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ABSTRACT

Motivated by deep neural networks, the deep Gaussian process (DGP) general-
izes the standard GP by stacking multiple layers of GPs. Despite the enhanced
expressiveness, GP, as an L2 regularization prior, tends to be over-smooth and
sub-optimal for inhomogeneous subjects, such as images with edges. Recently,
Q-exponential process (Q-EP) has been proposed as an Lq relaxation to GP and
demonstrated with more desirable regularization properties through a parameter
q > 0 with q = 2 corresponding to GP. Sharing the similar tractability of pos-
terior and predictive distributions with GP, Q-EP can also be stacked to improve
its modeling flexibility. In this paper, we generalize Q-EP to deep Q-EP to enjoy
both proper regularization and improved expressiveness. The generalization is re-
alized by introducing shallow Q-EP as a latent variable model and then building
a hierarchy of the shallow Q-EP layers. Sparse approximation by inducing points
and scalable variational strategy are applied to facilitate the inference. We demon-
strate the numerical advantages of the proposed deep Q-EP model by comparing
with multiple state-of-the-art deep probabilistic models.

Keywords: Deep Models, Inhomogeneous Subjects, Regularization, Latent Representation, Model
Expressiveness

1 INTRODUCTION

Gaussian process (GP Rasmussen & Williams, 2005; J. M. Bernardo & Smith, 1998) has gained
enormous successes and been widely used in statistics and machine learning community. With its
flexibility in learning functional relationships (Rasmussen & Williams, 2005) and latent represen-
tations (Titsias & Lawrence, 2010), and capability in tractable uncertainty quantification, GP has
become one of the most popular non-parametric modeling tools. Facilitated by the sparse approxi-
mation (Titsias, 2009) and scalable variational inferences (SVGP Hensman et al., 2015; Salimbeni &
Deisenroth, 2017), GP has been popularized for a variety of high-dimensional learning tasks. Neal
(1996) in his seminal work discovered that Bayesian neural networks with infinite width converged
to GP with certain kernel function. Inspired by the advancement of deep learning (Goodfellow
et al., 2016), Damianou & Lawrence (2013) pioneered in generalizing GP with deep structures,
hence named deep GP. Ever since then, there has been a large volume of follow-up works including
deep convolutional GP (Blomqvist et al., 2020), deep sigma point process (DSPP Jankowiak et al.,
2020b), deep image prior (Ulyanov et al., 2020), deep kernel process (Aitchison et al., 2021), deep
variational implicit process (Ortega et al., 2023), deep horseshoe GP (Castillo & Randrianarisoa,
2024), and various applications (Dutordoir et al., 2020; Li et al., 2021; Jones et al., 2023).

Despite its flexibility, GP, as an L2 regularization method, tends to produce random candidate func-
tions that are over-smooth and thus sub-optimal for modeling inhomogeneous objects with abrupt
changes or sharp contrast. To address this issue, an Lq based stochastic process, Q-exponential
process (Q-EP Li et al., 2023), has recently been proposed to impose flexible regularization through
a parameter q > 0, which includes GP as a special case when q = 2. Similarly as Lasso induc-
ing sparsity for regression, q = 1 is often adopted for Q-EP to impose stronger regularization than
GP to properly capture dramatic changes in certain portions of inhomogeneous data, e.g., edges in
an image. Different from other L1 based priors such as Laplace random field (Podgórski & We-
gener, 2011; Kozubowski et al., 2013) and Besov process (Lassas et al., 2009; Dashti et al., 2012),
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Q-EP shares with GP the unique tractability of posterior and predictive distributions (Theorem 3.5
of Li et al., 2023), which essentially permits a deep generalization by stacking multiple stochastic
mappings (Damianou & Lawrence, 2013).

Motivated by the improved expressiveness of deep GP and the flexible regularization of Q-EP, in
this work we generalize Q-EP to deep Q-EP to enhance the capability of Q-EP in modeling inho-
mogeneous data. On one hand, by stacking multiple layers of Q-EP mappings, deep Q-EP becomes
more capable of characterizing complex latent representations than the standard Q-EP. On the other
hand, inherited from Q-EP, deep Q-EP maintains the control of regularization through the parameter
q > 0, whose smaller values impose stronger regularization, more amenable than (deep) GP to pre-
serve inhomogenous traits such as edges in an image. First, we introduce the building block, shallow
Q-EP model, which can be regarded as a kernelized latent variable model (LVM) (Lawrence, 2003;
Titsias & Lawrence, 2010). Such shallow model is also viewed as a stochastic mapping F from in-
put (or latent) variables X to output variables Y defined by a kernel. Then as in Lawrence & Moore
(2007); Damianou & Lawrence (2013), we extend such mapping by stacking multiple shallow Q-
EP layers to form a hierarchy for the deep Q-EP. Sparse approximation by inducing points (Titsias,
2009) is adopted for the variational inference of deep Q-EP. A theoretic barricade for developing
the evidence lower bound (ELBO) in the setting of Q-EP is that the power in the exponent of its
density makes many involved expectations intractable. We solve this challenge by taking advantage
of Jensen’s inequality. The inference procedure, as in deep GP, can be efficiently implemented in
GPyTorch (Gardner et al., 2018).

Connection to existing works Our proposed deep Q-EP is closely related to deep GP (Damianou
& Lawrence, 2013) and two other works, deep kernel learning (DKL-GP Wilson et al., 2016) and
DSPP (Jankowiak et al., 2020b). Deep Q-EP generalizes deep GP with a parameter q > 0 to control
the regularization (See Figure 1 for its effect on learning representations) and includes deep GP as
a special case for q = 2. DKL-GP combines the deep learning architectures (neural networks) with
the non-parametric flexibility of kernel methods (GP). The GP part can also be replaced by Q-EP
to generate new methods like DKL-QEP (See Section 5.4.) DSPP is motivated by parametric GP
models (PPGPR Jankowiak et al., 2020a) and applies sigma point approximation or quadrature-like
integration to the predictive distribution. The majority of popular deep probabilistic models rely on
GP. This is one of the few developed out of a non-Gaussian stochastic process. Our proposed work
on deep Q-EP has multi-fold contributions to deep probabilistic models:

1. We propose a novel deep probabilistic model based on Q-EP that generalizes deep GP with
flexibility of regularization for handling data inhomogeneity.

2. We develop the variational inference for deep Q-EP and efficiently implement it.
3. We demonstrate numerical advantages of deep Q-EP in modeling inhomogeneous data by

comparing with state-of-the-art deep probabilistic models.

The rest of the paper is organized as follows. Section 2 introduces the background of Q-EP. We then
develop shallow Q-EP in Section 3 as the building block for deep Q-EP in Section 4. In these two
sections, we highlight the importance of posterior tractability in the development and some obstacles
in deriving the variational lower bounds. In Section 5 we demonstrate the numerical advantages by
comparing with multiple deep probabilistic models in various learning tasks. Finally, we conclude
with some discussion on the limitation and potential improvement in Section 6.

2 BACKGROUND: Q-EXPONENTIAL PROCESSES

2.1 MULTIVARIATE Q-EXPONENTIAL DISTRIBUTION

Based on Lq regularization, the univariate q-exponential distribution (Dashti et al., 2012) with an
inexact density (not normalized to 1), πq(u) ∝ exp (− 1

2 |u|
q), is one of the following exponential

power (EP) distributions EP(µ, σ, q) with µ = 0, σ = 1:

p(u|µ, σ, q) = q

21+1/qσΓ(1/q)
exp

{
−1

2

∣∣∣∣u− µ

σ

∣∣∣∣q} .
This family includes normal distribution N (µ, σ2) for q = 2 and Laplace distribution L(µ, b) with
σ = 2−1/qb for q = 1 as special cases.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Li et al. (2023) generalize the univariate q-exponential random variable to a multivariate ran-
dom vector on which a stochastic process can be defined with two requirements by the Kol-
mogorov’ extension theorem (Øksendal, 2003): i) exchangeability of the joint distribution, i.e.
p(u1:N ) = p(uτ(1:N)) for any finite permutation τ ; and ii) consistency of marginalization, i.e.
p(u1) =

∫
p(u1,u2)du2.

Suppose a function u(x) is observed at N locations, x1, · · · , xN ∈ D ⊂ Rd. Li et al.
(2023) find a consistent generalization, named multivariate q-exponential distribution, for u =
(u(x1), · · · , u(xN )) from the family of elliptic contour distributions (Johnson, 1987; Fang & Zhang,
1990).
Definition 1. A multivariate q-exponential distribution for a random vector u ∈ RN , denoted as
q−EDN (µ,C), has the following density

p(u|µ,C, q) = q

2
(2π)−

N
2 |C|− 1

2 r(u)(
q
2−1)N

2 exp

{
−r

q
2

2

}
, r = (u− µ)

T
C−1(u− µ). (1)

Remark 1. If taken negative logarithm, the density of q−ED in (1) yields a quantity dominated
by some weighted Lq norm of u − µ, i.e. 1

2r
q
2 = 1

2∥u − µ∥qC. From the optimization perspective,
q−ED, when used as a prior, imposes Lq regularization in obtaining the maximum a posterior
(MAP).

The following proposition describes the role of matrix C in characterizing the covariance between
the components (Li et al., 2023).
Proposition 2.1. If u ∼ q−EDN (µ,C), then we have

E[u] = µ, Cov(u) =
2

2
q Γ(N2 + 2

q )

NΓ(N2 )
C

·∼ N
2
q−1C, as N → ∞.

2.2 Q-EXPONENTIAL PROCESS AND MULTI-OUTPUT Q-EP

Li et al. (2023) prove that the multivariate q-exponential random vector u ∼ q−EDN (0,C) satisfies
the conditions of Kolmogorov’s extension theorem hence it can be generalized to a stochastic pro-
cess. For this purpose, we scale it by a factor N

1
2−

1
q so that its covariance is asymptotically finite

(refer to Proposition 2.1). If u ∼ q−EDN (0,C), then we denote u∗ := N
1
2−

1
q u ∼ q−ED∗

N (0,C)
as a scaled q-exponential random variable. With a covariance (symmetric and positive-definite) ker-
nel C : D × D → R, we define the following q-exponential process (Q-EP) based on the scaled
q-exponential distribution q−ED∗

N (0,C).
Definition 2. A (centered) q-exponential process u(x) with kernel C, q−EP(0, C), is a collection
of random variables such that any finite set, u := (u(x1), · · ·u(xN )), follows a scaled multivariate
q-exponential distribution q−ED∗(0,C), where C = [C(xi, xj)]N×N . If C = I, then u is said to
be marginally identical but uncorrelated (m.i.u.).
Remark 2. When q = 2, q−EDN (µ,C) reduces to NN (µ,C) and q−EP(0, C) becomes GP(0, C).
When q ∈ [1, 2), q−EP(0, C) lends flexibility to modeling functional data with more regularization
than GP. In practice, q = 1 is often adopted for faster posterior convergence (Agapiou et al., 2021;
Lan et al., 2023) and the capability of preserving inhomogeneous features (rough functional data,
edges in image, etc). Refer to Figure 1 for the regularization effect of q.

One caveat of Q-EP is that uncorrelation (identity covariance) does not imply independence except
for the special Gaussian case (q = 2). For multiple Q-EPs, (u1(x), · · · , uD(x)), we usually do not
assume them independent because their joint distribution is difficult to work with (due to the lack
of additivity in the exponential part of density function (1)). Rather, uncorrelation is a preferable
assumption. In general, we define multi-output (multivariate) Q-EPs through matrix vectorization.
Definition 3. A multi-output (multivariate) q-exponential process, u(·) = (u1(·), · · · , uD(·)),
each uj(·) ∼ q−EP(µj , Cx), is said to have association Ct if at any finite locations, x =
{xn}Nn=1, vec([u1(x), · · · , uD(x)]N×D) ∼ q − EDND(vec(µ),Ct ⊗ Cx), where we have
uj(x) = [uj(x1), · · · , uj(xN )]

T, for j = 1, . . . , D, µ = [µ1(x), · · · , µD(x)]N×D and Cx =
[Cx(xn, xm)]N×N . We denote u ∼ q−EP(µ, Cx,Ct). In particular, {uj(·)} are m.i.u. if Ct = ID.
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To improve the modeling expressiveness of Q-EP, we stack m.i.u. multi-output Q-EPs to build a
deep Q-EP, similarly as constructing deep GP with multiple GP layers. For this purpose, we first
introduce Bayesian (multivariate) regression with Q-EP priors.

2.3 BAYESIAN REGRESSION WITH Q-EP PRIORS

Given data x = {xn}Nn=1 and y = {yn}Nn=1, we consider the generic Bayesian regression model:

y = f(x) + ε, ε ∼ q−EDN (0, Σ),

f ∼ q−EP(0, C). (2)

It is proved in Theorem 3.5 of Li et al. (2023) that the posterior (predictive) distribution is analyti-
cally tractable when both the prior and the likelihood are Q-EP, which is one of the keys for the deep
generalization of Q-EP.

Theorem 2.1. For the regression model (2), the posterior distribution of f(x∗) at x∗ is

f(x∗)|y,x, x∗ ∼ q−ED(µ∗,C∗), µ∗ = CT
∗ (C+Σ)−1y, C∗ = C∗∗ −CT

∗ (C+Σ)−1C∗,

where C = C(x,x), C∗ = C(x, x∗), and C∗∗ = C(x∗, x∗).

Denote X = [x1, · · · ,xQ]N×Q, F = [f1(X), · · · , fD(X)]N×D and Y = [y1, · · · ,yD]N×D.
With m.i.u. Q-EP priors as in Definition (3) imposed on f := (f1, · · · , fD), we now consider the
following multivariate regression problem:

likelihood : vec(Y)|F ∼ q−EDND(vec(F), ID ⊗Σ),

prior on latent function : f ∼ q−EP(0, C, ID).
(3)

Based on the additivity of q−ED (as a special elliptic contour) random variables (Fang & Zhang,
1990), we can find the marginal of Y by noticing that Y = F+ε with vec(ε) ∼ q−ED(0, ID⊗Σ):

marginal likelihood : vec(Y)|X ∼ q−EDND(0, ID ⊗ (C+Σ)). (4)

3 SHALLOW Q-EP MODEL

In this section we introduce the shallow (1-layer) Q-EP model which serves as a building block for
the deep Q-EP model to be developed in Section 4. We start with the the marginal model (4) that can
be identified as a latent variable model (LVM) (Lawrence, 2003) with specified kernel. This defines
a shallow Q-EP model. Then we develop variational infererence with sparse approximation for such
model (Titsias & Lawrence, 2010) and stack multiple layers to build the deep Q-EP.

Note the marginal model (4) of Y|X can be viewed as a stochastic mapping (Theorem 2.1 of Li
et al., 2023):

f̃ : X → Y = RLXS,

where Rq ∼ χ2(N), LX is the Cholesky factor of CX + Σ whose value depends on X, and S :=

[S1, · · · , SD] ∼ Unif(
∏D

d=1 SN+1), i.e. each Sd is uniformly distributed on an N -dimensional
unit-sphere SN+1.

Note X is an input variable in the supervised learning, and could also be a latent variable in the
unsupervised learning. In the latter case, the shallow Q-EP model (4) of Y|X can be regarded an
LVM obtained by integrating out the latent function F in model (3), which is a linear mapping in
probabilistic PCA (Tipping & Bishop, 1999) and a multi-output GP in GP-LVM (Lawrence, 2003;
2005). GP can be replaced by Q-EP to impose flexible regularization on the input (latent) space, and
hence we propose the shallow Q-EP model as also a Q-EP LVM.

For the convenience of exposition, we set Σ = β−1IN and denote K := CX + Σ. We adopt the
following automatic relevance determination (ARD) kernel as in Titsias & Lawrence (2010), e.g.
squared exponential (SE), to determine the dominant dimensions in the input (latent) space:

K = [k(xn,xm)]N×N , k(xn,xm) = α−1 exp

{
−1

2
(xn − xm)

T
diag(γ)(xn − xm)

}
. (5)
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3.1 BAYESIAN SHALLOW Q-EP

Like Titsias & Lawrence (2010), we adopt a prior for the input (latent) variable X and introduce the
following Bayesian shallow Q-EP model:

marginal likelihood : vec(Y)|X ∼ q−ED(0, ID ⊗K),

prior on input/latent variable : vec(X) ∼ q−ED(0, IQD).
(6)

Compared with the optimization method (Lawrence, 2003), the Bayesian training procedure is ro-
bust to overfitting and can automatically determine the intrinsic dimensionality of the nonlinear input
(latent) space (Titsias & Lawrence, 2010) by thresholding the correlation length-scale γ.

For more practical applications, we use variational Bayes, instead of Markov Chain Monte Carlo
(MCMC), to train the shallow Q-EP model (6). The variational inference for this model is much
more complicated than GP-LVM because the log-likelihood (3) is no longer represented as a
quadratic form of data. It should be noted that many expectations in the evidence lower bound
(ELBO) are no longer analytically tractable with a general power q in the exponent of the density
(1), which makes it much more challenging to derive a computable ELBO. We solve this issue with
the help of Jensen’s inequality.

For variational Bayes, we approximate the posterior distribution p(X|Y) ∝ p(Y|X)p(X) with the
uncorrelated q−ED:

q(X) ∼ q−ED(µ,diag({Sn})),
where each covariance Sn is of size D×D and can be chosen as a diagonal matrix for convenience.

To speed up the computation, sparse variational approximation (Titsias, 2009; Lawrence & Moore,
2007) is adopted by introducing the inducing points X̃ ∈ RM×Q with their function values U =
[f1(X̃), · · · , fD(X̃)] ∈ RM×D. Hence the marginal likelihood p(Y|X) in (6) can be augmented to
a joint distribution of several q−ED random variables:

p(Y|X) ∝ p(Y|F)p(F|U,X, X̃)p(U|X̃),

where p(vec(F)|U,X, X̃) ∼ q−ED(vec(KNMK−1
MMU), ID⊗ (KNN −KNMK−1

MMKMN )) and
p(vec(U)|X̃) ∼ q−ED(0, ID ⊗KMM ).

Denote by φ(r;Σ,D) := −D
2 log |Σ|+ ND

2

(
q
2 − 1

)
log r− 1

2r
q
2 . With the variational distribution

q(F,U,X) = p(F|U,X)q(U)q(X) for q(U) ∼ q−ED(M,diag({Σd})), the following final
ELBO is obtained by the two-stage approach in (SVGP Hensman et al., 2015) (Refer to Section A.1
for details):

log p(Y) ≥L(q) =
∫
q(X)q(U)p(F|U,X) log

p(Y|F)p(U)p(X)

q(U)q(X)
dFdUdX

≥h∗(Y,X)−KL∗
U −KL∗

X,

h∗(Y,X) =φ(rY;β−1IN , D),

rY =r(Y,Ψ1K
−1
MMM) + βtr(MTK−1

MM (Ψ2 −ΨT
1Ψ1)K

−1
MMM)

+ βD[ψ0 − tr(K−1
MMΨ2)] + β

D∑
d=1

tr(K−1
MMΣdK

−1
MMΨ2),

−KL∗
U =

1

2

D∑
d=1

log |Σd|+ φ

(
tr(MTK−1

MMM) +

D∑
d=1

tr(ΣdK
−1
MM );KMM , D

)
,

−KL∗
X =

1

2

N∑
n=1

log |Sn|+ φ

(
tr(µTµ) +

N∑
n=1

tr(Sn); IN , Q

)
,

(7)

where ψ0 = tr(⟨KNN ⟩q(X)), Ψ1 = ⟨KNM ⟩q(X), and Ψ2 = ⟨KMNKNM ⟩q(X).

Remark 3. When q = 2, φ(r;Σ,D) = −D
2 log |Σ| − 1

2r with r = r(Y,Ψ1K
−1
MMM) be-

comes the log-density of matrix normal MNN×D(Ψ1K
−1
MMM, β−1IN , ID). Then the ELBO

(7) reduces to the ELBO as in Equation (7) of (SVGP Hensman et al., 2015) with an extra term
βtr(MTK−1

MM (Ψ2 − ΨT
1Ψ1)K

−1
MMM). The computational complexity, O(NM2), remains the

same as GP-LVM (Titsias & Lawrence, 2010).
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Figure 1: 2d latent space of multi-phase oil-flow dataset: contrasting GP-LVM (q = 2) (top row)
with two shallow Q-EPs for q = 1.25 (middle row) and q = 1 (bottom row). Smaller q tends to
contract the latent space and hence regularizes the learned latent representation, an effect similarly
existing among ridge regression, elastic-net, and Lasso.

We demonstrate the behavior of shallow Q-EP as an LVM in unsupervised learning and contrast
it with GP-LVM using the canonical multi-phase oil-flow dataset (Titsias & Lawrence, 2010) that
consists of 1000 observations (12-dimensional) corresponding to three different phases of oil-flow.
Figure 1 visualizes the 2d latent subspaces identified with two most dominant latent dimensions
found by GP-LVM (top) and two shallow Q-EP models with q = 1.25 (middle) and q = 1 (bottom)
respectively. The vertical and horizontal bars indicate axis aligned uncertainty around each latent
point. As GP-LVM corresponds to a shallow Q-EP with q = 2, the parameter q > 0 controls a reg-
ularization effect of shallow Q-EP: the smaller q leads to more regularization on the learned latent
representations and hence yields clusters more aggregated, as illustrated by the green class in the
first column of Figure 1. The two types of models also differ in the dominant relevant dimensions:
(2, 5, 7) for GP-LVM versus (2, 4, 7) for QEP-LVM. Note, the ELBO loss of shallow Q-EP con-
verges slightly faster than that of GP-LVM in this example, yet their final values are not comparable
because two models have different densities.

4 DEEP Q-EP MODEL

In this section, we construct the deep Q-EP model by stacking multiple shallow Q-EP layers intro-
duced in Section 3, similarly as building deep GP with GP-LVMs (Damianou & Lawrence, 2013).
More specifically, we consider a hierarchy of L shallow Q-EP layers (6) as follows:

ynd = f0d (x
1
n) + ε0nd, d = 1, · · · , D0, x1

n ∈ RD1 ,

x1nd = f1d (x
2
n) + ε1nd, d = 1, · · · , D1, x2

n ∈ RD2 ,

...
...

...
...

xL−1
nd = fL−1

d (zn) + εL−1
nd , d = 1, · · · , DL−1, zn ∈ RDL ,

where εℓ ∼ q−ED(0,Γℓ), f ℓ ∼ q−EP(0, kℓ, IDℓ
) for ℓ = 0, · · · , L− 1 and we identify Y = X0

and Z = XL.

6
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Consider the prior Z ∼ q−ED(0, INDL
). The joint probability, augmented with the inducing points

X̃ℓ and the associated function values Uℓ = [f ℓd(X̃
ℓ)]Dℓ

d=1, is decomposed as

p({Xℓ,Fℓ,Uℓ}L−1
ℓ=0 ,Z) =

L−1∏
ℓ=0

p(Xℓ|Fℓ)p(Fℓ|Uℓ,Xℓ+1)p(Uℓ) · p(Z).

And we use the following variational distribution

Q =

L−1∏
ℓ=0

p(Fℓ|Uℓ,Xℓ+1)q(Uℓ)q(Xℓ+1), q(Xℓ+1) = q−ED(µℓ+1,diag({Sℓ+1
n })).

Then the ELBO becomes

L(Q) =

∫
{Fℓ,Uℓ,Xℓ+1}L−1

ℓ=0

Q log
p({Xℓ,Fℓ,Uℓ}L−1

ℓ=0 ,Z)∏L−1
ℓ=0 q(U

ℓ)q(Xℓ+1)

= h0 −KLU0 +

L−1∑
ℓ=1

[hℓ −KLUℓ +Hq(Xℓ)]−KLZ,

where hℓ =
〈
log p(Xℓ|Fℓ)

〉
q(Fℓ)q(Xℓ+1)q(Xℓ)

with q(X0) = q(Y) ≡ 1. Based on the previous
bound (7), we have for ℓ = 1, · · · , L− 1 (Refer to Section A.2 for details):

h0 ≥h∗(Y,X1),

hℓ ≥h∗(Xℓ,Xℓ+1) = φ(rµℓ ; Γℓ, Dℓ),

rµℓ =r(µℓ,Ψℓ
1(K

ℓ
MM )−1Mℓ) + tr((Mℓ)

T
(Kℓ

MM )−1(Ψℓ
2 − (Ψℓ

1)
T
(Γℓ)−1Ψℓ

1)(K
ℓ
MM )−1Mℓ)

+Dℓ[ψ
ℓ
0 − tr((Kℓ

MM )−1Ψℓ
2)] +

Dℓ∑
d=1

tr((Kℓ
MM )−1Σℓ

d(K
ℓ
MM )−1Ψℓ

2)

+ tr((IDℓ
⊗ (Γℓ)−1) diag({Sℓ

n})),

−KL∗
Uℓ =

1

2

Dℓ∑
d=1

log |Σℓ
d|+ φ

(
tr((Mℓ)

T
(Kℓ

MM )−1Mℓ) +

Dℓ∑
d=1

tr(Σℓ
d(K

ℓ
MM )−1);Kℓ

MM , Dℓ

)
,

Hq(Xℓ) ≥
1

2

N∑
n=1

log |Sℓ
n|,

−KL∗
Z = ≥ 1

2

N∑
n=1

log |SL
n |+ φ

(
tr((µL)

T
µL) +

N∑
n=1

tr(SL
n); IN , DL

)
,

where ψℓ
0 = tr((Γℓ)−1⟨Kℓ

NN ⟩q(Xℓ+1)), Ψℓ
1 = ⟨Kℓ

NM ⟩q(Xℓ+1), and Ψℓ
2 = ⟨Kℓ

MNKℓ
NM ⟩q(Xℓ+1).

5 NUMERICAL EXPERIMENTS

In this section, we compare our proposed deep Q-EP with deep GP (DGP Damianou & Lawrence,
2013), deep kernel learning with GP (DKL-GP Wilson et al., 2016), and deep sigma point process
(DSPP Jankowiak et al., 2020b) using simulated and benchmark datasets. In simulations, deep Q-
EP model manifests unique features in properly modeling inhomogeneous data with abrupt changes
or sharp contrast. For benchmark regression and classification problems, deep Q-EP demonstrates
superior or comparable numerical performance. In most cases, 2 layer structure is sufficient for
deep Q-EP to have superior or comparable performance compared with deep GP, and DSPP. A large
feature extracting neural network (DNN with structure DL − 1000− 500− 50−D0) is employed
before one GP layer for DKL-GP unless stated otherwise. The Matérn kernel (ν = 1.5) is adopted
for all the models with trainable hyperparameters (magnitude and correlation strength) and q = 1
is chosen in Q-EP and deep Q-EP models for handling data inhomogeneity. All the models are
implemented in GPyTorch (Gardner et al., 2018) and the codes will be released.
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(a) Shallow GP regression. (b) Shallow Q-EP regression.

(c) Deep GP regression. (d) Deep Q-EP regression.

(e) DKL-GP regression. (f) DSPP regression.

Figure 2: Comparing deep Q-EP (2d) with cutting-edge deep models including deep GP (2c), DKL-
GP (2e) and DSPP (2f) on modeling a 2d-output time series.

5.1 TIME SERIES REGRESSION

We first consider a simulated 2-dimensional time series from Li et al. (2023), one with step jumps
and the other with sharp turnings, whose true trajectories are as follows:

uJ(t) = 1, t ∈ [0, 1]; 0.5, t ∈ (1, 1.5]; 2, t ∈ (1.5, 2]; 0, otherwise;

uT(t) = 1.5t, t ∈ [0, 1]; 3.5− 2t, t ∈ (1, 1.5]; 3t− 4, t ∈ (1.5, 2]; 0, otherwise.

We generate time series {yi}Ni=1 by adding Gaussian noises to the true trajectories evaluated atN =

100 evenly spaced points ti ∈ [0, 2], i.e., y∗
i = [uJ(ti), uT (ti)]

T
+εi, εi

iid∼ N(0, σ2I2), with σ =
0.1, i = 1, · · · , N. Then we make prediction over 50 points evenly spread over [0, 2].

Abrupt changes exist in these time series have for either values or directions, hence pose challenges
for standard GP as an L2 penalty based regression method. As shown in Figure 2, results by both
deep GP and deep Q-EP are comparatively better than their shallow (one-layer) versions. Among
these models, deep Q-EP yields the most accurate prediction and the tightest uncertainty bound (refer
to Table B.1) due to itsL1 regularization feature that is more suitable to capture these abrupt changes.
The loss of (deep) Q-EP model may not be comparable to those for other models because they are
based on different probability distributions, and yet it converges faster and and more stably than GP
(and the other two benchmark deep probabilistic models), supporting its advantage in convergence
(Remark 2). Both DKL-GP and DSPP suffer from slow convergence and unstable training. As
seen in Table B.1 comparing mean of absolute error (MAE), standard deviation (STD) of variational
distribution and coefficient of determination (R2), their results possess larger standard errors from
repeated experiments, even though few individual runs may yield better results than Deep Q-EP.

5.2 UCI REGRESSION DATASET

Next, we test deep Q-EP on a series of benchmark regression datasets (Wilson et al., 2016;
Jankowiak et al., 2020b) from UCI machine learning repository. They are selected to represent
data at different scales. As in Table 1, for most cases, deep Q-EP demonstrates superior or compara-
ble performance measured by testing data in terms of MAE (accuracy), STD (uncertainty) and NLL
because the Q-EP prior provides crucial regularization for datasets where sparse regression is more
appropriate. Note, the marginal likelihood (NLL) values are not comparable among different models
(with distinct probability distributions) and only listed for reference. As the data volume increases,
DNN feature extractor starts to catch up so that DKL-GP surpasses the vanilla deep Q-EP in the song
dataset. Note, the GP component of DKL can be replaced with Q-EP to regularize the model. In our
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Figure 3: Comparing shallow (1-layer), deep (2-layer) and deeper (3-layer) Q-EPs with GP, deep
GP, DKL-GP and DSPP on a classification problem defined on annular rhombus. Circles, upper and
lower triangles label three classes in the training data.

experiment, the resulting DKL-QEP beats DKL-GP with (MAE, STD, NLL)= (0.327, 0.009, 0.59)
on the protein dataset. We will explore DKL-QEP further in Section 5.4.

Table 1: Regression on UCI datasets: mean of absolute error (MAE), standard deviation (STD) of variational
distribution and negative logarithm of marginal likelihood (NLL) values by various deep models. Each result
of the upper part is averaged over 10 experiments with different random seeds; values in the lower part are
standard errors of these repeated experiments.

Deep GP Deep Q-EP DKL-GP DSPP

Dataset N, d MAE STD NLL MAE STD NLL MAE STD NLL MAE STD NLL

gas 2565, 128 0.19 0.06 0.4 0.14 0.03 -0.6 0.93 0.07 2.23 0.33 0.35 18.54
parkinsons 5875, 20 8.17 0.61 168.12 8.49 0.38 13 10.01 0.57 11.82 9.63 0.84 549.92
elevators 16599, 18 0.0639 0.014 -1.04 0.0636 0.011 -0.87 0.099 0.02 -0.29 0.09 0.09 0.52
protein 45730, 9 0.39 0.05 0.76 0.35 0.014 0.7 0.37 0.02 0.77 0.48 0.21 100.66
song 515345, 90 0.38 0.011 0.69 0.4 0.011 0.92 0.35 0.008 0.63 0.43 0.2 261.3

gas 2565, 128 0.07 0.02 0.16 0.03 0.01 0.24 0.36 0.02 1.04 0.24 0.13 22.06
parkinsons 5875, 20 1.38 0.16 97.06 1.74 0.11 3.42 1.55 0.25 4.89 1.51 0.29 349.22
elevators 16599, 18 3e-4 3e-4 7e-3 4e-4 3e-5 6e-3 0.06 0.05 1.32 0.02 0.02 0.64
protein 45730, 9 5e-3 4e-3 7e-3 5e-3 5e-4 0.01 0.09 6e-3 0.19 0.04 0.02 52.21
song 515345, 90 2e-3 1e-9 4e-3 0.04 3e-4 0.09 4e-3 1e-3 0.01 0.03 0.05 266.2

5.3 CLASSIFICATION

Consider a simulated classification problem with labels created on annular regions of a rhombus:

yi = [cos(0.4 ∗ u ∗ π∥xi∥1)] + 1, u ∼ Unif[0, 1], xi ∼ N (0, I2), i = 1, · · · , N,
where [x] rounds x to the nearest integer. We generate N = 500 random data points according to
the formula which results in 3 classes’ labels as illustrated in the leftmost panel of Figure 3. Note,
the class regions have clear shapes with edges and are not simply connected. Q-EP and deep Q-EP
are superior than their GP rivals in modeling such inhomogeneous data. Indeed, Figure 3 shows that
even with small amount of data, Q-EP has better decision boundaries than GP and a 3-layer deeper
Q-EP yields the best result closest to the truth among all the models. On the contrary, (deep) GP
tends to yield round and over-smooth decision boundaries because of its L2 nature. This is further
illustrated in Figure B.1 with more fine details revealed by the logits. Note, it is understandable
that none of these models characterizes the correct boundary around the corners due to the absence
of data. Table B.2 compares their performance on testing data in terms of classification accuracy
(ACC), area under ROC curve (AUC) and deep Q-EP achieves the highest accuracy.

We also compare deep Q-EP with other deep probabilistic models on several benchmark classifi-
cation datasets with different sizes from UCI machine learning repository. Table 2 summarizes the
comparison results in terms of ACC, AUC and NLL. Deep Q-EP still excels in most cases or has
comparable performance, further supporting its advantage in the classification task.
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Table 2: Classification on UCI datasets: accuracy (ACC), area under ROC curve (AUC) and negative logarithm
of marginal likelihood (NLL) values by various deep models. Each result of the upper part is averaged over
10 experiments with different random seeds; values in the lower part are standard errors of these repeated
experiments.

Deep GP Deep Q-EP DKL-GP DSPP

Dataset N, d, k ACC AUC NLL ACC AUC NLL ACC AUC NLL ACC AUC NLL

haberman 306, 3, 2 0.727 0.46 7.16 0.732 0.505 6.44 0.702 0.43 6.93 0.716 0.496 31.58
tic-tac-toe 957, 27, 2 0.971 0.52 67.57 0.972 0.53 48.69 0.922 0.67 15.8 0.736 0.5 430.25
car 1728, 21, 4 0.99 0.9999 501.9 0.983 0.999 1237.08 0.929 0.98 46.71 0.758 0.85 4.6e4
seismic 2583, 24, 2 0.931 0.28 11.75 0.934 0.44 10.69 0.931 0.44 9.43 0.849 0.52 3.7e4
nursery 12959, 27, 5 0.9996 0.97 2.1e5 0.9996 0.95 1.1e4 0.486 0.7 2.7e3 0.717 0.84 1.5e5

haberman 306, 3, 2 0.01 0.08 0.68 0.02 0.07 0.61 0.04 0.09 1 0.03 0.05 50.73
tic-tac-toe 957, 27, 2 0.02 0.08 20.68 0.04 0.37 13.25 0.19 0.15 4.22 0.23 0.44 73.5
car 1728, 21, 4 9e-3 2e-4 65.67 7e-3 1e-3 572.46 0.09 0.03 15.41 0.22 0.18 2.6e4
seismic 2583, 24, 2 0.002 0.02 1.25 0.0 0.1 0.9 0.006 0.08 1.48 0.27 0.13 1.7e4
nursery 12959, 27, 5 6e-8 0.04 4.5e4 6e-8 0.03 2.5e3 0.36 0.31 6e3 0.18 0.08 1e5

(a) MNIST digit classification. (b) CIFAR-10 classification.

Figure 4: Comparing DKL-QEP and DKL-GP with CNN on two benchmark classification problems.

5.4 IMAGE CLASSIFICATION

Finally, we test the proposed models on some benchmark image classification datasets, MNIST
(60,000 training and 10,000 testing 28× 28 handwritten digits) and CIFAR-10 (50,000 training and
10,000 testing 32×32 color images with 10 classes). As shown in Figure 4, while deep GP and deep
Q-EP have mediocre classification accuracy, deep kernel learning (DKL Wilson et al., 2016) with
CNN (common structure for these benchmarks) prefixed as a feature extractor works much better
in both tasks. On MNIST dataset, DKL-GP has a 98.14% and DKL-QEP achieves a 98.19% test
accuracy, improving vanilla CNN with 97.69% accuracy. On CIFAR-10, DKL-GP has accuracy 70%
and DKL-QEP improves it to 73.4%, both having a good margin of advantage compared with vanilla
CNN with 63.46%. Note, here we choose a relatively small CNN to demonstrate the improvement
by adopting DKL with Q-EP even better than DKL-GP.

6 CONCLUSION

In this paper, we generalize Q-EP to deep Q-EP, which includes deep GP as a special case. Moreover,
deep Q-EP inherits the flexible regularization controlled a parameter q > 0, which is advantageous
in learning latent representations and modeling data inhomogeneity. We first generalize Bayesian
GP-LVM to Bayesian QEP-LVM (as shallow Q-EP layer) and develop the variational inference for
it. Then we stack multiple shallow Q-EP layer to build the deep Q-EP model. The novel deep model
demonstrates numerical benefits in various learning tasks and can be combined with neural network
for better characterizing complex latent representations in different data applications.

As common in GP and NN models, we do observe multi-modality of the posterior distributions,
especially in the hyper-parameter spaces. Sub-optimal solutions can appear in the stochastic training
process. These issues can be alleviated by dispersed or diversified initialization, or with adaptive
training schedulers. One potential application of deep Q-EP is the inverse learning, similarly as
done by deep GP (Jin et al., 2017; Abraham & Deo, 2023). Theory of the contraction properties
(Finocchio & Schmidt-Hieber, 2023) is also an interesting research direction.
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Supplement Document for “Deep Q-Exponential Processes”

A COMPUTATION OF VARIATIONAL LOWER BOUNDS

A.1 SHALLOW Q-EP

The variational lower bound for the log-evidence is

log p(Y) ≥ L(q) :=
∫
q(X) log

p(Y|X)p(X)

q(X)
dX = L̃(q)−KL(q(X)∥p(X)),

where the first term L̃(q) =
∫
q(X) log p(Y|X)dX is intractable and hence difficult to bound.

A.1.1 LOWER BOUND FOR THE MARGINAL LIKELIHOOD

To address such intractability issue and speed up the computation, sparse variational approxima-
tion (Titsias, 2009; Lawrence & Moore, 2007) is adopted by introducing a set of inducing points
X̃ ∈ RM×Q with their function values U = [f1(X̃), · · · , fD(X̃)] ∈ RM×D. Hence the marginal
likelihood p(Y|X) defined in (6) can be augmented to the following joint distribution each being a
q−ED:

p(Y|X) ∝ p(Y|F)p(F|U,X, X̃)p(U|X̃),

where we have vec(U)|X̃ ∼ q−ED(0, ID ⊗KMM ) and the conditional distribution

vec(F)|U,X, X̃ ∼ q−ED(vec(KNMK−1
MMU), ID ⊗ (KNN −KNMK−1

MMKMN )). (8)

The inducing points X̃ are regarded as variational parameters and hence they are dropped from
the following probability expressions. We then approximate p(F,U|X) ∝ p(F|U,X)p(U) with
q(F,U) = p(F|U,X)q(U) in another variational Bayes as follows

log p(Y|X) ≥
∫
q(F,U) log

p(Y|F)p(F|U,X)p(U)

q(F,U)
dFdU

=

∫
p(F|U)q(U)dU log p(Y|F)dF+

∫
q(U) log

p(U)

q(U)
dU.

(9)

Different from Titsias (2009); Titsias & Lawrence (2010) using the variational calculus, (SVGP
Hensman et al., 2015) computes the marginal likelihood ELBO (9) in two stages. Instead of the
variational free form, we follow Hensman et al. (2015) to use the variational distribution for U of
the following format conjugate to p(F|U):

q(U) ∼ q−ED(M,diag({Σd})). (10)

Noticing that F|U follows a conditional q-exponential (8), we can obtain the variational distribution
of F, q(F), by marginalizing U out as follows

q(F) =

∫
q(F,U)dU =

∫
p(F|U)q(U)dU

∼q−ED(vec(KNMK−1
MMM),

ID ⊗ (KNN −KNMK−1
MMKMN ) + diag({KNMK−1

MMΣdK
−1
MMKMN})).

Therefore, the variational lower bound of the marginal likelihood (9) becomes

log p(Y|X) ≥ ⟨log p(Y|F)⟩q(F) −KL(q(U)∥p(U)).

Note, log p(Y|F) is not a random quadratic form in general and hence the expectation
in the first term has no explicit formula. Denote by log p(Y|F) = φ(r(Y,F)), where
φ(r) := DN

2 log β + ND
2

(
q
2 − 1

)
log r − 1

2r
q
2 is convex for q ∈ (0, 2], and r(Y,F) =

vec(Y − F)
T
(β−1IND)−1vec(Y − F) = βtr((Y − F)(Y − F)

T
) is a quadratic form of random

variable Y. Therefore, by Jensen’s inequality, we can bound from below as

⟨log p(Y|F)⟩q(F) = ⟨φ(r(Y,F))⟩q(F) ≥ φ(⟨r(Y,F)⟩q(F)).
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where we can calculate the expectation of the quadratic form r(Y,F) as
⟨r(Y,F)⟩q(F) =r(Y,KNMK−1

MMM) + βDtr(KNN −KNMK−1
MMKMN )

+ β

D∑
d=1

tr(KNMK−1
MMΣdK

−1
MMKMN ).

Denote by h(Y,X) = ⟨⟨log p(Y|F)⟩q(F)⟩q(X). Then we solve the intractable expectation by an-
other Jensen’s inequality

h(Y,X) ≥ φ(⟨⟨r(Y,F)⟩q(F)⟩q(X)) =: h∗(Y,X).

Define ψ0 = tr(⟨KNN ⟩q(X)), Ψ1 = ⟨KNM ⟩q(X), and Ψ2 = ⟨KMNKNM ⟩q(X). Further we
calculate the expectations of quadratic terms similarly

⟨⟨r(Y,F)⟩q(F)⟩q(X) =⟨r(Y,KNMK−1
MMM)⟩q(X) + βD[ψ0 − tr(K−1

MMΨ2)]

+ β

D∑
d=1

tr(K−1
MMΣdK

−1
MMΨ2),

⟨r(Y,KNMK−1
MMM)⟩q(X) =r(Y,Ψ1K

−1
MMM) + βtr(MTK−1

MM (Ψ2 −ΨT
1Ψ1)K

−1
MMM).

(11)

We also need to compute the K-L divergence KLU := KL(q(U)∥p(U))

KLU =

∫
q(U) log q(U)dU−

∫
q(U) log p(U)dU = −Hq(U)− ⟨log p(U)⟩q(U).

Denote by r = vecT(U−M)
T
diag({Σd})−1vecT(U − M). Then log q(U) =

− 1
2

∑D
d=1 log |Σd| + MD

2

(
q
2 − 1

)
log r − 1

2r
q
2 . From (Proposition A.1. of Li et al., 2023) we

know that r
q
2 ∼ χ2(MD). Therefore

Hq(U) =
1

2

D∑
d=1

log |Σd|+
MD

2

(q
2
− 1
) 2

q
H(χ2(MD)) +

MD

2

=
1

2

D∑
d=1

log |Σd|+
MD

2

(
1− 2

q

)[
MD

2
+ log

(
2Γ

(
MD

2

))
+

(
1− MD

2

)
ψ

(
MD

2

)]
+
MD

2
.

Denote by φ0(r) := −D
2 log |KMM |+ MD

2

(
q
2 − 1

)
log r− 1

2r
q
2 . Then by Jensen’s inequality again

⟨log p(U)⟩q(U) = ⟨φ0(tr(U
TK−1

MMU))⟩q(U) ≥ φ0(⟨tr(UTK−1
MMU)⟩q(U)),

⟨tr(UTK−1
MMU)⟩q(U) = tr(MTK−1

MMM) +

D∑
d=1

tr(ΣdK
−1
MM ).

The elements of ψ0, Ψ1 and Ψ2 can be computed as

ψn
0 =

∫
k(xn,xn)q−ED(xn|µn,Sn)dxn,

(Ψ1)nm =

∫
k(xn, zm)q−ED(xn|µn,Sn)dxn,

(Ψn
2 )mm′ =

∫
k(xn, zm)k(zm′ ,xn)q−ED(xn|µn,Sn)dxn.

With ARD SE kernel (5), we have ψ0 = Nα−1. While the integration in Ψ1 and Ψ2 is intractable
in general, we can compute them using Monte Carlo approximation. Alternatively, we approximate

(Ψ1)nm ≈ α−1 exp

{
−1

2
⟨(xn − zm)

T
diag(γ)(xn − zm)⟩q(xn)

}
= α−1 exp

{
−1

2
[(µn − zm)

T
diag(γ)(µn − zm) + tr(diag(γ)Sn)]

}
,

(Ψn
2 )mm′ ≈ α−2 exp

−1

2

∑
m̃=m,m′

(µn − zm̃)
T
diag(γ)(µn − zm̃)) + tr(diag(γ)Sn)

 .
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If we use the ARD linear form, k(x,x′) = xT diag(γ)x′, then we have

ψn
0 = tr(diag(γ)(µnµ

T
n + Sn)), (Ψ1)nm = µT

n diag(γ)zm,

(Ψn
2 )mm′ = zTm diag(γ)(µnµ

T
n + Sn) diag(γ)zm′ .

A.1.2 LOWER BOUND FOR THE K-L DIVERGENCE ADDED TERMS

Lastly, we need to compute the K-L divergence

KL(q(X)∥p(X)) =

∫
q(X) log q(X)dX−

∫
q(X) log p(X)dX = −Hq(X)− ⟨log p(X)⟩q(X).

Denote by r = vec(X− µ)
T
diag({Sn})−1vec(X − µ). Then log q(X) = − 1

2

∑N
n=1 log |Sn| +

NQ
2

(
q
2 − 1

)
log r − 1

2r
q
2 . From (Proposition A.1. of Li et al., 2023) we know that r

q
2 ∼ χ2(NQ).

Therefore

Hq(X) =
1

2

N∑
n=1

log |Sn|+
NQ

2

(q
2
− 1
) 2

q
H(χ2(NQ)) +

NQ

2

=
1

2

N∑
n=1

log |Sn|+
NQ

2

(
1− 2

q

)[
NQ

2
+ log

(
2Γ

(
NQ

2

))
+

(
1− NQ

2

)
ψ

(
NQ

2

)]
+
NQ

2
.

Denote by φ0(r) :=
NQ
2

(
q
2 − 1

)
log r − 1

2r
q
2 . Then similarly by Jensen’s inequality

⟨log p(X)⟩q(X) = ⟨φ0(tr(X
TX))⟩q(X) ≥ φ0(⟨tr(XTX)⟩q(X)),

⟨tr(XTX)⟩q(X) = tr(µTµ) +

N∑
n=1

tr(Sn).

A.2 DEEP Q-EP

We only consider the hierarchy of two QEP-LVMs because the general L-layers follows by induc-
tion:

ynd = fYd (xn) + εYnd, d = 1, · · · , D, xn ∈ RQ,

xnq = fXq (zn) + εXnq, q = 1, · · · , Q, zn ∈ RQZ ,
(12)

where εY ∼ q−ED(0,ΓY ), εX ∼ q−ED(0,ΓX), fY ∼ q−EP(0, kY ) and fX ∼ q−EP(0, kX).
Consider the prior Z ∼ q−ED(0, INQZ

). The variational inference for p(Z|Y) requires maximizing
the following ELBO

log p(Y) ≥ L(Q) :=

∫
Z,FX ,X,FY

Q log
p(Y,FY ,X,FX ,Z)

Q
, (13)

where the joint probability can be decomposed

p(Y,FY ,X,FX ,Z) = p(Y|FY )p(FY |X) · p(X|FX)p(FX |Z)p(Z)
Similarly as in Section 3.1, sparse variational approximation (Titsias & Lawrence, 2010) is adopted
to introduce inducing points X̃ ∈ RM×Q, Z̃ ∈ RM×QZ with associated function values UY ∈
RM×D,UX ∈ RM×Q respectively. Hence the augmented probability replaces the joint probability:

p(Y,FY ,X,FX ,Z,UY ,UX) =p(Y|FY )p(FY |UY ,X)p(UY |X̃)·
p(X|FX)p(FX |UX ,Z)p(UX |Z̃)p(Z),

where FY and UY are drawn from the same Q-EP; and similarly are FX and UX . Now we specify
the approximation distribution as

Q = p(FY |UY ,X)q(UY )q(X) · p(FX |UX ,Z)q(UX)q(Z).

and choose q(UY ) and q(UX), and q(X) and q(Z) to be uncorrelated q−ED’s:

q(UY ) ∼ q−ED(MY ,diag({ΣY
d })), q(UX) ∼ q−ED(MX ,diag({ΣX

d })),
q(X) ∼ q−ED(µX ,diag({SX

n })), q(Z) ∼ q−ED(µZ ,diag({SZ
n})).
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Then the ELBO (13) becomes

L(Q) :=

∫
Z,UX ,FX ,X,UY ,FY

Q log
p(Y|FY )p(UY )p(X|FX)p(UX)p(Z)

q(UY )q(X)q(UX)q(Z)

= h(Y,X)−KLUY + h(X,Y)−KLUX +Hq(X)−KLZ,

where we have

h(Y,X) =
〈
log p(Y|FY )

〉
q(FY )q(X)

, h(X,Z) =
〈
log p(X|FX)

〉
q(FX)q(X)q(Z)

.

Note, h(Y,X) ≥ h∗(Y,X) is the same as in the bound (7) for Bayesian LVM. However, h(X,Z)
has an extra integration with respect to q(X). Replacing X with Z and Y with X in (11), we
compute

⟨r(X,Ψ1(K
X
MM )−1UX)⟩q(X) = r(µX ,Ψ1(K

X
MM )−1UX) + tr((ID ⊗ (ΓX)−1) diag({SX

n })).

Therefore we have a updated bound for h(X,Z) ≥ h∗(X,Z) = φ(rµX ; ΓX , Q), where

rµX =r(µX ,Ψ1(K
X
MM )−1MX) + tr((MX)

T
(KX

MM )−1(ΨX
2 −ΨT

1 (Γ
X)−1Ψ1)(K

X
MM )−1MX)

+Q[ψ0 − tr((KX
MM )−1ΨX

2 )] +

Q∑
d=1

tr((KX
MM )−1ΣX

d (KX
MM )−1ΨX

2 )

+ tr((IQ ⊗ (ΓX)−1) diag({SX
n })).

Finally, we have

Hq(X) ≥ 1

2

N∑
n=1

log |SX
n |, −KL(q(Z)∥p(Z)) ≥ 1

2

N∑
n=1

log |SZ
n |+φ0(tr((µ

Z)
T
µZ)+

N∑
n=1

tr(SZ
n )),

where φ0(r) :=
NQZ

2

(
q
2 − 1

)
log r − 1

2r
q
2 .

B MORE NUMERICAL RESULTS

B.1 TIME SERIES

Table B.1: Regression on simulated time series: mean of absolute error (MAE), standard deviation (STD)
of variational distribution, coefficient of determination (R2), negative logarithm of marginal likelihood (NLL)
and running time by various deep models. Each result of the upper part is averaged over 10 experiments with
different random seeds; values after ± are standard errors of these repeated experiments.

Model MAE STD R2 NLL time

Deep GP 0.058 ± 0.040 0.180 ± 0.051 0.951 ± 0.061 -1.437 ± 0.615 45.310 ± 0.915
Deep QEP 0.055 ± 0.009 0.111 ± 0.005 0.965 ± 0.012 -1.790 ± 0.183 45.647 ± 1.449
DKL-GP 0.329 ± 0.344 0.170 ± 0.046 -0.284 ± 1.696 9.536 ± 15.014 13.992 ± 0.736
DSPP 0.216 ± 0.052 0.223 ± 0.057 0.728 ± 0.101 12.523 ± 10.026 40.953 ± 1.109

B.2 CLASSIFICATION
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(a) GP classification. (b) Q-EP classification.

(c) Deep GP classification. (d) Deep Q-EP classification.

(e) DKL-GP classification. (f) DSPP classification.

Figure B.1: Comparing Q-EP (B.1b) and deep Q-EP (B.1d) with GP (B.1a), deep GP (B.1c), DKL-
GP (B.1e) and DSPP (B.1f) on a classification problem defined on annular rhombus.

Table B.2: Classification on simulated annual rhombus: accuracy (ACC), area under ROC curve (AUC),
negative logarithm of marginal likelihood (NLL) and running time by various deep models. Each result of the
upper part is averaged over 10 experiments with different random seeds; values after ± are standard errors of
these repeated experiments.

Model ACC AUC NLL time

GP 0.810 ± 0 0.940 ± 0 17.673 ± 0 20.622 ± 0.346
Deep GP 0.825 ± 0.026 0.905 ± 0.012 534.782 ± 69.768 124.486 ± 2.978
QEP 0.834 ± 0 0.935 ± 0 4.670 ± 0 20.442 ± 0.559
Deep QEP 0.856 ± 0.015 0.878 ± 0.019 96.736 ± 7.865 124.752 ± 0.575
DKL-GP 0.664 ± 0.196 0.732 ± 0.200 17.094 ± 5.533 23.874 ± 0.316
DSPP 0.744 ± 0.023 0.829 ± 0.056 588.543 ± 302.576 108.076 ± 1.725

Figure B.2: Comparing shallow (1-layer) and deep (2-layer) Q-EPs with GP, deep GP, deeper GP
(3-layer), DKL-GP and DSPP on a classification problem defined on annulus. Circles, upper and
lower triangles label three classes in the training data.
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(a) GP classification. (b) Q-EP classification.

(c) Deep GP classification. (d) Deep Q-EP classification.

(e) DKL-GP classification. (f) DSPP classification.

Figure B.3: Comparing Q-EP (B.3b) and deep Q-EP (B.3d) with GP (B.3a), deep GP (B.3c), DKL-
GP (B.3e) and DSPP (B.3f) on a classification problem defined on annulus.

Table B.3: Classification on simulated annulus: accuracy (ACC), area under ROC curve (AUC), negative
logarithm of marginal likelihood (NLL) and running time by various deep models. Each result of the upper
part is averaged over 10 experiments with different random seeds; values after ± are standard errors of these
repeated experiments.

Model ACC AUC NLL time

GP 0.951 ± 0 0.989 ± 0 18.821 ± 0 49.425 ± 1.728
Deep GP 0.953 ± 0.03 0.991 ± 0.001 467.216 ± 45.845 199.600 ± 10.871
QEP 0.952 ± 0 0.985 ± 0 4.598 ± 0 49.301 ± 1.283
Deep QEP 0.950 ± 0.008 0.992 ± 0.003 123.726 ± 12.965 197.677 ± 12.354
DKL-GP 0.854 ± 0.080 0.941 ± 0.099 19.039 ± 4.223 34.329 ± 0.918
DSPP 0.922 ± 0.026 0.970 ± 0.008 621.152 ± 297.205 166.974 ± 2.839
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