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Abstract

Large Language Models (LLMs) employ-001
ing Chain-of-Thought (CoT) prompting have002
broadened the scope for improving multi-step003
reasoning capabilities. We generally divide004
multi-step reasoning into two phases: path005
generation to generate the reasoning path(s);006
and answer calibration post-processing the007
reasoning path(s) to obtain a final answer.008
However, the existing literature lacks system-009
atic analysis on different answer calibration010
approaches. In this paper, we summarize the011
taxonomy of recent answer calibration tech-012
niques and break them down into step-level013
and path-level strategies. We then conduct a014
thorough evaluation on these strategies from a015
unified view, systematically scrutinizing step-016
level and path-level answer calibration across017
multiple paths. Experimental results reveal018
that integrating the dominance of both strate-019
gies tends to derive optimal outcomes. Our020
study holds the potential to illuminate key021
insights for optimizing multi-step reasoning022
with answer calibration.023

1 Introduction024

Chain-of-Thought (CoT) prompting (Wei et al.,025

2022) has significantly improved multi-step reason-026

ing capabilities of Large Language Models (LLMs)027

(Zhao et al., 2023b; Qiao et al., 2023). As seen028

from Figure 1, the process of multi-step reasoning029

generally contains two primary modules: reasoning030

path generation which generates one or multiple031

reasoning paths (Fu et al., 2023; Yao et al., 2023b);032

and answer calibration which post-processes the033

reasoning path(s) to calibrate the initial output034

(Wang et al., 2023i; Zhao et al., 2023a).035

In practice, answer calibration is pluggable and036

can be integrated into path generation models. The037

answer calibration framework can be divided into038

step and path levels, applicable to single or mul-039

tiple paths, as illustrated in Figure 1. For step-040

level answer calibration on a single path, the model041
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Figure 1: Illustration of answer calibration for multi-
step reasoning with LLM. The methods of step/path-
level answer calibration for multiple paths can employ
answer calibration on a single path first.

rectifies errors in intermediate-step answers of a 042

generated path (Zhao et al., 2023a). For step-level 043

answer calibration on multiple paths, the model 044

verifies each intermediate-step answer (Weng et al., 045

2023) or aggregates the correct step answers (Cao, 046

2023) from multiple paths. For path-level answer 047

calibration on a single path, the model revises the 048

entire rationale to obtain the correct answer (Baek 049

et al., 2023). For path-level answer calibration on 050

multiple paths, the model produces a result indi- 051

cating the consensus of all candidate paths (Wang 052

et al., 2023i; Yoran et al., 2023). As answer calibra- 053

tion can identify and rectify errors in the reasoning 054

path, or even holistically utilize multiple candidate 055

paths, it plays a vital role in multi-step reasoning to 056

ensure a precise, consistent and reliable reasoning 057

process (Pan et al., 2023). 058

However, we argue that the crucial factors driv- 059

ing the success of answer calibration strategies re- 060

main obscure, with a comprehensive systematic 061
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analysis still underexplored. To bridge the gap,062

our study investigates: (1) The specific conditions063

where answer calibration notably boosts multi-064

step reasoning performance; (2) The strengths and065

weaknesses of step-level versus path-level answer066

calibration, and the pathway to attaining optimal067

performance; (3) The robustness and generalizabil-068

ity of answer calibration strategies.069

To address these questions, we dissect cutting-070

edge answer calibration techniques for multi-step071

reasoning with LLMs, and introduce a unified072

framework that elucidates step-level and path-level073

strategies. We define two thresholds to respectively074

signify the step-level and path-level dominance in075

the unified framework. We then undertake a com-076

prehensive evaluation of answer calibration strate-077

gies, w.r.t. accuracy, faithfulness, informativeness,078

consistency, and perplexity over steps or paths.079

Through rigorous experiments on five representa-080

tive multi-step reasoning tasks involving arithmetic081

(Ahn et al., 2024) and commonsense, we find that:082

(1) employing answer calibration can enhance accu-083

racy, with the improvement being more noticeable084

in zero-shot scenarios (§4.2) and less significant on085

stronger backbone models (§4.4); (2) The optimal086

performance of the unified answer calibration strat-087

egy typically achieved by synthesizing step-level088

and path level dominance (§4.3); (3) path-level an-089

swer calibration is more beneficial in improving ac-090

curacy, and step-level answer calibration is more ef-091

fective for mitigating low-quality prompting (§4.5);092

(4) answer calibration can improve consistency on093

arithmetic tasks but weakens faithfulness, infor-094

mativeness and perplexity on both arithmetic and095

commonsense tasks (§4.6).096

2 Related Work097

Reasoning Path Generation. Previous methods098

for reasoning path generation mostly focus on two099

aspects to improve reasoning process, including100

refining input query or prompts (input refinement)101

and polishing the reasoning path (rationale polish).102

As for input refinement, Zero-shot CoT (Kojima103

et al., 2022) and Few-shot CoT (Wei et al., 2022)104

are classic methods to elicit multi-step reasoning105

ability of LLMs, with “Let’s think step by step”106

prompts. To decouple planning and execution,107

Wang et al. (2023g); Sun et al. (2023) devise a108

plan by prompting and divide and conquer multi-109

step tasks. To enrich prompts, Wang et al. (2023b)110

leverage structure triples as evidence, Kong et al.111

(2023) design role-play prompting, and Xu et al. 112

(2023) employ re-reading instructions. Besides, 113

LLM performance can also be affected by prompt 114

complexity (Fu et al., 2023) and formats, such as 115

program (Gao et al., 2023; Chen et al., 2023b; Sel 116

et al., 2023; Jie et al., 2023; Lei and Deng, 2023; 117

Bi et al., 2024) and table (Jin and Lu, 2023). Fur- 118

ther, Wang et al. (2023c); Shi et al. (2023); Liang 119

et al. (2023) propose to adaptively utilize prompts. 120

Apart from refining prompts, Xi et al. (2023b) pro- 121

gressively refine the given questions, Wang et al. 122

(2023j) convert semantically-wrapped questions to 123

meta-questions, and Jie and Lu (2023) augment 124

training data with program annotations. 125

In terms of rationale polish, recent work mainly 126

focus on step-aware training (Wang et al., 2023k) 127

and path-level optimization. For step-aware train- 128

ing, Zhang et al. (2023) introduce step-by-step plan- 129

ning and Lee and Kim (2023) recursively tackle 130

intermediate steps; Jiang et al. (2023a) reconstruct 131

the reasoning rationale within prompts by residual 132

connections; Paul et al. (2023) iteratively provide 133

feedback on step answers; Lanchantin et al. (2023) 134

leverage self-notes as intermediate steps and work- 135

ing memory; Li et al. (2023b); Ling et al. (2023); 136

Lightman et al. (2023) propose to verify on inter- 137

mediate step answers; Li et al. (2023a); Wang et al. 138

(2023e) process step-aware verification by knowl- 139

edge base retrieval. For path-level optimization, Li 140

and Qiu (2023) enable LLMs to self-improve via 141

pre-thinking and recalling relevant reasoning paths 142

as memory; Wang et al. (2023d); Yue et al. (2023) 143

leverage hybrid rationales in formats of natural 144

language and program. Some work also generate 145

deliberate rationales beyond CoT, such as Tree-of- 146

Thought (Yao et al., 2023b; Long, 2023), Graph-of- 147

Thought (Yao et al., 2023e; Besta et al., 2023) and 148

Hypergraph-of-Thought (HoT) (Yao et al., 2023a). 149

Answer Calibration. Given generated reasoning 150

path(s), answer calibration methods post-process 151

the path(s) to calibrate the answer, involving step- 152

or path-level calibration on one or multiple path(s). 153

Step-level answer calibration. Xue et al. (2023); 154

Cao (2023) propose to rectify factual inconsistency 155

and reasoning logic between intermediate steps. 156

Miao et al. (2023); Wu et al. (2024) check the 157

correctness of each intermediate step. Zhao et al. 158

(2023a) post-edit multi-step reasoning paths with 159

external knowledge. Yao et al. (2023c); Hao et al. 160

(2023); Shinn et al. (2023); Yao et al. (2023d); 161

Chen et al. (2023a); Aksitov et al. (2023) draw up 162
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a plan and act step by step with LLMs as agents163

(Wang et al., 2023f; Xi et al., 2023a), encourag-164

ing interaction with the environment to provide165

feedback. Weng et al. (2023); Jiang et al. (2023b)166

unleash the self-verification ability of LLMs, by167

forward reasoning and backward verification on in-168

termediate step answers. Zhou et al. (2023) propose169

code-based self-verification on reasoning steps.170

Path-level answer calibration. Zelikman et al.171

(2022) present a self-taught reasoner to itera-172

tively generate rationales. Zheng et al. (2023)173

progressively use the generated answers as hints174

to make double-check. Mountantonakis and Tz-175

itzikas (2023) enrich generated reasoning paths176

with hundreds of RDF KGs for fact checking. Baek177

et al. (2023) iteratively rectify errors in knowledge178

retrieval and answer generation for knowledge-179

augmented LMs. To cultivate the reasoning abil-180

ity of smaller LMs, Ho et al. (2023); Wang et al.181

(2023h,l) propose to fine-tune CoT for knowl-182

edge distillation. Huang et al. (2022) demonstrate183

that LLMs can self-improve with high-confidence184

rationale-augmented answers. Yoran et al. (2023)185

prompt LLMs to meta-reason over multiple paths.186

Liu et al. (2023); Madaan et al. (2023) leverage187

feedback to improve model initial outputs. Wan188

et al. (2023) adaptively select in-context demonstra-189

tions from previous outputs to re-generate answers.190

Wang et al. (2023i) leverage self-consistency de-191

coding strategy to majority vote on multiple path192

answers. Aggarwal and Yang (2023) propose193

adaptive-consistency to reduce sample budget.194

3 Comprehensive Analysis of Answer195

Calibration196

3.1 Formulation of Answer Calibration197

Given a question denoted as Q and its associated198

prompt P , we leverage the LLM to generate the re-199

sultR. R can either encompass a single reasoning200

path P with an initial answer A or multiple reason-201

ing paths P = {Pi}i∈[1,N ] with a corresponding202

answer set A = {Ai}i∈[1,N ]. The total number of203

paths in P is N . In this paper, we analyze under the204

assumption that each reasoning path comprises a205

maximum ofM steps. Paths exceedingM steps are206

truncated, and those with fewer steps are padded.207

The intermediate step answers for each reasoning208

path P(i) are represented as {aj}(i)j∈[1,M ].209

Step-Level Answer Calibration. Given a single210

reasoning path P with an initial final path answer211

A and intermediate step answers {aj}j∈[1,M ], the 212

objective of step-level answer calibration is to rec- 213

tify any erroneous aj , so that deriving the correct 214

A. For multiple reasoning paths P, step-level an- 215

swer calibration seeks to either select the reasoning 216

path with the maximum correct intermediate step 217

answers or aggregate the verified correct steps to 218

form the most accurate reasoning path, leading to 219

a correct final path answer. Self-verification (Weng 220

et al., 2023) is an effective approach for step-level 221

answer calibration on multiple reasoning paths. 222

Path-Level Answer Calibration. Given a sin- 223

gle reasoning path P with an initial final path an- 224

swer A, the goal of path-level answer calibration 225

is to revise the wrong A. For multiple reasoning 226

paths P = {Pi}i∈[1,N ] with corresponding answers 227

A = {Ai}i∈[1,N ], path-level answer calibration is 228

designed to select the reasoning path from P with 229

the most consistent answer in A. Self-consistency 230

(Wang et al., 2023i) is a widely-used efficacious 231

technique for path-level answer calibration on mul- 232

tiple reasoning paths. 233

3.2 Unified View of Answer Calibration 234

Considering the advantages of both step-level 235

and path-level answer calibration, we propose 236

to integrate the two strategies on multiple paths. 237

Given the multiple generated reasoning paths P = 238

{Pi}i∈[1,N ], we define a unified score Di for each 239

Pi (with the final path answer: Ai and intermediate 240

step answers: {aj}(i)j∈[1,M ]): 241

Di = α
ni
N︸︷︷︸

path−level

+ (1− α)mi

M︸ ︷︷ ︸
step−level

(1) 242

where ni ∈ [1, N ] is the frequency of Ai existing 243

in A, mi ∈ [0,M ] is the number of correct interme- 244

diate steps in Pi, and α is a hyper-parameter. The 245

final answer is Ai∗ satisfying i∗ = argmax
i∈[1,N ]

(Di). 246

To better analyze the effects of varying α in 247

the unified framework, we then define particular 248

choices for α which we call step and path level 249

dominant answer calibration. 250

Definition 1. Step-Level Dominant Answer Cal-
ibration: This choice refers to the level of α at
which the step-level score is used as the domi-
nant criterion, with the path-level score given much
smaller weight and only serving to break ties when
necessary. Specifically, larger mi always results
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in larger Di, no matter how small ni is. We de-
note this as: ∀nj , nk ∈ [1, N ] and mj ,mk ∈
[0,M ],where nj < nk and mj > mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M
Thus we can obtain251

α <
1

M(nk−nj)
N(mj−mk)

+ 1
(2)252

If Eq (2) is constant, we can infer that253

α < min

 1
M(nk−nj)
N(mj−mk)

+ 1

 =
1

M max(nk−nj)
N min(mj−mk)

+ 1

(3)254

As 1 ≤ nj < nk, nj+nk ≤ N , and 0 ≤ mk < mj ,255

we can deduce that min(mj−mk) = 1, max(nk−256

nj) = N − 2. From the above, we deduce:257

α <
1

M(N−2)
N + 1

(4)258

Definition 2. Path-Level Dominant Answer Cali-
bration: For this choice, Di gives priority to the
path-level score, with the step-level score given
much smaller weight and only serving to break ties
when necessary. Concretely, larger ni always con-
duces larger Di, no matter how small mi is. We
denote this as: ∀nj , nk ∈ [1, N ] and mj ,mk ∈
[0,M ],where nj > nk and mj < mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M
Analogously, we can obtain259

α >
1

M(nj−nk)
N(mk−mj)

+ 1
(5)260

If Eq (5) is constant, we can infer that261

α > max

 1
M(nj−nk)
N(mk−mj)

+ 1

 =
1

M min(nj−nk)
N max(mk−mj)

+ 1

(6)262

As 1 ≤ nk < nj , and 0 ≤ mj < mk ≤ M , we263

deduce that min(nj −nk) = 1, max(mk−mj) =264

M − 0 =M . From the above, we deduce:265

α >
1

1
N + 1

(7)266

In general, considering step-level and path-level267

answer calibration dominance, we can obtain two268

thresholds: 1
M(N−2)

N
+1

and 1
1
N
+1

. Note that α = 0269

and α = 1 are respectively equivalent to the270

self-verification and self-consistency strategies.271

3.3 Evaluation of Answer Calibration 272

Calculation of ROSCOE Scores. In addition to the 273

classical evaluation metric: Accuracy, Golovneva 274

et al. (2023) have proposed ROSCOE, a suite 275

of metrics for multi-step reasoning, under four 276

perspectives: semantic alignment (ROSCOE-SA), 277

semantic similarity (ROSCOE-SS), logical infer- 278

ence, and (ROSCOE-LI) and language coherence 279

(ROSCOE-LC). Due to space limits, we select 280

some representative scores from ROSCOE as evalu- 281

ation metrics in the experiments. 282

Given source ground truth rationale (s) and gen- 283

erated rationale (h) with multiple steps (hi), we 284

calculate five scores (All scores satisfy the princi- 285

ple that larger is better): 286

(1) Faithfulnessstep (h→ s): To assess whether 287

the model misconstrues the problem statement, or 288

if the reasoning path is too nebulous, irrelevant, or 289

improperly employs input information. 290∑N
i=1 r-align(hi → s)/N (8) 291

where N is the number of steps and r-align is used 292

to measure how well hi ∈ h can be aligned with 293

any one of the steps in the ground truth path s. 294

(2) Informativenesspath (h → s): To measure 295

the level of concordance between the generated 296

path and the source, and if the generated reasoning 297

path is well-grounded with respect to the source. 298

[1 + cos(h, s)]/2 (9) 299

where cos(·, ·) is a function for cosine similarity. 300

(3) Consistencysteps (hi ↔ hj): To measure 301

logical entailment errors within the reasoning steps. 302

303

1−maxi=2..N maxj<i pcontr(hi, hj) (10) 304

where pcontr is used to assess the likelihood of step 305

pairs contradicting each other. hi ∈ h and hj ∈ h. 306

(4) Consistencypath (h ↔ s): To evaluate mis- 307

takes in logical entailment between the generated 308

reasoning path h and source context s: 309

1−maxi=1..N maxj=1..T pcontr(hi, sj) (11) 310

where pcontr is the likelihood of source and gener- 311

ated steps contradicting each other. sj ∈ s; hi ∈ h. 312

(5) Perplexitypath (h): As an indicator of lan- 313

guage coherence, it calculates average perplexity 314

of all tokens in the generated reasoning path steps. 315

1/PPL(h) (12) 316

where PPL denotes the perplexity. 317
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Task Method Accuracy ↑ Faithfulness ↑
(Over Steps)

Informativeness ↑
(Over Path)

Consistency ↑
(Within Steps)

Consistency ↑
(Within I/O)

Perplexity ↑
(Over Path)

GSM8K

CoT 80.21 88.73 96.38 97.94 96.94 9.14
CoT + SV 82.34(+2.13) 86.22(−2.51) 95.19(−1.19) 96.78(−1.16) 93.46(−3.48) 14.90(+5.76)

CoT + SC 87.11(+6.90) 88.83(+0.10) 96.40(+0.02)∼ 97.90(−0.04)∼ 97.44(+0.50) 8.90(−0.24)

ZS CoT 62.85 86.58 95.61 97.30 93.07 15.67
ZS CoT + SV 67.70(+4.85) 86.24(−0.34) 95.19(−0.42) 96.78(−0.52) 93.44(+0.37) 14.90(−0.77)

ZS CoT + SC 71.42(+8.57) 86.70(+0.12) 95.67(+0.06)∼ 97.19(−0.11) 94.57(+1.50) 14.95(−0.72)

SVAMP

CoT 78.20 87.73 95.74 30.57 9.82 6.65
CoT + SV 85.80(+7.60) 87.26(−0.47) 95.00(−0.74) 33.39(+2.82) 10.41(+0.59) 6.23(−0.42)

CoT + SC 84.40(+6.20) 87.60(−0.13) 95.71(−0.03) 33.51(+2.94) 9.92(+0.10) 6.22(−0.43)

ZS CoT 72.80 87.46 95.77 31.71 18.39 11.93
ZS CoT + SV 81.20(+8.40) 86.92(−0.54) 95.05(−0.72) 35.27(+3.56) 20.24(+1.85) 11.44(−0.49)

ZS CoT + SC 82.00(+9.20) 87.40(−0.06) 95.81(+0.04)∼ 34.73(+3.02) 19.67(+1.28) 11.68(−0.25)

MultiArith

CoT 97.67 88.53 94.91 7.77 7.47 5.51
CoT + SV 98.33(+0.66) 88.36(−0.17) 94.38(−0.53) 46.59(+38.82) 24.56(+17.09) 10.54(+5.03)

CoT + SC 98.17(+0.50) 88.42(−0.11) 94.82(−0.09) 10.22(+2.45) 9.29(+1.82) 5.33(−0.18)

ZS CoT 87.00 89.32 95.30 47.54 24.39 10.75
ZS CoT + SV 97.00(+10.00) 88.35(−0.97) 94.38(−0.92) 46.26(−1.28) 24.58(+0.19) 10.54(−0.21)

ZS CoT + SC 97.00(+10.00) 89.18(−0.14) 95.32(+0.02)∼ 47.42(−0.12) 23.83(−0.56) 10.63(−0.12)

MathQA

CoT 52.83 85.99 95.31 49.57 23.78 7.64
CoT + SV 54.74(+1.91) 85.93(−0.06) 95.24(−0.07) 51.39(+1.82) 24.61(+0.83) 7.18(−0.46)

CoT + SC 54.47(+1.64) 85.93(−0.06) 95.20(−0.11) 51.73(+2.16) 25.03(+1.25) 7.15(−0.49)

ZS CoT 49.45 85.20 96.08 23.50 13.76 13.44
ZS CoT + SV 52.86(+3.41) 85.93(+0.73) 95.24(−0.84) 51.40(+27.90) 24.63(+10.87) 7.19(−6.25)

ZS CoT + SC 49.51(+0.06) 85.22(+0.02)∼ 96.08(−0.00)∼ 23.66(+0.16) 13.79(+0.03) 13.48(+0.04)∼

CSQA

CoT 74.77 81.40 92.57 95.57 57.54 2.46
CoT + SV 74.04(−0.73) 80.89(−0.51) 92.10(−0.47) 92.77(−2.80) 56.05(−1.49) 2.47(+0.01)∼
CoT + SC 75.27(+0.50) 81.50(+0.10) 92.71(+0.14) 95.04(−0.53) 56.97(−0.57) 2.43(−0.03)

ZS CoT 67.57 79.77 95.26 25.81 29.17 9.90
ZS CoT + SV 66.42(−1.15) 79.06(−0.71) 94.65(−0.61) 25.36(−0.45) 28.56(−0.61) 9.06(−0.84)

ZS CoT + SC 71.58(+4.01) 79.51(−0.26) 95.21(−0.05)∼ 25.08(−0.73) 29.69(+0.52) 8.96(−0.94)

Table 1: Comprehensive performance (%) with different strategies on GPT-3.5 (gpt-3.5-turbo). CoT: Few-
shot CoT (Wei et al., 2022) with complex-prompting (Fu et al., 2023); ZS-CoT: Zero-Shot CoT (Kojima et al.,
2022); SV: Self-Verification (Weng et al., 2023); SC: Self-Consistency (Wang et al., 2023i). Best few-shot results
are marked in bold; best zero-shot results are underlined. I/O: input/output. ↑: larger is better. ∼, ∼: comparable.

4 Experiments318

4.1 Setup319

Evaluation Metrics. In this paper, we aim to con-320

duct comprehensive evaluation on multi-step rea-321

soning, thus we select some scores from ROSCOE322

(Golovneva et al., 2023) as introduced in §3.3,323

which contains a suite of metrics allowing us to324

evaluate the quality of reasoning rationales, not325

limited to the correctness of final answers.326

Datasets. We evaluate on five benchmark327

datasets involving arithmetic and commonsense328

multi-step reasoning: GSM8K (Cobbe et al.,329

2021), SVAMP (Patel et al., 2021), MultiArith330

(Roy and Roth, 2015), MathQA (Amini et al.,331

2019) and CSQA (Talmor et al., 2019).332

Models. For reasoning path generation, we333

leverage Zero-shot CoT (ZS CoT) (Kojima et al.,334

2022) and Few-shot CoT (CoT) (Wei et al.,335

2022) with complexity-based prompting (Fu et al.,336

2023). For answer calibration, we employ Self-337

Verification (SV) (Weng et al., 2023) and Self-338

Consistency (SC) (Wang et al., 2023i) on multiple339

paths. SV is a step-level strategy, which verifies 340

intermediate-step answers and returns the path con- 341

taining the maximum number of correct step an- 342

swers. SC is a path-level strategy, which conducts 343

majority voting on final answers of all generated 344

paths and selects the most consistent result. 345

Implementation. We release the codes and gen- 346

erated results anonymously1. In this paper, the 347

number of reasoning paths N defined in Eq (1) 348

is 10, and number of intermediate steps M is 3 349

on all datasets except for CSQA where M is 10. 350

We utilize GPT-3.5 with gpt-3.5-turbo en- 351

gine as the backbone LLM to generate reason- 352

ing paths (the model choice justification is elab- 353

orated in Appendix B), and the temperature is set 354

to 0.7. We also leverage GPT-4 (OpenAI, 2023) 355

with gpt-4 engine to generate ground-truth ra- 356

tionales given the ground-truth answers for all 357

datasets excluding GSM8K (which already con- 358

tains them). For evaluation referring to ROSCOE 359

(Golovneva et al., 2023), we respectively lever- 360

1https://anonymous.4open.science/r/Eval_Multi-Step_
Reasoning-4E60.
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Figure 2: Accuracy under different integrated step-level and path-level answer calibration strategies, varying with
the values of α defined in Eq (1). Performance with two thresholds of 1

M(N−2)
N +1

and 1
1
N +1

are marked as F.

age all-MiniLM-L6-v2/SentenceTransformer,361

and pretrained gpt2-large (Radford et al.,362

2019) to obtain token/sentence embedding and cal-363

culate perplexity defined in Eq (12). All the reason-364

ing paths for CoT and ZS CoT were generated dur-365

ing 8th to 23rd June 2023, and answer calibration366

on the generated reasoning paths was conducted367

during 12th October to 8th November 2023.368

4.2 Analysis on Step-Level and Path-Level369

Answer Calibration Strategies370

We respectively incorporate the effective step-level371

and path-level answer calibration strategies, Self-372

Verification (SV) and Self-Consistency (SC), into373

CoT-based models operating on multiple paths. We374

evaluate their performance using six evaluation375

metrics, with the results presented in Table 1.376

Generally, in terms of accuracy, employing an-377

swer calibration is effective. Seen from Table 1,378

we find that models equipped with SV and SC ob-379

viously outperform vanilla methods, as both few-380

shot and zero-shot CoT employing SV/SC achieve381

significant accuracy improvements on almost all382

tasks. Notably, zero-shot CoT with SV and SC383

achieves much more significant outperformance384

of accuracy than few-shot settings on almost all385

tasks, demonstrating that answer calibration is386

more effective in zero-shot settings. As zero-shot387

CoT is relatively challenging due to the absence388

of task-specific in-context learning, answer cali-389

bration strategies essentially creating a feedback390

loop where the model assesses its own performance391

and adjusts accordingly, could help to mitigate bi-392

ases and overfitting to specific patterns during in-393

ference, allowing the model to better generalize to394

new types of problems and datasets. 395

Furthermore, in terms of other metrics, answer 396

calibration can improve consistency on arith- 397

metic tasks but weakens faithfulness, informa- 398

tiveness and perplexity on both arithmetic and 399

commonsense tasks. Observed from Table 1, we 400

find that SV and SC weaken the perplexity score 401

(16 out of 20 cases), suggesting that the rationale 402

generated from multiple paths is more complex 403

than that from a single path with CoT models. 404

However, these two strategies improve consistency 405

scores on arithmetic tasks (10 out of 16 cases; 14 406

out of 16 cases), intuitively benefiting from multi- 407

ple paths. As SV verifies answers for intermediate 408

steps and SC considers answers for all paths, they 409

naturally enhance consistency within steps and be- 410

tween input/output (I/O). Additionally, SV and SC 411

worsen faithfulness and informativeness on almost 412

all tasks (15 out of 20 cases for both). The possi- 413

ble reason is that answer calibration on multiple 414

paths focuses more on answer accuracy, while its 415

increased complexity of its rationales tends to re- 416

sult in lower alignment and concordance between 417

the source content and the output path. Generally, 418

despite the benefits of employing SV and SC to 419

CoT-based methods, the improvements are task- 420

dependent and vary across different metrics. 421

4.3 Analysis on Unified Answer Calibration 422

Strategies 423

We then integrate step-level and path-level an- 424

swer calibration strategies, varying α as defined 425

in Eq (1). We present the accuracy of the unified 426

strategies in Figure 2. As observed, accuracy peaks 427

at a specific value of α between the two thresholds 428
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Engine Strategy GSM8K SVAMP MultiArith CSQA

GPT-3 (175B)
code-davinci-001

CoT 13.84 38.42 45.85 46.75
CoT + SV 13.92↑ 38.96↑ 46.19↑ 47.68↑
CoT + SC 23.40⇑ 54.58⇑ 79.82⇑ 54.92⇑
CoT + SC + SV 23.59⇑ 54.68⇑ 80.01⇑ 55.09⇑

Instruct-GPT (175B)
code-davinci-002

CoT 60.81 75.87 96.13 77.42
CoT + SV 65.14⇑ 76.99↑ 99.15⇑ 77.83↑
CoT + SC 78.00⇑ 86.77⇑ 100.00⇑ 81.43⇑
CoT + SC + SV 78.32⇑ 86.94⇑ 100.00⇑ 81.53⇑

GPT-3.5
gpt-3.5-turbo

CoT 80.21 78.20 97.67 74.77
CoT + SV 82.34↑ 85.80⇑ 98.33↑ 74.04↓
CoT + SC 87.11⇑ 84.40⇑ 98.17↑ 75.27↑
CoT + SC + SV 88.25⇑ 86.80⇑ 99.00↑ 75.18↑

Table 2: Accuracy (%) with different backbone engines. ↑/⇑: slightly/significantly better; ↓: slightly worse than
the baseline few-shot CoT. We refer to Weng et al. (2023) for results with GPT-3 and Instruct-GPT engines. As
Weng et al. (2023) didn’t test on MathQA dataset, we also exclude the results of MathQA here for fair comparisons.

defined in Eq (4) and (7) in almost all scenarios429

across all tasks (i.e., 8 out of 10 cases), demon-430

strating that optimal model performance should431

balance both step-level and path-level answer432

calibration dominance. Besides, we notice that433

for “CoT on SVAMP task” in Figure 2(b) and “zero-434

shot CoT on MathQA task” Figure 2(d), employing435

integrated answer calibration strategies reaches a436

peak with α not between the two thresholds, and437

the overall performance remains stably lower than438

the initial best accuracy with α = 0 (i.e., SV).439

The possible reason may related to employing SV440

(i.e., α = 0) presenting more significant advan-441

tages than SC (i.e., α = 1) in the two scenarios.442

Specifically, CoT on SVAMP respectively achieves443

accuracy of 85.80% and 84.40% when α values 0444

(SV) and 1 (SC), with the difference larger than 1%;445

Zero-shot CoT on MathQA employing SV and SC446

achieves accuracy of 52.86% v.s. 49.51%, where447

the difference is larger than 3%. Except for these448

two distinctive scenarios, others in Figure 2 obtain449

the optimal results by synthesizing step-level and450

path level answer calibration dominance.451

In conclusion, the value of α plays a significant452

role in the performance of both few-shot and zero-453

shot CoT. Optimal ranges of α for each task are454

mostly between the two thresholds of step-level455

and path-level answer calibration dominance. The456

marked two thresholds represent boundaries for457

optimizing performance, which could guide fur-458

ther fine-tuning. Besides, the performance variance459

across datasets implies that the characteristics of460

each task, such as complexity, size, or the nature461

of the tasks. Models equipped with answer calibra-462

tion strategies may require task-specific tuning to463

achieve the best performance.464

4.4 Effects of Backbone Models 465

We compare accuracy on CoT-based answer cal- 466

ibration strategies with different LLM backbone 467

engines, and present results in Table 2. 468

As observed from the results, for GPT-3 and 469

Instruct-GPT, both self-verification (SV) and self- 470

consistency (SC) provide consistent improvements; 471

while on the larger GPT-3.5 model, their improve- 472

ments are observably weaker, particularly for SV, 473

with which accuracy even slightly drops on the 474

CSQA task. The possible reason is that GPT-3.5 475

is more prone to making mistakes when verifying 476

on intermediate-step answers for multiple paths. 477

Further, for integrated answer calibration strate- 478

gies (SV+SC), the model’s performance is close 479

to the better one between SV and SC. Generally, 480

path-level answer calibration is more advantageous 481

than step-level one, with relatively higher accuracy 482

and lower computation cost. Based on these ob- 483

servations, we can infer that answer calibration 484

strategies, especially path-level self-consistency, 485

provide benefits in many cases, particularly on 486

less powerful LLMs. 487

We further speculate, if the path generation for 488

CoT with strong backbone LLM is sophisticated 489

enough, the answer calibration may be simplified. 490

We can directly conduct path-level answer calibra- 491

tion for multiple paths. But these findings cannot 492

indicate that step-level answer calibration is mean- 493

ingless for stronger backbone LLMs. As seen from 494

Table 1, LLM equipped with step-level answer cal- 495

ibration is relatively beneficial to improve consis- 496

tency scores. Besides, as mentioned in Weng et al. 497

(2023), step-level answer calibration can provide 498

explainable answers by verifying on intermediate- 499

step answers, making results more reliable. 500
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Figure 3: Performance (%) of “Accuracy, Faithfulness (Over Steps) and Informativeness (Over Path)” on SVAMP
and MultiArith with different prompting on CoT models. We didn’t show full results of other tasks for space limits.

4.5 Effects of Prompting501

We further demonstrate the effects of prompting502

with few-shot demonstrations on answer calibra-503

tion, evaluated on CoT models.504

We respectively input prompts of no coherence505

and no relevance for few-shot CoT referring to506

Wang et al. (2023a) (examples are listed in Ap-507

pendix C), and present performance on SVAMP508

and MultiArith in Figure 3. As seen, the defi-509

ciency of coherence and relevance in the prompting510

observably weaken the performance of all mod-511

els, with no relevance having a more profound512

impact than no coherence. In addition, CoT+SV513

achieves comparable performance with CoT+SC514

when prompting is standard or not coherent. Fur-515

ther, CoT+SV tends to perform observably better516

than CoT+SC, when prompting with no relevance,517

indicating that step-level answer calibration strat-518

egy SV, is beneficial to maintain performance under519

adverse conditions. This observation suggests the520

robustness of step-level answer calibration. It521

also highlights the potential benefits of step-level522

answer calibration strategies to mitigate perfor-523

mance degeneration caused by poor prompting.524

The possible reason is that step-level answer cali-525

bration strategies break down the task into subtasks,526

and these subtasks are simple enough so that less527

likely to be influenced by the low-quality prompts.528

4.6 Analysis on Tasks529

As seen from Table 1,2, and Figure 2, generally,530

SV and SC present more significant outperfor-531

mance on arithmetic tasks than on the common-532

sense task (CSQA). Further, for CSQA, employ-533

ing answer calibration tends to worsen the con-534

sistency scores, which is contrary to the trend ob-535

served in arithmetic tasks. The possible explana- 536

tion lies in the characteristics of each task, such as 537

complexity, size, or the nature of the tasks. In the 538

CSQA task, correct intermediate steps may not al- 539

ways contribute to a coherent reasoning path due to 540

potential irrelevance and redundancy. Specifically, 541

even if we calibrate both intermediate step and 542

path answers, there can be some correct common- 543

sense statements while irrelevant to the question, 544

resulting in worse consistency and perplexity. Con- 545

versely, in arithmetic tasks, correct intermediate 546

answers almost guarantee a consistent reasoning 547

path, as all intermediate answers are necessary and 548

will contribute to a correct final answer. 549

5 Conclusion and Future Work 550

In this paper, we dissect multi-step reasoning into 551

path generation and answer calibration, and pro- 552

vide a unified view of answer calibration strategies 553

through a comprehensive evaluation. We find that 554

path-level answer calibration is particularly potent 555

in improving accuracy, while step-level answer cal- 556

ibration is more suitable for addressing issues re- 557

lated to low-quality prompting. The improvement 558

is more pronounced in zero-shot scenarios and less 559

significant on stronger backbone models. We also 560

define step-level and path-level answer calibration 561

dominance with two thresholds, and propose to 562

integrate of the two types of strategies, which is 563

promising to achieve optimal performance. Our 564

findings suggest that answer calibration is a ver- 565

satile strategy that can be integrated into various 566

models to bolster multi-step reasoning capabilities 567

of LLMs. In the future, we aim to develop more 568

sophisticated multi-step reasoning models, drawing 569

on the insights and conclusions from this study. 570
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Technical Novelty Emphasis571

We have conducted an empirical study of answer572

calibration and proposed a unified method to ad-573

dress that Step-Level / Path-Level Answer Calibra-574

tion for a Single or Multiple Paths can be integrated575

together, with the two thresholds of Step-/Path-576

Level Dominant Answer Calibration and a hyper-577

parameter α. Our analysis has the potential to in-578

spire further research and practical implications579

on unified answer calibration, such as “how the580

hyper-parameter α can be optimally chosen across581

different tasks, like iterative tuning”. Our paper is582

based on an empirical study, and its main contri-583

butions are to unify multiple seemingly disparate584

types of approaches into a common framework,585

allowing us to investigate empirical questions to586

obtain more insights, such as:587

(1) Employing answer calibration can enhance ac-588

curacy, with the improvement being more no-589

ticeable in zero-shot scenarios and less signifi-590

cant on stronger backbone models;591

(2) The optimal performance of the unified answer592

calibration strategy typically achieved by syn-593

thesizing step-level and path level dominance;594

(3) Path-level answer calibration is more beneficial595

in improving accuracy, and step-level answer596

calibration is more effective for mitigating low-597

quality prompting;598

(4) Answer calibration can improve consistency599

on arithmetic tasks but weakens faithfulness,600

informativeness and perplexity on both arith-601

metic and commonsense tasks.602

Limitations603

The main limitation for this paper is that we didn’t604

analyze more answer calibration strategies, such605

as step-/path-level methods on the single path, and606

varying the numbers of steps and paths in the uni-607

fied answer calibration strategies. Besides, we can608

also employ answer calibration strategies to other609

path generation models, not limited to CoT-based610

methods. Further, we should also evaluate answer611

calibration strategies on more tasks to make the612

results more sufficient.613
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Appendices1034

A Terminology Clarification of Answer1035

Calibration and Model Calibration1036

To avoid the confusion caused by the usage of the1037

already-existing concept “calibration”, we provide1038

a terminology clarification. We emphasize that “an-1039

swer calibration” defined in our paper differs1040

from “model calibration” (Niculescu-Mizil and1041

Caruana, 2005; Guo et al., 2017; Tian et al., 2023;1042

Xiong et al., 2024). “Answer Calibration” refers1043

to the post-processing methods applied to one or1044

more reasoning path(s), to obtain a final answer.1045

We categorize answer calibration methods as ‘step-1046

level’ if they break down the reasoning path(s) into1047

their individual steps, and ‘path-level’ otherwise.1048

In most cases, “Answer Calibration” is more akin1049

to “Answer Correction” (Pan et al., 2023), involves1050

correcting mistakes in the initial output. We did 1051

give a definition like this in the Abstract, Introduc- 1052

tion, and we have already provided clear definitions 1053

of “Answer Calibration” in §3. 1054

B Model Choice Justification 1055

The choice of GPT-3.5 was driven by its relevance 1056

and accessibility for our research objectives. Our 1057

research includes an empirical study of answer cal- 1058

ibration and a proposal of a unified method, where 1059

the backbone LLM is pluggable. To facilitate re- 1060

producibility, we have already released the code 1061

and LLM-generated data anonymously1 (provided 1062

at the bottom of Page 5 in §4), aiming to enhance 1063

transparency to some extent and facilitate further 1064

research in this area. We remain committed to ex- 1065

ploring more transparent models in future work. 1066

C Cases of Low-Quality Prompts 1067

We list some examples of prompts in Table 3. 1068

Prompt Setting

Example Query (Arithmetic Reasoning)
Leah had 32 chocolates and her sister had 42.
If they ate 35,
how many pieces do they have left in total?

Standard CoT

Originally,
Leah had 32 chocolates and her sister had 42.
So in total they had 32 + 42 = 74.
After eating 35,
they had 74 - 35 = 39 pieces left in total.
The answer is 39.

No Coherence

After eating 32 + 42 = 74,
they had 32 pieces left in total.
Originally, Leah had 74 - 35 = 39 chocolates
and her sister had 35.
So in total they had 42. The answer is 39.

No Relevance

Patricia needs to donate 19 inches,
and wants her hair to be 31 inches long
after the donation.
Her hair is 29 inches long currently.
Her hair needs to be 19 + 31 = 50
inc long when she cuts it.
So she needs to grow 50 - 29 = 21 more inches.
The answer is 21.

Table 3: Examples of prompts (standard, no coherence
and no relevance) in our experiments.
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