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Abstract

Word embeddings that map words into a fixed-
dimensional vector space are the backbone of
modern NLP. Most word embedding methods
encode semantic information. However, pho-
netic information, which is important for some
tasks, is often overlooked. In this work, we
develop several novel methods which leverage
articulatory features to build phonetically in-
formed word embeddings, and present a toolkit
of phonetic word embeddings to encourage
their community development, evaluation and
use. While several methods for learning pho-
netic word embeddings already exist, there is
a lack of consistency in evaluating their effec-
tiveness. Thus, our toolkit also proposes sev-
eral ways to evaluate both intrinsic aspects of
phonetic word embeddings, such as word re-
trieval and correlation with sound similarity,
and extrinsic performances, such as rhyme and
cognate detection and sound analogies. We
hope that our suite of tasks will promote re-
producibility and provide direction for future
research on phonetic word embeddings.

1 Introduction

Word embeddings are an omnipresent tool in mod-
ern NLP (Le and Mikolov, 2014; Pennington et al.,
2014; Almeida and Xexéo, 2019, inter alia). Their
main benefit lies in compressing information use-
ful to the user into vectors with fixed numbers of
dimensions. These vectors can be easily used as
features for machine learning applications and their
study can reveal insights into language and its use.
Word embeddings are often trained using methods
of distributional semantics (Camacho-Collados and
Pilehvar, 2018) and hence bear semantic informa-
tion. In these cases, for example, the embedding
for the word carrot encodes in some way that it is
more like embeddings for other vegetables than the

*Code, data and trained models (on Huggingface) will be
made public for the camera-ready version.

soybean | sotbiin | S OY BIY N
ocean | osfon | OW SH AH N
motion | mosfon | M OW SH AH N

Figure 1: Embedding function f which projects words
in various forms (left) to a vector space (right).

embedding for ocean. Nevertheless, some applica-
tions may require a different type of information
to be encoded. For a poem generation model, for
instance, the embedding of a word might reflect
that ocean rthymes with motion and not with a soy-
bean, even though the characters at the ends of the
words would suggest otherwise. Such embeddings,
which contain phonetic information, are referred
to as phonetic word embeddings," were studied in
recent years (Bengio and Heigold, 2014; Parrish,
2017; El-Geish, 2019; Yang and Hirschberg, 2019;
Hu et al., 2020; Sharma et al., 2021). The basic
premise is that words with similar pronunciations
are projected to vectors that are near each other in
the embedding space.

In this work, we introduce multiple methods for
creating phonetic word embeddings. They range
from intuitive baselines to more complex tech-
niques using metric and contrastive learning. More
importantly, however, we include an evaluation
suite for testing the performance of phonetic em-
beddings. The motivations for this are two-fold.
First, prior works are inconsistent in evaluating
their models. This prevents the field from observ-
ing long-term improvements of such embeddings
and from making fair comparisons across different
approaches. Secondly, when a practitioner is de-
ciding which phonetic word embedding method to
use, the go-to approach is to first apply the embed-
dings (generally fast) and then train a downstream
model on those embeddings (compute and time in-
tensive). Instead, intrinsic embedding evaluation

"Even though the technically correct term would be phono-

logical word embeddings, we refer to them as phonetic in the
spirit of existing literature.



metrics (cheap)—if shown to correlate well with
extrinsic metrics—could provide useful signals in
embedding method selection prior to training of
downstream models (expensive). In contrast to
semantic word embeddings (Bakarov, 2018), we
show that intrinsic and extrinsic metrics for pho-
netic word embeddings generally correlate with
each other. While some work on evaluating acous-
tic word embeddings exists (Ghannay et al., 2016),
this work specializes in phonetic word embeddings
for text, not speech.

Our contributions are threefold:

e a survey of existing phonetic embeddings,

* four novel methods for phonetic word embed-
ding, ranging from simple baselines to com-
plex models, and

e an evaluation suite for such embeddings.

2 Survey of Phonetic Embeddings

Formally, given some alphabet 3 and a dataset of
words W C ¥*, d-dimensional word embeddings
are a function f : YW — R? where ¥ is some al-
phabet. In words, they take an element from the
set 2* (set of all possible words over the alphabet
3] and produce a d-dimensional vector of num-
bers. Note that for most embedding functions, W
is a finite set of words and the embeddings are not
defined for unseen words (Mikolov et al., 2013a;
Pennington et al., 2014). In contrast, other embed-
ding functions—which we dub open—are able to
provide an embedding for any word x € ¥* (Bo-
janowski et al., 2017). An illustration of a phonetic
word embedding function is shown in Figure 1. We
will work with 3 different alphabets: characters
>.c, IPA symbols ¥ p and Arpabet symbols X 4.
When the specific alphabet choice is not important,
we use 2. We review some of the semantic embed-
dings that satisfy this in Section 5 and now focus
on prior work on phonetic word embeddings.

2.1 Poetic Sound Similarity

Parrish (2017) learns word embeddings captur-
ing pronunciation similarity for poetry generation
for words in the CMU Pronouncing Dictionary
(Carnegie Mellon Speech Group, 2014). First, each
phoneme is mapped to a set of phonetic features
F using the function P2F : ¥4 — 27. From this
sequence of sets, bi-grams of phonetic features are
created (using cross-product x between sets a; and
a;+1) and counted. The function COUNTVEC sim-
ply counts the number of occurrences of a specific

feature and puts them in a vector of a constant di-
mension. The resulting vector is then reduced using
PCA (FR.S., 1901) to the target word embedding
dimension d.

W2F(z) = (P2F(z;)|x; € x) (array) (1)

F2V(a) = COUNTVEC. ( U ai X ait1) ()
1<i<]al—1

fear = PCAG({F2V(W2F(z))[z € W}) (3)

Note that the function fpar can provide embed-
dings even for words unseen during training. This
is because the only component dependent on the
training data is the PCA over the vector of bigram
counts, which can also be applied to new vectors.

2.2 phoneme2vec

Fang et al. (2020) do not use hand-crafted feature
functions but rather learn phoneme embeddings
using a more complex model and deep-learning
optimization. They start with a gold sequence
of phonemes (z;) and a hypothesis sequence of
phonemes (y;) which is the output of an automatic
speech recognition (ASR) system. The gold se-
quence (from the ASR perspective) is first con-
sumed by an LSTM model, yielding the initial hid-
den state hg. From this hidden state, the phonemes
(y;) are decoded using teacher forcing. This means
that upon predicting y;, the model receives the cor-
rect y; as the input. The phoneme embedding ma-
trix V' is trained jointly with the model weights and
later constitutes the embedding function.

ho = LSTM((z; - Vl]z;i € 2)) @)
Ly = Z —log (softmax( (5)
0<i<ly|

LSTM(yi—1 - Vl]y<i-1))y:)

Note that these embeddings are phoneme-level
and not word-level and hence a direct comparison
is not possible. To obtain word-level embeddings
from their phoneme embeddings, we use mean
pooling across dimensions for each word. Further,
in contrast to other embeddings, these phoneme
embeddings are only 50-dimensional, putting them
at a greater disadvantage because they have less
space to store the relevant information. We revisit
the question of dimensionality in Section 5.5.

2.3 Phonetic Similarity Embeddings

Sharma et al. (2021) propose a novel vowel-
weighted phonetic similarity metric to compute



similarities between words. They then use it for
training phonetic word embeddings which should
share some properties with this similarity func-
tion. This is in contrast to the previous approaches,
where the embedding training was done indirectly
on some auxiliary task. Given a sound similar-
ity function Spsg, they construct a matrix of sim-
ilarity scores S € RMWIXMWI guch that S;; =
Spse (Wi, Wj). On this matrix, they use non-
negative matrix factorization to learn the embed-
ding matrix V' € RI*d such that the following
loss is minimized

Lpsg = ||S -V - VT|? (6)

Then, the ¢-th row of V' contains the embedding
for i-th word from WW. A major disadvantage of this
approach is that it cannot be used for embedding
new words because the matrix V' would need to be
recomputed again. Although their sound similarity
function Spgg is available only for English, we use
it also for other languages, admittedly making the
comparison unfair.

3 Our Models

In this section, we first introduce several baselines.
We then describe PanPhon’s articulatory distance
and explain models trained with supervision from
this function. See Appendix A for the hyperparam-
eters of presented models and Appendix B for the
negative result of phonemic language modeling.

3.1 Count-based Vectors

Perhaps the most straightforward way of creating a
vector representation for a sequence of input char-
acters or phonemes x € X* is simply counting
n-grams in this sequence. We use a TF-IDF vec-
torizer of 1-,2- and 3-grams (using cross-product
x) with a maximum of 300 features, which then
become our embeddings.

c2v(x) =
ne{1,2,3}
1<i<|z|—n+1

feount(2) = TE-IDFyey —q({C2F(x)|z € W})(8)

Ti X oo X Tjgn—1 (7)

Although there are multiple ways to set up this
pipeline, such as including PCA or normalization,
we do no post-processing for simplicity.

3.2 Autoencoder

Another common approach, though less inter-
pretable, for vector representation with fixed di-
mension size is an encoder-decoder autoencoder.

Specifically, we use this architecture together with
forced-teacher decoding and use the bottleneck vec-
tor as the phonetic word embedding.

fo(x) = LSTM(x|0) (encoder) (9)
dg/(z) = LSTM(z|6) (decoder) (10)

Eauto. = z_ log SOftmaX(dQ’ (f@ (%) |x<2)11) (11)
0<i<]z|

Recall that we can represent words in different
ways, such as characters or IPA symbols.

3.3 Phonetic Embeddings With PanPhon

3.3.1 Articulatory Features and Distance

We first bring to attention the articulatory feature
vectors by Mortensen et al. (2016). Each phoneme
segment” is mapped to a vector which marks 24
different features, such as whether the phoneme
segment is produced with a nasal airflow or if the
segment is produced with the tongue body raised
or lowered. We denote a : Xp — {—1,0,1}** as
the function which maps a phoneme segment into
a vector of articulatory features.

The articulatory distance, also called feature edit
distance (Mortensen et al., 2016), is a version of
Levenshtein distance with custom operation costs.
Specifically, the substitution cost is proportional
to the Hamming distance between the source and
target when they are represented as articulatory
feature vectors. It can be defined in a recursive
dynamic-programming manner:

Ai—l,j (:C, 37/) + d($)
A j(z,2") =min ¢ A; j—1(z,2") +i(2)
Ai-1j-1(x, @) + sz, 2%)

A(x,x/) = A|$‘,|z/|("1},$/) (13)

(12)

where d and 7 are deletion and insertion costs,
which we set to constant 1. The function s is a
substitution cost, defined as the number of elements
(normalized) that need to be changed to render the
two articulatory vectors identical:

(14)

The articulatory distance A induces a metric
space-like structure on top of words in >*. Further-
more, it quantifies the phonetic similarity between

2A phoneme segment is a group of phoneme symbols (e.g.
as defined by Unicode) that produce a single sound.



a pair of words, capturing the intuition that /pat/
and /bat/ are phonetically closer than /pat/ and
/het/, for example.

3.3.2 Metric Learning

Our requirements for the embedding model f are
that it takes the word in some form as an input and
produces a vector of fixed dimension as an output.
To this end, we use an LSTM-based model and
extract the last hidden state for the embeddings.
We use both characters >, IPA symbols X p (Sec-
tion 2) and articulatory feature vectors as the input
word representation. We discuss these choices and
especially their effect on performance and transfer-
ability in Section 5.3.

We now have a function f that produces a vector
for each input word. However, it is not trained
to produce vectors that satisfy our requirements
for phonetic embeddings. We, therefore, define
the following differentiable loss where A is the
articulatory distance from PanPhon.

1
Las = g 2 (IMolwa) = fofw)IP

T €W 2
W — A(za, xb)) (15)
This forces the embeddings to be spaced in the
same way as the articulatory distance (A, Sec-
tion 3.3.1) would space them. We note that metric
learning (learning a function to space output vec-
tors similarly to some other metric) is not novel
(Yang and Jin, 2006; Kulis et al., 2013; Bellet et al.,
2015; Kaya and Bilge, 2019) and was used to train
embeddings by Yang and Hirschberg (2019).

3.3.3 Triplet Margin loss

While the previous approach forces the embeddings
to be spaced exactly as by the articulatory distance
function A, we may relax the constraint so only the
structure (ordering) is preserved. This leads to the
triplet margin loss:>

0
Etriplet =max 4 «+ ‘f@(ma) - f9(xp)‘

_|f9($a> - fQ(xnﬂ

We consider all possible ordered triplets of dis-
tinct words (x4, zp, x,) such that A(z,,x,) <
A(xg,xyn). We refer to z, as the anchor, z,, as

(16)

3Although contrastive learning is a more intuitive
approach, it yielded only negative results:

(exp(|fo(wa) = fo(zp)*)) / (X exp(|fo(wa) — fol(zn)[*))

the positive example, and x,, as the negative exam-
ple. We then minimize Lyiplec over all valid triplets.
This allows us to learn # for an embedding func-
tion fy that preserves the local neighbourhoods of
words defined by A(x,z’). In addition, we modify
the function fy by applying attention to all hidden
states extracted from the last layer of the LSTM en-
coder. This allows our model to focus on phonemes
that are potentially more useful when trying to sum-
marize the phonetic information in a word. This
approach was also used by Yang and Hirschberg
(2019) to learn acoustic word embeddings. Oh
et al. (2022) found success leveraging layer atten-
tive pooling and contrastive learning to extract em-
beddings from pre-trained language models.

4 Evaluation Suite

In this section, we introduce in detail all the embed-
ding evaluation metrics that we use in our suite. We
draw inspiration from evaluating semantic word
embeddings (Bakarov, 2018) and prior work on
phonetic word embeddings (Parrish, 2017). In
some cases, the distinction between intrinsic and
extrinsic evaluations is unclear (e.g., retrieval and
analogies). However, the main characteristic of
intrinsic evaluation is that they are fast to compute
and are not part of any specific application. In con-
trast, extrinsic evaluation metrics directly measure
the usefulness of the embeddings for a particular
NLP application.

We use 9 phonologically diverse languages:
Ambharic,” Bengali,* English, French, German,
Polish, Spanish, Swahili, and Uzbek.* The non-
English data (200k tokens for each language) is
sourced from CC-100 (Wenzek et al., 2020; Con-
neau et al., 2020), while the English data (125k
tokens) comes from the CMU Pronouncing Dictio-
nary (Carnegie Mellon Speech Group, 2014). The
set of languages can be extended in future versions
of the evaluation suite.

4.1 Intrinsic Evaluation

4.1.1 Articulatory Distance

While probing for semantic information in words
is already established (Miaschi and Dell’ Orletta,
2020), it is not clear what information phonetic
word embeddings should contain. However, one
common desideratum is that they should capture
the concept of sound similarity. Recall from Sec-
tion 2 that phonetic word embeddings are a func-

*Languages marked with * use non-Latin script.



tion f : ©* — R<. In the vector space of R?, there
are two widely used notions of similarity S. The
first is the negative Lo distance and the other is
the cosine distance. Consider three words x, 7’
and z”. By using one of these on the top of the
embeddings from f as S(f(z), f(2')), we obtain a
measure of similarity between the two embeddings.
On the other hand, since we have prior notions of
similarity Sp between the words, e.g., based on a
rule-based function, we can use this to represent the
similarity between the words: Sp(z, 2’). We want
to have embeddings f such that f o S produces
results close to Sp. There are at least two ways to
verify that the similarity results are close. In the
first one, we care about the exact values. For exam-
ple, if Sp(z,2’) = 0.5, Sp(z,2") = 0.1, we want
S(f(x), f(2')) = 0.5,S(f(z), f(z")) = 0.1. We
can measure this using Pearson’s correlation co-
efficient between f o S and Sp. On the other
hand, we may not always care about the specific
similarity numbers. Following the previous exam-
ple, we would only care that S(f(x), f(z')) >
S(f(x), f(«)). This is measured using the Spear-
man’s correlation coefficient between f0.S and Sp.
For the rule-based similarity metric Sp, we use ar-
ticulatory distance from PanPhon (Mortensen et al.,
2016), as described in Section 3.3.1.

4.1.2 Human Judgement

Vitz and Winkler (1973) performed an experiment
where they asked people to judge the sound sim-
ilarity of English words. For selected word pairs,
we denote the collected judgements (number from
O-least similar to 1—identical) using the function
Sp. For example, Sy (slant,plant) = 0.9 and
S (plots, plant) = 0.4. Similarly to the previous
task, we compute the correlations between f o S
and Syr. The reasons this is not a replacement for
the articulatory distance task are the small corpus
size and its limitation to English.

4.1.3 Retrieval

An important usage of word embeddings is the
retrieval of associated words, which is also later
utilized in the analogies extrinsic evaluation and
other applications. Success in this task means that
the new embedding space has the same local neigh-
bourhood as the original space induced by some
non-vector-based metric. Given a dataset of words
W and one specific word w € W, we sort W\ {w}
based on both f oS and Sp. Based on this ordering,
we define the immediate neighbour of w based on

Sp, denoted wy and ask the question What is the
average rank of wy in the ordering by f o S? If
the similarity given by f o S is copying Sp per-
fectly, then the rank will be 0 because wy will be
the closest to w in f o S.

Again, for Sp we use the articulatory distance
A (Section 3.3.1). Even though there are a variety
of possible metrics to measure success in retrieval,
we focus on the average rank. We further cap the
retrieval neighbourhood to n = 1000 samples and
compute percentile rank as . This choice is
motivated by the metric being bounded between 0
(worst) and 1 (best), which will become important
for overall evaluation later (Section 4.3).

4.2 Extrinsic Evaluation
4.2.1 Rhyme Detection

There are multiple types of word rhymes, most
of which are based around two words sounding
similarly. We focus on perfect thymes: when the
sounds from the last stressed syllables are identical.
An example is grown and loan, even though the
surface character form does not suggest it. Clearly,
this task can be deterministically solved by having
access to the articulatory and stress information
of the concerned words. Nevertheless, we wish
to see whether this information can be encoded in
a fixed-length vector produced by f. We create a
balanced binary prediction task for rhyme detection
in English and train a small multi-layer perceptron
classifier (see Appendix A) on top of pairs of word
embeddings. The linking hypothesis is that the
higher the accuracy, the more useful information
for the task there is in the embeddings.

4.2.2 Cognate Detection

Cognates are words in different languages that
share a common origin.* Similarly to rhyme de-
tection, we frame cognate detection as a binary
classification task where the input is a potential
cognate pair. CogNet (Batsuren et al., 2019) is a
large cognate dataset that contains many languages,
making it ideal to evaluate the usefulness of pho-
netic embeddings. We add non-cognate, distractor
pairs in the dataset by finding the orthographically
closest word that is not a known cognate. For ex-
ample, plantgn and plantepg are cognates, while
plantgn and planegy are not. Although cognates
also preserve some of the similarities in the mean-
ing, we detect them using phonetic characteristics.

*For the purpose of this experiment, we include loanwords
alongside genetic cognates.



INTRINSIC EXTRINSIC OVERALL
Model Human Sim. Art. Dist.  Retrieval Analogies = Rhyme Cognate
(Pearson) (Pearson) (rank perc.) (Acc@1) (accuracy) (accuracy)

Metric Learner 0.46 0.94 0.98 84% 83% 64% 0.78
., Triplet Margin 0.65 0.96 1.00 100% 77% 66% 0.84
OE Count-based 0.82 0.10 0.84 13% 79% 68% 0.56

Autoencoder 0.49 0.16 0.73 50% 61% 50% 0.50
-» Poetic Sound Sim.  0.74 0.12 0.78 35% 60% 57% 0.53
E phoneme2vec 0.77 0.09 0.80 17% 88% 64% 0.56
S Phon. Sim. Embd.  0.16 0.05 0.50 0% 51% 52% 0.29
- BPEmb 0.23 0.08 0.60 5% 54% 66% 0.36
g fastText 0.25 0.12 0.64 2% 58% 68% 0.38
g BERT 0.10 0.34 0.69 4% 58% 63% 0.40
“2 INSTRUCTOR 0.60 0.12 0.73 7% 54% 66% 0.45

Table 1: Embedding method performance in our evaluation suite. Higher number is always better.

4.2.3 Sound Analogies

Just as distributional semantic vectors can com-
plete word-level analogies such as man:woman <+
king:queen (Mikolov et al., 2013b), so too should
well-trained phonetic word embeddings capture
sound analogies. For example of a sound analogy,
consider /din/ : /tin/ < /zin/ : /sm/. The difference
within the pairs is [£voice] in the first phoneme
segment of each word.

With this intuition in mind, we define a pertur-
bation as a pair of phonemes (p, q) whose artic-
ulatory distance is s(p,q) = 1 (see Equation 14
in Section 3.3.1). We then create a sound analogy
corpus of 200 quadruplets wy : wa <> ws : wy for
each language, with the following procedures:

1. Choose arandom word w1 € W and one of its
phonemes on random position i: p; = w1 ;.

2. Randomly select two perturbations of the
same phonetic feature so that p; : py <> p3 :
Dy, for example /t/ : /d/ < /s/ : /z].

3. Create wa, w3, and wy by duplicating w; and
replacing wy ; with pa, p3, and py.°

We apply the above procedure 1 or 2 times to
create 200 analogous quadruplets with 1 or 2 pertur-
bations (evenly split). We then measure the Acc@1
to retrieve wy from W U {w4}. This means that
we simply measure how many times the closest
neighbour of wy — wy + w3 is wy. Our analogy
task is different from that of Parrish (2017) who
focused on derivational changes.®

>The new words ws, w3, and w4 do not always have to
constitute a real word in the target language but we are still

interested in such analogies in the space of all possible words
and their detection.

4.3 Overall score

Because all the measured metrics are bounded be-
tween 0 and 1, we define the overall score for our
evaluation suite as the arithmetic average of results
from each task. We mainly consider the results of
all available languages averaged but later in Sec-
tion 5.3 discuss results per language as well. To
allow for future extensions in terms of languages
and tasks, this evaluation suite is versioned, with
the version described in this paper being v1. 0.

5 [Evaluation

In this section, we compare all the aforementioned
embedding models using our evaluation suite. We
show the results in Table 1 with three categories
of models. Our models trained using some Pan-
Phon supervision or features (Section 3) are given
first, followed by other phonetic word embedding
models (Section 2). We also include non-phonetic
word embeddings, not as a fair baseline for com-
parison but to show that these embeddings are dif-
ferent from phonetic word embeddings and are not
suited for our tasks: fastText (Grave et al., 2018),
BPEmb (Heinzerling and Strube, 2018), BERT (De-
vlin et al., 2019) and INSTRUCTOR (Su et al.,
2022).” We chose these embeddings because they
are open (i.e., they provide embeddings even to
words unseen in the training data). All of these
embeddings except for BERT and INSTRUCTOR
are 300-dimensional. We discuss the relationship
between embedding dimensionality and task per-
formance in more detail in Section 5.5.

For example decide : decision < explode : explosion.
"See Appendix A for embedding extraction details.
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Figure 2: Spearman (upper left) and Pearson (lower
right) correlations between embedding performances on
various tasks. All embeddings from Table 1 are used.

5.1 Model Comparison

In Table 1 we show the performance of all pre-
viously described models. The Triplet Margin
model is better than Metric Learner, despite the
fact that it receives less direct supervision during
training. However, it also requires the longest time
to train (Appendix A). Despite the fact that it is bet-
ter than all other models and also the more naive
approaches, the best model for human similarity
is a very simple Count-based model. Unsurpris-
ingly, semantic word embeddings perform worse
than explicit phonetic embeddings, most notably
on human similarity and analogies.

We now examine how much the performance on
one task (particularly an intrinsic one) is predic-
tive of performance on another task. We measure
this across all systems in Table 1 and revisit this
topic later for creating variations of the same model.
For lexical/semantic word embeddings, Bakarov
(2018) notes that the individual tasks do not corre-
late among each other. However, in Figure 2, we
find the contrary for some of the selected tasks (e.g.,
Retrieval and Rhyme or Retrieval and Analogies).
Importantly, there is no strong negative correlation
between any tasks, suggesting that performance on
one task is not a tradeoff with another.

Model Art. TPA Text
Metric Learner 0.78 0.64 0.62
Triplet Margin  0.84 0.84 0.79
Autoencoder 050 041 041
Count-based - 0.56 0.51

Table 2: Overall suite performance of our models with
various input features.

5.2 Input Features

For all of our models, it is possible to choose the
input feature type, which has an impact on the per-
formance, as shown in Table 2. Unsurprisingly,
the more phonetic the features are, the better the
resulting model. Note that in the Metric Learner
and Triplet Margin models we are still using super-
vision from the articulatory distance, and despite
that, the input features play a major role.
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Figure 3: Performance (suite score) of Metric Learner
with PanPhon features trained on a specific language
and evaluated on another one. Diagonals show matching
models and evaluation languages.

5.3 Transfer between languages

Recall from Section 3.3 that there are multiple fea-
ture types that can be used for our phonetic word
embedding model: orthographic characters, IPA
characters and articulatory feature vectors. It is
not surprising, that the textual characters as fea-
tures provide little transferability when the model
is trained on a different language than it is eval-
vated on. The transfer between languages for a
different model type, shown in Figure 3, demon-
strates that not all languages are equally challeng-
ing. Furthermore, the PanPhon features appear to
be very useful for generalizing across languages.
This echoes the findings of Li et al. (2021), who
also break down phones into articulatory features to
share information across phones (including unseen
phones).

5.4 Topology visualization

The differences between feature types in Table 2
may not appear very large. However, closer in-
spection of the clusters in the embedding space in
Figure 4 reveals, that using the PanPhon articula-
tory feature vectors yields a vector space which
resembles one induced by the articulatory distance



the most. This is in line with the fact that A is cal-
culated using PanPhon features and we explicitly
use them to supervise the model.
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Figure 4: T-SNE projection of the articulatory distance
space and embedding spaces from the metric learning
models with different features (each different subplot).
Each point corresponds to one English word. Differ-
ently coloured clusters were selected in the articulatory
distance space and highlighted in other spaces.

5.5 Dimensionality and Train Data Size

Through our experiments, we relied on 300-
dimensional embeddings. However, this choice
was motivated by the comparison to other word
embeddings. Now we examine how the choice of
dimensionality, keeping all other things equal, af-
fects individual task performance. The results in
Figure 5 (top) show that neither too small nor too
large a dimensionality is useful for solving the pro-
posed tasks. Furthermore, there seems to be little
interaction between the task type and dimensional-
ity. As a result, model ranking based on each task
is very similar which yields Spearman and Pearson
correlations of 0.61 and 0.79, respectively.

A natural question is how data-intensive the pro-
posed metric learning method is. To this end, we
constraint the training data size and show the re-
sults in Figure 5 (bottom). Similarly to changing
the dimensionality, the individual tasks react to
changing the training data size without an effect
of the task variable. However, the Spearman and
Pearson correlations are only 0.64 and 0.65, respec-
tively.
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Figure 5: Task performance for Metric Learner with
varying dimensionality (top) and varying training
data size (bottom) with PanPhon features. Colour bands
show 95% confidence intervals from t-distribution.

6 Embeddings and the Field of Phonology

Phonological features, especially articulatory fea-
tures, have played a strong role in phonology since
Bloomfield (1993) and especially since the work of
Prague School linguists like Trubetskoy (1939) and
Jakobson et al. (1951). The widely used feature
set employed by PanPhon originates in the monu-
mental Sound Pattern of English or SPE (Chomsky
and Halle, 1968). The assumption in that work
is that there is a universal set of discrete phono-
logical features and that all speech sounds in all
languages consist of vectors of these features. The
similarity between these feature vectors should cap-
ture the similaity between sounds. This position
is born out in our results. These features encode
a wealth of knowledge gained through decades of
linguistic research on how the sound systems of lan-
guages behave, both synchronically and diachron-
ically. While there is evidence that phonological
features are emergent rather than universal (Mielke,
2008), these results suggest that they can neverthe-
less contribute robustly to computational tasks.

7 Future work

After having established the standardized evalua-
tion suite, we wish to pursue the following:
* enlarging the pool of languages,
* including mode tasks in the evaluation suite,
* new models for phonetic word embeddings.



Limitations

As hinted in Section 5.1, we are doing evaluation
of models that use supervision from some of the
tasks during training. Specifically, the metric learn-
ing models have an advantage on the articulatory
distance task. Nevertheless, the models perform
well also on other, more unrelated tasks and we
also provide models without this supervision.

Another limitation of our work is that we train
on phonemic transcriptions, which cannot capture
finer grained phonetic distinctions. Phonemic dis-
tinctions may be sufficient for applications such as
rhyme detection, but not for tasks such as phone
recognition or dialectometry.

Finally, we do not make any distinction between
training and development data. This is for a practi-
cal reason because some of the methods we use for
comparison are not open embeddings and need to
see all concerned words during training.
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A Reproducibility Details

For the multi-layer perceptron for rhyme and cog-
nate classification, we use the MLP class from
scikit-learn (Pedregosa et al., 2011, v1.2.1) with
hidden layer sizes of 50, 20 and 10 and other pa-
rameter defaults observed.

Compute resources. The most compute-
consuming tasks were training the Metric Learner
and Triplet Margin, which took !/4+ and 2 hours
on GTX 1080 Ti, respectively. Overall for the
research presented in this paper, we estimate 100
GPU hours.

Lexical word embeddings. The BERT embed-
dings were extracted as an average across the last
layer. The INSTRUCTOR embeddings were used
with the prompt Represent the word for sound simi-
larity retrieval: For BPEmb and fastText, we used
the best models (highest training data) and dimen-
sionality of 300.

Model details. The metric learner uses bidirec-
tional LSTM with 2 layers, hidden state size of 150
and dropout of 30%. The batch size is 128 and the
learning rate is 10~2. The autoencoder follows the
same hyperparameters both for the encoder and de-
coder. The difference is its learning size, 5 X 1073,
which was chosen empirically.

B Phonetic Language Modeling

As a negative result, we describe here our model
which did not perform well on our suit of tasks in
contrast to others. A common way of learning word
embeddings as of recent is to train on the masked
language model objective, popularized by BERT
(Devlin et al., 2019). We input PanPhon features
into several successive Transformer (Vaswani et al.,
2017) encoder layers and a final linear layer that
predicts the masked phoneme. We prepend and
append [CLS] and [SEP] tokens, respectively,
to the phonetic transcriptions of each word, before
we look up each phoneme’s PanPhon features. We
use [CLS] pooling—taking the output of the Trans-
former corresponding to the first token—to extract
a word-level representation. Unlike BERT, we do
not train on the next sentence prediction objective,
nor do we add positional embeddings. In addition,
we do not add an embedding layer because we
are not interested in learning individual phoneme
embeddings but rather wish to learn a word-level
embedding.
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