
2
(tn) (tn) * *
r - a_)—r(ay)+r (a—

nn(Zl (02) = ) + 0]

O ) (tn) " * 2

< > " ay) = as) = r*(ay) + ¥ (a)]

n=mni
(i) wHF o , ,
< 64/’ﬂmax a Z KL (a*)) || J(T(t”)(a”r) - T(t”)(a*)))
n=mni
(iii) 12
D 128rmaxaer e (a-) Z o+ 128C5 A2 log T2 =L THEAL) o)

n mhr(a— ni  mue(a—)

n=ni

Here step (i) uses the Cauchy-Schwarz inequality; step (ii) follows from (C.14); step (iii) utilizes
(C.15) and the fact that {«;} is monotonically increasing. Following the same analysis as in (5.3)
and (5.4), we know that

Z Vtn < Z ftn + Z |’I‘(tn)(a+) — r(tn)(a_) — r*(a+) _|_'r*(a_)|

n=mni n=mni n=mni
n2
< C17max/ (n2 —ny) log T + Z [rt)(ay) — ) (a”) — r*(ay) + r*(as)).
n=mni

(C.17)
Taking (C.16) and (C.17) collectively and let no = 2n4, we know that for any ny < Np(a4,a_)/2,

2n4 2
(3 1) = @) = (o) 4 (@) )

n=ni
2n
L 1987 mar . S 110 (0 ) = r ) 0 7 (ay) (0 )|
HF(a_) n=ni

20
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[logT
+ 1287"max;r:::gz+§n1 (aTCleax 0og + CgArmax log T)

This self-bounding relation implies that

2n1
S P09 ag) — 109 () — 1 (ag) + 1 (0)| < 236rmanar )
= ()

logT
+ 2567ﬂma>< (a+) N1 | arCirmax 82 + C3Armax logT' |.
mHE(a-) V. om
+)

Armax logT
( + C17max\/ 11 10gT+C3Tl %

< 400rmaXaT
HF( -) ar

where the last relation follows from the AM-GM inequality. By using the above relation recursively,
we have

Mog T Nr(at,a_)/2""}
Clap,a)< Y 3 (e = e (a) 1% (ag) + 17 (an)|
k=1 n=Nr(ay,a_)/2k

mHE(ay)

< CyTmax
T

A max1 T
arlogT + Cg/rmax\/NT(a+, a_)logT 4+ CyNr(ay, a,)ﬁ
HF(a-) ar
(C.18)

for some sufficiently large constant Cy > 0. On the other hand, taking (C.18) and (C.13) collectively
yields

Bﬁ

+1 _1

C(ay,a_) < CsCy (T:efgzo aptt réil{,l( log T + Cormax\/Nr(ay,a_)logT
ref (4

ArpaxlogT
(0% '

+09NT((I+,(I,) (Cl9)

By putting (C.10), (C.12), (C.18) and (C.19) together, we have

Thr(a—) Tref(a4)

AN —_)logT e
+CG ( T(a+?a ) Og + TlOgT) Tmax

ar

8
FHL 1
Clay,a-) < Ce(rmax + log T) min {WHF(aJr)aTrmax, (T7Tref(a)> aqfi“ rﬁ{gi}

always holds for some universal constant Cs > 0.

D PROOF OF PROPOSITION 3

Under Assumption 1, we know that for any action pair (a4, a_),
. THFE (@ Tref(a—) \ PHT i Ao £ 1 1
min {(Jr)aTrmax, (Tre()> o ritx ¢ < max {Tarrmax, (KT) P ar ™ rivhx )
’/THF(af) '/Tref(aqL)
Therefore we have

T
R(T) S C’I”maxAz \/ T log T + C Z M + 2C‘(Tmax + IOg T)AzTaTrmax

o
t=1 t

+ Crmax + log T) A2 (kT) 751 ap''r L2l
By taking

8 B+1

_1_ (Tmax \ B+2 IOgT B¥2

g (M) )
at gl + K A(rmax + logT)
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we can achieve
R(T) < (rmax +10g T) A*Trmau 10g T + 1max A*y/Tlog T
+ (e + log T) P53 72 553 A% 55 (log T) 742
+ (Tmax + log T)ﬁA%TT%Hfﬁ (log T)%Tﬁ
+ (Fmax + log T) AT 557 (log T)ﬁrgT%
S T2 og? T + T2 kfr2 AP log? T.

max max

E ANOTHER ASSUMPTION AND THE REGRET BOUND

As an alternaive to Assumption 1, we can also impose the following assumption to capture the
relation between human preference e and the reference policy 7f.

Assumption 2. There exists some quantity p > 0 such that, for any action pair (ay,a_),

mr(ay) Trref (a4 )
mhr(a—) = Tref(a—)

The quantity p measures the deviation of human preference from the reference policy. Under
Assumption 2, we have

s
BFT 1 1
min { 77THF(CL+) QT T maxs (Tﬂ-ref(a_) ) ar trhix }
WHF(af) Wref(a+)
]

BT 1 _1_
< min uMOLTT‘maX, TM a;ﬁ“rr‘fﬁ}c .
71—ref(alf)

S (NT)T?H (aTrmax)% .

Putting the above relation with (4.1), we have

T
A max1 T
R(T) < Tmax A%/ Tlog T + Z max 08 4 Alapr?
Qg
t=1

B+1

+ (Pmax + 10g T) A2(UT) 557 (g Tnase) 2977 .

By taking

B4l Trmax\ =2 logT 28+1
ap = A4t (— ) B (=
' ( [ ) (A(rmax+10gT)
we have
28+

R(T) S T35 572 poly(A, Finax, log ).

F TECHNICAL LEMMAS

Lemma 5. Forany z,0 € R, we have

KL(o(2) oz +8)) > 7o(x) (1 — o)) min ], &%)

Proof. Let f(t) = KL(o(z)||o(x + t)). We have
B o(x) 1—o(x)
fo(t) = o(x)log o(x+1) l—o(x+1)

_ o) 1—o(z+1t) 1—o(x)
= o()log <1 —o(x)  o(@+1) ) log 1—o(x+1t)

+ (1 —o(z))log

22



Under review as a conference paper at ICLR 2026

1+ exp(z+1t)

= log T+ o) o(z)t =log (1 + o(z)(e' = 1)) — o(z)t.
Then we have
o o(x)e! _o(@)(A—o(x) (" —1)
L= me -y W T T eme -
For any ¢ > 0, we can check that
() > o(@) (1 - o(@) (1—e ) > %a(m) (1 - o(x)) min {t,1} ,

and for any ¢ € (0,1) we have

fat) <o(x)(1—o(x)) (" —1) < 20(x) (1 —o(z))t.
This immediately implies that for § > 0,

4
KL (0(2) oz + 8)) = £(5) — f2(0) = / f(tyat

> o) (1 - a(x))/: min {¢, 1} dt
@1 o
> Za(m) (1 —o(x)) min{d,6°}.

Here step (a) holds since fo(s min{t, 1}dt = §2/2 for 6 < 1, and fo(s min{t,1}dt =6 —1/2 > §/2
for § > 1.

For 0 < 0, we can use the same argument to show that
1
KL (o(x)||o(x +0)) > Jo(@) (1 - o(w)) min{—0, 6}
This completes the proof. O

The following lemma provides a user-friendly version of Freedman’s inequality (the Bernstein
inequality for martingale differences) (Freedman, 1975; Tropp, 2011).

Lemma 6. Consider a filtration {F,};>o and random variables {X;};>1 obeying
|X;| <R and  E[X;|F;—1]=0  foralli>1.

Define W,, = >_""_| E[X?|F;_1], and suppose that W,, < o2 holds deterministically for some given
quantity o > 0. Then for any positive integer m > 1, with probability exceeding 1 — § we have

o? 2m 4 2m
< ([8max{W,, — Ylog 28 + “Rlog =—".
\/8 a{ QO}og 5 T gltlog—

Proof. See Li et al. (2021, Section A). O]

n

> X

i=1
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