A Road for LLM SQL Bug-Fixing Enhancing

Anonymous ACL submission

Abstract

Code Large Language Models (Code LLMs),
such as Code llama and DeepSeek-Coder, have
demonstrated exceptional performance in the
code generation tasks. However, most exist-
ing models focus on the abilities of generat-
ing correct code, but weak in bug code re-
pair. In this paper, we introduce a suit of meth-
ods which enhance LLM’s bug-fixing abilities
on SQL code, which are mainly consisted of
two parts: A Progressive Dataset Construction
(PDC) from scratch and Dynamic Mask Super-
vised Fine-tuning (DM-SFT). PDC proposes
two data expansion methods from the perspec-
tives of breadth first and depth first respectively.
DM-SFT introduces an efficient bug-fixing su-
pervised learning approach, which effectively
reduce the total training steps and mitigate the
"mental disorientation" in SQL code bug-fixing
training. In our evaluation, the code LLM mod-
els trained on these two methods have exceeds
all current best performing model which size is
much larger.

1 Introduction

Recently, large language models (LLMs) trained
on diverse Internet scale datasets and code reposito-
ries have achieved remarkable success. Meanwhile,
Large Language Models for Code (Code LLMs)
have rapidly emerged as powerful assistants for
writing code. However, most of code LLMs are
focus on the capabilities of "writing" code. Such
as text2code (Given a natural language text, then
model write the expected code), code completion.
Code bug-fixing receives less attention especially
compared with the above. Moreover, we discov-
ered those open source pretrained code LLMs, like
DeepSeek-Coder (Guo et al., 2024), WizardCoder
(Luo et al., 2023) and Code llama (Roziere et al.,
2023), are very limited in bug-fixing capability.

In this paper, we especially focus on SQL code
bug-fixing task. Due to the complex nested query
structure, SQL code bugs are more difficult to solve

compared with other programing languages. Fur-
thermore, SQL code is less dependent on third-
party packages, which mitigates the incidence of
unsolvable bugs that arise due to insufficient infor-
mation from third-party toolkits. We formulate the
SQL code bug-fixing task as Equation 1.

SQLcorrect = f(Schema, SQLbuga H) (1)

Where the f represents your bug-fixing model.
Schema means the related tables schemas in your
bug SQL code. SQLy,, denote the SQL code which
contains some bugs need to be fixed. R is the return
massage by your SQL execution system when you
run your bug SQL code. SQLcorrect is the bug-
fixing model’s output, which is expected the right
SQL code.

We propose a set of methods to enhance the
bug-fixing capabilities of Large Language Mod-
els (LLMs). This includes a method for mining
and collecting supervised data, termed Progressive
Dataset Construction (PDC), and an efficient train-
ing method based on dynamic masking, known
as Dynamic Mask-SFT (DM-SFT). Additionally,
we discuss an effective approach to reduce hallu-
cination outputs when applying open-source code
LLMs to specific domains—continue pre-train with
domain-specific data. Experiments show that train-
ing with data collected via the PDC method gener-
ally improved the SQL bug-fixing capabilities of
open-source code LLMs by nearly +50%. The Dy-
namic Mask-SFT training method further enhanced
model performance by approximately +10% rel-
ative to the default generative SFT. Continue pre-
train effectively reduced the occurrence of halluci-
natory answers.

2 Related Work

Code bug fixing with deep learning has gained in-
creasing attention as the capabilities of pre-trained

save the SQL code

Code LMM B
bug fixing > :-
% \\ N
N\
call LLM repair
I AN
> — | — T EE— —
L — —
run SQL code, code editing run the SQL code,

but report errors execution successful

Figure 1: The initial training data collection via user
behavior logs mining.

language models continue to improve. However,
the code bug fixing ability of these models often
falls short due to the lack of large-scale annotated
data. Several methods have been proposed to train
a model to generate bugs from correct code, thereby
obtaining annotated data for the transition from bug
code to correct code.

Some recent studies have focused on training
a model to transform correct code into bug code,
thereby generating annotated data for code bug fix-
ing learning. BUGLAB (Allamanis et al., 2021)
propose a self-supervised approach which trains ro-
bust bug detectors by co-training a bug selector that
learns to create hard-to-detect bugs. Break-It-Fix-It
(Yasunaga and Liang, 2021) is a similar approach
that involves the collaborative training of both bug
fixers and bug generators. To the best of our knowl-
edge, these methods have scarcely ventured into
the realm of SQL language, and in our practice, it
has proven challenging to train a model capable of
generating bug SQL with diffusion characteristics
(not only diversity but also close to the distribu-
tion of human bugs). This may be attributed to the
inherent differences between SQL code and most
object-oriented programming languages.

Additionally, some approaches attempt to ad-
dress the code bug repair problem from the perspec-
tive of an agent. A typical example is RepairAgent
(Bouzenia et al., 2024) and SELF-DEBUGGING
(Chen et al., 2023), which treats the LLM as an
agent capable of autonomously planning and exe-
cuting actions to fix bugs by invoking suitable tools.
However, with SQL code, executing a large query
can be time-consuming. Therefore, repeatedly de-
bugging and running the code to resolve bugs is
clearly impractical.

SQL Execution
System

[bug SQL, correct SQL}— —®[bug SQL, correct SQL]

Figure 2: Execution filter for data quality.

3 Progressive Dataset Construction

In this section, we introduce a set of data collection
methods called Progressive Dataset Construction
(PDC). The methods mainly include two parts: di-
verse collecting from online system (breadth first)
and oriented generation of offline mining (depth
first). The diverse collecting through automated
methods ensures the diversity coverage and sus-
tainable scalability of the training datasets, thereby
maintaining a consistent alignment between the
distribution of training data and the behaviors of
online users. The oriented generation method is pri-
marily used for data augmentation in cases where
the model performs poorly in evaluation and online
serving. This approach requires the assistance of
mature code LLM (Large Language Model) and
some SQL corpora recall methods.

3.1 Diverse Collecting

To complete the collection of initial training data,
we designed a set of rules to mine online user
behavior logs. As shown in Figure 1, when
user encounter execution error while running SQL
code, the system will report and log a snap-
shot of the bug code and error message. Subse-
quently, users would typically edit and correct the
code until it successfully runs in the next attempt.
Therefore, we can extract an extensive array of
(bugSQL, correctSQL) pairs which generated by
users based on this behavior.

Additionally, we observed that since the SQL
execution environment integrates certain syntax
checking capabilities, some users, when encounter-
ing syntax errors, tend to modify their code until
the highlighted syntax error prompts disappear and
then save their code, rather than executing it again
for confirmation. Consequently, we also consider
the most recent operation of "save code’ after a code
execution error as a behavioral signal for mining
correct SQL. As illustrated in Figure 1.

After acquiring data samples from online user be-
havior logs, we apply an execution filter as Figure 2.
This process retains (bugSQL,correctSQL)
pairs where the bug SQL triggers an error, and
the correct SQL executes successfully (Red font

tough error types

bug SQL
generation

S B gy B B
corpus recall candidate prompt engineering
SQL code

SQL corpus code LLM

Figure 3: Overview of oriented generation method.

indicates execution failure, green font signifies suc-
cessful execution). Moreover, to ensure data qual-
ity, we also removed samples where the disparity
between the bug SQL code and the correct SQL
code was excessively large.

Lastly, we conduct a manual sampling inspection
of the filtered data. If the [bug SQL, correct SQL]
pairs achieve a pass rate of over 85%, they meet
our quality standards and are deemed suitable for
model training.

Diverse collecting samples for bug SQL repair
directly from online user behavior ensures an excel-
lent coverage of diversity. It aligns with the natural
data distribution in real service scenarios, which
is crucial for model training. Once our SQL code
bug-fixing model is deployed, we pay more atten-
tion on cases where users disregard the model’s
suggested modifications and proceed with manual
edits. This behavior often implies that the model’s
proposed changes did not meet the user’s expecta-
tions. Diverse collection will persist as a crucial
method of sample gathering throughout the contin-
uous iteration process of the model.

3.2 Oriented Generation

The oriented generation method is primarily used
for data augmentation aimed at difficult cases.
These types of cases typically include unique syn-
tax features of internal systems and relatively rare
long-tail error types, among others. This method
comprises two processes: the recall of appropriate
SQL corpora and the generation of bug SQL, which
relies on the code LLM.

The original SQL corpus is derived from a vast
accumulation of correctly executable SQL code,
which is written by historical users in the data
query system. As illustrated in Figure 3, we per-
form oriented data augmentation for certain high-
frequency bug error types and some bug types that
are difficult for the model to resolve. The oriented

generation data augmentation approach primarily
encompasses the following steps:

(1) Identify the bug types that need data aug-
mentation via oriented generation. For in-
stance, during the cold-start phase, we primar-
ily target those long-tail bug types that occur
infrequently. After the model is deployed as a
serving, we mainly focus on those types where
the model’s correction accuracy is not high.

(2) Create an “error feature” for each bug type.
The error feature is primarily related to the
corpus recall algorithm you use. For example,
you can use syntax keywords for recall, such
as using the keyword “group by” to match SQL
code suitable for generating “group by’ errors.

(3) Recall the candidate SQL code for every bug
type. We employ appropriate rule based match-
ing algorithm to pair a rich corpus of SQL code
with each bug type via "error feature". The ac-
curacy of matching varies across different bug
types. We select different matching algorithms
for different bug types based on the certain
circumstances.

(4) Generate a rich set of bug SQL samples for
each bug type. This step requires the assis-
tance of a robust code LLM for the generation
of bug SQL code. In our practice, the quality
of generated bug SQL is highly correlated with
the prompt. We provide a reference prompt for
generating bug SQL in Appendix A.1 used in
our internal code fundamental LLM for bug
SQL generation.

The diverse collecting and oriented generation
methods respectively accomplish the supervised
dataset construction for the SQL bug fixing task
from the perspectives of breadth-first and depth-
first approaches. As you can see, these two data
construction methods remain effective even after
the model is deployed as an SQL bug fixing tool.
The diverse collecting method, based on user be-
havior, can collect unsatisfactory samples which
modified by the users in a crowdsourcing-like man-
ner. Meanwhile, oriented generation can specifi-
cally enhance the types of bugs where the model’s
performance is subpar. The collected data can be
utilized to improve the model’s performance. The
enhancement of model performance, in turn, affects
the distribution of the data collecting. Therefore,
this is a progressive dataset construction method.

4 Dynamic Mask Supervised Fine-tuning

In this section, we present a detailed introduction
to an efficient training method for LLM SQL code
bug fixing, which we refer to as dynamic mask su-
pervised fine-tuning (DM-SFT). The Figure 4 pro-
vides a detailed comparison of dynamic mask SFT
with the default generative SFT in terms of training
methodology and loss calculation. As outlined in
the introduction section, in our task formulation,
the model input consists of a bugfix prompt com-
posed of three pieces of information: [tables DDL,
bug SQL, report error]. The model output is the
complete, corrected SQL code. In most cases, most
of the code lines in the correct SQL and the bug
SQL are identical, with only a few lines typically
requiring modification.

In the training data we collected, the distribu-
tion of the number of code lines that need to be
modified in the correct SQL compared to the corre-
sponding bug SQL (we name it diff lines) is shown
in Appendix A.2 Figure 9 . As shown in the fig-
ure, cases where the number of diff lines is less
than 5 account for more than 92% of the instances.
Therefore, most of the correct code that the model
needs to predict as output has already appeared in
the model input prompt (bug SQL). In the default
generative supervised fine-tuning training process,
all tokens in the output answer are equally impor-
tant in the calculation of the final loss. This can
lead to a series of issues such as slow convergence
and unstable training results. We will discuss these
problems in detail in experimental section.

To address these issues, we propose a code bug
repair training method called dynamic mask SFT.
During the model training process, we divide the
correct SQL code that the model is expected to
predict post bug-fixing into two categories in line-
by-line basis:

(i) Consistent lines representing the lines of
code that remain unchanged when compared
to the original bug-infested code.

(ii) Diff lines representing the lines of code that
require modifications when compared to the
original bug-infested code.

Given a bug SQL code, related tables schema,
report error and corresponding correct SQL code,
WeE use (lo,ll,lg,'“ ,do,"~ ,dm,---ln),m <n
denoting the correct code lines. The [;,i € [0, n]
represents the consistent lines and d;, j € [0, m]

Code LLM

Prompt (tables s:

4

Figure 4: A comparison between default generative SFT
(upper part) and dynamic mask SFT (lower part) of code
bug fixing task.

represents the diff lines. We use u to denote to-
kens of consistent lines, and v to denote tokens of
diff lines. Equation 2 shows the loss function of
dynamic mask SFT.

7u0)

Li=-— Zlog P(ugy1 | wge, ug—1, - - - 2

* a(l(ugt1))

L_Joop
a(lz)—{l . 3)

Where a(l;) is the mask weight of line /; as Equa-
tion 3, and mask weight of all tokens in line [;
are the same. The p is random mask ratio factor,
used to control the proportion of masked code lines.
I(ug41) represents the line number of code where
token uy 1 is located. In Equation 2, L; represents
the language model loss of the consistent lines (af-
ter dynamic masking). In Equation 4, Ly represents
the language model loss of the diff lines.

Lo =— ZlogP(ka | Uk, Vk—1,---,v0) (4)

L=1i+ Ly (5)

Bugfix Acc(%)

—o— deepseek

50.0 50.0 50.0 50.0

0.0 02 04 06 08 10
mask ratio p

Figure 5: Bug fixing evaluation results with different
value of random mask ratio factor p.

The final total loss L, as shown in Equation 5, is
composed of L and Lo.

Figure 4 clearly illustrates the similarities and
differences between the dynamic mask SFT process
and the default bug fixing SFT process. The correct
SQL code that the model needs to predict, and
output is set in grey. In the entire model output
label, the parts that do not need to calculate loss
are highlighted in green (input prompt and masked
code lines randomly selected with probability p).

5 Experiments and Results

In this section, we will provide a detailed overview
of our experiments setup and the related results.
This section is divided into two main parts: first, we
will discuss the ablation experiments related to the
effectiveness of PDC and DM-SFT; subsequently,
we will briefly introduce the issue of hallucinatory
modifications found in external open-source mod-
els during the model evaluation process, as well as
the mitigation for hallucination phenomena through
Continue Pre-train (CPT) (Ke et al., 2023) using
internal data. In addition, we made some analyses
for the experiment results and processes, providing
several analytical perspectives and conclusions.

5.1 PDC and SFT Experiments

We demonstrate the efficacy of the suit of meth-
ods (PDC & DM-SFT) through a series of exper-
iments. We collected 3k diverse samples through
the diverse collecting method and 300+ oriented
enhancement samples based on code LLM through
the oriented generation method. Based on these
3.3k data, we conducted a series of ablation ex-
periments to verify the effectiveness of DM-SFT

.
| |
WW‘ APHT TR 3L FORTTTOP MR | PPN

30 400
st

Figure 6: Loss reduction curves and best bug fixing
performance steps across typical random mask ratio
factors p during model training.

and the impact of various parameter settings on the
model training results.

We use DeepSeek-Coder-instruct (6.7b) as the
fundamental model and carry out the training exper-
iments on a cluster of 32 x NVIDIA A800 80GB
GPUs using the DeepSpeed (Rajbhandari et al.,
2020) framework stage 3. In terms of hyperpa-
rameters setting, we used batch size = 32, learning
rate = 1.2e-5, and AdamW optimizer (Loshchilov
and Hutter, 2017) with adam_betal = 0.9 and
adam_beta2 = 0.95 (more detailed experimental
parameter configurations, please refer to the infor-
mation of code release in the final parts of this
section).

We have an evaluation dataset of size 268, the
data of which comes from bug SQL code genuinely
submitted by online users. The ground truth in
this dataset is precisely annotated by experienced
SQL engineers. During the model development
stage, we used machine automatic evaluation (a
method based on AST semantic comparison) re-
sults to select the approximate best training steps
of the model. Since there may be many different
ways to fix a bug, the final model’s bug fixing ac-
curacy was determined through manual evaluation
of experienced SQL engineers.

In the evaluation, we first assessed the bug-fixing
capabilities of the currently best open code LLMs,
as well as our powerful internal code LLM that
have not yet been opened, without any bug-fixing
SFT enhancement. This serves as a baseline for
comparing and evaluating the effectiveness of our
PDC data collection methods. On the other hand,
through ablation experiments, we compared the im-

Method Model Size Acc
gemma 7B 20.8%
StarCoderBase 7B 27.9%
StarCoder2 7B 28.3%

Pretrain CodeQwen1.5-Chat 7B 29.8%
DeepSeek-Coder-instruct 6.7B 30.2%
DeepSeek-Coder-instruct 33B 30.9%
WizardCoder-V1.1 33B 30.9%
internal code LLM * o 41.4%

SFT gemma 7B 30.9%
StarCoderBase 7B 35.4%
CodeQwen1.5-Chat 7B 44.4%
DeepSeek-Coder-instruct 6.7B 45.8%
CodeQwen1.5-Chat 7B 48.1%

DM-SFT DeepSeek-Coder-instruct 6.7B 50.0%

Table 1: Accuracy of different models and training methods.

pact of dynamic mask SFT and default generative
SFT on training, as well as the effect of the value
of random mask ratio factor p on model training.

We conducted independent tests on various mod-
els, and all output results from these models were
subjected to blind manual evaluation (evaluators
were unaware of which model each answer came
from, and each bug-fixing sample was cross re-
viewed by three individuals). The final fixing accu-
racy of each model on the 268-sample evaluation
dataset are shown in Table 1.

It is evident that among the models with around
the 7B parameters, DeepSeek-Coder-6.7B-instruct
achieves the highest fixing accuracy. Additionally,
we observe that the larger 33B model does not
exhibit significant improvement compared to the
7B model. Using DeepSeek-Coder-6.7B-instruct as
the foundational model, we conducted both default
generative dynamic mask SFT training on the 3.3k
training dataset collected through the PDC method.

As observed in Table 1, the 3.3k data samples
collected through the PDC method (Diverse col-
lecting & Oriented generation) significantly en-
hanced the accuracy of the DeepSeek-Coder model
in the bug-fixing task. The accuracy improved from
30.2% in the original model to 45.8%, represent-
ing a relative increase of 51.6% in the capability
to fix bugs in SQL code. We also conducted SFT
experiments on other models with parameter sizes
around 7B, and the findings were consistent.

Furthermore, we employed dynamic mask
SFT to train models on DeepSeek-Coder-6.7B-
instruct and CodeQwenl.5-7B-Chat, which are

among the best-performing models with param-
eter sizes around 7B. Results from manual eval-
uations indicate that dynamic mask SFT can
enhance the model’s bug fixing capability by
approximately 10% compared to the default
generative SFT training (DeepSeek-Coder-6.7B-
instruct: 45.8%—50.0%, CodeQwen1.5-7B-Chat:
44.4%—48.1%).

Taking the best-performing DeepSeek-Coder-
6.7B-instruct model as the foundation model, we
trained the model under different values of p and
evaluated its optimal bug-fixing capability, with the
results presented in Figure 5. After that, we com-
pared the impact of different random mask ratio
factors p on per-token loss reduction process, as
illustrated in Figure 6. From Figure 5 and Figure 6,
we can draw the following three conclusions:

(1) In the early stages of training (less than 400
steps), the higher value of p, come up with
the greater the per-token loss. In the later
stages (after 500 steps), the per-token loss
converges regardless of the value of p. This
phenomenon is intuitive as the mask ratio
factor effectively amplifies the weight of the
diff code tokens loss with pre-trained LLM,
the loss of diff code is greater than the loss
of consistent code that has appeared in the
prompt. As the model gradually converges,
the difference in per-token loss between the
two diminishes.

(i) Generally, the higher value of p, the fewer
training steps are required to reach the check-

limit

Figure 7: Hallucination modification by DeepSeek-
Coder. Left: Output from internal code LLM (limit
value consistent with original code). Right: Output
from DeepSeek-Coder-Bugfix (limit value erroneously
increased by an additional O character).

point with the best bug-fixing capability. This
is one of the most valuable features of the
dynamic mask SFT method, in addition to
its ability to enhance the model’s bug-fixing
capabilities. This implies that we can achieve
better model performance with lower compu-
tational costs and reduced energy consump-
tion.

(iii)) From Figure 5, we can clearly see that when
the value of p is between [0.4,0.7], all the
trained models achieve optimal performance.
When the value of p is 1 (completely ignoring
the loss of identical code lines), the perfor-
mance of the model is worse than those using
the default generative SFT (where p is 0).

The manual evaluation results of the ablation
experiments shown in Table 1 have adequately
demonstrated the effectiveness and applicability
of the Progressive Dataset Construction (PDC)
data collection method and the Dynamic Mask
SFT (DM-SFT) training approach in enhancing
the LLM’s capability for SQL code bug fixing. It
is noteworthy that by appropriately setting the pa-
rameter p, the dynamic mask SFT method can en-
hance the model’s bug fixing capability while sig-
nificantly reducing the training time. This allows
the model to achieve optimal performance at earlier
training steps. Such a feature is particularly appeal-
ing to the model developers in the era of LLMs,
where computational resources are highly pricey.

5.2 Continue Pre-train

Throughout the model development phase, we com-
pared the bug fixing capabilities of DeepSeek-
Coder-6.7B-instruct and our internal code LLM
on a case-by-case basis after fine-tuning them on
the same dataset. We found that compared to the
internal code LLM, DeepSeek-Coder is more prone

no CPT vs. CPT
70

=== no CPT
CPT

60

50

51.8
50.0
47.7
45.8 46.
44.4
20
10
0

ds6.7+SFT ds6.7+DM-SFT cq7+SFT

48.1
2

Accuracy(%)
IS
S

w
S

cq7+DM-SFT

Figure 8: Performance differences of models with and
without continued Pre-train on domain-specific corpus
(pre-train before SFT/DM-SFT), where ’ds6.7’ repre-
sents DeepSeek-Coder-6.7B-instruct and *cq7’ denotes
CodeQwen1.5-7B-Chat.

to producing hallucination outputs when generat-
ing correct SQL code. Figure 7 presents a typical
example, where the left side shows the correct code
snippet predicted by the internal code LLM (have
been fine-tuned), and the right side shows the cor-
rect code snippet predicted by the DeepSeek-Coder-
Bugfix (have been fine-tuned) model. The con-
stant value 90000000 of the original code was erro-
neously increased by an additional 0 in DeepSeek-
Coder-Bugfix model’s prediction.

Through the analysis, we discovered that the
differences in performance between the two foun-
dation models which have been fine-tuned with the
same supervised data may stem from their famil-
iarity for the domain-specific SQL code style and
distribution (the internal model’s pre-train corpus
includes domain-specific code data). To validate
this hypothesis, we have mined, cleaned, and dedu-
plicated a dataset from internal scenarios to obtain
a SQL code corpus with size of 53k. To ensure
the rigor of the experiment, we carefully inspected
these entries to guarantee that there would be no
overlap with the 268 samples in evaluation dataset.

We conduct continue pre-train (CPT) (Ke et al.,
2023) on the 53k domain-specific corpus which
we have cleaned and use DeepSeek-Coder-6.7B-
instruct and CodeQwen1.5-7B-Chat as foundation
models. We then compared the capabilities of the
models before and after Continued Pre-training, as
illustrated in Figure 8. We made some adjustments
to the learning rate, setting it to 1.5e — 5 for con-

tinue pre-train and later adjusting it to 1.0e — 5 for
subsequent SFT/DM-SFT. Through comparison, it
is evident that after continue pre-train with domain-
specific data, the four combinations of models and
training methods achieved a bug-fixing accuracy
improvement range of 1.8% ~ 3.4%. Addition-
ally, the number of bad cases which involved with
hallucination modification has decreased across all
models.

There’s worth mentioning that when using dif-
ferent models for Continue Pre-train, we adhered
to the same input formats as their original pre-train.
Additionally, we compared two training methods:
training all parameters versus training only the pa-
rameters outside of the embedding layer during
Continue Pre-train. Although the parameters of the
embedding layer constitute only a small portion
of the total parameters in most LLMs (for exam-
ple, in DeepSeek-Coder 6.7b, the embedding layer
accounts for approximately 1.96% of whole param-
eters), training with the embedding layer parame-
ters frozen has proven challenging to achieve the
expected results in our practice. In Appendix A.2
Figure 10, we have documented the training loss
decline curves for both full parameter Continue
Pre-train and Continue Pre-train with only non-
embedding layer parameters updated. It is evident
that training with only non-embedding layer pa-
rameters updated struggles to converge, whereas
full parameter update in Continue Pre-train demon-
strates good convergence.

Finally, all source code related to our experi-
ments will be made publicly available in the cor-
responding GitHub repository'. All training and
evaluation data used will be released later after
being anonymized by data engineers.

6 Conclusion

In this paper, we innovatively propose a set of meth-
ods to enhance the LLLM’s capability for SQL bug
fixing, encompassing both data construction and
model training aspects. In terms of data construc-
tion, we propose two approaches: a breadth-first
diverse collecting method and a depth-first oriented
generation method. The diverse collecting method
employs a rigorous strategy to mine from online
users’ behavior, obtaining bug fixing annotated
data that aligns with real-world scenario distribu-
tions. The oriented generation method is primarily
used for targeted data augmentation to address spe-

"https://github.com/*/*

cific weaknesses in the model’s capabilities. Both
methods require minimal manual labor, making
them semi-automated and sustainable approaches
for data construction and iteration. Therefore, we
have named this suit of data construction methods
Progressive Dataset Construction (PDC). In terms
of training methodology, we propose the dynamic
mask SFT training method, which is generally ap-
plicable to generative code bug fixing tasks. Com-
pared to the default generative SFT method, this
approach can enhance the model’s bug fixing ca-
pability by nearly 10% under the same training
data. Additionally, it significantly reduces the train-
ing time required to achieve optimal model perfor-
mance.

Limitations

Only generate the modification code lines We at-
tempted a highly efficient and intuitively appealing
approach that involves generating only the correct
code for the diff sections. Specifically, our ap-
proach required the model to output the lines of
code that needed modification and the corrected
code after changes. This definition could handle
all code rewriting operations, including additions
(where a single line of original code is replaced
by multiple lines), deletions (where multiple lines
of original code are replaced by an empty string),
and modifications (where multiple lines of original
code are replaced by multiple lines of new code).
Unfortunately, this method resulted in impaired
model performance due to the lack of context in
the outputs, making it challenging to achieve the ac-
curacy of generating complete code, both in prompt
engineering experiments on GPT-4 (Achiam et al.,
2023) and in SFT training on open-source code
LLMs.

Token level dynamic mask SFT A pertinent ques-
tion arises as to why consistent lines cannot use
token-level dynamic masking and must instead be
masked by code lines. Indeed, in our earliest prac-
tices, we masked at the token level. However, per-
plexingly, models masked at the token level strug-
gled to converge, and during evaluations, a portion
of the samples consistently failed to generate com-
plete and usable code. This remains a puzzle we
have not fully resolved. We hypothesize that for
programming languages, a line may correspond
to a more complete semantic module, and token-
level masking disrupts this contextual integrity. Re-
search on this aspect will continue in subsequent
studies.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Miltiadis Allamanis, Henry Jackson-Flux, and Marc
Brockschmidt. 2021. Self-supervised bug detection
and repair. Advances in Neural Information Process-
ing Systems, 34:27865-27876.

Islem Bouzenia, Premkumar Devanbu, and Michael
Pradel. 2024. Repairagent: An autonomous, llm-
based agent for program repair. arXiv preprint
arXiv:2403.17134.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming—the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Kon-
ishi, Gyuhak Kim, and Bing Liu. 2023. Contin-
ual pre-training of language models. arXiv preprint
arXiv:2302.03241.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Michihiro Yasunaga and Percy Liang. 2021. Break-it-
fix-it: Unsupervised learning for program repair. In

International conference on machine learning, pages
11941-11952. PMLR.

A Appendix

A.1 Bug SQL generation prompt of oriented generation method

Based on the SCHEMAS and TARGET SQL, help to generate the error sql which are related to
SCHEMAS and similar to TARGET SQL. The generated error sql should contain error related to
ERROR INFO. You should obey the following RULES.

RULES

1. If the SCHEMAS are empty, it means the TARGET SPARK SQL is not related to any
schemas.

2. ERROR INFO should not be appeared in explanation.

3. Except for error part of code, other parts of code should be same between correct sql and
error sql.

4. Comments and indents in generated error sql and correct sql should be the same.

5. If it is hard to generate error sql which is similar to the TARGET SQL related to ERROR
INFO, please return no in suitable field, otherwise it should be yes.

Below is a brief example which you can refer to (if the slots of example is empty please ignore
Example section):

[EXAMPLE]

target sql:

TARGET_SQL_EXAMPLE_PLACEHOLDER

error info:

ERROR_INFO_EXAMPLE _PLACEHOLDER

error sql:

ERROR_SQL_EXAMPLE PLACEHOLDER

Now give you the tables schema, corresponding target SQL and error type information as below.
Please write a error SQL that match the error type information.

[SCHEMAS]

SCHEMAS_PLACEHOLDER

[TARGET SPARK SQL]

TARGET_SPARK_SQL_PLACEHOLDER

[ERROR INFO]

ERROR_INFO_PLACEHOLDER

RESPONSE REQUIREMENT

Return json str which can be parsed by json.loads() of python3 as following:

{"error sql”: "", "correct sql”: , "reason”: "" '"suitable": ""}

nn

A.2 Figures

Figure 9 illustrates the distribution of the number of diff code lines in our collected training data. It can
be observed that over 50% of the bug SQL code require only a single line modification to be transformed
into correct SQL code.

Figure 10 clearly demonstrates the differences in loss reduction when performing continued pre-train on
in-domain SQL code corpus, comparing full-parameter training and training with frozen embedding layer
parameters. Despite the embedding layer parameters constituting less than 2% of the total parameters in
DeepSeek-Coder6.7b, the loss reduction during continue pre-train with frozen embedding layer parameters
is highly unstable. Moreover, the final converged loss value shows a significant disparity compared to
full-parameter continue pre-train.

10

Loss

Distribution of Diff Lines in Dataset

Proportion (%)

91011121314 1516 1920 22 24 2526 27 2930 3233 35 40 43 44

Number of Diff Lines

Figure 9: Distribution of diff lines proportion in SQL code

Continue Pre-train Loss Curve

1.6 A

1.4 4

1.2 4

1.0 4

0.8 1

0.6

0.4 1

—— full paras
—— emb freeze

0.0

Figure 10: Training Loss Curve for Two Continue Pre-train Methods

T
0.5 1.0 1.5 2.0
Epoch

11

2.5

3.0

	Introduction
	Related Work
	Progressive Dataset Construction
	Diverse Collecting
	Oriented Generation

	Dynamic Mask Supervised Fine-tuning
	Experiments and Results
	PDC and SFT Experiments
	Continue Pre-train

	Conclusion
	Appendix
	Bug SQL generation prompt of oriented generation method
	Figures

