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Abstract

Word embeddings that map words into a fixed-001
dimensional vector space are the backbone of002
modern NLP. Most word embedding methods003
encode semantic information. However, pho-004
netic information, which is important for some005
tasks, is often overlooked. In this work, we006
develop several novel methods which leverage007
articulatory features to build phonetically in-008
formed word embeddings, and present a toolkit009
of phonetic word embeddings to encourage010
their community development, evaluation and011
use. While several methods for learning pho-012
netic word embeddings already exist, there is013
a lack of consistency in evaluating their effec-014
tiveness. Thus, our toolkit also proposes sev-015
eral ways to evaluate both intrinsic aspects of016
phonetic word embeddings, such as word re-017
trieval and correlation with sound similarity,018
and extrinsic performances, such as rhyme and019
cognate detection and sound analogies. We020
hope that our suite of tasks will promote re-021
producibility and provide direction for future022
research on phonetic word embeddings.023

1 Introduction024

Word embeddings are an omnipresent tool in mod-025

ern NLP (Le and Mikolov, 2014; Pennington et al.,026

2014; Almeida and Xexéo, 2019, inter alia). Their027

main benefit lies in compressing information use-028

ful to the user into vectors with fixed numbers of029

dimensions. These vectors can be easily used as030

features for machine learning applications and their031

study can reveal insights into language and its use.032

Word embeddings are often trained using methods033

of distributional semantics (Camacho-Collados and034

Pilehvar, 2018) and hence bear semantic informa-035

tion. In these cases, for example, the embedding036

for the word carrot encodes in some way that it is037

more like embeddings for other vegetables than the038

∗Code, data and trained models (on Huggingface) will be
made public for the camera-ready version.

f

soybean | sɔɪbiːn | S OY B IY N

ocean | oʊʃən | OW SH AH N

motion | moʊʃən | M OW SH AH N

Figure 1: Embedding function f which projects words
in various forms (left) to a vector space (right).

embedding for ocean. Nevertheless, some applica- 039

tions may require a different type of information 040

to be encoded. For a poem generation model, for 041

instance, the embedding of a word might reflect 042

that ocean rhymes with motion and not with a soy- 043

bean, even though the characters at the ends of the 044

words would suggest otherwise. Such embeddings, 045

which contain phonetic information, are referred 046

to as phonetic word embeddings,1 were studied in 047

recent years (Bengio and Heigold, 2014; Parrish, 048

2017; El-Geish, 2019; Yang and Hirschberg, 2019; 049

Hu et al., 2020; Sharma et al., 2021). The basic 050

premise is that words with similar pronunciations 051

are projected to vectors that are near each other in 052

the embedding space. 053

In this work, we introduce multiple methods for 054

creating phonetic word embeddings. They range 055

from intuitive baselines to more complex tech- 056

niques using metric and contrastive learning. More 057

importantly, however, we include an evaluation 058

suite for testing the performance of phonetic em- 059

beddings. The motivations for this are two-fold. 060

First, prior works are inconsistent in evaluating 061

their models. This prevents the field from observ- 062

ing long-term improvements of such embeddings 063

and from making fair comparisons across different 064

approaches. Secondly, when a practitioner is de- 065

ciding which phonetic word embedding method to 066

use, the go-to approach is to first apply the embed- 067

dings (generally fast) and then train a downstream 068

model on those embeddings (compute and time in- 069

tensive). Instead, intrinsic embedding evaluation 070

1Even though the technically correct term would be phono-
logical word embeddings, we refer to them as phonetic in the
spirit of existing literature.
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metrics (cheap)—if shown to correlate well with071

extrinsic metrics—could provide useful signals in072

embedding method selection prior to training of073

downstream models (expensive). In contrast to074

semantic word embeddings (Bakarov, 2018), we075

show that intrinsic and extrinsic metrics for pho-076

netic word embeddings generally correlate with077

each other. While some work on evaluating acous-078

tic word embeddings exists (Ghannay et al., 2016),079

this work specializes in phonetic word embeddings080

for text, not speech.081

Our contributions are threefold:082

• a survey of existing phonetic embeddings,083

• four novel methods for phonetic word embed-084

ding, ranging from simple baselines to com-085

plex models, and086

• an evaluation suite for such embeddings.087

2 Survey of Phonetic Embeddings088

Formally, given some alphabet Σ and a dataset of089

words W ⊆ Σ∗, d-dimensional word embeddings090

are a function f : W → Rd where Σ is some al-091

phabet. In words, they take an element from the092

set Σ∗ (set of all possible words over the alphabet093

Σ] and produce a d-dimensional vector of num-094

bers. Note that for most embedding functions, W095

is a finite set of words and the embeddings are not096

defined for unseen words (Mikolov et al., 2013a;097

Pennington et al., 2014). In contrast, other embed-098

ding functions—which we dub open—are able to099

provide an embedding for any word x ∈ Σ∗ (Bo-100

janowski et al., 2017). An illustration of a phonetic101

word embedding function is shown in Figure 1. We102

will work with 3 different alphabets: characters103

ΣC , IPA symbols ΣP and Arpabet symbols ΣA.104

When the specific alphabet choice is not important,105

we use Σ. We review some of the semantic embed-106

dings that satisfy this in Section 5 and now focus107

on prior work on phonetic word embeddings.108

2.1 Poetic Sound Similarity109

Parrish (2017) learns word embeddings captur-110

ing pronunciation similarity for poetry generation111

for words in the CMU Pronouncing Dictionary112

(Carnegie Mellon Speech Group, 2014). First, each113

phoneme is mapped to a set of phonetic features114

F using the function P2F : ΣA → 2F . From this115

sequence of sets, bi-grams of phonetic features are116

created (using cross-product × between sets ai and117

ai+1) and counted. The function COUNTVEC sim-118

ply counts the number of occurrences of a specific119

feature and puts them in a vector of a constant di- 120

mension. The resulting vector is then reduced using 121

PCA (F.R.S., 1901) to the target word embedding 122

dimension d. 123

W2F(x) = ⟨P2F(xi)|xi ∈ x⟩ (array) (1) 124

F2V(a) = COUNTVEC.
( ⋃
1≤i≤|a|−1

ai × ai+1

)
(2) 125

fPAR = PCAd({F2V(W2F(x))|x ∈ W}) (3) 126

Note that the function fPAR can provide embed- 127

dings even for words unseen during training. This 128

is because the only component dependent on the 129

training data is the PCA over the vector of bigram 130

counts, which can also be applied to new vectors. 131

2.2 phoneme2vec 132

Fang et al. (2020) do not use hand-crafted feature 133

functions but rather learn phoneme embeddings 134

using a more complex model and deep-learning 135

optimization. They start with a gold sequence 136

of phonemes (xi) and a hypothesis sequence of 137

phonemes (yi) which is the output of an automatic 138

speech recognition (ASR) system. The gold se- 139

quence (from the ASR perspective) is first con- 140

sumed by an LSTM model, yielding the initial hid- 141

den state h0. From this hidden state, the phonemes 142

(yi) are decoded using teacher forcing. This means 143

that upon predicting ŷi, the model receives the cor- 144

rect yi as the input. The phoneme embedding ma- 145

trix V is trained jointly with the model weights and 146

later constitutes the embedding function. 147

h0 = LSTM(⟨xi · V |xi ∈ x⟩) (4) 148

Lp2v =
∑

0<i≤|y|

− log
(
softmax( (5) 149

150LSTM(yi−1 · V |y<i−1))yi
)

151

Note that these embeddings are phoneme-level 152

and not word-level and hence a direct comparison 153

is not possible. To obtain word-level embeddings 154

from their phoneme embeddings, we use mean 155

pooling across dimensions for each word. Further, 156

in contrast to other embeddings, these phoneme 157

embeddings are only 50-dimensional, putting them 158

at a greater disadvantage because they have less 159

space to store the relevant information. We revisit 160

the question of dimensionality in Section 5.5. 161

2.3 Phonetic Similarity Embeddings 162

Sharma et al. (2021) propose a novel vowel- 163

weighted phonetic similarity metric to compute 164
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similarities between words. They then use it for165

training phonetic word embeddings which should166

share some properties with this similarity func-167

tion. This is in contrast to the previous approaches,168

where the embedding training was done indirectly169

on some auxiliary task. Given a sound similar-170

ity function SPSE, they construct a matrix of sim-171

ilarity scores S ∈ R|W|×|W| such that Si,j =172

SPSE(Wi,Wj). On this matrix, they use non-173

negative matrix factorization to learn the embed-174

ding matrix V ∈ R|W|×d such that the following175

loss is minimized176

LPSE = ||S − V · V T ||2 (6)177

Then, the i-th row of V contains the embedding178

for i-th word from W . A major disadvantage of this179

approach is that it cannot be used for embedding180

new words because the matrix V would need to be181

recomputed again. Although their sound similarity182

function SPSE is available only for English, we use183

it also for other languages, admittedly making the184

comparison unfair.185

3 Our Models186

In this section, we first introduce several baselines.187

We then describe PanPhon’s articulatory distance188

and explain models trained with supervision from189

this function. See Appendix A for the hyperparam-190

eters of presented models and Appendix B for the191

negative result of phonemic language modeling.192

3.1 Count-based Vectors193

Perhaps the most straightforward way of creating a194

vector representation for a sequence of input char-195

acters or phonemes x ∈ Σ∗ is simply counting196

n-grams in this sequence. We use a TF-IDF vec-197

torizer of 1-,2- and 3-grams (using cross-product198

×) with a maximum of 300 features, which then199

become our embeddings.200

C2V(x) =
⋃

n∈{1,2,3}
1≤i≤|x|−n+1

xi × . . .× xi+n−1 (7)201

fcount(x) = TF-IDFfeat.=d({C2F(x)|x ∈ W})(8)202

Although there are multiple ways to set up this203

pipeline, such as including PCA or normalization,204

we do no post-processing for simplicity.205

3.2 Autoencoder206

Another common approach, though less inter-207

pretable, for vector representation with fixed di-208

mension size is an encoder-decoder autoencoder.209

Specifically, we use this architecture together with 210

forced-teacher decoding and use the bottleneck vec- 211

tor as the phonetic word embedding. 212

fθ(x) = LSTM(x|θ) (encoder) (9) 213

dθ′(x) = LSTM(x|θ′) (decoder) (10) 214

Lauto. =
∑

0<i≤|x|

− log softmax(dθ′(fθ(x)|x<i)xi) (11) 215

Recall that we can represent words in different 216

ways, such as characters or IPA symbols. 217

3.3 Phonetic Embeddings With PanPhon 218

3.3.1 Articulatory Features and Distance 219

We first bring to attention the articulatory feature 220

vectors by Mortensen et al. (2016). Each phoneme 221

segment2 is mapped to a vector which marks 24 222

different features, such as whether the phoneme 223

segment is produced with a nasal airflow or if the 224

segment is produced with the tongue body raised 225

or lowered. We denote a : ΣP → {−1, 0, 1}24 as 226

the function which maps a phoneme segment into 227

a vector of articulatory features. 228

The articulatory distance, also called feature edit 229

distance (Mortensen et al., 2016), is a version of 230

Levenshtein distance with custom operation costs. 231

Specifically, the substitution cost is proportional 232

to the Hamming distance between the source and 233

target when they are represented as articulatory 234

feature vectors. It can be defined in a recursive 235

dynamic-programming manner: 236

(12)
Ai,j(x, x

′) = min


Ai−1,j(x, x

′) + d(x)
Ai,j−1(x, x

′) + i(x′)
Ai−1,j−1(x, x

′) + s(xi, x
′
j)

A(x, x′) = A|x|,|x′|(x, x
′) (13)

237

where d and i are deletion and insertion costs, 238

which we set to constant 1. The function s is a 239

substitution cost, defined as the number of elements 240

(normalized) that need to be changed to render the 241

two articulatory vectors identical: 242

s(x, x′) =
1

24

24∑
i=1

|a(x)i − a(x′)i| (14) 243

The articulatory distance A induces a metric 244

space-like structure on top of words in Σ∗. Further- 245

more, it quantifies the phonetic similarity between 246

2A phoneme segment is a group of phoneme symbols (e.g.
as defined by Unicode) that produce a single sound.
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a pair of words, capturing the intuition that /pæt/247

and /bæt/ are phonetically closer than /pæt/ and248

/hæt/, for example.249

3.3.2 Metric Learning250

Our requirements for the embedding model f are251

that it takes the word in some form as an input and252

produces a vector of fixed dimension as an output.253

To this end, we use an LSTM-based model and254

extract the last hidden state for the embeddings.255

We use both characters ΣC , IPA symbols ΣP (Sec-256

tion 2) and articulatory feature vectors as the input257

word representation. We discuss these choices and258

especially their effect on performance and transfer-259

ability in Section 5.3.260

We now have a function f that produces a vector261

for each input word. However, it is not trained262

to produce vectors that satisfy our requirements263

for phonetic embeddings. We, therefore, define264

the following differentiable loss where A is the265

articulatory distance from PanPhon.266

267
Ldist. =

1

|W|
∑

xa∈W
xb∼W

(
||fθ(xa)− fθ(xb)||2268

269
−A(xa, xb)

)2
(15)270

This forces the embeddings to be spaced in the271

same way as the articulatory distance (A, Sec-272

tion 3.3.1) would space them. We note that metric273

learning (learning a function to space output vec-274

tors similarly to some other metric) is not novel275

(Yang and Jin, 2006; Kulis et al., 2013; Bellet et al.,276

2015; Kaya and Bilge, 2019) and was used to train277

embeddings by Yang and Hirschberg (2019).278

3.3.3 Triplet Margin loss279

While the previous approach forces the embeddings280

to be spaced exactly as by the articulatory distance281

function A, we may relax the constraint so only the282

structure (ordering) is preserved. This leads to the283

triplet margin loss:3284

Ltriplet = max


0

α+ |fθ(xa)− fθ(xp)|
−|fθ(xa)− fθ(xn)|

(16)285

We consider all possible ordered triplets of dis-286

tinct words (xa, xp, xn) such that A(xa, xp) <287

A(xa, xn). We refer to xa as the anchor, xp as288

3Although contrastive learning is a more intuitive
approach, it yielded only negative results:(
exp(|fθ(xa)− fθ(xp)|2)

)
/
(∑

exp(|fθ(xa)− fθ(xn)|2)
)

the positive example, and xn as the negative exam- 289

ple. We then minimize Ltriplet over all valid triplets. 290

This allows us to learn θ for an embedding func- 291

tion fθ that preserves the local neighbourhoods of 292

words defined by A(x, x′). In addition, we modify 293

the function fθ by applying attention to all hidden 294

states extracted from the last layer of the LSTM en- 295

coder. This allows our model to focus on phonemes 296

that are potentially more useful when trying to sum- 297

marize the phonetic information in a word. This 298

approach was also used by Yang and Hirschberg 299

(2019) to learn acoustic word embeddings. Oh 300

et al. (2022) found success leveraging layer atten- 301

tive pooling and contrastive learning to extract em- 302

beddings from pre-trained language models. 303

4 Evaluation Suite 304

In this section, we introduce in detail all the embed- 305

ding evaluation metrics that we use in our suite. We 306

draw inspiration from evaluating semantic word 307

embeddings (Bakarov, 2018) and prior work on 308

phonetic word embeddings (Parrish, 2017). In 309

some cases, the distinction between intrinsic and 310

extrinsic evaluations is unclear (e.g., retrieval and 311

analogies). However, the main characteristic of 312

intrinsic evaluation is that they are fast to compute 313

and are not part of any specific application. In con- 314

trast, extrinsic evaluation metrics directly measure 315

the usefulness of the embeddings for a particular 316

NLP application. 317

We use 9 phonologically diverse languages: 318

Amharic,∗ Bengali,∗ English, French, German, 319

Polish, Spanish, Swahili, and Uzbek.4 The non- 320

English data (200k tokens for each language) is 321

sourced from CC-100 (Wenzek et al., 2020; Con- 322

neau et al., 2020), while the English data (125k 323

tokens) comes from the CMU Pronouncing Dictio- 324

nary (Carnegie Mellon Speech Group, 2014). The 325

set of languages can be extended in future versions 326

of the evaluation suite. 327

4.1 Intrinsic Evaluation 328

4.1.1 Articulatory Distance 329

While probing for semantic information in words 330

is already established (Miaschi and Dell’Orletta, 331

2020), it is not clear what information phonetic 332

word embeddings should contain. However, one 333

common desideratum is that they should capture 334

the concept of sound similarity. Recall from Sec- 335

tion 2 that phonetic word embeddings are a func- 336

4Languages marked with ∗ use non-Latin script.

4



tion f : Σ∗ → Rd. In the vector space of Rd, there337

are two widely used notions of similarity S. The338

first is the negative L2 distance and the other is339

the cosine distance. Consider three words x, x′340

and x′′. By using one of these on the top of the341

embeddings from f as S(f(x), f(x′)), we obtain a342

measure of similarity between the two embeddings.343

On the other hand, since we have prior notions of344

similarity SP between the words, e.g., based on a345

rule-based function, we can use this to represent the346

similarity between the words: SP (x, x
′). We want347

to have embeddings f such that f ◦ S produces348

results close to SP . There are at least two ways to349

verify that the similarity results are close. In the350

first one, we care about the exact values. For exam-351

ple, if SP (x, x
′) = 0.5, SP (x, x

′′) = 0.1, we want352

S(f(x), f(x′)) = 0.5, S(f(x), f(x′′)) = 0.1. We353

can measure this using Pearson’s correlation co-354

efficient between f ◦ S and SP . On the other355

hand, we may not always care about the specific356

similarity numbers. Following the previous exam-357

ple, we would only care that S(f(x), f(x′)) >358

S(f(x), f(x′)). This is measured using the Spear-359

man’s correlation coefficient between f ◦S and SP .360

For the rule-based similarity metric SP , we use ar-361

ticulatory distance from PanPhon (Mortensen et al.,362

2016), as described in Section 3.3.1.363

4.1.2 Human Judgement364

Vitz and Winkler (1973) performed an experiment365

where they asked people to judge the sound sim-366

ilarity of English words. For selected word pairs,367

we denote the collected judgements (number from368

0–least similar to 1–identical) using the function369

SH . For example, SH(slant, plant) = 0.9 and370

SH(plots, plant) = 0.4. Similarly to the previous371

task, we compute the correlations between f ◦ S372

and SH . The reasons this is not a replacement for373

the articulatory distance task are the small corpus374

size and its limitation to English.375

4.1.3 Retrieval376

An important usage of word embeddings is the377

retrieval of associated words, which is also later378

utilized in the analogies extrinsic evaluation and379

other applications. Success in this task means that380

the new embedding space has the same local neigh-381

bourhood as the original space induced by some382

non-vector-based metric. Given a dataset of words383

W and one specific word w ∈ W , we sort W\{w}384

based on both f ◦S and SP . Based on this ordering,385

we define the immediate neighbour of w based on386

SP , denoted wN and ask the question What is the 387

average rank of wN in the ordering by f ◦ S? If 388

the similarity given by f ◦ S is copying SP per- 389

fectly, then the rank will be 0 because wN will be 390

the closest to w in f ◦ S. 391

Again, for SP we use the articulatory distance 392

A (Section 3.3.1). Even though there are a variety 393

of possible metrics to measure success in retrieval, 394

we focus on the average rank. We further cap the 395

retrieval neighbourhood to n = 1000 samples and 396

compute percentile rank as n−r
n . This choice is 397

motivated by the metric being bounded between 0 398

(worst) and 1 (best), which will become important 399

for overall evaluation later (Section 4.3). 400

4.2 Extrinsic Evaluation 401

4.2.1 Rhyme Detection 402

There are multiple types of word rhymes, most 403

of which are based around two words sounding 404

similarly. We focus on perfect rhymes: when the 405

sounds from the last stressed syllables are identical. 406

An example is grown and loan, even though the 407

surface character form does not suggest it. Clearly, 408

this task can be deterministically solved by having 409

access to the articulatory and stress information 410

of the concerned words. Nevertheless, we wish 411

to see whether this information can be encoded in 412

a fixed-length vector produced by f . We create a 413

balanced binary prediction task for rhyme detection 414

in English and train a small multi-layer perceptron 415

classifier (see Appendix A) on top of pairs of word 416

embeddings. The linking hypothesis is that the 417

higher the accuracy, the more useful information 418

for the task there is in the embeddings. 419

4.2.2 Cognate Detection 420

Cognates are words in different languages that 421

share a common origin.4 Similarly to rhyme de- 422

tection, we frame cognate detection as a binary 423

classification task where the input is a potential 424

cognate pair. CogNet (Batsuren et al., 2019) is a 425

large cognate dataset that contains many languages, 426

making it ideal to evaluate the usefulness of pho- 427

netic embeddings. We add non-cognate, distractor 428

pairs in the dataset by finding the orthographically 429

closest word that is not a known cognate. For ex- 430

ample, plantEN and planteFR are cognates, while 431

plantEN and planeEN are not. Although cognates 432

also preserve some of the similarities in the mean- 433

ing, we detect them using phonetic characteristics. 434

4For the purpose of this experiment, we include loanwords
alongside genetic cognates.
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INTRINSIC EXTRINSIC OVERALL

Model Human Sim. Art. Dist. Retrieval Analogies Rhyme Cognate
(Pearson) (Pearson) (rank perc.) (Acc@1) (accuracy) (accuracy)

O
ur

s

Metric Learner 0.46 0.94 0.98 84% 83% 64% 0.78
Triplet Margin 0.65 0.96 1.00 100% 77% 66% 0.84 ⋆
Count-based 0.82 0.10 0.84 13% 79% 68% 0.56
Autoencoder 0.49 0.16 0.73 50% 61% 50% 0.50

O
th

er
s’ Poetic Sound Sim. 0.74 0.12 0.78 35% 60% 57% 0.53

phoneme2vec 0.77 0.09 0.80 17% 88% 64% 0.56
Phon. Sim. Embd. 0.16 0.05 0.50 0% 51% 52% 0.29

Se
m

an
tic

BPEmb 0.23 0.08 0.60 5% 54% 66% 0.36
fastText 0.25 0.12 0.64 2% 58% 68% 0.38
BERT 0.10 0.34 0.69 4% 58% 63% 0.40
INSTRUCTOR 0.60 0.12 0.73 7% 54% 66% 0.45

Table 1: Embedding method performance in our evaluation suite. Higher number is always better.

4.2.3 Sound Analogies435

Just as distributional semantic vectors can com-436

plete word-level analogies such as man:woman ↔437

king:queen (Mikolov et al., 2013b), so too should438

well-trained phonetic word embeddings capture439

sound analogies. For example of a sound analogy,440

consider /dIn/ : /tIn/ ↔ /zIn/ : /sIn/. The difference441

within the pairs is [±voice] in the first phoneme442

segment of each word.443

With this intuition in mind, we define a pertur-444

bation as a pair of phonemes (p, q) whose artic-445

ulatory distance is s(p, q) = 1 (see Equation 14446

in Section 3.3.1). We then create a sound analogy447

corpus of 200 quadruplets w1 : w2 ↔ w3 : w4 for448

each language, with the following procedures:449

1. Choose a random word w1 ∈ W and one of its450

phonemes on random position i: p1 = w1,i.451

2. Randomly select two perturbations of the452

same phonetic feature so that p1 : p2 ↔ p3 :453

p4, for example /t/ : /d/ ↔ /s/ : /z/.454

3. Create w2, w3, and w4 by duplicating w1 and455

replacing w1,i with p2, p3, and p4.5456

We apply the above procedure 1 or 2 times to457

create 200 analogous quadruplets with 1 or 2 pertur-458

bations (evenly split). We then measure the Acc@1459

to retrieve w4 from W ∪ {w4}. This means that460

we simply measure how many times the closest461

neighbour of w2 − w1 + w3 is w4. Our analogy462

task is different from that of Parrish (2017) who463

focused on derivational changes.6464

5The new words w2, w3, and w4 do not always have to
constitute a real word in the target language but we are still
interested in such analogies in the space of all possible words
and their detection.

4.3 Overall score 465

Because all the measured metrics are bounded be- 466

tween 0 and 1, we define the overall score for our 467

evaluation suite as the arithmetic average of results 468

from each task. We mainly consider the results of 469

all available languages averaged but later in Sec- 470

tion 5.3 discuss results per language as well. To 471

allow for future extensions in terms of languages 472

and tasks, this evaluation suite is versioned, with 473

the version described in this paper being v1.0. 474

5 Evaluation 475

In this section, we compare all the aforementioned 476

embedding models using our evaluation suite. We 477

show the results in Table 1 with three categories 478

of models. Our models trained using some Pan- 479

Phon supervision or features (Section 3) are given 480

first, followed by other phonetic word embedding 481

models (Section 2). We also include non-phonetic 482

word embeddings, not as a fair baseline for com- 483

parison but to show that these embeddings are dif- 484

ferent from phonetic word embeddings and are not 485

suited for our tasks: fastText (Grave et al., 2018), 486

BPEmb (Heinzerling and Strube, 2018), BERT (De- 487

vlin et al., 2019) and INSTRUCTOR (Su et al., 488

2022).7 We chose these embeddings because they 489

are open (i.e., they provide embeddings even to 490

words unseen in the training data). All of these 491

embeddings except for BERT and INSTRUCTOR 492

are 300-dimensional. We discuss the relationship 493

between embedding dimensionality and task per- 494

formance in more detail in Section 5.5. 495

6For example decide : decision ↔ explode : explosion.
7See Appendix A for embedding extraction details.

6



Human Sim.
Art. Dist.

Retrieval
Analogies

Rhyme

Art. Dist.

Retrieval

Analogies

Rhyme

Cognate

0.01
0.07

0.58
0.54

0.44
0.33

0.62
0.59

0.09
0.18

0.70
0.84

0.75
0.76

0.47
0.57

0.07
0.36

0.79
0.77

0.84
0.82

0.31
0.50

0.65
0.58

-0.03
0.14

0.23
0.47

Figure 2: Spearman (upper left) and Pearson (lower
right) correlations between embedding performances on
various tasks. All embeddings from Table 1 are used.

5.1 Model Comparison496

In Table 1 we show the performance of all pre-497

viously described models. The Triplet Margin498

model is better than Metric Learner, despite the499

fact that it receives less direct supervision during500

training. However, it also requires the longest time501

to train (Appendix A). Despite the fact that it is bet-502

ter than all other models and also the more naive503

approaches, the best model for human similarity504

is a very simple Count-based model. Unsurpris-505

ingly, semantic word embeddings perform worse506

than explicit phonetic embeddings, most notably507

on human similarity and analogies.508

We now examine how much the performance on509

one task (particularly an intrinsic one) is predic-510

tive of performance on another task. We measure511

this across all systems in Table 1 and revisit this512

topic later for creating variations of the same model.513

For lexical/semantic word embeddings, Bakarov514

(2018) notes that the individual tasks do not corre-515

late among each other. However, in Figure 2, we516

find the contrary for some of the selected tasks (e.g.,517

Retrieval and Rhyme or Retrieval and Analogies).518

Importantly, there is no strong negative correlation519

between any tasks, suggesting that performance on520

one task is not a tradeoff with another.521

Model Art. IPA Text

Metric Learner 0.78 0.64 0.62
Triplet Margin 0.84 0.84 0.79
Autoencoder 0.50 0.41 0.41
Count-based - 0.56 0.51

Table 2: Overall suite performance of our models with
various input features.

5.2 Input Features 522

For all of our models, it is possible to choose the 523

input feature type, which has an impact on the per- 524

formance, as shown in Table 2. Unsurprisingly, 525

the more phonetic the features are, the better the 526

resulting model. Note that in the Metric Learner 527

and Triplet Margin models we are still using super- 528

vision from the articulatory distance, and despite 529

that, the input features play a major role. 530
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Figure 3: Performance (suite score) of Metric Learner
with PanPhon features trained on a specific language
and evaluated on another one. Diagonals show matching
models and evaluation languages.

5.3 Transfer between languages 531

Recall from Section 3.3 that there are multiple fea- 532

ture types that can be used for our phonetic word 533

embedding model: orthographic characters, IPA 534

characters and articulatory feature vectors. It is 535

not surprising, that the textual characters as fea- 536

tures provide little transferability when the model 537

is trained on a different language than it is eval- 538

uated on. The transfer between languages for a 539

different model type, shown in Figure 3, demon- 540

strates that not all languages are equally challeng- 541

ing. Furthermore, the PanPhon features appear to 542

be very useful for generalizing across languages. 543

This echoes the findings of Li et al. (2021), who 544

also break down phones into articulatory features to 545

share information across phones (including unseen 546

phones). 547

5.4 Topology visualization 548

The differences between feature types in Table 2 549

may not appear very large. However, closer in- 550

spection of the clusters in the embedding space in 551

Figure 4 reveals, that using the PanPhon articula- 552

tory feature vectors yields a vector space which 553

resembles one induced by the articulatory distance 554
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the most. This is in line with the fact that A is cal-555

culated using PanPhon features and we explicitly556

use them to supervise the model.557

Feature Edit Distance Panphon Features

IPA Features Character Features

Figure 4: T-SNE projection of the articulatory distance
space and embedding spaces from the metric learning
models with different features (each different subplot).
Each point corresponds to one English word. Differ-
ently coloured clusters were selected in the articulatory
distance space and highlighted in other spaces.

5.5 Dimensionality and Train Data Size558

Through our experiments, we relied on 300-559

dimensional embeddings. However, this choice560

was motivated by the comparison to other word561

embeddings. Now we examine how the choice of562

dimensionality, keeping all other things equal, af-563

fects individual task performance. The results in564

Figure 5 (top) show that neither too small nor too565

large a dimensionality is useful for solving the pro-566

posed tasks. Furthermore, there seems to be little567

interaction between the task type and dimensional-568

ity. As a result, model ranking based on each task569

is very similar which yields Spearman and Pearson570

correlations of 0.61 and 0.79, respectively.571

A natural question is how data-intensive the pro-572

posed metric learning method is. To this end, we573

constraint the training data size and show the re-574

sults in Figure 5 (bottom). Similarly to changing575

the dimensionality, the individual tasks react to576

changing the training data size without an effect577

of the task variable. However, the Spearman and578

Pearson correlations are only 0.64 and 0.65, respec-579

tively.580
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Figure 5: Task performance for Metric Learner with
varying dimensionality (top) and varying training
data size (bottom) with PanPhon features. Colour bands
show 95% confidence intervals from t-distribution.

6 Embeddings and the Field of Phonology 581

Phonological features, especially articulatory fea- 582

tures, have played a strong role in phonology since 583

Bloomfield (1993) and especially since the work of 584

Prague School linguists like Trubetskoy (1939) and 585

Jakobson et al. (1951). The widely used feature 586

set employed by PanPhon originates in the monu- 587

mental Sound Pattern of English or SPE (Chomsky 588

and Halle, 1968). The assumption in that work 589

is that there is a universal set of discrete phono- 590

logical features and that all speech sounds in all 591

languages consist of vectors of these features. The 592

similarity between these feature vectors should cap- 593

ture the similaity between sounds. This position 594

is born out in our results. These features encode 595

a wealth of knowledge gained through decades of 596

linguistic research on how the sound systems of lan- 597

guages behave, both synchronically and diachron- 598

ically. While there is evidence that phonological 599

features are emergent rather than universal (Mielke, 600

2008), these results suggest that they can neverthe- 601

less contribute robustly to computational tasks. 602

7 Future work 603

After having established the standardized evalua- 604

tion suite, we wish to pursue the following: 605

• enlarging the pool of languages, 606

• including mode tasks in the evaluation suite, 607

• new models for phonetic word embeddings. 608

8



Limitations609

As hinted in Section 5.1, we are doing evaluation610

of models that use supervision from some of the611

tasks during training. Specifically, the metric learn-612

ing models have an advantage on the articulatory613

distance task. Nevertheless, the models perform614

well also on other, more unrelated tasks and we615

also provide models without this supervision.616

Another limitation of our work is that we train617

on phonemic transcriptions, which cannot capture618

finer grained phonetic distinctions. Phonemic dis-619

tinctions may be sufficient for applications such as620

rhyme detection, but not for tasks such as phone621

recognition or dialectometry.622

Finally, we do not make any distinction between623

training and development data. This is for a practi-624

cal reason because some of the methods we use for625

comparison are not open embeddings and need to626

see all concerned words during training.627
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A Reproducibility Details809

For the multi-layer perceptron for rhyme and cog-810

nate classification, we use the MLP class from811

scikit-learn (Pedregosa et al., 2011, v1.2.1) with812

hidden layer sizes of 50, 20 and 10 and other pa-813

rameter defaults observed.814

Compute resources. The most compute-815

consuming tasks were training the Metric Learner816

and Triplet Margin, which took 1/4 and 2 hours817

on GTX 1080 Ti, respectively. Overall for the818

research presented in this paper, we estimate 100819

GPU hours.820

Lexical word embeddings. The BERT embed-821

dings were extracted as an average across the last822

layer. The INSTRUCTOR embeddings were used823

with the prompt Represent the word for sound simi-824

larity retrieval: For BPEmb and fastText, we used825

the best models (highest training data) and dimen-826

sionality of 300.827

Model details. The metric learner uses bidirec-828

tional LSTM with 2 layers, hidden state size of 150829

and dropout of 30%. The batch size is 128 and the830

learning rate is 10−2. The autoencoder follows the831

same hyperparameters both for the encoder and de-832

coder. The difference is its learning size, 5× 10−3,833

which was chosen empirically.834

B Phonetic Language Modeling835

As a negative result, we describe here our model836

which did not perform well on our suit of tasks in837

contrast to others. A common way of learning word838

embeddings as of recent is to train on the masked839

language model objective, popularized by BERT840

(Devlin et al., 2019). We input PanPhon features841

into several successive Transformer (Vaswani et al.,842

2017) encoder layers and a final linear layer that843

predicts the masked phoneme. We prepend and844

append [CLS] and [SEP] tokens, respectively,845

to the phonetic transcriptions of each word, before846

we look up each phoneme’s PanPhon features. We847

use [CLS] pooling–taking the output of the Trans-848

former corresponding to the first token–to extract849

a word-level representation. Unlike BERT, we do850

not train on the next sentence prediction objective,851

nor do we add positional embeddings. In addition,852

we do not add an embedding layer because we853

are not interested in learning individual phoneme854

embeddings but rather wish to learn a word-level855

embedding.856
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