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ABSTRACT

Uniform-precision neural network quantization has gained popularity thanks to its
simple arithmetic unit densely packed for high computing capability. However, it
ignores heterogeneous sensitivity to the impact of quantization across the layers,
resulting in sub-optimal inference accuracy. This work proposes a novel approach
to adjust the network structure to alleviate the impact of uniform-precision quan-
tization. The proposed neural architecture search selectively expands channels
for the quantization sensitive layers while satisfying hardware constraints (e.g.,
FLOPs). We provide substantial insights and empirical evidence that the proposed
search method called neural channel expansion can adapt several popular networks’
channels to achieve superior 2-bit quantization accuracy on CIFAR10 and Ima-
geNet. In particular, we demonstrate the best-to-date Top-1/Top-5 accuracy for
2-bit ResNet50 with smaller FLOPs and the parameter size.

1 INTRODUCTION

Deep neural networks (DNNs) have reached human-level performance in a wide range of domains
including image processing (He et al. (2016); Tan & Le (2019)), object detection (Ren et al. (2015);
Liu et al. (2016); Tan et al. (2020)), machine translation (Wu et al. (2016); Devlin et al. (2018)), and
speech recognition (Zhang et al. (2016); Nassif et al. (2019)). However, tremendous computation
and memory costs of these state-of-the-art DNNs make them challenging to deploy on resource-
constrained devices such as mobile phones, edge sensors, and drones. Therefore, several edge
hardware accelerators specifically optimized for intensive DNN computation have emerged, including
Google’s edge TPU(Google (2019)) and NVIDIA’s NVDLA (NVIDIA (2019)).

One of the central techniques innovating these edge DNN accelerators is the quantization of deep
neural networks (QDNN). QDNN reduces the complexity of DNN computation by quantizing network
weights and activations to low-bit precision. Since the area and energy consumption of the multiply-
accumulate (MAC) unit can be significantly reduced with the bit-width reduction (Sze et al. (2017)),
thousands of them can be packed in a small area. Therefore, the popular edge DNN accelerators
are equipped with densely integrated MAC arrays to boost their performance in compute-intensive
operations such as matrix multiplication (MatMul) and convolution (Conv).

Early studies of QDNN focused on the quantization of weights and activations of MatMul and Conv
to the same bit-width (Hubara et al. (2016); Rastegari et al. (2016); Zhou et al. (2016)). This uniform-
precision QDNN gained popularity because it simplifies the dense MAC array design for edge DNN
accelerators. However, uniform bit allocation did not account for the properties of individual layers
in a network. Sakr & Shanbhag (2018) showed that the optimal bit-precision varies within a neural
network from layer to layer. As a result, uniform-precision quantization may lead to sub-optimal
inference accuracy for a given network.

Mixed-precision networks address this limitation by optimizing bit-widths at each layer. In this
approach, the sensitivity of the layer to the quantization error is either numerically estimated (Zhou
et al. (2017); Dong et al. (2019)) or automatically explored under the framework of neural architecture
search (NAS, Wang et al. (2019); Elthakeb et al. (2018)) to allocate bit-precision properly. However,
mixed-precision representation requires specific variable precision support in hardware, restricting
computation units’ density and power efficiency (Camus et al. (2019)). Therefore, mixed-precision
support imposes a significant barrier for the low-profile edge accelerators with stringent hardware
constraints.
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In this work, we propose a novel NAS based hardware-friendly DNN quantization method that can
address the layer-wise heterogeneous sensitivity under uniform-precision quantization. The proposed
method explores network structure in terms of the number of channels. Different from the previous
work that only includes pruning of the channels in its search space (Dong & Yang (2019)), we further
incorporate the expansion of the channels, thus called neural channel expansion (NCE). During a
search of NCE, search parameters associated with different numbers of channels are updated based
on each layer’s sensitivity to the uniform-precision quantization and the hardware constraints; the
more sensitive to quantization errors, the larger number of channels preferred in that layer. When the
preference to the larger number of channels in a layer exceeds a certain threshold, we expand the
channels in that layer’s search space so that the more number of channels can be explored. Therefore,
NCE allows both pruning and expansion of each layer’s channels, finding the sweet-spot for the
trade-off between the robustness against the quantization error and the hardware cost. We analytically
and empirically demonstrate that NCE can adequately facilitate the search to adapt the target model’s
structure for better quantization accuracy. The experimental results on CIFAR10 and ImageNet
show that the network structures adapted from the popular convolutional neural networks (CNNs)
achieve superior accuracy when the challenging 2-bit quantization is uniformly applied to MatMul
and Conv layers. In particular, we achieve the best-to-date accuracy of 74.03/91.63% (Top-1/Top-5)
for NCE-ResNet50 on ImageNet with slightly lower FLOPs and 30% reduced number of parameters.

Our contributions can be summarized as follows:

• We propose a new NAS-based quantization algorithm called neural channel expansion
(NCE), which is equipped with a simple yet innovative channel expansion mechanism to
balance the number of channels across the layers under uniform-precision quantization.
• We provide an in-depth analysis of NCE, shedding light on understanding the impact of

channel expansion for compensation of quantization errors.
• We demonstrate that the proposed method can adapt the structure of target neural networks

to significantly improve the quantization accuracy.

2 RELATED WORK

Neural architecture search: The goal of NAS is to find a network architecture that can achieve the
best test accuracy. Early studies (Zoph & Le (2016); Zoph et al. (2018)) often employed meta-learners
such as reinforcement learning (RL) agents to learn the policy for accurate network architectures.
However, RL-based approaches may incur prohibitive search costs (e.g., thousands of GPU hours).
As a relaxation, differentiable neural architecture search (DNAS) has been proposed (Liu et al.
(2018)), which updates the search parameters and the weights via bi-level optimization. Recent
DNAS approaches considered hardware constraints such as latency, the number of parameters, and
FLOPs so that the search explored the trade-off between the cross-entropy loss and the hardware
constraint loss. This search resulted in the discovery of light-weight models. As an example, Dong &
Yang (2019) explored channel pruning that satisfies the target hardware constraints. In this work, we
adopt the successful NAS framework in the domain of QDNN, for which we devise a novel channel
expansion search to robustify networks against the quantization errors.

Low-precision quantization of deep neural network: QDNN has been actively studied in the
literature. Early work on QDNN (Hubara et al. (2016); Rastegari et al. (2016); Zhou et al. (2016))
introduced the concept of a straight-through estimator (STE) for the approximation of gradients of
the non-differentiable rounding operation. This approximation enabled uniform-precision (1- or
multi-bit) quantization during the model training procedure, which fine-tunes the weight parameters
towards lower training loss. QDNN techniques have evolved to adaptively find the quantization step
size (Choi et al. (2018); Zhang et al. (2018); Jung et al. (2019); Esser et al. (2020)), which significantly
enhanced the accuracy of the uniform-precision quantization. However, this line of research lacks
consideration of the heterogeneous quantization sensitivity for individual layers in a network. On
the other hand, mixed-precision quantization allows layer-specific bit-precision optimization; the
higher bit-precision is assigned to the more quantization sensitive layers. Zhou et al. (2017); Dong
et al. (2019) numerically estimated the sensitivity via approximating the impact of quantization errors
on model prediction accuracy. Wang et al. (2019); Elthakeb et al. (2018) employed a reinforcement
learning framework to learn the bit-allocation policy. Wu et al. (2018); Cai & Vasconcelos (2020)
adopted DNAS with the various bit-precision operators in the search space. However, mixed-precision
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representation requires specific variable precision support in hardware, restricting computation units’
density and power efficiency (Camus et al. (2019)). Therefore, mixed-precision support imposes a
significant barrier for the low-profile edge accelerators with stringent hardware constraints. In this
work, we exploit NAS to address the layer-wise heterogeneous sensitivity under uniform-precision
quantization.

Channel expansion for accurate DNN quantization: Researchers have actively studied channel
expansion for accurate DNN quantization. Pioneering work by Mishra et al. (2018) (WRPN)
demonstrated that an increased number of channels during the training helped regain QDNN accuracy,
but this work lack discussion about the detailed mechanism of channel expansion compensating the
quantization error. Zhao et al. (2019) and Park & Choi (2019) further attempted to split the channels
with large magnitude weights in the pre-trained models. This channel splitting reduced the dynamic
range of weights to be represented with lower bit-precision (6-8-bits). Regarding the control over
the dynamic range, Meller et al. (2019) also adjusted the scale factors of the weight parameters after
training to balance the dynamic range across the layers. However, these approaches focused on the
numerical remedy for quantization of pre-trained models (with relatively high bit-precision). Thus,
it not straightforward to extend their work for quantization-aware training, which is necessary for
ultra-low bit QDNN. We provide insights with empirical supports that the structure with the channel
expanded layers itself matters, reducing the dynamic range of activation during the quantization-aware
training. These exciting insights become a pivotal motivation for us to explore channel expansion in
the NAS framework.

3 NEURAL CHANNEL EXPANSION

In this section, we explain the detail of our neural channel expansion method. Similar to TAS (Dong
& Yang (2019)), we construct the search space over the number of channels C = {1 : cout} with the
search parameters α ∈ R|C|. Then the output activation is computed as the weighted sum of sampled
activations with a different number of channels aligned via channel-wise interpolation (CWI):

Ô =
∑
j∈I

Softmax(αj ; {αk}k∈I)× CWI(O1:Cj ,max{ckout}k∈I), (1)

where output activation Oj:1≤j≤cout =
∑cin

k=1Q(X{k, :, :}) ∗ Q(W{j, k, :, :}) is computed with
input activation X and weight parameters W quantized by the quantizer Q, and I is the sampled
subset of C.

During the search, the search parameters are updated via channel selection based on the trade-off
between the cross-entropy loss and the hardware constraint loss (e.g., FLOPs). In TAS, the number
of channels (|C|) is fixed, limiting the exploration scope to the pruning. In NCE, we enable channel
expansion of individual layers when the search parameter associated with the maximum number of
channels exceeds a certain threshold. The intuition is that if one layer is susceptible to the quantization
errors, its search parameters are updated toward the preference for a larger number of channels to
decrease the cross-entropy loss. With this simple expansion condition, we can expand channels to
those layers affected most by the quantization errors and prune channels of the other layers robust to
quantization; therefore, the overall hardware constraints are met.

Algorithm 1 summarizes the overall procedure. NCE consists of three phases: warm-up, search, and
train. As advocated by Wu et al. (2018) and Bender et al. (2020), we first perform a warm-up of
the entire super-net so that all the super-net weight parameters can be reasonably initialized. The
search phase consists of the iterative updates of weights (w) and the search parameters (α) via bi-level
optimization. The updated search parameter associated with the maximum number of channels is
compared with a threshold (pre-determined as a hyper-parameter) to identify if a layer needs a channel
expansion in each layer. When a channel expansion happens (= Expand) , the additional weight
parameters are added to that layer (and the search parameter is also copied), increasing the number of
channels. Once the search is done, the candidate model is derived by the "winner-takes-all" strategy;
i.e., for each layer, the number of channels with the largest magnitude search parameter is selected.
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Algorithm 1: Neural Channel Expansion
Input:

Split the training set into two dis-joint sets: Dweight and Darch (n(Dweight) = n(Darch))
Search Parameter: {αl

1, α
l
2, .., α

l
n} ∈ Al, {A1, A2, .., AL} ⊂ A, L =number of layer

Expand Threshold: T
1 For Warm-up Epoch do
2 Sample batch data Dw from Dweight and network from A ∼ U(0, 1)
3 Calculate Lossweight on Dw to update network weights
4 End For
5 For Search Epoch do
6 Sample batch data Dw from Dweight and network from Softmax(A)
7 Calculate Lossweight on Dw to update network weights
8 Sample batch data Da from Darch and network from Softmax(A)
9 Calculate Lossarch on Da to update A

10 For layer do
11 j ← #Al

12 If Softmax(αl
j ; {αl

k}k∈j) ≥ T do
13 Expand search space(αl

j+1)
14 αl

j+1 ← αl
j # copy search parameter

15 End if
16 End for
17 End for
18 Derive the searched network from A
19 Randomly initialize the searched network and optimize it on the training set

4 ANALYSIS

This section explains how NCE finds the network structures that are more robust to the uniform-
precision quantization error while maintaining hardware constraints. We first reveal insightful
observations that the expanded channel’s structure reduces the input activation’s dynamic range and
suppresses quantization errors. In other words, a network structure adapted by NCE can be trained
standalone from scratch and exhibit robustness to the quantization. This finding motivates us to seek
a NAS based exploration for channel expansion; we show that NCE can facilitate compensation of
the quantization errors by selective channel expansion.

4.1 IMPACT OF CHANNEL EXPANSION ON DYNAMIC RANGE OF ACTIVATION

As discussed in Sec.2, it is well studied that channel-splitting can decrease the dynamic range of
the weight parameters. However, it is not clear how much its structure itself affects quantization
during neural network training. To understand the impact of expanded channel structure on DNN
quantization, we first show that quantization applied to a given network substantially increases
the dynamic range of activation, hindering successful QDNN. Fig.1a shows the standard-deviation
(STDEV) of input activation for ResNet20 trained from scratch on the CIFAR10 dataset, with
and without quantization during training1. W{X}A{Y} indicates that weights and activations are
quantized into X- and Y-bits, respectively. The substantial increase of STDEV for W32A2 and W2A2
implies that large quantization errors would occur when input activation is quantized. (See Appendix
for detail discussion on the quantization error.) Such an increase of dynamic range could partially
explain why quantization with the fixed model structure often suffers significant accuracy degradation
when ultra-low bit-precision is uniformly applied. This intriguing phenomenon can be observed in all
the models we investigated (e.g., VGG16 in Fig.1c).

In addition, Fig. 1b and c show the impact of expanded channel structure on the dynamic range.
"2X" models indicate that the number of channels in their layers is doubled. All the hyper-parameter

1This quantization-aware training follows the same hyper-parameter settings described in Sec.5.1.
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Figure 1: (a-b) Layer-wise STDEV for ResNet20 with 1X or 2X channels. (c) Layer-wise STDEV for
VGG16 with 1X or 2X channels. (d) Test accuracy on ResNet20 with 1X or 2X channels (accuracy
drop from W32A32 to W2A2).

settings are the same. Notice that both 2X ResNet20 and VGG16 models with 2-bit quantization (=
W2A2) could reduce the STDEV down to the full-precision 1X models.

One might regard this dynamic range reduction due to weight initialization with 2X channels, based
on the idea similar to channel splitting discussed in Sec.2. However, we examined that the initial
weight parameters have little impact on the input activation’s dynamic range. More specifically, since
we used "He" initialization (He et al. (2015))2, the number of channels determines the dynamic range
of the initial weights. As shown in Fig.1a, however, 2X ResNet20 with W2A2 quantization still
experiences reduced STDEV even if its weights are initialized in the same way the 1X ResNet model
is initialized.

Finally, we confirm that the input activation’s reduced dynamic range results in improved test accuracy.
As shown in Fig.1c, 1X ResNet20 model suffers large accuracy degradation from quantization (-
2.22%) while 2X ResNet20 model experiences relatively small accuracy degradation (-0.84%). Note
that this result is consistent with WRPN (Mishra et al. (2018)). However, we argue that such increased
robustness against quantization errors is due to the mechanism that the expanded channel structure
reduces the activation’s dynamic range.

From these experimental results, we conjecture that expanded channel structure plays a crucial role
in compensating quantization errors. This finding suggests that if we employ channel expansion in
the NAS framework, we can adapt the channels of the layers to find a new network structure that is
more robust to uniform-precision quantization when trained from scratch. In the next section, we
investigate a proper way of incorporating channel expansion.

4.2 IMPACT OF CHANNEL EXPANSION ON DISTINCT CHANNEL SEARCH

The previous section provides critical reasoning behind the success of channel expansion of QDNN
like WRPN. However, it is not practical to expand the channels of all the layers, since it will
quadratically increase the computational complexity. The main idea of NCE is to allow channel
expansion only when the selection of more number of channels is desirable for compensating
quantization errors; otherwise, the channels are pruned to meet the overall hardware constraints. In
this section, we show that the channel expansion mechanism of NCE propels such compensation.

We first show that the channel selection preference can be observed by the gradient w.r.t. the search
parameters. As explained in Sec. 3, the critical trade-off explored during the search is between the
cross-entropy loss and the hardware constraint loss. In particular, a layer that is sensitive to the
cross-entropy may select a large number of channels. In other words, the search parameters associated
with a large number of channels, like α7 or α8, receive large negative gradients.3 As an example,
Fig. 2a shows the gradients of the search parameters during the TAS search of CIFAR10-ResNet20 in
full-precision. Note that the search parameter associated with the maximum number of channels (α8)
initially receives the negative gradients. In contrast, the search parameter with the least number of

2I.e., the weights are initialized with the normal distribution with standard deviation inversely proportional to
the square root of the number of channels.

3I.e., α = α− η ∗ gradα. Thus the negative gradients increase the magnitude of the search parameter.
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Figure 2: Experiments on CIFAR10-ResNet20 that shows gradients of cross-entropy loss w.r.t. search
parameters (α1 ∼ α8) of a layer during search: (a) in full-precision, (b) with 2-bit quantization. (c)
Kendall rank-correlation score of all layers.

channels (α1) receives positive gradients. From this trend, we can conjecture that this layer initially
prefers a large number of channels, but the preference diminishes over the epochs of search.

Next, we show that quantization during search excels the preference for a large number of channels.
From the same experimental settings, if we apply quantization during the search, the preference to a
large number of channels becomes more distinctive, as shown in Fig. 2b. This phenomenon is because
the quantization errors affect the cross-entropy loss more. To quantify this channel preference, we
calculate the Kendall rank correlation score for the gradients of the search parameters and average
over the search epochs; the more consistent preference to a large number of channels, the higher
the Kendall score. Fig. 2c shows the layer-wise Kendall score with and without quantization. Note
that the Kendall score is increased if the quantization is applied during the architecture search.
This increased Kendall score implies that quantization drives the search parameters toward a strong
preference to a larger number of channels.

As motivated by this phenomenon, we augment TAS’s search space to allow channel expansion.
Thanks to this new search space, channel expansion can happen selectively for the layer with a strong
preference for many channels. Interestingly, the new search space gains the higher Kendall score,
as shown in Fig. 2c, indicating that the search space allows preference to an even larger number of
channels. In other words, our simple yet novel search space of selectively expanding the channels can
mitigate the limit in choosing a larger number of channels, opening up more significant opportunities
for compensating quantization errors.

4.3 DISCUSSION ON NEURAL CHANNEL EXPANSION

So far, we explained how NCE was devised to facilitate the channel expansion for compensating
the quantization error. In this section, we further investigate two aspects of NCE to understand its
strengths better.

4.3.1 BENEFIT OF QUANTIZATION-AWARE ARCHITECTURE SEARCH

We first show that NCE can reflect quantization during the search to find a better structure for
quantization. As we discussed in the previous section, quantization affects the gradients w.r.t. the
search parameters, resulting in the difference in the network structures after the search. In Fig.3a, we
ran NCE for CIFAR10-ResNet20 with or without W2A2 quantization during the search. Then we
took the models after each search and trained them from scratch with or without W2A2 quantization.
After the full-precision training, both networks (searched with or without quantization) achieve
the same accuracy level. In the case of W2A2, however, the network searched with quantization
achieves noticeable gain in average accuracy over the network searched without quantization. Fig. 3b
shows the difference in the channel section between the model searched with (=W2A2) and without
quantization(=W32A32) where W2A2 prefers more channels in the later layers. This demonstrates
that NCE can perform quantization-aware architecture search.
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Figure 3: (a) Test accuracy after search with or without quantization. (b) Model structure after search
with or without quantization. (c) Accuracy vs. FLOPs for different channel expansion strategies.

4.3.2 BENEFIT OF SELECTIVE CHANNEL EXPANSION

There are two options to search for channel expansion. One option is to start with the enlarged
channels as the search space then prune, while the other option is to expand the channel selectively
as NCE does. To understand the selective expansion’s effectiveness, we constructed an experiment
when the model is searched with 1) 1X channels accompanied by eight search parameters for each
layer but with NCE, and 2) 2X channels accompanied by 16 search parameters layer. Note that the
search space of the 1X-NCE case is strictly a subset of the 2X case. Therefore, if the 1X-NCE finds a
suitable network structure, 2X should also find an equally good one. However, it turns out that the
search results of the 2X case are inferior to NCE. As shown in Fig. 3c, for the same target FLOPs,
the network structures found by the 2X case achieve inferior test accuracy than NCE. In Appendix,
we confirm that the observed accuracy gain is indeed originated from the proposed selective increase
in the search space.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

NCE is evaluated with popular CNNs trained on CIFAR10 and IamgeNet datasets. We employ PACT
(Choi et al. (2018)) as the main quantization scheme. NCE is implemented in PyTorch based on
the TAS framework4. For CIFAR10 experiments, we conducted 200 epochs of warm-up followed
by NCE search for 600 epochs. we used threshold (T ) of 0.3 and constraint coefficient of 2. For
ImageNet experiments, we randomly choose 50 classes from the original 1000 classes to reduce the
training time, similar to Wu et al. (2019). We conducted 40 epochs of warm-up followed by search
for 110 epochs. we used threshold (T ) of 0.19 and constraint coefficient of 1.5. We optimized the
weight via SGD and the architecture parameters via Adam. Regularization coefficient of PACT is
0.001. After search, the candidate model is derived by the "winner-takes-all" strategy. Unless noted
otherwise, all experiments on CIFAR10 are repeated for three times and the average test accuracy
is reported. For fair comparison with prior work (e.g., Choi et al. (2018); Jung et al. (2019)), the
first/last and short-cut layers are not considered for 2-bit uniform-precision quantization. More
detailed information about the experimental settings can be found in Appendix.

5.2 CIFAR10 RESULTS

To evaluate NCE on CIFAR10, we employ four popular CNNs based on the ResNet structure and the
other based on the VGG structure. For each network, we apply 2-bit quantization with and without
NCE. As can be shown in Table 1, NCE consistently boosts the accuracy of QDNN w/o NCE by
0.35% ∼ 0.81%, demonstrating its benefit. Also, we demonstrate with CIFAR10-ResNet20 that
the loss for hardware cost can be either FLOPs or the number of parameters (PARAM); Table 1
shows that ResNet20 could achieve higher accuracy when NCE searches with the PARAM loss. This
flexibility in hardware loss can be convenient when targeting hardware platforms with specific needs.

4https://github.com/D-X-Y/AutoDL-Projects
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w/o NCE w/ NCE
Network W32A32 W2A2 FLOPs PARAM W2A2 FLOPs PARAM

91.63% 39.94M 0.42MResNet20 92.88% 90.82% 40.81M 0.27M 91.81% 45.40M 0.27M*
ResNet32 93.81% 92.22% 69.12M 0.47M 92.71% 64.26M 0.57M
ResNet56 94.26% 93.08% 125.75M 0.86M 93.43% 123.04M 0.74M
VGG16 94.24% 93.48% 313.2M 14.72M 93.94% 302.96M 5.01M

Table 1: CIFAR10: Comparision on test accuracy and computational complexity for 2-bit QDNN
with or without NCE (*: constrained with PARAM loss; otherwise constrained with FLOPs).

Network Method Top-1 Acc Top-5 Acc FLOPs PARAM
Full precision 70.56% 89.88% 1.814G 11.69M

w/o NCE(Ours) 64.08% 86.47% 1.814G 11.69M
w/ NCE(Ours) 66.17% 86.75% 1.747G 12.57M

ResNet18 LSQ 67.6% 87.6%
QIL 65.7% -

1.814G 11.69MLQ-Nets 64.9% 85.9%
PACT 64.4% 85.6%

EdMIPS 65.9% 86.5%
Full precision 76.82% 93.33% 4.089G 25.56M

w/o NCE(Ours) 72.36% 90.81% 4.089G 25.56M
ResNet50 w/ NCE(Ours) 74.03% 91.63% 3.932G 17.66M

LSQ 73.7% 91.5%
LQ-Nets 71.5% 90.3% 4.089G 25.56MPACT 72.2% 90.5%
EdMIPS 72.1% 90.6%

Table 2: ImageNet: Top-1/Top-5 accuracy and computational complexity for 2-bit (W2A2) QDNN
with or without NCE compared with the other state-of-the-art uniform (LSQ, QIL, LQ-Nets, PACT)
and mixed-precision (EdMIPS) quantization methods.

5.3 IMAGENET RESULTS

We further evaluate NCE with ResNet structures on ImageNet by comparing it with state-of-the-art
QDNN methods. We take reported Top-1 and Top-5 accuracy from the state-of-the-art uniform-
precision quantization techniques; LSQ(Esser et al. (2020)), QIL(Jung et al. (2019)), LQ-Nets(Zhang
et al. (2018)), and PACT(Choi et al. (2018)). We also include recent work on mixed-precision
quantization; EdMIPS(Cai & Vasconcelos (2020)). The comparison of accuracy is summarized in
Table 2. Note that NCE consistently improves the accuracy of 2-bit quantized models (=w/o NCE) by
large margins (1.67% ∼ 2.09%) thanks to the structure’s adaptation. Although the PACT quantizer’s
performance in NCE is inferior to the more recent techniques (e.g., LSQ and QIL), NCE could
boost the accuracy to the extremely competitive level. In the case of ResNet50, NCE even surpasses
the best-to-date QDNN method, LSQ, in terms of accuracy, FLOPs, and the number of parameters
involved in the network. This superior performance indicates that NCE is a promising solution for
compensating the accuracy degradation of QDNN.

6 CONCLUSION

In this work, we propose a novel approach that explores the neural network structure to achieve robust
inference accuracy while using the simple uni-precision arithmetic units. The key idea is to explore
the network structure under the impact of uni-precision quantization. Our novel differentiable neural
architecture search employs the search space that can shrink and expand the channels so that the
more sensitive layers can be equipped with more channels. At the same time, the overall resource
requirements (e.g., FLOPs) are maintained. We provide substantial insights and empirical supports
that the proposed method can achieve superior robustness in ultra-low uni-precision quantization for
networks in CIFAR10 and ImageNet. In particular, we demonstrate a superior ResNet50 architecture
that achieves higher accuracy for 2-bit inference with smaller FLOPs and the parameter size.
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7 APPENDIX

7.1 EXPERIMENTAL DETAILS

In this section, we summarize the details of our training settings. The CIFAR10 dataset (Krizhevsky
Hinton (2010)) is an image classification benchmark containing 32x32 pixel RGB images. It consists
of 50K training and 10K test image sets. We used RandomHorizontalFlip and Normalization for
preprocessing. We used stochastic gradient descent (SGD) with a momentum of 0.9 and learning
rate starting from 0.1 and scheduled by cosine annealing to update network weight. We used Adam
optimizer and learning rate of 0.001 to update the search parameter. L2-regularizer with the decay of
0.0004 is applied to weight, and 0.001 is applied to the search parameter. The mini-batch size of 256
is used.

The ImageNet dataset (Russakovsky et al. (2015)) consists of 1000-categories of objects with over
1.2M training and 50K validation images. We used RandomResizedCrop, RandomHorizontalFlip
and Normalization for preprocessing. We used stochastic gradient descent (SGD) with a momentum
of 0.9 and learning rate starting from 0.1 and scaled by 0.1 at epoch 30, 60, 85, 95 to update network
weight. We used Adam and a learning rate of 0.001 to update the search parameter. L2-regularizer
with the decay of 0.0001 is applied to weight, and 0.001 is applied to the search parameter. The
mini-batch size of 256 is used.

7.2 ABLATION STUDY

In this section, we present various ablation study and analysis to better understand NCE.

7.2.1 IMPACT OF CONSTRAINING MAXIMUM NUMBER OF CHANNELS FOR NCE SEARCH

In Sec. 5, we evaluated NCE with the maximum number of channels as 2X of the original network
size. In this setting, NCE sometimes found the networks with the hardware cost higher than the
original network if it is not constrained5, especially when the network size is relatively small; e.g.,
NCE for ResNet20-CIFAR10 achieved higher accuracy (=91.63%) when it is constrained with FLOPs
(=40.81M), but with increased PARAM=0.42M.

5We followed the convention of restricting only one type of hardware cost, either PARAM or FLOPs.
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ResNet20 CIFAR10 W2A2 Accuracy PARAM FLOPs
Full-Prec Baseline 92.88% 0.27M 40.81M

W2A2 Baseline 90.82% 0.27M 40.81M
W2A2 2X TAS (#search param=8) 90.99% 0.46M 43.11M
W2A2 2X TAS (#search param=16) 91.12% 0.42M 40.36M
W2A2 NCE (#search param=8∼16) 91.63% 0.42M 39.94M

Table 4: Comparison of quantization performance between NCE and 2X TAS with controlled search
space size.

Figure 4: Comparison of quantization performance between NCE and WRPN with respect to (a)
PARAM and (b) FLOPs on ResNet20-CIFAR10.

In this section, we extend our study to constrain both PARAM and FLOPs by fixing the maximum
number of channels, limiting channel expansion. A detailed investigation about the impact of the
maximum number of channels for the NCE search can is shown in Table 3. As the maximum number
of channels decreases from 2X to 1.25X, PARAM also decreases while maintaining the overall
accuracy.

7.2.2 COMPARISON OF QUANTIZATION PERFORMANCE BETWEEN NCE AND TAS

In Sec. 4.3.2, we discussed the benefits of the selective channel expansion over the prior channel
pruning approach, TAS (Dong & Yang (2019)). We further investigate this issue to confirm that the
observed accuracy gain originates from the selective channel expansion, not from the search space
size. Table 4 shows the experimental results of 2-bit quantization on ResNet20-CIFAR10 with the
number of channels adapted by either 2X TAS or NCE (with FLOPs=40M as the hardware constraint).
Note that 2X TAS performs pruning from the 2X uniform channel expansion; thus, NCE’s search
space is a subset of 2X TAS’s search space. The search space with both 8 and 16 search parameters
per layer is considered for the controlled experiments. We can observe from the table that 2X TAS
found the network with increased channels, achieving only modest accuracy gain. In contrast, NCE
achieved a noticeable accuracy gain with slightly lower PARAM and FLOPs than 2X TAS. This
experimental result demonstrates the benefit of selective channel expansion.

7.2.3 COMPARISON OF QUANTIZATION PERFORMANCE BETWEEN NCE AND WRPN

A straightforward method to explore the trade-off between the number of channels and the robustness
of quantization error is to uniformly increase the number of channels for all the layers, as discussed
in WRPN (Mishra et al. (2018)). We argue that NCE can explore a better accuracy vs. hardware cost
trade-off by expanding the number of channels only for the necessary layers. To demonstrate it, we
compare the trade-off curves between accuracy and the two popular hardware costs, PARAM and
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Figure 5: Comparison of STDEV and SQNR of activation between ResNet20-CIFAR10 and NCE
when the models are quantized to 2-bit. (W2A2 Accuracy: ResNet20 (90.82%), NCE (91.63%))

Figure 6: Comparison of structure of ResNet50-ImageNet before and after adaptation by NCE.

FLOPs. As shown in Fig. 4, NCE always achieves higher accuracy in terms of both PARAM and
FLOPs, highlighting its superiority over WRPN.

7.2.4 RELATIONSHIP BETWEEN ACTIVATION DYNAMIC RANGE AND QUANTIZATION ERROR

In Sec. 4.1, we discussed the impact of quantization on the dynamic range of activation. To provide
a concrete connection between the dynamic range of activation and the quantization error, we
compare the signal-to-quantization-ratio (SQNR) measured when W2A2 is applied to activation of
the ResNet20-CIFAR10 network and the one adapted by NCE. Note that SQNR is a well-known
metric for the impact of quantization error on the model performance (Cai & Vasconcelos (2020)).
Fig. 5 shows that NCE reduces the dynamic range of activation and increases the SQNR when the
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Threshold T Accuracy
0.30 91.60%
0.25 91.44%
0.20 91.40%
0.15 90.77%

Table 5: The accuracy of the model NCE adapted from ResNet20-CIFAR10 with different channel
expansion threshold, T .

ResNet20-CIFAR10 Accuracy FLOPs

Original structure (w/o NCE)
W32A32 92.88%

40.81MW3A3 92.45%
W4A4 92.69%

NCE W3A3 92.66% 39.07M
W4A4 92.75% 37.07M

Table 6: 3-bit and 4-bit Quantization of ResNet20-CIFAR10 with and without NCE.

model is quantized, confirming its beneficial influence for compensating the quantization error and
regain the model accuracy.

7.2.5 COMPARISON OF NETWORK STRUCTURE BEFORE AND AFTER ADAPTATION BY NCE

NCE adapts the channels of the original neural network to improve its robustness to the quantization
error. As a result, the neural network searched by NCE has the number of channels expanded
or reduced across the layers while maintaining overall shape. As an example, Fig. 6 shows the
comparison of the number of channels of ResNet50-ImageNet before and after adaptation by NCE.
Note that the original ResNet50 structure contains an abundant number of channels at the later layers,
but these numbers of channels are artificially scaled as inversely proportional to the feature-map
width. NCE successfully balances the number of channels to improve quantization accuracy while
maintaining hardware constraints.

7.2.6 CHANNEL EXPANSION THRESHOLD

The channel expansion threshold T in Algorithm 1 is the hyper-parameter that determines which
layer to request the channel expansion. Given that there are 8 search parameters initialized uniformly,
T needs to be higher than 1/8 = 0.125. Although it plays a critical role in enabling the selective
expansion of the channels, the overall performance is not very sensitive to its choice. As shown in
Table 5, there is a plateau in the model accuracy for the selection of T > 0.15. In practice, setting T
between 0.20 and 0.30 is sufficient.

7.2.7 QUANTIZATION WITH HIGHER BIT-PRECISION FOR NCE

To further understand the impact of NCE for higher bit-precision quantization, we experimented
on ResNet20-CIFAR10. As shown in Table 6, NCE consistently finds neural networks with higher
accuracy when they are trained with the same setting as the original network. Interestingly, FLOPs
decreases as the bit-precision increases; this indicates that NCE is capable of effectively exploring
the trade-offs between FLOPs and accuracy.
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