
A Road for LLM SQL Bug-Fixing Enhancing

Anonymous ACL submission

Abstract
Code Large Language Models (Code LLMs),001
such as Code llama and DeepSeek-Coder, have002
demonstrated exceptional performance in the003
code generation tasks. However, most exist-004
ing models focus on the abilities of generat-005
ing correct code, but weak in bug code re-006
pair. In this paper, we introduce a suit of meth-007
ods which enhance LLM’s bug-fixing abilities008
on SQL code, which are mainly consisted of009
two parts: A Progressive Dataset Construction010
(PDC) from scratch and Dynamic Mask Super-011
vised Fine-tuning (DM-SFT). PDC proposes012
two data expansion methods from the perspec-013
tives of breadth first and depth first respectively.014
DM-SFT introduces an efficient bug-fixing su-015
pervised learning approach, which effectively016
reduce the total training steps and mitigate the017
"mental disorientation" in SQL code bug-fixing018
training. In our evaluation, the code LLM mod-019
els trained on these two methods have exceeds020
all current best performing model which size is021
much larger.022

1 Introduction023

Recently, large language models (LLMs) trained024

on diverse Internet scale datasets and code reposito-025

ries have achieved remarkable success. Meanwhile,026

Large Language Models for Code (Code LLMs)027

have rapidly emerged as powerful assistants for028

writing code. However, most of code LLMs are029

focus on the capabilities of "writing" code. Such030

as text2code (Given a natural language text, then031

model write the expected code), code completion.032

Code bug-fixing receives less attention especially033

compared with the above. Moreover, we discov-034

ered those open source pretrained code LLMs, like035

DeepSeek-Coder (Guo et al., 2024), WizardCoder036

(Luo et al., 2023) and Code llama (Roziere et al.,037

2023), are very limited in bug-fixing capability.038

In this paper, we especially focus on SQL code039

bug-fixing task. Due to the complex nested query040

structure, SQL code bugs are more difficult to solve041

compared with other programing languages. Fur- 042

thermore, SQL code is less dependent on third- 043

party packages, which mitigates the incidence of 044

unsolvable bugs that arise due to insufficient infor- 045

mation from third-party toolkits. We formulate the 046

SQL code bug-fixing task as Equation 1. 047

SQLcorrect = f(Schema, SQLbug, R) (1) 048

Where the f represents your bug-fixing model. 049

Schema means the related tables schemas in your 050

bug SQL code. SQLbug denote the SQL code which 051

contains some bugs need to be fixed. R is the return 052

massage by your SQL execution system when you 053

run your bug SQL code. SQLcorrect is the bug- 054

fixing model’s output, which is expected the right 055

SQL code. 056

We propose a set of methods to enhance the 057

bug-fixing capabilities of Large Language Mod- 058

els (LLMs). This includes a method for mining 059

and collecting supervised data, termed Progressive 060

Dataset Construction (PDC), and an efficient train- 061

ing method based on dynamic masking, known 062

as Dynamic Mask-SFT (DM-SFT). Additionally, 063

we discuss an effective approach to reduce hallu- 064

cination outputs when applying open-source code 065

LLMs to specific domains—continue pre-train with 066

domain-specific data. Experiments show that train- 067

ing with data collected via the PDC method gener- 068

ally improved the SQL bug-fixing capabilities of 069

open-source code LLMs by nearly +50%. The Dy- 070

namic Mask-SFT training method further enhanced 071

model performance by approximately +10% rel- 072

ative to the default generative SFT. Continue pre- 073

train effectively reduced the occurrence of halluci- 074

natory answers. 075

2 Related Work 076

Code bug fixing with deep learning has gained in- 077

creasing attention as the capabilities of pre-trained 078

1



Figure 1: The initial training data collection via user
behavior logs mining.

language models continue to improve. However,079

the code bug fixing ability of these models often080

falls short due to the lack of large-scale annotated081

data. Several methods have been proposed to train082

a model to generate bugs from correct code, thereby083

obtaining annotated data for the transition from bug084

code to correct code.085

Some recent studies have focused on training086

a model to transform correct code into bug code,087

thereby generating annotated data for code bug fix-088

ing learning. BUGLAB (Allamanis et al., 2021)089

propose a self-supervised approach which trains ro-090

bust bug detectors by co-training a bug selector that091

learns to create hard-to-detect bugs. Break-It-Fix-It092

(Yasunaga and Liang, 2021) is a similar approach093

that involves the collaborative training of both bug094

fixers and bug generators. To the best of our knowl-095

edge, these methods have scarcely ventured into096

the realm of SQL language, and in our practice, it097

has proven challenging to train a model capable of098

generating bug SQL with diffusion characteristics099

(not only diversity but also close to the distribu-100

tion of human bugs). This may be attributed to the101

inherent differences between SQL code and most102

object-oriented programming languages.103

Additionally, some approaches attempt to ad-104

dress the code bug repair problem from the perspec-105

tive of an agent. A typical example is RepairAgent106

(Bouzenia et al., 2024) and SELF-DEBUGGING107

(Chen et al., 2023), which treats the LLM as an108

agent capable of autonomously planning and exe-109

cuting actions to fix bugs by invoking suitable tools.110

However, with SQL code, executing a large query111

can be time-consuming. Therefore, repeatedly de-112

bugging and running the code to resolve bugs is113

clearly impractical.114

Figure 2: Execution filter for data quality.

3 Progressive Dataset Construction 115

In this section, we introduce a set of data collection 116

methods called Progressive Dataset Construction 117

(PDC). The methods mainly include two parts: di- 118

verse collecting from online system (breadth first) 119

and oriented generation of offline mining (depth 120

first). The diverse collecting through automated 121

methods ensures the diversity coverage and sus- 122

tainable scalability of the training datasets, thereby 123

maintaining a consistent alignment between the 124

distribution of training data and the behaviors of 125

online users. The oriented generation method is pri- 126

marily used for data augmentation in cases where 127

the model performs poorly in evaluation and online 128

serving. This approach requires the assistance of 129

mature code LLM (Large Language Model) and 130

some SQL corpora recall methods. 131

3.1 Diverse Collecting 132

To complete the collection of initial training data, 133

we designed a set of rules to mine online user 134

behavior logs. As shown in Figure 1, when 135

user encounter execution error while running SQL 136

code, the system will report and log a snap- 137

shot of the bug code and error message. Subse- 138

quently, users would typically edit and correct the 139

code until it successfully runs in the next attempt. 140

Therefore, we can extract an extensive array of 141

(bugSQL, correctSQL) pairs which generated by 142

users based on this behavior. 143

Additionally, we observed that since the SQL 144

execution environment integrates certain syntax 145

checking capabilities, some users, when encounter- 146

ing syntax errors, tend to modify their code until 147

the highlighted syntax error prompts disappear and 148

then save their code, rather than executing it again 149

for confirmation. Consequently, we also consider 150

the most recent operation of ’save code’ after a code 151

execution error as a behavioral signal for mining 152

correct SQL. As illustrated in Figure 1. 153

After acquiring data samples from online user be- 154

havior logs, we apply an execution filter as Figure 2. 155

This process retains (bugSQL, correctSQL) 156

pairs where the bug SQL triggers an error, and 157

the correct SQL executes successfully (Red font 158

2



Figure 3: Overview of oriented generation method.

indicates execution failure, green font signifies suc-159

cessful execution). Moreover, to ensure data qual-160

ity, we also removed samples where the disparity161

between the bug SQL code and the correct SQL162

code was excessively large.163

Lastly, we conduct a manual sampling inspection164

of the filtered data. If the [bug SQL, correct SQL]165

pairs achieve a pass rate of over 85%, they meet166

our quality standards and are deemed suitable for167

model training.168

Diverse collecting samples for bug SQL repair169

directly from online user behavior ensures an excel-170

lent coverage of diversity. It aligns with the natural171

data distribution in real service scenarios, which172

is crucial for model training. Once our SQL code173

bug-fixing model is deployed, we pay more atten-174

tion on cases where users disregard the model’s175

suggested modifications and proceed with manual176

edits. This behavior often implies that the model’s177

proposed changes did not meet the user’s expecta-178

tions. Diverse collection will persist as a crucial179

method of sample gathering throughout the contin-180

uous iteration process of the model.181

3.2 Oriented Generation182

The oriented generation method is primarily used183

for data augmentation aimed at difficult cases.184

These types of cases typically include unique syn-185

tax features of internal systems and relatively rare186

long-tail error types, among others. This method187

comprises two processes: the recall of appropriate188

SQL corpora and the generation of bug SQL, which189

relies on the code LLM.190

The original SQL corpus is derived from a vast191

accumulation of correctly executable SQL code,192

which is written by historical users in the data193

query system. As illustrated in Figure 3, we per-194

form oriented data augmentation for certain high-195

frequency bug error types and some bug types that196

are difficult for the model to resolve. The oriented197

generation data augmentation approach primarily 198

encompasses the following steps: 199

(1) Identify the bug types that need data aug- 200

mentation via oriented generation. For in- 201

stance, during the cold-start phase, we primar- 202

ily target those long-tail bug types that occur 203

infrequently. After the model is deployed as a 204

serving, we mainly focus on those types where 205

the model’s correction accuracy is not high. 206

(2) Create an “error feature” for each bug type. 207

The error feature is primarily related to the 208

corpus recall algorithm you use. For example, 209

you can use syntax keywords for recall, such 210

as using the keyword “group by” to match SQL 211

code suitable for generating “group by” errors. 212

(3) Recall the candidate SQL code for every bug 213

type. We employ appropriate rule based match- 214

ing algorithm to pair a rich corpus of SQL code 215

with each bug type via "error feature". The ac- 216

curacy of matching varies across different bug 217

types. We select different matching algorithms 218

for different bug types based on the certain 219

circumstances. 220

(4) Generate a rich set of bug SQL samples for 221

each bug type. This step requires the assis- 222

tance of a robust code LLM for the generation 223

of bug SQL code. In our practice, the quality 224

of generated bug SQL is highly correlated with 225

the prompt. We provide a reference prompt for 226

generating bug SQL in Appendix A.1 used in 227

our internal code fundamental LLM for bug 228

SQL generation. 229

The diverse collecting and oriented generation 230

methods respectively accomplish the supervised 231

dataset construction for the SQL bug fixing task 232

from the perspectives of breadth-first and depth- 233

first approaches. As you can see, these two data 234

construction methods remain effective even after 235

the model is deployed as an SQL bug fixing tool. 236

The diverse collecting method, based on user be- 237

havior, can collect unsatisfactory samples which 238

modified by the users in a crowdsourcing-like man- 239

ner. Meanwhile, oriented generation can specifi- 240

cally enhance the types of bugs where the model’s 241

performance is subpar. The collected data can be 242

utilized to improve the model’s performance. The 243

enhancement of model performance, in turn, affects 244

the distribution of the data collecting. Therefore, 245

this is a progressive dataset construction method. 246

3



4 Dynamic Mask Supervised Fine-tuning247

In this section, we present a detailed introduction248

to an efficient training method for LLM SQL code249

bug fixing, which we refer to as dynamic mask su-250

pervised fine-tuning (DM-SFT). The Figure 4 pro-251

vides a detailed comparison of dynamic mask SFT252

with the default generative SFT in terms of training253

methodology and loss calculation. As outlined in254

the introduction section, in our task formulation,255

the model input consists of a bugfix prompt com-256

posed of three pieces of information: [tables DDL,257

bug SQL, report error]. The model output is the258

complete, corrected SQL code. In most cases, most259

of the code lines in the correct SQL and the bug260

SQL are identical, with only a few lines typically261

requiring modification.262

In the training data we collected, the distribu-263

tion of the number of code lines that need to be264

modified in the correct SQL compared to the corre-265

sponding bug SQL (we name it diff lines) is shown266

in Appendix A.2 Figure 9 . As shown in the fig-267

ure, cases where the number of diff lines is less268

than 5 account for more than 92% of the instances.269

Therefore, most of the correct code that the model270

needs to predict as output has already appeared in271

the model input prompt (bug SQL). In the default272

generative supervised fine-tuning training process,273

all tokens in the output answer are equally impor-274

tant in the calculation of the final loss. This can275

lead to a series of issues such as slow convergence276

and unstable training results. We will discuss these277

problems in detail in experimental section.278

To address these issues, we propose a code bug279

repair training method called dynamic mask SFT.280

During the model training process, we divide the281

correct SQL code that the model is expected to282

predict post bug-fixing into two categories in line-283

by-line basis:284

(i) Consistent lines representing the lines of285

code that remain unchanged when compared286

to the original bug-infested code.287

(ii) Diff lines representing the lines of code that288

require modifications when compared to the289

original bug-infested code.290

Given a bug SQL code, related tables schema,291

report error and corresponding correct SQL code,292

we use (l0, l1, l2, · · · , d0, · · · , dm, · · · ln),m ≤ n293

denoting the correct code lines. The li, i ∈ [0, n]294

represents the consistent lines and dj , j ∈ [0,m]295

Figure 4: A comparison between default generative SFT
(upper part) and dynamic mask SFT (lower part) of code
bug fixing task.

represents the diff lines. We use u to denote to- 296

kens of consistent lines, and v to denote tokens of 297

diff lines. Equation 2 shows the loss function of 298

dynamic mask SFT. 299

L1 =−
∑

logP (uk+1 | uk, uk−1, . . . , u0)

∗ a(l(uk+1))
(2) 300

a(li) =

{
0 p
1 (1-p)

(3) 301

Where a(li) is the mask weight of line li as Equa- 302

tion 3, and mask weight of all tokens in line li 303

are the same. The p is random mask ratio factor, 304

used to control the proportion of masked code lines. 305

l(uk+1) represents the line number of code where 306

token uk+1 is located. In Equation 2, L1 represents 307

the language model loss of the consistent lines (af- 308

ter dynamic masking). In Equation 4, L2 represents 309

the language model loss of the diff lines. 310

L2 =−
∑

logP (vk+1 | vk, vk−1, . . . , v0) (4) 311

L = L1 + L2 (5) 312

4



Figure 5: Bug fixing evaluation results with different
value of random mask ratio factor p.

The final total loss L, as shown in Equation 5, is313

composed of L1 and L2.314

Figure 4 clearly illustrates the similarities and315

differences between the dynamic mask SFT process316

and the default bug fixing SFT process. The correct317

SQL code that the model needs to predict, and318

output is set in grey. In the entire model output319

label, the parts that do not need to calculate loss320

are highlighted in green (input prompt and masked321

code lines randomly selected with probability p).322

5 Experiments and Results323

In this section, we will provide a detailed overview324

of our experiments setup and the related results.325

This section is divided into two main parts: first, we326

will discuss the ablation experiments related to the327

effectiveness of PDC and DM-SFT; subsequently,328

we will briefly introduce the issue of hallucinatory329

modifications found in external open-source mod-330

els during the model evaluation process, as well as331

the mitigation for hallucination phenomena through332

Continue Pre-train (CPT) (Ke et al., 2023) using333

internal data. In addition, we made some analyses334

for the experiment results and processes, providing335

several analytical perspectives and conclusions.336

5.1 PDC and SFT Experiments337

We demonstrate the efficacy of the suit of meth-338

ods (PDC & DM-SFT) through a series of exper-339

iments. We collected 3k diverse samples through340

the diverse collecting method and 300+ oriented341

enhancement samples based on code LLM through342

the oriented generation method. Based on these343

3.3k data, we conducted a series of ablation ex-344

periments to verify the effectiveness of DM-SFT345

Figure 6: Loss reduction curves and best bug fixing
performance steps across typical random mask ratio
factors p during model training.

and the impact of various parameter settings on the 346

model training results. 347

We use DeepSeek-Coder-instruct (6.7b) as the 348

fundamental model and carry out the training exper- 349

iments on a cluster of 32 × NVIDIA A800 80GB 350

GPUs using the DeepSpeed (Rajbhandari et al., 351

2020) framework stage 3. In terms of hyperpa- 352

rameters setting, we used batch size = 32, learning 353

rate = 1.2e-5, and AdamW optimizer (Loshchilov 354

and Hutter, 2017) with adam_beta1 = 0.9 and 355

adam_beta2 = 0.95 (more detailed experimental 356

parameter configurations, please refer to the infor- 357

mation of code release in the final parts of this 358

section). 359

We have an evaluation dataset of size 268, the 360

data of which comes from bug SQL code genuinely 361

submitted by online users. The ground truth in 362

this dataset is precisely annotated by experienced 363

SQL engineers. During the model development 364

stage, we used machine automatic evaluation (a 365

method based on AST semantic comparison) re- 366

sults to select the approximate best training steps 367

of the model. Since there may be many different 368

ways to fix a bug, the final model’s bug fixing ac- 369

curacy was determined through manual evaluation 370

of experienced SQL engineers. 371

In the evaluation, we first assessed the bug-fixing 372

capabilities of the currently best open code LLMs, 373

as well as our powerful internal code LLM that 374

have not yet been opened, without any bug-fixing 375

SFT enhancement. This serves as a baseline for 376

comparing and evaluating the effectiveness of our 377

PDC data collection methods. On the other hand, 378

through ablation experiments, we compared the im- 379

5



Method Model Size Acc

Pretrain

gemma 7B 20.8%
StarCoderBase 7B 27.9%
StarCoder2 7B 28.3%
CodeQwen1.5-Chat 7B 29.8%
DeepSeek-Coder-instruct 6.7B 30.2%
DeepSeek-Coder-instruct 33B 30.9%
WizardCoder-V1.1 33 B 30.9%
internal code LLM * 41.4%

SFT
gemma 7B 30.9%
StarCoderBase 7B 35.4%
CodeQwen1.5-Chat 7B 44.4%
DeepSeek-Coder-instruct 6.7B 45.8%

DM-SFT
CodeQwen1.5-Chat 7B 48.1%
DeepSeek-Coder-instruct 6.7B 50.0%

Table 1: Accuracy of different models and training methods.

pact of dynamic mask SFT and default generative380

SFT on training, as well as the effect of the value381

of random mask ratio factor p on model training.382

We conducted independent tests on various mod-383

els, and all output results from these models were384

subjected to blind manual evaluation (evaluators385

were unaware of which model each answer came386

from, and each bug-fixing sample was cross re-387

viewed by three individuals). The final fixing accu-388

racy of each model on the 268-sample evaluation389

dataset are shown in Table 1.390

It is evident that among the models with around391

the 7B parameters, DeepSeek-Coder-6.7B-instruct392

achieves the highest fixing accuracy. Additionally,393

we observe that the larger 33B model does not394

exhibit significant improvement compared to the395

7B model. Using DeepSeek-Coder-6.7B-instruct as396

the foundational model, we conducted both default397

generative dynamic mask SFT training on the 3.3k398

training dataset collected through the PDC method.399

As observed in Table 1, the 3.3k data samples400

collected through the PDC method (Diverse col-401

lecting & Oriented generation) significantly en-402

hanced the accuracy of the DeepSeek-Coder model403

in the bug-fixing task. The accuracy improved from404

30.2% in the original model to 45.8%, represent-405

ing a relative increase of 51.6% in the capability406

to fix bugs in SQL code. We also conducted SFT407

experiments on other models with parameter sizes408

around 7B, and the findings were consistent.409

Furthermore, we employed dynamic mask410

SFT to train models on DeepSeek-Coder-6.7B-411

instruct and CodeQwen1.5-7B-Chat, which are412

among the best-performing models with param- 413

eter sizes around 7B. Results from manual eval- 414

uations indicate that dynamic mask SFT can 415

enhance the model’s bug fixing capability by 416

approximately 10% compared to the default 417

generative SFT training (DeepSeek-Coder-6.7B- 418

instruct: 45.8%→50.0%, CodeQwen1.5-7B-Chat: 419

44.4%→48.1%). 420

Taking the best-performing DeepSeek-Coder- 421

6.7B-instruct model as the foundation model, we 422

trained the model under different values of p and 423

evaluated its optimal bug-fixing capability, with the 424

results presented in Figure 5. After that, we com- 425

pared the impact of different random mask ratio 426

factors p on per-token loss reduction process, as 427

illustrated in Figure 6. From Figure 5 and Figure 6, 428

we can draw the following three conclusions: 429

(i) In the early stages of training (less than 400 430

steps), the higher value of p, come up with 431

the greater the per-token loss. In the later 432

stages (after 500 steps), the per-token loss 433

converges regardless of the value of p. This 434

phenomenon is intuitive as the mask ratio 435

factor effectively amplifies the weight of the 436

diff code tokens loss with pre-trained LLM, 437

the loss of diff code is greater than the loss 438

of consistent code that has appeared in the 439

prompt. As the model gradually converges, 440

the difference in per-token loss between the 441

two diminishes. 442

(ii) Generally, the higher value of p, the fewer 443

training steps are required to reach the check- 444

6



Figure 7: Hallucination modification by DeepSeek-
Coder. Left: Output from internal code LLM (limit
value consistent with original code). Right: Output
from DeepSeek-Coder-Bugfix (limit value erroneously
increased by an additional 0 character).

point with the best bug-fixing capability. This445

is one of the most valuable features of the446

dynamic mask SFT method, in addition to447

its ability to enhance the model’s bug-fixing448

capabilities. This implies that we can achieve449

better model performance with lower compu-450

tational costs and reduced energy consump-451

tion.452

(iii) From Figure 5, we can clearly see that when453

the value of p is between [0.4, 0.7], all the454

trained models achieve optimal performance.455

When the value of p is 1 (completely ignoring456

the loss of identical code lines), the perfor-457

mance of the model is worse than those using458

the default generative SFT (where p is 0).459

The manual evaluation results of the ablation460

experiments shown in Table 1 have adequately461

demonstrated the effectiveness and applicability462

of the Progressive Dataset Construction (PDC)463

data collection method and the Dynamic Mask464

SFT (DM-SFT) training approach in enhancing465

the LLM’s capability for SQL code bug fixing. It466

is noteworthy that by appropriately setting the pa-467

rameter p, the dynamic mask SFT method can en-468

hance the model’s bug fixing capability while sig-469

nificantly reducing the training time. This allows470

the model to achieve optimal performance at earlier471

training steps. Such a feature is particularly appeal-472

ing to the model developers in the era of LLMs,473

where computational resources are highly pricey.474

5.2 Continue Pre-train475

Throughout the model development phase, we com-476

pared the bug fixing capabilities of DeepSeek-477

Coder-6.7B-instruct and our internal code LLM478

on a case-by-case basis after fine-tuning them on479

the same dataset. We found that compared to the480

internal code LLM, DeepSeek-Coder is more prone481

Figure 8: Performance differences of models with and
without continued Pre-train on domain-specific corpus
(pre-train before SFT/DM-SFT), where ’ds6.7’ repre-
sents DeepSeek-Coder-6.7B-instruct and ’cq7’ denotes
CodeQwen1.5-7B-Chat.

to producing hallucination outputs when generat- 482

ing correct SQL code. Figure 7 presents a typical 483

example, where the left side shows the correct code 484

snippet predicted by the internal code LLM (have 485

been fine-tuned), and the right side shows the cor- 486

rect code snippet predicted by the DeepSeek-Coder- 487

Bugfix (have been fine-tuned) model. The con- 488

stant value 90000000 of the original code was erro- 489

neously increased by an additional 0 in DeepSeek- 490

Coder-Bugfix model’s prediction. 491

Through the analysis, we discovered that the 492

differences in performance between the two foun- 493

dation models which have been fine-tuned with the 494

same supervised data may stem from their famil- 495

iarity for the domain-specific SQL code style and 496

distribution (the internal model’s pre-train corpus 497

includes domain-specific code data). To validate 498

this hypothesis, we have mined, cleaned, and dedu- 499

plicated a dataset from internal scenarios to obtain 500

a SQL code corpus with size of 53k. To ensure 501

the rigor of the experiment, we carefully inspected 502

these entries to guarantee that there would be no 503

overlap with the 268 samples in evaluation dataset. 504

We conduct continue pre-train (CPT) (Ke et al., 505

2023) on the 53k domain-specific corpus which 506

we have cleaned and use DeepSeek-Coder-6.7B- 507

instruct and CodeQwen1.5-7B-Chat as foundation 508

models. We then compared the capabilities of the 509

models before and after Continued Pre-training, as 510

illustrated in Figure 8. We made some adjustments 511

to the learning rate, setting it to 1.5e − 5 for con- 512

7



tinue pre-train and later adjusting it to 1.0e− 5 for513

subsequent SFT/DM-SFT. Through comparison, it514

is evident that after continue pre-train with domain-515

specific data, the four combinations of models and516

training methods achieved a bug-fixing accuracy517

improvement range of 1.8% ∼ 3.4%. Addition-518

ally, the number of bad cases which involved with519

hallucination modification has decreased across all520

models.521

There’s worth mentioning that when using dif-522

ferent models for Continue Pre-train, we adhered523

to the same input formats as their original pre-train.524

Additionally, we compared two training methods:525

training all parameters versus training only the pa-526

rameters outside of the embedding layer during527

Continue Pre-train. Although the parameters of the528

embedding layer constitute only a small portion529

of the total parameters in most LLMs (for exam-530

ple, in DeepSeek-Coder 6.7b, the embedding layer531

accounts for approximately 1.96% of whole param-532

eters), training with the embedding layer parame-533

ters frozen has proven challenging to achieve the534

expected results in our practice. In Appendix A.2535

Figure 10, we have documented the training loss536

decline curves for both full parameter Continue537

Pre-train and Continue Pre-train with only non-538

embedding layer parameters updated. It is evident539

that training with only non-embedding layer pa-540

rameters updated struggles to converge, whereas541

full parameter update in Continue Pre-train demon-542

strates good convergence.543

Finally, all source code related to our experi-544

ments will be made publicly available in the cor-545

responding GitHub repository1. All training and546

evaluation data used will be released later after547

being anonymized by data engineers.548

6 Conclusion549

In this paper, we innovatively propose a set of meth-550

ods to enhance the LLM’s capability for SQL bug551

fixing, encompassing both data construction and552

model training aspects. In terms of data construc-553

tion, we propose two approaches: a breadth-first554

diverse collecting method and a depth-first oriented555

generation method. The diverse collecting method556

employs a rigorous strategy to mine from online557

users’ behavior, obtaining bug fixing annotated558

data that aligns with real-world scenario distribu-559

tions. The oriented generation method is primarily560

used for targeted data augmentation to address spe-561

1https://github.com/*/*

cific weaknesses in the model’s capabilities. Both 562

methods require minimal manual labor, making 563

them semi-automated and sustainable approaches 564

for data construction and iteration. Therefore, we 565

have named this suit of data construction methods 566

Progressive Dataset Construction (PDC). In terms 567

of training methodology, we propose the dynamic 568

mask SFT training method, which is generally ap- 569

plicable to generative code bug fixing tasks. Com- 570

pared to the default generative SFT method, this 571

approach can enhance the model’s bug fixing ca- 572

pability by nearly 10% under the same training 573

data. Additionally, it significantly reduces the train- 574

ing time required to achieve optimal model perfor- 575

mance. 576

8



Limitations577

Only generate the modification code lines We at-578

tempted a highly efficient and intuitively appealing579

approach that involves generating only the correct580

code for the diff sections. Specifically, our ap-581

proach required the model to output the lines of582

code that needed modification and the corrected583

code after changes. This definition could handle584

all code rewriting operations, including additions585

(where a single line of original code is replaced586

by multiple lines), deletions (where multiple lines587

of original code are replaced by an empty string),588

and modifications (where multiple lines of original589

code are replaced by multiple lines of new code).590

Unfortunately, this method resulted in impaired591

model performance due to the lack of context in592

the outputs, making it challenging to achieve the ac-593

curacy of generating complete code, both in prompt594

engineering experiments on GPT-4 (Achiam et al.,595

2023) and in SFT training on open-source code596

LLMs.597

Token level dynamic mask SFT A pertinent ques-598

tion arises as to why consistent lines cannot use599

token-level dynamic masking and must instead be600

masked by code lines. Indeed, in our earliest prac-601

tices, we masked at the token level. However, per-602

plexingly, models masked at the token level strug-603

gled to converge, and during evaluations, a portion604

of the samples consistently failed to generate com-605

plete and usable code. This remains a puzzle we606

have not fully resolved. We hypothesize that for607

programming languages, a line may correspond608

to a more complete semantic module, and token-609

level masking disrupts this contextual integrity. Re-610

search on this aspect will continue in subsequent611

studies.612

References613

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama614
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,615
Diogo Almeida, Janko Altenschmidt, Sam Altman,616
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.617
arXiv preprint arXiv:2303.08774.618

Miltiadis Allamanis, Henry Jackson-Flux, and Marc619
Brockschmidt. 2021. Self-supervised bug detection620
and repair. Advances in Neural Information Process-621
ing Systems, 34:27865–27876.622

Islem Bouzenia, Premkumar Devanbu, and Michael623
Pradel. 2024. Repairagent: An autonomous, llm-624
based agent for program repair. arXiv preprint625
arXiv:2403.17134.626

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 627
Denny Zhou. 2023. Teaching large language models 628
to self-debug. arXiv preprint arXiv:2304.05128. 629

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 630
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 631
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the 632
large language model meets programming–the rise of 633
code intelligence. arXiv preprint arXiv:2401.14196. 634

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Kon- 635
ishi, Gyuhak Kim, and Bing Liu. 2023. Contin- 636
ual pre-training of language models. arXiv preprint 637
arXiv:2302.03241. 638

Ilya Loshchilov and Frank Hutter. 2017. Decou- 639
pled weight decay regularization. arXiv preprint 640
arXiv:1711.05101. 641

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi- 642
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, 643
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder: 644
Empowering code large language models with evol- 645
instruct. arXiv preprint arXiv:2306.08568. 646

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, 647
and Yuxiong He. 2020. Zero: Memory optimizations 648
toward training trillion parameter models. In SC20: 649
International Conference for High Performance Com- 650
puting, Networking, Storage and Analysis, pages 1– 651
16. IEEE. 652

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 653
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 654
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 655
Code llama: Open foundation models for code. arXiv 656
preprint arXiv:2308.12950. 657

Michihiro Yasunaga and Percy Liang. 2021. Break-it- 658
fix-it: Unsupervised learning for program repair. In 659
International conference on machine learning, pages 660
11941–11952. PMLR. 661

9



A Appendix662

A.1 Bug SQL generation prompt of oriented generation method663

Prompt

Based on the SCHEMAS and TARGET SQL, help to generate the error sql which are related to
SCHEMAS and similar to TARGET SQL. The generated error sql should contain error related to
ERROR INFO. You should obey the following RULES.
RULES

1. If the SCHEMAS are empty, it means the TARGET SPARK SQL is not related to any
schemas.

2. ERROR INFO should not be appeared in explanation.

3. Except for error part of code, other parts of code should be same between correct sql and
error sql.

4. Comments and indents in generated error sql and correct sql should be the same.

5. If it is hard to generate error sql which is similar to the TARGET SQL related to ERROR
INFO, please return no in suitable field, otherwise it should be yes.

Below is a brief example which you can refer to (if the slots of example is empty please ignore
Example section):
[EXAMPLE]
target sql:
TARGET_SQL_EXAMPLE_PLACEHOLDER
error info:
ERROR_INFO_EXAMPLE_PLACEHOLDER
error sql:
ERROR_SQL_EXAMPLE_PLACEHOLDER
Now give you the tables schema, corresponding target SQL and error type information as below.
Please write a error SQL that match the error type information.
[SCHEMAS]
SCHEMAS_PLACEHOLDER
[TARGET SPARK SQL]
TARGET_SPARK_SQL_PLACEHOLDER
[ERROR INFO]
ERROR_INFO_PLACEHOLDER
RESPONSE REQUIREMENT
Return json str which can be parsed by json.loads() of python3 as following:
{"error sql": "", "correct sql": "", "reason": "", "suitable": ""}

664

A.2 Figures665

Figure 9 illustrates the distribution of the number of diff code lines in our collected training data. It can666

be observed that over 50% of the bug SQL code require only a single line modification to be transformed667

into correct SQL code.668

Figure 10 clearly demonstrates the differences in loss reduction when performing continued pre-train on669

in-domain SQL code corpus, comparing full-parameter training and training with frozen embedding layer670

parameters. Despite the embedding layer parameters constituting less than 2% of the total parameters in671

DeepSeek-Coder6.7b, the loss reduction during continue pre-train with frozen embedding layer parameters672

is highly unstable. Moreover, the final converged loss value shows a significant disparity compared to673

full-parameter continue pre-train.674

10



Figure 9: Distribution of diff lines proportion in SQL code

Figure 10: Training Loss Curve for Two Continue Pre-train Methods

11


	Introduction
	Related Work
	Progressive Dataset Construction
	Diverse Collecting
	Oriented Generation

	Dynamic Mask Supervised Fine-tuning
	Experiments and Results
	PDC and SFT Experiments
	Continue Pre-train

	Conclusion
	Appendix
	Bug SQL generation prompt of oriented generation method
	Figures


