
Under review as a conference paper at ICLR 2024

GENERALIZABLE DEEP RL-BASED TSP SOLVER VIA
APPROXIMATE INVARIANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, deep reinforcement learning (DRL) has shown promising results for
learning fast heuristics to solve traveling salesman problems (TSP). Meanwhile,
most existing state-of-the-art (SOTA) DRL methods yield solvers that do not gen-
eralize well on TSP instances larger than those seen during training. However,
such generalization ability is crucial in practice since training on large instances
is impractical. To tackle this issue, we propose a novel DRL method, called TS3,
which is designed to enforce a variety of (possibly approximate) invariances to
promote the generalizability of the learned solver. More specifically, TS3 applies
a modified policy gradient algorithm enhanced with data augmentation to train
a Transformer-based model to select the next city to visit among the k-nearest
neighbors of the last visited city by integrating a local view and global view of
a TSP instance. To further validate the capability of TS3, we also propose its
combination with Monte-Carlo Tree Search. Abundant experiments on random
TSP and TSPLIB instances demonstrate that our propositions achieve a dominant
performance when generalizing to large-sized TSPs.

1 INTRODUCTION

Among all combinatorial optimization problems, Traveling Salesman Problem (TSP) is arguably
one of the most popular thanks notably to the simplicity of its formulation and its wide application
range, such as logistics (Madani et al., 2020), electronic design automation (Alkaya & Duman,
2013), or bioinformatics (Matai et al., 2010). In this problem, given a graph, the goal is to find a
shortest tour that visits all the nodes exactly once while returning to a starting node. Due to its NP-
hard nature, exact algorithms are impracticable to solve large-sized instances, which motivates the
active development of approximate heuristic methods. Although state-of-the-art (SOTA) heuristic
methods, such as LKH3 (Helsgaun, 2009; 2017) have been designed to provide high-quality solution
for large TSP instances faster than exact methods, they are still too computationally costly.

To obtain faster heuristics, researchers have started to actively explore the exploitation of deep learn-
ing, and especially deep reinforcement learning (DRL), to design TSP solvers, e.g., Attention Model
(Kool et al., 2019), or PointerFormer (Jin et al., 2023), which are generally constructive (i.e., they
generate the solution by iteratively select the next node to visit from the last visited one). Though
this approach shows promising results, the proposed models do not generally reveal good general-
ization ability (Joshi et al., 2020). Indeed, most work can only achieve good performance on TSP
instances whose size is close to the training instance sizes. Thus, models trained on small-sized in-
stances are incapable of generating a satisfying solution on large-sized instances, which could only
be tackled by a model trained on large-sized instances. However, such training would cost a large
amount of time and computational resource, making it impractical.

Our work aims at better understanding how approximate invariance can promote cross-size gener-
alization (omit cross-size in the rest of this article) in a DRL-based TSP solver. Figure 1 (Left)
shows the distribution of the rank of the next node among the nearest neighbors of a current node in
an ”optimal” tour for different TSP instances. This figure suggests that an optimal tour can gener-
ally still be obtained by only focusing on the k-nearest neighbors (k-NNs) of the last visited node.
Based on this observation, we propose (1) to directly restrict the action space of a DRL agent to the
k-NNs of the last visited node and (2) to provide two views to this agent as its state: a local view
focused on the k-NNs and a global view including all the unvisited nodes. The first idea simplifies

1

Under review as a conference paper at ICLR 2024

Figure 1: Empirical regularity observed on random TSP instances (results averaged over 1000 in-
stances per TSP size). (Left) Distribution of the rank of the next node to visit from a node in a
solution tour among the nearest neighbors of the latter node. (Right) Percentage change (gap) of
the quality of solutions of instances perturbed by random noise. Note that the solutions here are
produced by LKH3, which can output exact optimal solutions for small-sized instances and near-
optimal solutions for large-sized instances. The dashlines in the right figure denotes the variation
might be caused by the sub-optimality of LKH3, rather than the random noise.

the decision-making problem by directly choosing among the most probable nodes, while the sec-
ond idea allows the local and global views to be processed separately, which enables more efficient
invariant preprocessing (e.g., scaling) of the k-NNs. Interestingly, the first idea can be understood as
approximate invariance since focusing on the k-NNs amounts to expressing the independence with
respect to the nodes that are farther away. Furthermore, Figure 1 (Right) shows how much the qual-
ity of an ”optimal” solution changes (i.e., gap) when an instance is perturbed by random noise (i.e.,
all node positions are changed by small random noises). Note that while the solutions obtained by
LKH3 are optimal with high probability, they are generally suboptimal for TSP500 and TSP1000,
which indicates that the corresponding curves in dashed lines are less reliable. This figure shows
that small perturbations introduce small gaps, which can be regarded as exploiting approximate in-
variance. This observation motivates us to apply various invariant transformations (e.g., rotation or
reflection) with random perturbation to a TSP instance to generate many instances sharing similar
optimal solutions.

To make these ideas operational for exploiting (approximate) invariance, we design a novel
Transformer-based model for solving TSP and propose a modification of the REINFORCE algo-
rithm to train it. In addition, we also combine our trained model with Monte-Carlo Tree Search
(MCTS). Our contributions are summarized below.

• We propose a novel Transformer-based architecture combining local and global informa-
tion enforcing approximate invariance in the policy. The local view includes the k-NN
graph centered at the last visited node. The global view includes all nodes dependent on
the optimal solution.

• We propose a novel training method exploiting approximate invariance by involving exact-
invariant operations (e.g. rotation) and approximate-invariant operation (e.g. noisy pertur-
bation).

• In addition, to demonstrate the quality of TS3, we formulate a generic approach TS4 to
derive a heatmap from a constructive method to be used in MCTS.

• We perform comprehensive experiments to evaluate the generalizability of our method,
compared with many other available methods. We also conduct an ablation study and
sensitivity experiments to validate the positive effects of our design decisions.

2 RELATED WORK

In this section, we discuss related work and emphasize how it differs from our proposition. Here we
only include those work having strong relationship with us, and more additional work over TSP can
be found in Appendix B.

2

Under review as a conference paper at ICLR 2024

Transformer Structure. The Transformer (Vaswani et al., 2017) model has inspired multiple ar-
chitectures proposed for solving TSP. Notably, Kool et al. (2019) design an attention model (AM)
using attention layers, while Bresson & Laurent (2021) show that the original Transformer model
works well on small-sized TSP. Jin et al. (2023) create a multi-pointer network, called Pointerformer,
to aggregate information from all nodes. In contrast, our proposition, which exploits approximate
invariance by notably focusing on nearest neighbors, uses attention layers to process and use local
and global views when selecting the next node to visit.

Local and Global Information. Jiang et al. (2023) proposes a MVGCL to leverage local infor-
mation using kNN on the whole graph for learning representative features by contrastive learning.
This kind of k-NN usage is applied on the complete graph, which is different from the k-NN during
tour construction. Gao et al. (2023) explores a local view based on a k-NN during construction and
combines the outputs of a local policy and a global policy. Our design uses only one local policy,
which enforces a k-NN approximate invariance over the policy, and the aggregation of the local and
global views is performed in the embedding space.

Data Augmentation and Invariance. Kwon et al. (2020) achieve with POMO a great perfor-
mance gain by applying data augmentation to handle multiple trajectories at both the training phase
and the test phase. Ouyang et al. (2021) demonstrate with eMAGIC that exploiting invariance (via
data augmentation and preprocessing) can help generalization. Kim et al. (2022) further develops a
formal algorithm to learn invariant policy for combinatorial optimizations by rotation augmentation.
In addition to exact invariance, our method also exploits approximate invariance both when applying
data augmentation and in the architecture design to further enhance generalizability.

Monte-Carlo Tree Search. Fu et al. (2021) train a specific model to predict probability heatmaps
of TSP instances, and then utilize MCTS to optimize the solutions. Their MCTS samples a k-opt
local move according to a probability heatmap over all edges, which is updated by the performance
of sampled local moves. Our proposition TS4 follows the same MCTS scheme, but we construct the
initial solutions and the probability heatmaps from our model.

3 BACKGROUND

We first specify some mathematical notations used in the rest of this article. Basic knowledge of
TSP and DRL is then recalled, and the problem is finally formalized.

Notations. For any positive integer n ∈ N, [n] denotes the set {1, 2, · · · , n}. Set Sn represents
the set of all permutations of [n], where a permutation is denoted σ = (σ1, · · · , σn). By extension,
for any finite set X = {x1, x2, · · · , xn}, σ(X) = (xσ1

, · · · , xσn
) denotes a permutation of the

elements of X . For any finite set X , ∆(X) denotes the set of probability distributions over X .

3.1 EUCLIDEAN TSP

A Euclidean TSP instance can be described as a set C = {c1, c2, . . . , cn} of cities, where each city ci
has coordinates (xi, yi) ∈ [0, 1]2. This set induces a graph G = (C, E), where E = {ei,j | i, j ∈ [n]}
denotes the set of edges, and each edge ei,j = {ci, cj} has a cost defined as the Euclidean distance
between cities ci and cj : D(ei,j) =

√
(xi − xj)2 + (yi − yj)2. In a TSP instance, the salesman has

to visit all the cities exactly once and return to its initial city, while minimizing the travelled distance.
Formally, such a sequence of city visits is called a tour, which can be encoded as a permutation σ
of the city indices. The length of a tour can be calculated as:

LC(σ) = D(cσn
, cσ1

) +
∑n−1

i=1
D(cσi

, cσi+1
) . (1)

Therefore, solving a TSP instance C amounts to finding an optimal tour σ∗ with minimal length.

3.2 MDP AND RL

Reinforcement learning is based on the Markov Decision Process (MDP) model, which can be de-
scribed by a tuple M = (S,A, P, r, γ, d0), where S and A represent a state space and an action

3

Under review as a conference paper at ICLR 2024

space respectively, P : S ×A → ∆(S) is a transition function, r : S ×A 7→ R is a reward function,
γ ∈ (0, 1] is a discount factor, and d0 ∈ ∆(S) is an initial state distribution. A (stochastic) policy
π : S → ∆(A) selects an action stochastically given a current state.

The objective of reinforcement learning is to find an optimal policy π∗ to maximize the total ex-
pected discounted rewards (assuming episodic problems with horizon T):

J(π) = Es0∼d0,at∼π(·|st),st+1∼P (st,at,·) [G] where G =
∑T−1

t=0
γtr(st, at), (2)

where value G is the so-called episodic return.

3.3 FORMALIZING TSP AS AN RL PROBLEM

Constructive methods solve a combinatorial optimization problem by generating a whole solution
step by step. In Euclidean TSP, such methods start from an initial node, and repeatedly select the next
node to visit, until all nodes have been visited. This iterative process can be formalized as an MDP.
At time step t, a state st = (σ(Vt), C) consists of a current partial tour σ(Vt) = (cσ1

, · · · , cσt
)

(i.e., permutation of already-visited nodes in Vt ⊂ C) and a TSP instance C. Thus, the state space is
defined as S = {(σ(Vt), C) | t ∈ [n],Vt ⊆ C, |Vt| = t,σ ∈ St}. In a state st, an action is any node
ci in the set of unvisited nodes Ut = C \Vt. Thus, the action space is simplyA = C, but in a state st,
only actions in Ut are allowed. In this MDP, transitions are deterministic: selecting ci ∈ Ut in state
s = (σ(Vt), C) leads to a new state where ci is removed from Ut and appended to current partial
tour σ(Vt). The reward here is simply the negative cost of the newly-added edge eσt,i. Thus, with
the discount factor set to γ = 1, episodic returns equal negative tour distances. By maximizing the
expected returns, we learn a policy to minimize the tour length, ensuring the consistency between
the objective of MDP and the objective of TSP.

As noticed by Kool et al. (2019), the optimal choice for the next city to visit is independent of
the intermediate cities visited between the first visited node cσ1

and the last visited node cσt
, al-

though they still use the previously-defined state space S as input since their encoder depends on
the whole instance C. Building on this idea, Ouyang et al. (2021) instead reduce the state space to
S = {(cσ1

, cσt
,Ut) | t ∈ [n],Vt ⊆ C, |Vt| = t,Ut = C \ Vt,σ ∈ St}, allowing the embeddings of

unvisited nodes to be independent of visited ones. In this paper, we also use this reduced state space.

4 ARCHITECTURE

Our proposed deep RL method trains a differentiable architecture called TS2 (Transformer
Structured TSP Solver). It is composed of three components: local encoder, global encoder, and
decoder. Figure 2 visualizes the model architecture, whose details are presented in the following
paragraphs.

As explained in Section 1, an RL agent can be viewed as approximately invariant with respect to the
k-NNs of the last visited node based on observations. Following this idea, we reduce the action set
Ut to a set Uknn

t containing the k-NN of the last visited node. To focus on local information, the
local encoder processes as inputs a partial state, which we call local k-NNs, defined as (cσt

,Uknn
t).

Since choosing the next node to visit only based on local information may be insufficient, we also
introduce a global encoder. The global encoder, receiving the whole state s = (cσ1 , cσt ,Ut) as
inputs, is designed to compensate for this information loss. We denote nodes in the k-NNs as
Uknn
t = {cς1 , · · · , cςk}. The decoder takes as inputs the embeddings obtained from the two encoders

and selects the next node to visit from Uknn
t . Before explaining in details those components, we

recall the definition of attention layer, which is the basic building blocks used in both encoders and
decoder.

Attention Layer. Vaswani et al. (2017) propose a well-known encoder architecture built on atten-
tion layers. Each attention layer is equipped with residual mechanism and is composed of two key
components: Multi-Head Attention (MHA) Layer and Feed Forward (FF) layer. Given the input
embeddings E(ℓ)

enc of the ℓ-th layer and embeddings EQ,EK ,EV , the MHA layer and the FF layer

4

Under review as a conference paper at ICLR 2024

Figure 2: The overall architecture of TS2. The input state is processed by the local encoder and
the global encoder. The local encoder, aimed to provide representative local information, takes the
scaled local k-NNs as inputs. The global encoder, aimed to compensate the information loss of the
local encoder, take the scaled state as inputs. The decoder processes the merged information from
the two encoders and outputs a final probability. The TS2 samples a node to visit by the output
probabilities and updates the partial tour in an auto-regressive manner, until a complete feasible
tour is constructed. As for the first visited node, a learnable start placeholder is applied to find the
suitable alternative. Best viewed in colors.

process the information as follows:

Q = Linear(EQ), K = Linear(EK), V = Linear(EV) (3)

E
(ℓ+1)
att = BN

(
E(ℓ)

enc + Softmax

(
QK⊤
√
dK

)
V

)
, (4)

E(ℓ+1)
enc = BN

(
E

(ℓ+1)
att + FF

(
E

(ℓ+1)
att

))
, (5)

where Q,K,V , called queries, keys and values, are calculated by a linear layer from EQ,EK ,EV

respectively. Scaling factor dK is the feature dimension of the keys to normalize the inputs QK⊤

of the softmax function. The outputs of the attention layer can be viewed as information aggregation
for Q from K,V . The aggregated information for Q is directly added by the inputs E(ℓ)

enc following
the residual mechanism. To make the two terms consistent, it is common to set EQ = E

(ℓ)
enc when

applying the attention layer.

Local Encoder. Guided by approximate invariance, the local encoder processes as inputs the local
k-NNs (cσt ,Uknn

t). This enables the local encoder to process a small fixed-sized group of nodes ex-
tracted from the original state. However, the density of nodes increases as the size of TSP increases.
Higher density results in shorter distances between nodes, which makes it hard to generalize from
small-sized TSP instances to large-sized TSP instances. To maintain the approximate invariance
with respect to local information among different TSP sizes, TS2 scales the coordinates of the nodes
in the local k-NNs to a unit square [0, 1]2. The scaled coordinates of these nodes are then processed
as inputs by a linear embedding layer followed by multiple attention layers shown as follows:

E(1) = Linear
(
Scale(cσt ,Uknn

t)
)
, (6)

E(ℓ+1) = Attention(E(ℓ), EQ = EK = EV = E(ℓ)). (7)

We call the outputs of the local encoder the local embeddings Eloc = (Eloc
σt

,Eloc
ς1 , · · · ,Eloc

ςk
)

(assuming Uknn
t = {cς1 , · · · , cςk}), where Eσ is abused to represent the embeddings corresponding

to node cσ .

Global Encoder. The global encoder takes the whole state s = (cσ1
, cσt

,Ut) as inputs. Similar to
the local encoder, the global encoder also scales the coordinates and processes them with a linear
embedding layer followed by multiple attention layers. Since the final action space is reduced to

5

Under review as a conference paper at ICLR 2024

Uknn
t , the global encoder only provides the embeddings for cσ1

, cσt
and nodes in Uknn

t to improve
computation efficiency. To achieve this, the queries are reduced to the embeddings corresponding to
these nodes, which leads to the absence of the embeddings corresponding to Ut \ Uknn

t in the layer
outputs. However, if we process the embeddings same as in the local encoder where EK = EV =
E(ℓ), the global encoder no longer aggregates the information from embeddings corresponding to
Ut \ Uknn

t , because they are not provided in the layer outputs E(ℓ). To address this problem, we
reuse the embeddings from the linear embedding layer to be keys and values for the attention layers.
Formally, the whole state s = (cσ1 , cσt ,Ut) is processed by the global encoder as follows:

E(1) = Linear (Scale(cσ1
, cσt

,Ut)) , (8)

E(ℓ+1) = Attention(E(ℓ), EQ = (E(ℓ)
σ1

,E(ℓ)
σt

,E(ℓ)
ς1 , · · · ,E(ℓ)

ςk
), EK = EV = E(1)). (9)

The global encoder provides the global embeddings Eglo = (Eglo
σ1

,Eglo
σt

,Eglo
ς1 , · · · ,Eglo

ςk
).

Decoder. The decoder merges the local embeddings and the global embeddings, and outputs the
final probabilities for node selection by a linear embedding layer followed by multiple attention
layers. The decoder concatenates the local embeddings and the global embeddings corresponding
to each node. Specifically, the global embeddings of the first visited node are directly concatenated
with the embeddings of the last visited node. Then taking the concatenated embeddings of the
first/last visited nodes as queries and the remaining concatenated embeddings as keys and values,
the decoder applies attention layers.

E(1) = Linear
(
Concat(Eloc

σt
,Eglo

σt
,Eglo

σ1
)
)
, (10)

Eknn = Linear
({
Concat(Eloc

ςi ,Eglo
ςi)

}k

i=1

)
, (11)

E(ℓ+1) = Attention(E(ℓ), EQ = E(ℓ), EK = EV = Eknn), (12)

and the probabilities for next node selection are computed by a softmax over the output embeddings
Edec = (Edec

ς1 , · · · ,Edec
ςk

).

5 ALGORITHM

We propose TS3 (for TS2 + Transformed Samples) by developing a deep RL algorithm to train our
TS2 model. We also develop TS4 (for TS3 + Tree Search) by integrating the MCTS algorithm with
our proposed deep RL methods. Appendix A.2 provides the algorithms written in pseudo-codes,
which will be presented in this section.

5.1 ALGORITHM FOR TS3

As explained in Section 1, the RL agent should be (approximately) invariant with respect to some
transformations (e.g., Euclidean symmetry or random noise). Therefore, we utilize data augmenta-
tion to learn approximate invariance. Our algorithm is based on the REINFORCE algorithm, which
is adopted in many previous papers on TSP.

REINFORCE. Assuming a parametric policy space {πθ | θ ∈ Θ}, the REINFORCE (Williams,
1992) algorithm optimizes eq. (2) via gradient ascent using the following gradient (so called stochas-
tic policy gradient (Sutton et al., 1999)):

∇θJ(πθ) = Eη [(G−B)∇θ log pθ(η)] (13)

where η is the episodic trajectory with respect to distributions defined by πθ, P, d0; pθ(η) is the joint
probability of the η; and B, called baseline, is to reduce the variance of the policy gradient.

Similar to Kool et al. (2019), a baseline model with parameters θBL, which shares the same archi-
tecture with the train model with parameters θ, is used to calculate baseline B.

Data Augmentation. The augmentation function f ∈ F includes operations of rotation, reflec-
tion, scaling, and noisy perturbation, with detailed presentations available in Appendix C.1. Given
an original instance, we sample an augmentation function from F randomly for every generation of

6

Under review as a conference paper at ICLR 2024

Figure 3: Data augmentation for TS3. For a given TSP instance C, more instances are generated by
sampled augmentation functions. Solutions of all instances inferred by our TS2 model are evaluated
over C. Average (resp. minimum) tour length represents the episodic return (resp. best result) of the
input instance C for training (resp. evaluation). Notations on the figure are the same as in the text.

augmented instances. Augmented instances of number ω are generated for each original instance by
ω sampled augmentation functions.

To generate the tours for TSP instances during training, the train model applies probabilistic sam-
pling and the baseline model applies deterministic policy. In order to learn approximate invariance
with respect to our defined data augmentation, tours for augmented instances are evaluated on there
corresponding original instances. As discussed in Section 3.3, the episodic return and the baseline
are derived by the negative tour lengths, with respect to tours generated by the train model and the
baseline model respectively. Figure 3 visualizes the procedures described above. Formally, given a
sampled TSP instance C, our algorithm calculates:

G = LC (σ(πθ, C)) + ωEf∈F [LC (σ(πθ, f(C)))] , (14)
B = LC (σ(µθBL , C)) + ωEf∈F [LC (σ(µθBL , f(C)))] . (15)

We use σ(π, C) to denote the tour generated by policy π on instance C. Policy µθBL is the determin-
istic policy induced by πθBL by selecting the node with maximum probability.

Baseline Model Update. After several policy updates, we would utilize a batch of instances to
evaluate the performance of the models. By comparing the average performance of the train model
and the baseline model, the baseline model will copy the parameters from the train model if the
performance difference is less than a tolerance ε. This implicitly indicates that the baseline model is
the best-so-far train model during training.

To evaluate one instance by our model, number of ωeval extra instances are augmented using sampled
augmentation functions. We use the model to generate ωeval+1 tours on the original instance and its
augmented instances by deterministic policy. Calculating the tour lengths over the original instance,
we select the best tour to be the final solution.

5.2 ALGORITHM FOR TS4

Local search methods can further improve the performance of solutions given by constructive meth-
ods. We adapt the Monte-Carlo Tree Search (MCTS) based scheme (Fu et al., 2021) into TS3.

Heatmap Generation. To adapt probabilistic sampling in MCTS, we need to define a probability
heatmap for the given instance, assigned to every edge belonging to the complete graph. Given a
set of solutions {σq}ωeval

q=0 obtained from model evaluation over augmented instances, the heatmap
is calculated as:

Pr(eij) ∝ 1knn
ij +

β

ωeval + 1

∑ωeval

q=0
1
σq

ij ,
∑n

j=1
Pr(eij) = 1, (16)

where 1knn
ij is an indicator function, indicating whether node cj is in the top-k-th nearest node of

ci, and 1
σq

ij is also an indicator function indicating whether edge eij exists in tour σq . We use a
weighting parameter β to balance the two terms.

7

Under review as a conference paper at ICLR 2024

Table 1: Comparisons on TSP-Random evaluations by model trained on TSP50 for TS3.

Category TSP-20 TSP-50 TSP-100 TSP-200 TSP-500 TSP-1000

LKH3(100) 0.13788 s 1.78567 s 11.34500 s 65.01146 s 553.47642 s 2754.31533 s

Measurements gap time gap time gap time gap time gap time gap time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

*DIMES / / / / / / / / 14.38 0.497 14.97 1.116
AM 0.97 0.009 1.72 0.022 4.87 0.043 13.54 0.084 30.37 0.212 45.04 0.432

POMO 0.01 0.007 0.03 0.015 0.68 0.027 9.08 0.111 30.91 1.319 45.04 9.688
TSP Transformer 0.31 0.009 0.27 0.021 2.57 0.040 14.42 0.076 43.35 0.186 68.20 0.391

PointerFormer 0.01 0.020 0.02 0.054 0.53 0.086 8.18 0.151 19.97 1.089 27.03 7.909
AttGCRN 0.60 0.013 28.21 0.031 50.97 0.061 56.27 0.237 85.43 0.558 118.05 1.070
TS3 0.03 0.099 0.51 0.190 1.82 0.444 3.98 0.735 6.68 1.926 8.10 5.578

The first term forces the MCTS algorithm to consider all nodes in the k-NNs. The second term
represents the frequency of each edge selected by the models among different augmented instances.
Intuitively, we construct the heatmap to guide the search algorithm over the reduced action space,
based on the preferences by the model.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

To demonstrate the performance of our method, we design a series of experiments on different
datasets and compare the performance with other baselines. Codes can be found in Appendix A.1
for reproduction.

In our experiments, we consider two metrics: the solution gap and the inference time. The solution
gap is computed by the average gap to the optimal solutions among all generated instances, and
the inference time is computed by the average inference time per instance. Parallelization is not
explored, meaning that all methods only proceed with one instance at one run. To ensure the fairness
of comparisons, all baseline methods and our method are tested under the same machine (a single
Intel Core i7-12700 CPU and a single RTX 3060 GPU). We use the same algorithm used in baseline
model update to evaluate instances for TS3. Full configurations of our settings can be found in
Appendix A.3, and it takes about 3 days to train a model following. For some baseline methods
marked with *, it means that we directly take the reported data from others’ paper.

Dataset. Our experiments focus on two datasets: TSP-Random and TSPLIB. TSP-Random con-
sists of instances generated by uniformly sampling a specific number of nodes within the range of
[0, 1]2. It includes six sets of TSPs, with different sizes n = 20, 50, 100, 200, 500, 1000, each with
1000 instances. We utilize LKH3 (Helsgaun, 2009) to solve those random instances and to calculate
the gap. TSPLIB (Reinelt, 1991), as a well-known TSP library that contains different sizes of TSP
instances for practial applications, is also included. In our experiments, we consider the same test
set as PointerFormer (Jin et al., 2023).

Baselines. To get a comparison of generalization ability, all of the models is trained on TSP50
in our experiments. Our baselines include AM (Kool et al., 2019), POMO (Kwon et al., 2020),
TSP Transformer (Bresson & Laurent, 2021), PointerFormer (Jin et al., 2023), Att-GCRN (Fu et al.,
2021) and DIMES (Qiu et al., 2022), compared with our TS3. For those models considering multiple
decoding strategies, we assume to use multiple optima (if available) or sampling.

6.2 PERFORMANCE ANALYSIS

Performance on TSP-Random. As shown in Table 1, PointerFormer achieves the best perfor-
mance when the size of TSP is less than or equal to 100. Compared to PointerFormer, our model,
TS3, achieves close but worse performance on small-sized TSP. However, when applied to large-
sized TSP, TS3 can achieve much better performance with low increase on inference time.

8

Under review as a conference paper at ICLR 2024

Table 2: TSPLIB evaluations.

Model 1∼100 101∼500 501∼1002

*AM 15.36% 78.18% 139.02%
*POMO 1.20% 6.99% 26.93%

*PointerFormer 1.33% 5.43% 18.65%

TS3 2.04% 4.73% 8.57%

Performance on TSPLIB. Table 6.2 demon-
strates the overall performance of baseline
models and our models on TSPLIB. Results
marked with * are those reported by Jin et al.
(2023), and the TSPLIB results for Pointer-
Former corresponds to Model100, instead of
Model50 in TSP-Random. Similar to the re-
sults on TSP-Random, our TS3 achieves a
slight worse performance on small-sized TSPs while keeping a dominant performance on large-
sized TSPs. The detailed results for TSPLIB instances can be checked in Appendix A.4.

6.3 ABLATION STUDY AND SENSITIVITY ANALYSIS

Table 3: Ablation study and sensitivity analysis.

Hyperparameters TSP50 TSP200 TSP1000

TS3 0.51% 3.98% 8.10%

w/o Scale 0.59% 4.92% 23.51%
w/o Global Encoder 0.84% 6.50% 12.39%
w/o Local Encoder 1.50% 11.39% 36.55%
w/o Augmentation 0.61% 4.65% 9.95%

γlocal = 4 0.63% 4.24% 8.99%
γglobal = 2 0.61% 4.19% 8.63%
γheads = 4 0.66% 4.22% 8.44%
ω = 15 0.70% 4.27% 8.20%
k = 15 0.53% 4.11% 8.48%

ntrain = 30 0.56% 4.55% 10.10%
ntrain = 100 0.52% 2.59% 7.76%

Ablation Study. As shown in Section 4 and
Section 5, our TS3 involves different compo-
nents and mechanisms to improve the perfor-
mance. Table 3 gives a view of the effects of
using those components and mechanisms. The
dramatic decrease of the performance when
dropping the components in TS2 reflects their
significance, especially for the scale operation
and the local encoder. For other mechanisms in
TS3, it can be observed that the overall perfor-
mance increases after applying this mechanism.

Sensitivity Analysis. Several hyperparame-
ters are involved in our model training, includ-
ing the number of global layers γglobal, the
number of local layers γlocal, the number of
heads γheads in the attention layers, the augmentation size ω during training, the parameter k for
the local k-NNs, and the size of training instances ntrain. Following a quick grid search, we set the
hyperparameters as follows: γglobal = 4, γlocal = 6, γheads = 8, ω = 7, and k = 12. However, as
suggested by Table 3, the performance of our model is very stable to changes of hyperparameters.

6.4 ANALYSIS OVER TS4

Table 4: TSP-Random evaluations with MCTS.

Methods TSP200 TSP500 TSP1000

*DIMES+MCTS / 2.64% 3.98%
*DIMES+AS+MCTS / 1.76% 2.46%

AttGCRN+MCTS 0.64% 2.10% 2.69%
TS4-uniform 0.10% 2.91% 5.39%

TS4 0.04% 0.45% 2.05%

We evaluate TS4 on the same dataset, with the
best solution generated by TS3 as the initial so-
lution of MCTS. TS4-uniform is TS4 with the
heatmap replaced by a uniform one. Although
our performance is the best shown in the table,
we do not conclude that TS4 is dominant to
other methods, since we do not include a sys-
tematic evaluation nor we also do not include
other model-search papers. We just use this to
show that our TS4 can at least show a competitive result compared with other SOTA works. Detailed
experimental results for TS4 are available in Appendix A.4.

7 CONCLUSION

We demonstrated that approximate invariance can be exploited to improve generalization by propos-
ing an architecture called TS2, training it on small-sized instances with data augmentation to form
TS3, and evaluating it on larger instances. Our TS3 achieves a dominant performance among all
end-to-end methods considering cross-size generalization. In addition, we also propose a simple
but generic method to adapt Monte-Carlo Tree Search. Furthermore, we performed multiple experi-
ments to investigate the effects of our designed components and the sensitivity to the hyperparame-
ters. As future work, we plan to extend our architecture to more complex routing problems, such as
Vehicle Routing Problem (VRP).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ali Fuat Alkaya and Ekrem Duman. Application of sequence dependent traveling salesman problem
in printed circuit board assembly. 3(6):1063–1076, 2013. URL https://doi.org/10.
1109/TCPMT.2013.2252429.

David Applegate, Robert Bixby, Václav Chvátal, and William J. Cook. Concorde TSP Solver, 2015.
URL https://www.math.uwaterloo.ca/tsp/concorde/index.html.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016. URL https:
//arxiv.org/abs/1611.09940.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun,
and Yeow Meng Chee. Learning generalizable models for vehicle rout-
ing problems via knowledge distillation. 35:31226–31238, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
ca70528fb11dc8086c6a623da9f3fee6-Abstract-Conference.html.

Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike
Trautmann. Evolving diverse tsp instances by means of novel and creative mutation operators.
In Proceedings of the 15th ACM/SIGEVO conference on foundations of genetic algorithms, pp.
58–71, 2019. URL https://dl.acm.org/doi/10.1145/3299904.3340307.

Xavier Bresson and Thomas Laurent. The Transformer Network for the Traveling Salesman Prob-
lem, March 2021. URL http://arxiv.org/abs/2103.03012.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize:
Learning to solve large-scale TSP instances. In Proceedings of The 26th International Con-
ference on Artificial Intelligence and Statistics, pp. 1219–1231. PMLR, 2023. URL https:
//proceedings.mlr.press/v206/cheng23a.html.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tier-
ney, and Youngjune Gwon. Simulation-guided beam search for neural combinato-
rial optimization. Advances in Neural Information Processing Systems, 35:8760–8772,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/39b9b60f0d149eabd1fff2d7c7d5afc4-Abstract-Conference.html.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, Alp Akcay, and Uzay Kaymak. Learning
2-Opt Heuristics for Routing Problems via Deep Reinforcement Learning. SN Computer Science,
2(5):388, July 2021. ISSN 2661-8907. doi: 10.1007/s42979-021-00779-2. URL https://
doi.org/10.1007/s42979-021-00779-2.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a Small Pre-trained Model to Arbi-
trarily Large TSP Instances. Proceedings of the AAAI Conference on Artificial Intelligence, 35
(8):7474–7482, May 2021. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v35i8.16916. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16916.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. 2023. URL
https://arxiv.org/abs/2308.14104v1.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Keld Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathematical
Programming Computation, 1(2):119–163, October 2009. ISSN 1867-2957. doi: 10.1007/
s12532-009-0004-6. URL https://doi.org/10.1007/s12532-009-0004-6.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for con-
strained traveling salesman and vehicle routing problems. Roskilde: Roskilde Uni-
versity, 12, 2017. URL https://forskning.ruc.dk/en/publications/
an-extension-of-the-lin-kernighan-helsgaun-tsp-solver-for-constra.

10

https://doi.org/10.1109/TCPMT.2013.2252429
https://doi.org/10.1109/TCPMT.2013.2252429
https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1611.09940
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ca70528fb11dc8086c6a623da9f3fee6-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/ca70528fb11dc8086c6a623da9f3fee6-Abstract-Conference.html
https://dl.acm.org/doi/10.1145/3299904.3340307
http://arxiv.org/abs/2103.03012
https://proceedings.mlr.press/v206/cheng23a.html
https://proceedings.mlr.press/v206/cheng23a.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/39b9b60f0d149eabd1fff2d7c7d5afc4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/39b9b60f0d149eabd1fff2d7c7d5afc4-Abstract-Conference.html
https://doi.org/10.1007/s42979-021-00779-2
https://doi.org/10.1007/s42979-021-00779-2
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://arxiv.org/abs/2308.14104v1
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/s12532-009-0004-6
https://forskning.ruc.dk/en/publications/an-extension-of-the-lin-kernighan-helsgaun-tsp-solver-for-constra
https://forskning.ruc.dk/en/publications/an-extension-of-the-lin-kernighan-helsgaun-tsp-solver-for-constra

Under review as a conference paper at ICLR 2024

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial opti-
mization problems. 2021. URL https://openreview.net/forum?id=nO5caZwFwYu.

Yuan Jiang, Yaoxin Wu, Zhiguang Cao, and Jie Zhang. Learning to solve routing problems via dis-
tributionally robust optimization, 2022. URL https://arxiv.org/abs/2202.07241v1.

Yuan Jiang, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Multi-view graph contrastive learning for
solving vehicle routing problems. In Proceedings of the Thirty-Ninth Conference on Uncertainty
in Artificial Intelligence, pp. 984–994. PMLR, 2023. URL https://proceedings.mlr.
press/v216/jiang23a.html.

Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Prob-
lem. Proceedings of the AAAI Conference on Artificial Intelligence, 37(7):8132–8140, June 2023.
ISSN 2374-3468. doi: 10.1609/aaai.v37i7.25982. URL https://ojs.aaai.org/index.
php/AAAI/article/view/25982.

Chaitanya K. Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem, October 2019. URL http://arxiv.
org/abs/1906.01227.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, Thomas Laurent, and Xavier Bresson.
Learning tsp requires rethinking generalization. arXiv:2006.07054 [cs, stat], Jun 2020. URL
http://arxiv.org/abs/2006.07054.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning Combinatorial Op-
timization Algorithms over Graphs. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html.

Minsu Kim, Jinkyoo Park, and joungho kim. Learning Collaborative Policies to
Solve NP-hard Routing Problems. In Advances in Neural Information Process-
ing Systems, volume 34, pp. 10418–10430. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/hash/
564127c03caab942e503ee6f810f54fd-Abstract.html.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging sym-
metricity for neural combinatorial optimization. 35:1936–1949, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 21188–21198. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f231f2107df69eab0a3862d50018a9b2-Abstract.html.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. arXiv preprint arXiv:2310.07985, 2023.
URL https://arxiv.org/abs/2310.07985.

Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial Optimization
by Graph Pointer Networks and Hierarchical Reinforcement Learning, November 2019. URL
http://arxiv.org/abs/1911.04936.

Atieh Madani, Rajan Batta, and Mark Karwan. The balancing traveling salesman problem: ap-
plication to warehouse order picking. 2020. URL https://www.sciencedirect.com/
science/article/abs/pii/S030505481000211X.

11

https://openreview.net/forum?id=nO5caZwFwYu
https://arxiv.org/abs/2202.07241v1
https://proceedings.mlr.press/v216/jiang23a.html
https://proceedings.mlr.press/v216/jiang23a.html
https://ojs.aaai.org/index.php/AAAI/article/view/25982
https://ojs.aaai.org/index.php/AAAI/article/view/25982
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/2006.07054
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0cddb777d3441326544e21b67f41bdc8-Abstract-Conference.html
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://arxiv.org/abs/2310.07985
http://arxiv.org/abs/1911.04936
https://www.sciencedirect.com/science/article/abs/pii/S030505481000211X
https://www.sciencedirect.com/science/article/abs/pii/S030505481000211X

Under review as a conference paper at ICLR 2024

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem an
overview of applications formulations and solution approaches. 2010. URL https://www.
intechopen.com/chapters/12736.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. arXiv preprint arXiv:2303.10538, 2023. URL https://arxiv.org/
abs/2303.10538.

Wenbin Ouyang, Yisen Wang, Paul Weng, and Shaochen Han. Generalization in Deep RL for
TSP Problems via Equivariance and Local Search, October 2021. URL http://arxiv.org/
abs/2110.03595.

Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-TSP:
Hierarchically Solving the Large-Scale Traveling Salesman Problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(8):9345–9353, June 2023. ISSN 2374-3468. doi: 10.
1609/aaai.v37i8.26120. URL https://ojs.aaai.org/index.php/AAAI/article/
view/26120.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta
solver for combinatorial optimization problems. 35:25531–25546, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing,
3(4):376–384, 1991. URL http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. abs/2302.08224, 2023. doi: 10.48550/ARXIV.2302.08224. URL https://doi.
org/10.48550/arXiv.2302.08224.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information pro-
cessing systems, 12, 1999. URL https://proceedings.neurips.cc/paper_files/
paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://papers.nips.cc/paper_files/paper/2015/hash/
29921001f2f04bd3baee84a12e98098f-Abstract.html.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3):229–256, May 1992. ISSN 1573-0565. doi: 10.1007/
BF00992696. URL https://doi.org/10.1007/BF00992696.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining deep learning
model with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In
Advances in Neural Information Processing Systems, volume 34, pp. 7472–7483. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc//paper/2021/hash/
3d863b367aa379f71c7afc0c9cdca41d-Abstract.html.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 42769–42789. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/zhou23o.html.

12

https://www.intechopen.com/chapters/12736
https://www.intechopen.com/chapters/12736
https://arxiv.org/abs/2303.10538
https://arxiv.org/abs/2303.10538
http://arxiv.org/abs/2110.03595
http://arxiv.org/abs/2110.03595
https://ojs.aaai.org/index.php/AAAI/article/view/26120
https://ojs.aaai.org/index.php/AAAI/article/view/26120
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a3a7387e49f4de290c23beea2dfcdc75-Abstract-Conference.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://doi.org/10.48550/arXiv.2302.08224
https://doi.org/10.48550/arXiv.2302.08224
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper_files/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/29921001f2f04bd3baee84a12e98098f-Abstract.html
https://doi.org/10.1007/BF00992696
https://proceedings.neurips.cc//paper/2021/hash/3d863b367aa379f71c7afc0c9cdca41d-Abstract.html
https://proceedings.neurips.cc//paper/2021/hash/3d863b367aa379f71c7afc0c9cdca41d-Abstract.html
https://proceedings.mlr.press/v202/zhou23o.html
https://proceedings.mlr.press/v202/zhou23o.html

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 REPRODUCTION

During anonymous submission, we provide our code used for experiments in supplementary ma-
terials. To reproduce our work, one can follow the instructions witten in README.md attached in
supplementary materials.

Due to size limitations, we do not include our trained model and generated datasets in supplementary
materials. All of them will be available through Github after our work being accepted, but the link
is hidden during anonymous submission.

A.2 ALGORITHMS

Algorithm 1 gives the pseudocode for our modified REINFORCE algorithm.
Algorithm 1: Training Algorithm for TS3

Require: epochs T , epoch steps M , batch size N , augmentation size ω, learning rate α, tolerance
ε, augmentation function f

1: Initialize θ, θBL ← θ
2: for epoch = 1 to T do
3: for step = 1 to M do
4: {Ci,0}Ni=1 ← RandomInstance()
5: {{Ci,j}ωj=0}Ni=1 ← {Ci,0}Ni=1 ∪ {{f(Ci,0)}Ni=1)}ωj=1

6: σi,j ← SampleRollout(Ci,j , πθ), σBL
i,j ← GreedyRollout(Ci,j , πθBL)

7: Gij ← LCi,0
(σi,j) , Bij ← LCi,0

(σBL
i,j)

8: ∇L(θ)← 1

N(ω + 1)

∑
i,j

(Gij −Bij)∇θ log πθ(a|s)

9: θ ← θ − α∇L(θ)
10: end for
11: if Test(θ, θBL) < ε then
12: θBL ← θ
13: end if
14: end for

Algorithm 2 presents how a new TSP instance can be solved by TS4.
Algorithm 2: Evaluation Algorithm of TS4.

Require: instance C, model
1: Scale instance C to C0.
2: Augment C0, {Cq}ωeval

q=1 = {f(C0)}ωeval
q=1 .

3: Generate solutions {σq}ωeval
q=0 by model inference.

4: Find the best solution σ∗ = arg minσ [LC0
(σ)]. (← outputs of TS3)

5: Generate heatmaps Pr(eij) by solutions {σq}ωeval
q=1 .

6: Run MCTS with initial solution σ∗ and heatmaps Pr(eij).
7: Find the best solution σ+ during MCTS optimization. (← outputs of TS4)

A.3 HYPERPARAMETERS

Table 5 shows a detailed configuration used in the experiments.

A.4 EXTRA RESULTS

Table 6 shows the full results for TS4 and AttGCRN+MCTS on TSP-Random datasets. For these
two methods, we impose a soft limit 0.01 × n seconds per instance for both methods. It means
that search time for TS4 is less than AttGCRN+MCTS, due to the fact that TS3 costs more time
than AttGCRN. The reported data in DIMES (Qiu et al., 2022) is about 3 seconds per instance for

13

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameters.

Hyperparameter Notation Value
number of global encoder layers γglobal 4
number of local encoder layers γlocal 6
number of decoder layers 2
number of MHA heads γheads 8
dimension of embeddings 128
dimension of feed-forward layers 512
TSP size during training 50
augmentation size during training ω 7
training epochs T 170
steps for each epoch M 1600
batch size at each training step N 6
learning rate α 1.875× 10−5

tolerance of baseline model update ε 10−3

size of the k-NNs / cardinality of the reduced action space k 12
range of noisy perturbation 10−5

TSP size during evaluation n [20, 50, 100, 200, 500, 1000]
augmentation size during evaluation ωeval [63, 31, 31, 15, 7, 7]
scale of heatmap generation β 64
time limit of TSP inference (for search-based methods) 0.01× n
maximum opt for MCTS local move [10, 15, 40, 40, 40, 40]

Table 6: Comparisons on TSP-Random evaluations by model trained on TSP50 for TS4.

Category TSP-20 TSP-50 TSP-100 TSP-200 TSP-500 TSP-1000

LKH(100) 0.13788 s 1.78567 s 11.34500 s 65.01146 s 553.47642 s 2754.31533 s

Measurements gap time gap time gap time gap time gap time gap time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

AttGCRN+MCTS 0.00 0.194 0.02 0.482 0.22 0.963 0.64 2.042 2.10 5.081 2.69 10.139
TS4 0.00 0.193 0.04 0.481 0.08 0.960 0.45 2.009 1.58 5.001 2.05 9.892

DIMES+MCTS. However, they utilize 16 threads of CPU and our method is tested only on a single
thread. It cannot be concluded which method is better under these settings.

Table 7 shows the full version of TSPLIB evaluation results. All results of comparison methods
are data reported in appendix by Jin et al. (2023). For PointerFormer, its results are from taken the
colomn Model100. A “/” is used to represent a missing result.

B ADDITIONAL RELATED WORKS

Deep (Reinforcement) Learning for combinatorial optimization has just been explored for several
years, and TSP, one of the most well-known and widely applied NP-hard problems, has become a
good evaluator.

There are already several well-performed solvers for TSP. Gurobi (Gurobi Optimization, LLC, 2023)
and Concorde (Applegate et al., 2015) are exact solvers which can be used to find optimal solutions.
LKH3 (Helsgaun, 2017) is a SOTA heuristic solver, which can output (near-)optimal solutions in a
much shorter time compared with Gurobi. However, these solvers are still inefficient in some cases,
especially over large-sized instances. This motivates researchers to explore how deep (reinforce-
ment) learning can achieve good performance under fast inference.

14

Under review as a conference paper at ICLR 2024

B.1 END-TO-END METHODS

In the early days, researchers tried to find a suitable model for TSP. Ptr-Net (Vinyals et al., 2015)
is proposed as a specific model for combinatorial optimization, where the output sequence has the
same length as the input sequence. Khalil et al. (2017) mechanism proposes an S2V mechanism
to learn graph embeddings. Traditional GNN is explored by Joshi et al. (2019), where a GCN is
constructed for learning graph representations. By leveraging advantages from both Ptr-Net and
GNN, Ma et al. (2019) develops GPN for TSP. One of the most influential works is AM (Kool et al.,
2019) building the model by attention layers from Transformer (Vaswani et al., 2017). This paper
lays a solid foundation of attention-based models, and the effectiveness of Transformer-structure on
TSP is further evaluated by Bresson & Laurent (2021). Inspired by the Transformer-structured TSP
solver, Jin et al. (2023) proposes PointerFormer by extending Ptr-Net to a multi-pointer-network into
the Transformer decoder.

Among all the mentioned work above, only a few of them are using supervised learning (Vinyals
et al., 2015; Joshi et al., 2019). Many researchers choose reinforcement learning to train the neural
network model because it does not need to solve for optimal solutions, and there are also many ex-
plored ideas for improving the reinforcement learning algorithm. POMO (Kwon et al., 2020) shows
that an RL agent for combinatorial optimization can be drastically improved by multiple optima
(i.e. multiple greedy solutions, either generated by different start points or augmented instances).
EMAGIC (Ouyang et al., 2021) shows the benefits of introducing invariance to an RL-based TSP
solver. Sym-NCO (Kim et al., 2022) further exploits the rotation data augmentation for combinato-
rial optimizations and develops an RL algorithm to learn invariance. DIMES (Qiu et al., 2022) and
Omni-TSP Zhou et al. (2023) adapt meta-RL to train an RL solver generalizable to unseen tasks.
H-TSP (Pan et al., 2023) develops a hierarchical two-stage model to construct TSP solutions ef-
ficiently. AMDKD (Bi et al., 2022) adapts knowledge distillation to learn a generalizable student
model. DROP (Jiang et al., 2022) adapts group distributionally robust optimization to learn from
multiple datasets with different data distributions. MVGCL (Jiang et al., 2023) adapts contrastive
learning to encode representative features from the graph.

Several papers are working in a quite different and interesting direction, which we call it decod-
ing strategy. Before this field is explored, only several traditional methods are available, including
greedy, sampling, and beam search. POMO (Kwon et al., 2020) can also be viewed as a special
decoding strategy since multiple optima decoding can be applied to any constructive model. LEHD
(Luo et al., 2023) designs its decoder to support complex operations so that the model can iteratively
perform local optimizations for generated solutions. AS (Bello et al., 2016) is the first paper intro-
ducing learning into the decoding strategy. It allows the model parameters to be slightly tuned on
test instances for better evaluation. Inspired by the novel idea from it, EAS (Hottung et al., 2021)
and SGBS (Choo et al., 2022) are successively proposed. A valuable property of these papers is the
compatibility with the end-to-end methods mentioned above.

B.2 MODEL-SEARCH METHODS

Since our work mainly focuses on developing a end-to-end methods. We only have a short discussion
over model-search methods.

Model-search methods work for introducing deep learning to a local search framework. Most of
the work in this realm deals with two components: sub-region scoring and local optimization. Sub-
region scoring can be used in two ways: either 1) promising candidates for local moves, or 2) bad
regions to be re-created can be selected by scores. Local optimization is performed by 1) evaluating
the promising local moves, or 2) repairing the selected regions. Different papers lead to different
designs for these two components, and we refer to D2O (da Costa et al., 2021), NeuroLKH (Xin
et al., 2021), LCP (Kim et al., 2021), MCTS (Fu et al., 2021), SO (Cheng et al., 2023)... for more
details. Among them, MCTS is a special one, where its parametrization is learned during the search.
This allows the method to be free from a pre-trained model for local search, which can be adapted
to end-to-end methods easily.

Comparing the experimental results of end-to-end methods and model-search methods, it can be
observed that model-search methods tend to have a much better performance without considering
time consumption. Therefore, many TSP papers equip their own model with MCTS for further
improvements after constructing an initial solution. UTSP (Min et al., 2023) learns a transition

15

Under review as a conference paper at ICLR 2024

matrix processed by a cyclic permutation operation to be the heatmap for MCTS. DIMES (Qiu
et al., 2022) uses the continuous parametrization from GNN to be the heatmap of MCTS. DIFUSCO
(Sun & Yang, 2023) extends the usage from DIMES and further exploits multiple MCTS runs using
multiple sampled heatmaps.

B.3 MORE DISCUSSIONS

Cross-size Generalization. Researchers gradually attach importance to cross-size generalizability
(Khalil et al., 2017; Fu et al., 2021; Qiu et al., 2022; Pan et al., 2023; Zhou et al., 2023; Gao
et al., 2023). Focus on TSP, this generally means that a solver trained on small-sized TSP instances
should be adaptable to large-sized TSP without excess performance loss. We should notice here
that some papers (Jin et al., 2023; Sun & Yang, 2023) are considering some different ”cross-size
generalizability”, where they try to develop a method that can be trained on large-sized TSP. In our
paper, we just treat them as normal TSP solvers.

Cross-distribution Generalization. Cross-distribution generalizability measures whether a
solver can solve instances from multiple data distributions robustly. Though most of the meth-
ods on TSP are evaluated on random TSP instances, real-world applications do not strictly follow
a uniform distribution, such as TSPLIB (Reinelt, 1991). More attention are paid to this field after
a systematic evaluation of mutators for routing problems (Bossek et al., 2019). Some mentioned
papers indeed is aimed to exploit the cross-distribution generalizability of an RL-based TSP solver
(Jiang et al., 2022; Bi et al., 2022; Jiang et al., 2023; Zhou et al., 2023).

Usage of k-NN. There are already some papers utilizing k-NN as a trick to perform graph spar-
sification (Qiu et al., 2022) and reduce computational complexity (Fu et al., 2021), though this is
not emphasized in their papers. MVGCL (Jiang et al., 2023), to the best of our knowledge, is the
first paper to formally explore the local information induced by a k-NN graph. Nonetheless, like the
previously mentioned work, they utilize k-NN on a complete graph. Different from MVGCL, ELG
(Gao et al., 2023) applies k-NN during construction in a local policy. As explained in the main arti-
cle (Section 2), even though our method and ELG both use k-NN during construction, our method
is essentially different from them with respect to ideas and interpretations.

C IMPLEMENTATION DETAILS

C.1 AUGMENTATION FUNCTIONS

Given an instance C, it is processed by the following operations. Rotation→ Scale→ Reflection→
Scale→ Noisy Perturbation→ Scale.

Rotation. Uniformly sample a random angle ϕ ∈ [0, 2π]. All nodes are rotated with respect to the
origin by the angle ϕ. Formally, (x, y)→ (x cosϕ− y sinϕ, x sinϕ+ y cosϕ).

Reflection. Binomially sample a number r ∈ {−1, 1}. All nodes are reflected (or not) by multi-
plying the number to their coordinates. Formally, (x, y)→ (rx, ry).

Noisy Perturbation. Determine the range of noisy perturbation ξmax. For each node in an in-
stance, it is moved in a relative range of [−ξmax/2, ξmax/2]

2. Formally, (x, y)→ (x+ ξx, y + ξy),
where (ξx, ξy) ∈ [−ξmax/2, ξmax/2]

2 are uniformly sampled for every node.

Scale. All nodes are then scaled to a unit board [0, 1]2. The scaling factor is set to a number as
large as possible. Formally, (x, y) → ((x − xmin)/SF, (y − ymin)/SF), where SF is the scaling
factor equals to maxi,j{xmax − xmin, ymax − ymin}.

C.2 LOCAL MOVE FOR MCTS

This is the explanation of kopt local move used in MCTS. A kopt local move can be expressed by a
sequence of (u1, v1, u2, v2, · · · , uh, vh, u1), where (u1, v1), · · · (σuh

, σvh) are broken in the tour σ,

16

Under review as a conference paper at ICLR 2024

and (σv1
, σu2

), · · · (σvh , σu1
) are connected. Notices that (u1, v1, · · · , uh, vh) should be different

nodes, so the maximum number of h cannot exceed n/2. Also, as a local search method, a local
move will not be adapted if it cannot contribute to a performance improvement.

Selection of u1 and v1. The first index u1 can be selected by a given probability over all nodes, e.g.
uniform distribution. As (u1, v1) represents an edge to be removed in the tour σ, we set v1 = u1+1.

Selection of ui+1 given vi (i ≥ 1). Since (vi, ui+1) represents an edge to be connected in the tour
σ, it is forbidden to select ui+1 = vi ± 1. Then, ui+1 is sampled based on the heatmaps, so that
(vi, ui+1) corresponds to a promising edge for finding near-optimal solutions.

Selection of vi given ui (i ≥ 2). Since (ui, vi) represents an edge to be removed in the tour
σ, it should be already connected with each other, indicating that vi = ui ± 1. The two options
yield two kopt local moves (u1, v1, · · · , ui, ui + 1, u1) and u1, v1, · · · , ui, ui − 1, u1. The value
of vi is expected to induce a local move resulting in a feasible solution, so that we have the choice
to terminate in the next iteration. By geographical analysis, there is exactly one local move (either
induced by (ui+1) or (ui−1), dependent on the previous selections) satisfy this condition. The other
local move results in two independent loops in a TSP instance, leading to an infeasible solution. We
assign the value which satisfies our condition to vi. This also means that the selection of vi (i ≥ 2)
is deterministic.

To know the details how MCTS updates the probability heatmaps dynamically, please refer to Fu
et al. (2021).

17

Under review as a conference paper at ICLR 2024

Table 7: TSPLIB results.

TSPLIB Opt TS3 *AM *POMO *PointerFormer TS4 *DRL-2opt *AM+LCP
(len) (%) (%) (%) (%) (%) (%) (%)

att48 33524 0.29 / / / 0.00 / /
eil51 426 0.70 2.11 1.17 0.00 0.47 1.17 0.73

berlin52 7542 0.36 50.3 0.00 0.00 0.03 0.07 0.10
st70 675 1.93 1.33 0.00 0.00 0.30 0.89 0.74
eil76 538 3.90 2.23 0.00 0.00 1.12 2.04 1.64
pr76 108159 0.89 6.60 0.00 0.89 0.89 1.05 0.44
rat99 1211 2.39 12.55 3.47 3.88 0.66 3.39 6.67

kroA100 21282 0.59 33.75 1.26 0.80 0.01 5.80 2.95
kroB100 22141 3.42 25.36 0.26 1.98 0.00 6.21 1.51
kroC100 20749 2.31 14.00 1.29 1.01 0.01 0.52 2.84
kroD100 20749 6.25 26.63 5.51 5.66 2.63 6.25 1.97
kroE100 22068 2.08 6.10 1.40 1.33 0.00 1.29 1.90

rd100 7910 1.38 3.35 0.00 0.00 0.00 0.54 1.90
eil101 629 3.34 2.23 0.16 0.16 1.75 1.59 2.59
lin105 14379 2.01 122.71 1.40 2.75 0.03 12.39 3.86
pr107 44303 0.65 5.55 1.36 2.27 0.00 15.52 /
pr124 59030 2.91 3.88 0.08 0.08 0.00 1.39 3.84

bier127 118282 1.57 14.44 5.28 2.34 0.75 5.32 8.92
ch130 6110 1.98 3.62 0.23 0.10 0.33 1.55 0.57
pr136 96772 1.99 5.76 0.75 0.98 0.00 2.90 1.56
pr144 58537 2.66 10.01 0.66 0.17 0.05 3.37 3.47
ch150 6528 2.99 4.76 0.46 0.52 0.05 1.38 /

kroA150 26524 1.36 19.14 0.79 3.34 0.00 7.07 3.68
kroB150 26130 3.32 22.63 1.73 2.60 0.04 6.50 3.18

pr152 73682 10.02 15.06 0.95 1.26 0.00 6.72 1.52
u159 42080 0.37 8.56 1.02 0.99 0.00 1.71 10.84

rat195 2323 3.01 18.94 9.73 7.10 0.73 5.68 10.81
d198 15780 7.23 440.06 18.92 15.91 0.20 32.97 /

kroA200 29368 1.91 31.91 1.94 5.23 0.18 9.67 6.14
kroB200 29437 3.50 29.45 3.69 5.23 0.21 6.74 /

ts225 126643 5.06 11.15 7.56 6.22 3.36 4.76 6.46
tsp225 3916 3.88 34.04 5.77 9.01 0.00 7.87 14.50
pr226 80369 4.10 15.90 2.82 1.52 0.11 12.00 6.09
gil262 2378 5.51 13.37 2.61 1.98 0.88 4.12 5.49
pr264 49135 8.40 39.77 11.94 4.80 0.00 35.82 /
a280 2579 5.54 29.12 10.00 9.50 0.70 8.88 /
pr299 48191 4.13 432.65 11.54 13.54 0.23 26.88 /
lin318 42029 5.38 22.55 8.08 5.43 0.75 12.91 10.72
rd400 15281 6.19 24.40 11.62 9.02 1.14 11.31 8.10
fl417 11861 15.10 117.63 14.06 7.76 0.55 48.85 /
pr439 107217 7.49 260.14 14.27 13.34 5.27 41.21 22.18

pcb442 50778 5.74 33.68 14.79 11.13 0.64 16.70 12.35
d493 35002 14.58 552.35 45.53 18.57 1.40 61.78 /
u574 36905 7.88 105.29 22.90 17.92 1.60 8.92 /

rat575 6773 5.65 53.37 22.87 17.98 1.28 26.07 /
p654 34643 12.25 239.12 21.17 11.03 0.27 59.84 /
d657 48912 9.87 325.89 32.46 18.81 1.50 60.38 /
u724 41910 5.28 89.79 26.10 20.49 1.21 51.50 /

rat783 8806 6.92 75.24 27.66 22.23 2.09 68.24 /
pr1002 259045 12.16 84.42 35.34 22.07 7.75 23.04 /
vm1084 239297 9.69 / / / 5.02 / /
pcb1173 56892 8.95 / / / 1.51 / /
d1291 50801 8.76 / / / 2.21 / /
rl1304 252948 8.60 / / / 5.90 / /
rl1323 270199 12.63 / / / 6.90 / /

nrw1379 56638 7.23 / / / 1.75 / /
fl1400 20127 13.33 / / / 1.47 / /
u1432 152970 6.49 / / / 5.42 / /
fl1577 22249 13.84 / / / 1.20 / /
d1655 62128 12.70 / / / 2.31 / /

vm1748 336556 10.78 / / / 6.86 / /
u1817 57201 10.56 / / / 3.16 / /
rl1889 316536 12.56 / / / 6.53 / /
d2103 80450 9.04 / / / 0.37 / /
u2152 64253 11.05 / / / 3.00 / /
u2319 234256 1.91 / / / 1.35 / /
pr2392 378032 12.49 / / / 6.90 / /

pcb3038 137694 9.82 / / / 7.02 / /
fl3795 28772 20.38 / / / 3.91 / /

fnl4461 182566 9.03 / / / 6.35 / /
rl5915 565530 14.47 / / / 7.30 / /
rl5934 556045 16.34 / / / 7.95 / /

18

	Introduction
	Related Work
	Background
	Euclidean TSP
	MDP and RL
	Formalizing TSP as an RL Problem

	Architecture
	Algorithm
	Algorithm for TS3
	Algorithm for TS4

	Experimental Results
	Experimental Setup
	Performance Analysis
	Ablation Study and Sensitivity Analysis
	Analysis over TS4

	Conclusion
	Appendix
	Reproduction
	Algorithms
	Hyperparameters
	Extra Results

	Additional Related Works
	End-to-end methods
	Model-Search Methods
	More Discussions

	Implementation Details
	Augmentation Functions
	Local Move for MCTS

