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Abstract

Ecological studies on depression have explored the complex
associations between environmental, social, and economic
factors and mental health outcomes, but they often fall short
of answering causal questions, which can limit the effective-
ness of the interventions. To demonstrate the potential of
machine learning in uncovering the causal mechanisms be-
hind antidepressant prescriptions, which are overwhelmingly
used to treat depressive disorders, we systematically exam-
ined 28,640 small geographical areas in England, each la-
beled with 27 socio-demographic and environmental indica-
tors, as well as with the total annual per capita antidepressant
prescriptions. Specifically, we employed a novel approach
that integrates statistical analysis, machine learning, and do-
main expertise. Our results highlight the pivotal roles of eth-
nicity, green spaces, and dense urban structure as indirect
causal links shaping antidepressant prescriptions, potentially
mediated by hidden variables such as cultural attitudes and
the likelihood of experiencing depressive symptoms. To vali-
date our findings, we compared them with previous research,
statistical modeling of ecological data, and results obtained
through querying Large Language Models about causal links.
Our causal inference approach showed efficacy in determin-
ing information flow directions and unveiling subtle relation-
ships by considering a web of causation. Specifically, the re-
sults aligned for the most part with existing research, such
as the complex associations with employment and economic
conditions. Moreover, the findings also brought up some con-
nections that warrant further research with individual-level
data, including different effects from tree cover versus NDVI
greenery. The code is available at .

Code — https://github.com/zhu-xlab/Causal health

1 Introduction
Mental health is defined as “a state of wellbeing in which
the individual realizes his or her own abilities, can cope
with the normal stresses of life, can work productively and
fruitfully, and is able to make a contribution to his or her
community” (World Health Organization 2004). The preva-
lence of mental disorders is increasing (Twenge et al. 2019;
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Newson, Sukhoi, and Thiagarajan 2023); it especially went
up by more than 25% in the first year of the coronavirus
disease (COVID-19) pandemic (World Health Organization
2022). Depressive disorders contribute significantly to the
global burden of disease, with an associated economic im-
pact estimated at 5 trillion USD (Arias, Saxena, and Ver-
guet 2022). The causes of depression can be complex and
multi-faceted, encompassing a plethora of factors relating to
biological, psychological, and social determinants (Remes,
Mendes, and Templeton 2021). Deepening our understand-
ing of the disease mechanism is essential to develop ef-
fective strategies to improve population mental health. To
treat depression, antidepressants are frequently prescribed.
However, there is a notable disparity in the use of these
medications, influenced by factors such as access to health-
care, individual and healthcare provider preferences, and
the effectiveness of alternative treatments like psychother-
apy (Donoghue and Tylee 1996; Mars et al. 2017). Despite
these limitations, antidepressant prescribing remains indica-
tive of the prevalence and severity of psychological condi-
tions (Gidlow et al. 2016; Marselle et al. 2020; Baranyi et al.
2020).

Previous studies on antidepressant prescriptions in Eng-
land have shown an increasing temporal trend (Heald et al.
2020) and a correlation with socioeconomic deprivation
(Lalji, McGrogan, and Bailey 2021). On average, 11% of
people took more than one antidepressant on any given day
in England in 2018 (Heald et al. 2020). Research on the
determinants of antidepressant use suggested that environ-
mental factors can play a role, as they can contribute to
or diminish psychological distress and depression. These
studies have considered a wide range of exposures, includ-
ing green space (Yañez et al. 2023), air pollutants (Zhang
et al. 2024), and water contamination (Manczak, Miller,
and Gotlib 2020). On the other hand, numerous studies
and surveys reported that demographic factors and socioe-
conomic status play a significant role in affecting mental
health (Backhouse et al. 2018; Bone, Lewis, and Lewis
2020). These studies differ in terms of the number of partic-
ipants and their geographic origins. However, many of these
cohort and cross-sectional studies rely on individual-level
data, which is expensive to collect and may present ethical



challenges.
Commonly used methods to investigate the associations

between determinants and the outcome are based on statis-
tical analysis, such as Logistic Regression (Turunen et al.
2023), Generalized Linear Model (Astell-Burt et al. 2022),
and Poisson Regression (Gidlow et al. 2016). Nevertheless,
their suggested associations cannot answer causal questions
from the data, and these methods are limited in capturing
the complex interplay among determinants. To better un-
derstand disease mechanisms and facilitate effective inter-
ventions, causal inference has come to the fore. A family
of causal inference methods (Tsonis et al. 2018; Spirtes,
Glymour, and Scheines 2001; Spirtes, Meek, and Richard-
son 2013) combining statistical and machine learning (ML)
basis has been developed. Case studies in various domains
such as ecosystem (Sugihara et al. 2012), geoscience (Pérez-
Suay and Camps-Valls 2018), biology (Lee et al. 2023),
and healthcare (Wu et al. 2022) manifest the efficacy of
these methods in uncovering the causal structures among
high-level semantic variables. VanderWeele, Jackson, and Li
(2016) applied Marginal Structural Models to estimate the
potential effects of religious service attendance on depres-
sion.

Besides, Large Language Models (LLMs), which are
pretrained on extensive datasets, have gained prominence
for their versatility, proving effective in applications rang-
ing from mental health support (Sharma et al. 2023) to
outperforming humans in tasks like text annotation (Gi-
lardi, Alizadeh, and Kubli 2023), and even surpassing tra-
ditional approaches in causal reasoning (Kıcıman et al.
2023; Takayama et al. 2024; Khatibi et al. 2024). Despite
these methodological advancements, the use of observa-
tional causal inference to understand the environmental ef-
fects on health (Han et al. 2025) in general and antidepres-
sant consumption, in particular, remains largely underex-
plored.

This study aims to deepen our understanding of how an
advanced causal method can help disentangle the diverse,
interconnected factors influencing antidepressant prescrip-
tions through a web of causation. It also seeks to compare
this method with more traditional statistical methods and re-
cently proposed LLMs for this task. Specifically, we used
high-quality aggregated data in England, including 27 socio-
demographic and environmental indicators. We proposed a
workflow based on observational causal inference, wherein
strong domain expertise knowledge is integrated to ensure
the relevance and comprehensiveness of findings, followed
by higher-level graph analyses. Several key findings about
ethnicity, green space, and urban structures were revealed
through our methods. In addition, we compared and dis-
cussed how causal questions can be addressed using differ-
ent methods.

The main contributions of this work are:

• We prepared a comprehensive dataset of environmental
and socio-demographic variables suitable for discovering
causal relationships in public health using ML.

• We designed a causal analysis framework for public
health that integrates ML, domain knowledge, and graph

analysis.
• We explored the potential of LLMs as an emerging tool

for causal and correlational analysis in this context.
• We uncovered several key findings related to ethnicity,

green space, and urban structure, which can inform future
investigations using individual-level data.

The overall structure of this paper is as follows. Section 2
introduces our causal analysis framework, including the con-
struction of the causal graph and the subsequent graphical
analysis. Section 3 describes the study data and baseline
methods. Section 4 presents the main results, and Section 5
provides an in-depth discussion of the findings.

2 Methods
In causal graph theory, each node xi represents a high-level
semantic concept, while the edges delineate the presence and
direction of causal relationships. Our goal is to construct a
causal graph that captures how socio-demographic and envi-
ronmental factors are causally linked to antidepressant pre-
scriptions and to uncover higher-level patterns within this
web of causation (Fig. 1).

2.1 Causal graph construction
In our study, we treat 27 indicators (17 socio-demographic
and 10 environmental) and one outcome variable (per capita
antidepressant prescriptions) (Table 1) as nodes in the causal
graph. Edges are placed between nodes when a causal rela-
tionship is inferred to exist between them. One prominent
method in this field is Fast Causal Inference (FCI) (Spirtes,
Meek, and Richardson 2013), which is a constraint-based
causal discovery approach.

However, a limitation of FCI is that it can only iden-
tify a causal graph up to its Markov equivalence class. In
other words, while FCI uncovers potential causal structures,
it cannot distinguish between different graphs that encode
the same conditional independencies. As a result, directly
applying FCI in the domain science may produce conclu-
sions that conflict with established knowledge. To address
this, we introduce a workflow to resolve the ambiguities in
causal models, aiming to refine the causal inference process
and gain the causal relationships that align with both empir-
ical evidence and theoretical understanding. The steps are as
follows:

1. Skeleton detection. Initially, each pair of nodes is pre-
sumed to be connected. We used Fisher’s Z conditional
independence test at the significance level of 0.05. If the
test fails to reject the hypothesis of independence, the
connection between those nodes is removed.

2. Causal structure detection. Causal graphs comprise
several fundamental structures, such as chains, forks, and
colliders, each exhibiting distinct behaviors in response
to conditional independence tests.
In a chain (x1 → x2 → x3) or a fork (x2 → x1,
x2 → x3), conditioning on the intermediate variable
blocks the association between the other two variables;
this is formalized in Eq. (1). In contrast, in an immorality
structure (x1 → x2 ← x3), conditioning on the collider
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Figure 1: Graphical abstract. (a) Research question: Which socio-demographic or environmental factors are causally linked
with antidepressant prescriptions? We demonstrated how causal discovery methods can answer this question. (b) Study data:
We used high-quality aggregated dataset over England comprising 28,640 areas to study causal links. (c-d) Baselines: We used
Spatial Lag Model and queried a Large Language Model to check the relationships among variables. (e) Method: We designed
a causal discovery framework to explore the causal relationships among our variables.

variable introduces a dependence, as shown in Eq. (2).
Latent (unobserved) confounders can be inferred using
the “Y”-shaped primitive: both x1 and x3 point to x2,
which in turn points to x4. In this configuration, x1 and
x3 are independent of x4 conditional on x2, allowing us
to rule out an unmeasured confounder between x2 and
x4. More generally, potentially unobserved confounders
are represented by bidirectional (“←→”) edges between
two nodes.

P (x1, x3|x2) =
P (x1)P (x2|x1)P (x3|x2)

P (x2)

=
P (x1, x2)

P (x2)
P (x3|x2) = P (x1|x2)P (x3|x2)

⇐⇒ x1 ⊥ x3 | x2.
(1)

P (x1, x3) =
∑
x2

P (x1, x2, x3) =
∑
x2

P (x1)P (x3)P (x2|x1, x3)

= P (x1)P (x3)
∑
x2

P (x2|x1, x3) = P (x1)P (x3)

⇐⇒ x1 ⊥̸ x3 | x2.
(2)

The conditional test isolates the influence of a set of vari-
ables, thereby yielding more accurate insights into how
changes in one variable affect another.

3. Orient the rest of edges. Undirected edges are assigned
with a direction without introducing any new colliders
and “Y”-shaped causal structures.

4. Prior knowledge orientation. We refine the direction-
ality of certain edges in our causal graph by integrating
insights from well-established relationships grounded in
scientific evidence. For example, the established prin-
ciple from physics suggested direction from “Tempera-
ture”→ “Pressure”.

5. Inspection and Convergence. After correcting, we re-
peat the process 2–4, until the graph convergence.

6. Effect inspection. Causal inference focuses on identify-
ing the underlying causal structure and does not allow for
direct inspection of effects. Therefore, Pearson correla-
tions between variable pairs with identified links are ad-
ditionally estimated to reflect the effect (positive or neg-
ative).

The iterative process ensures that our causal model not
only aligns with empirical data but also resonates with sci-
entifically validated principles, thereby enhancing the trust-
worthiness of our findings.

2.2 Graph analysis

Graph or network analysis has emerged as a rapidly evolv-
ing field, offering insights into the properties of the systems.
Much of graph analysis in this domain has been based on
correlation-based networks. However, they fall short in pro-
viding causal interpretations. Grounding network theory in
causal networks allows us to better interpret network mea-
sures, such as understanding the direction of information
flow within the system (Runge et al. 2019).
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Graph measures A common network measure is the node
degree, which quantifies the number of edges linked to a
node. In a graph G(N,L), the degree of a node i di is defined
as the number of its neighboring nodes and 0 ≤ di ≤ N−1.

di =
∑
j

ai,j , (3)

where ai,j is the edge between node i and node j and the
sum is over all nodes in the network. A node with larger
degree typically is more influential and important, playing
crucial role in the dynamics of the network and leads to po-
tential information hub.

Graph density is a graph-level measure that quantifies the
number of edges in the graph compared to a fully-connected
graph. For an undirected graph, the density is computed by

D =
2|E|

|V |(|V | − 1)
, (4)

where |E| is the number of edges and |V | is the number of
nodes in the graph. The graph density measures how con-
nected the network is compared to a fully connected graph.
Besides, it differentiates two networks with the same num-
ber of nodes and the same type of relationships. In the real
world, a graph is usually sparse.

Community detection Community detection is a graph
clustering technique used to cluster the nodes into different
communities based on their connectivity and node attributes.
Modularity, which measures the density of links inside com-
munities as compared to links between communities, is used
to assess the quality of graph partition. Blondel et al. (Blon-
del et al. 2008) directly used modularity as the optimization
object. This method starts with assigning a graph of node
N with N distinct communities, then partition the isolated
node i into a community C which maximizes the gain in
modularity. The gain in modularity can be computed by Eq.5

∆Q =

[∑
in +ki,in

2m
−

(∑
tot +ki

2m
)
)2

]
−

[∑
in

2m
−

(∑
tot

2m

)2
−

( ki

2m

)2
]
,

(5)

where
∑

in is the sum of the number of the links inside C,∑
tot is the sum of the number of the links incident to nodes

in C, ki is the sum of the number of the links incident to
node i, ki,in is the sum of the number of the links from i to
nodes in C and m is the sum of weights of all links in the
network.

3 Experiments
3.1 Study data
We prepared a dataset with 28,640 LSOAs, each compris-
ing 10 environmental and 17 socio-demographic variables,
and one outcome variable. The outcome variable is the total
annual quantity of the defined daily doses of antidepressant
prescriptions per capita in 2019 (we use the terms “antide-
pressants” or “per capita antidepressant prescriptions” in-
terchangeably). LSOAs are small geographic units in Eng-
land (around 1,000–3,000 residents) that offer the highest
available spatial detail for census data and most of the vari-
ables in this study. Their size captures neighborhood ef-
fects (Reades, De Souza, and Hubbard 2019) and allows

subtle changes in population health to be detected (Zhang
et al. 2022; Clarke et al. 2020). The mean (±SD) and median
per capita antidepressant prescriptions across all LSOAs are
35.09±16.88 and 36.77, respectively. We started with the
recently published high-quality dataset MedSat (Scepanovic
et al. 2023), subsetting exposure variables pertinent to popu-
lation health research and complementing it with additional
sources. While aiming for a comprehensive understanding
by considering as many variables as possible, it is essen-
tial to balance the computation cost. The variable selection
was based on the following criteria: (1) strong impact on
healthcare based on empirical evidence, (2) public health
relevance, and (3) avoidance of collinearity with other fac-
tors. The detailed information on the selected variables is
provided in Appendices Table 1. Categorical features were
converted into a single numerical value by calculating the
weighted average of all types, with each category’s value
serving as its weight.

3.2 Baselines
We compare our results with the following baselines:
• Correlation. The Pearson correlation coefficient r mea-

sures the linear relationship between two variables. We
also performed a test of the null hypothesis that the dis-
tributions underlying the samples are uncorrelated and
normally distributed. We used Fisher’s transformation to
compute the confidence interval of the correlation coeffi-
cient statistic for the given confidence level.

• Spatial lag model (SLM). SLM is a statistical tech-
nique used to analyze relationships between spatially dis-
tributed variables. Each observation of Y is regressed on
the weighted average of neighboring observations of Y
and other factors X . We used the Maximum Likelihood
Estimation of SLM.

• Large Language Model. Drawing inspiration from
Kıcıman et al. (2023)’s recent findings, our study aims
to investigate the capability of an LLM model, agnos-
tic in terms of our specific real-world data, to generate
credible causal inferences. Additionally, we seek to eval-
uate how these generated inferences align with the results
from our own causal modeling efforts. The detailed im-
plementation is in Appendices 8.2.

4 Results
The complex interactions among 27 indicators were esti-
mated using four methods, and we displayed their interac-
tions through a graph representation. Each node in the graph
corresponds to a factor. Graph links are placed between two
nodes if the corresponding associations or causal relations
are detected.

4.1 Causal inference among exposures and
antidepressants

Our causal graph is in Fig.2, and the statistical and LLM
based results are in Fig. 3. In our causal graph, many of
the detected links are bidirectional, suggesting the presence
of potential hidden variables. The 1-hop neighbors of an-
tidepressants contain Black, population density, born in UK,
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Figure 2: Causal graph discovered by our framework. Green nodes are environmental variables, blue nodes are socio-
demographic variables, and grey node is the outcome. Directed edges connect causes (source nodes) to effects (destination
nodes); and bi-directional edges suggest the presence of unobserved variables influencing changes on both sides. Considering
ethnic variables are multi-correlated with each other, we dropped Mixed and Asian from the graph.
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Figure 3: (a) The graph based on correlation coefficient between each pair of variables in Table 1. In total, there are 378 edges.
We excluded links with very low correlation (|r| ≤ 0.3). Edge colors indicate the strength of their correlation (normalized to
[0,1]). The full correlation matrix is in Appendics Fig.6. (b) Causal links output by the LLM.

White, and high-skilled. The causal results for all these vari-
ables, except for high-skilled, align with those estimated by
the LLM. While the SLM identified White, born in UK, and
high-skilled to have a significant association with antide-
pressants, it does not include Black and population density.
Nonetheless, all the 1-hop neighbors are socio-demographic
factors and none of them are the direct cause of antidepres-
sants.

In the correlation-based graph, among the 378 pairs of
factors examined, 355 pairs exhibited statistically signif-
icant correlations (P < 0.001, Appendics Fig. 6). The
SLM accounts for spatial correlations, with detailed re-

sults provided in Appendix 8.4. The LLM-based analysis
identified 14 variables as potential causes of antidepres-
sant prescriptions (e.g., pharmacy distance, residential mo-
bility, NDVI, and population density), along with interpre-
tative insights. The graph inferred by the LLM had a den-
sity of 0.846. Unlike the correlation-based graph and SLMs,
which primarily highlighted socio-demographic factors, the
LLM also suggested environmental contributions. For ex-
ample, it noted that “changes in weather patterns, such as
precipitation, could potentially influence mental health out-
comes. Prolonged periods of rain can lead to Seasonal Af-
fective Disorder (SAD), which in turn may increase antide-
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pressant prescriptions.”. On the contrary, our causal graph
density was 0.218, indicating sparser connectivity compared
to others. This likely reflects its ability to remove spurious
links (Rohrer 2018).

Given the complexity of the associations, we focused on
some specific segments of the causal graph (Fig.4). These
segments include antidepressants and at least one 1-hop
neighboring node. We preserved the edges among the se-
lected nodes to form causal paths, and we inferred their pos-
itive (or negative) effects based on the sign of their corre-
lation. Local authority was identified as a cause influencing
Black, White, and population density.

Antidepressants show a positive association (bidirec-
tional) with the White and a negative association (bidirec-
tional) with the Black (Fig. 4(a)). The Black and White pop-
ulations are interdependent through both a direct link and a
confounder (local authority).

NDVI was identified to be a cause of residential mobility.
Specifically, there are increased relocation rates when tran-
sitioning from areas with high NDVI to those with lower
NDVI (Fig. 4(b)). High-skilled was found to have a pos-
itive association with residential mobility. Different from
NDVI, tree positively associates with high-skilled. Interest-
ingly, NDVI and tree demonstrate contrasting effects on an-
tidepressants: increased tree coverage leads to a decrease in
antidepressants, while a higher NDVI results in an increase
in antidepressants. While NDVI measures all types of veg-
etation as greenery, the tree variable specifically quantifies
the extent of tree canopy. In contrast to the LLM findings,
this causal graph suggests that GP distance is not a cause of
antidepressants.

Both an increase in NDVI and a higher White are linked
to an increase in born in UK. Additionally, both White and
born in UK are positively associated (bidirectional links)
with an increase in antidepressants (Fig. 4(c)). Population
density exhibits a negative association with antidepressants
(Fig. 4(d)).

4.2 Causal graph attributes
To understand which factors were linked causally with most
other factors, we computed node degree in our causal graph.
The highly influential nodes, such as population density,
born in UK, and annual income, stand out (Fig.5). Most of
these highly influential factors were found as directly linked
with antidepressants. The average node degree of environ-
mental factors is lower than that of socio-demographic fac-
tors.

After community detection, three classes were revealed.
The computed modularity is 0.353 at the resolution of 1.5.
The first class (brown) primarily comprises environmental
variables, while the remaining classes are more about socio-
demographic factors.

5 Discussion
For networks that are constructed from similarities, the
statistical problem because of multiple comparisons can
arise (Boers et al. 2019), resulting in the potential pres-
ence of spurious links. Besides, the thresholding of strong

Figure 4: Four causal paths (a-d) that directly link to per
capita antidepressant prescriptions in 2019. Yellow edges
indicate positive effects (or associations) from the source
node to the target node, whereas grey edges indicate nega-
tive effects (or associations). All 1-hop neighbors of antide-
pressants are socio-demographic variables, including those
related to ethnicity, professions, and urban structure. Envi-
ronmental variables are linked to per capita antidepressant
prescriptions through socio-demographic factors.
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Figure 5: Analysis of the causal graph in Fig 2. Node size
is proportional to its degree, indicating the level of connec-
tivity. Node colors represent the detected communities. The
top five highest-degree nodes includes born in UK, annual
income, married, population density, and local authority.
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or weak correlations often relies on arbitrary values. While
SLM accounts for the spatial autocorrelation in geospatial
data, it is limited to measuring only one dependent vari-
able at a time and cannot capture the mutual interactions
among the input variables. LLMs can estimate causal links
and provide reasonable interpretations (Yu et al. 2024). Nev-
ertheless, because it does not consider the real data, its abil-
ity to capture temporal and spatial dynamics of the spe-
cific context, i.e., England in 2019 is limited. In contrast,
our causal discovery method 1) can return information flow
direction (edge direction), and 2) uncovers inexplicit rela-
tionships by considering a web of causation among multiple
variables. For example, from the immorality structure (Pearl
and Mackenzie 2018) estimated from our method, we found
that high-skilled professions and unemployment become de-
pendent when conditioning on annual income.

Our analysis highlights several crucial factors influenc-
ing per capita antidepressant prescriptions. Firstly, we con-
firmed strong associations between socio-demographic fac-
tors and antidepressants, as discussed in the existing litera-
ture (Backhouse et al. 2018; Remes, Mendes, and Temple-
ton 2021; Bone, Lewis, and Lewis 2020). The significant
influence of socio-demographic factors is evident from their
high node degree and presence as 1-hop neighbors of antide-
pressants in the causal graph. For example, employment and
economic conditions are important. However, the intricate
dynamics surrounding income levels and their impact on an-
tidepressant prevalence remain complicated. Nevertheless,
assuming no hidden variables, some interventions, such as
enhancing local economic conditions, and providing skill-
based training, could be exploited to mitigate the prevalence
of antidepressants.

Besides, we uncovered that the discrepancy of antide-
pressant prescriptions among ethnic groups might exist. the
Black population is the 1-hop neighbor of the outcome vari-
able in both LLM and our causal graphs. Black is also found
to have a negative association with antidepressant prescrip-
tion quantities in the SLM. This finding aligns with the latest
Adult Psychiatric Morbidity Survey in England, which re-
ports that Black ethnic groups have particularly low mental
health service use (McManus et al. 2016). However, given
the bidirectional edges detected, it is unclear whether eth-
nicity is a direct cause of antidepressants. Unmeasured la-
tent variables, such as cultural attitudes toward medication
usage, structural discrimination (gen 2001), or the likeli-
hood of experiencing depressive symptoms, may contribute
to these associations. Recent research conducted in England
during the COVID-19 pandemic suggests that individuals
from ethnic minorities are not necessarily mentally health-
ier; rather, they are more likely to be referred to social pre-
scribing services, which are not captured in conventional
prescription data (Fu, Tang, and Yu 2024).

Other than that, environmental factors undoubtedly in-
fluence antidepressant usage, yet unraveling these associa-
tions proves challenging. For instance, we found the effect
of tree cover on lower antidepressant prescriptions, and, on
the contrary, of NDVI on higher prescriptions. Indeed, there
is previous work finding similar beneficial associations for
street trees (Marselle et al. 2020; Taylor et al. 2015), and

nonintuitive detrimental associations for NDVI (Astell-Burt
et al. 2022; Hyam 2020). However, the findings from previ-
ous literature are inconsistent, with some studies also linking
NDVI with fewer prescriptions (Yañez et al. 2023) and oth-
ers finding insignificant associations (Gidlow et al. 2016).
Further study of these associations using individual-level
data is necessary.

Overall, many of these findings suggest a potential link
between dense urban structure and antidepressants. Areas
characterized by high population density and high-skill pro-
fessions, often located in large cities, tend to be associated
with reduced antidepressant prescriptions. This could be at-
tributed to the socio-cultural dynamics prevalent in urban
environments. Higher population density may coincide with
better access to social support (Robertson et al. 2004) and
diverse treatments, potentially contributing to lower antide-
pressant prescriptions. Nonetheless, previous research has
also shown some inconsistent findings, suggesting a posi-
tive association between urban stressful life and depressive
symptoms (Kautz et al. 2020; Abela et al. 2011).

There are also several contradictory results returned by
different methods, indicating the pitfalls of studying mental
health using ML. For example, access to healthcare, identi-
fied by the LLM as a cause of antidepressant prescriptions,
shows limited impacts in our causal graph. Instead, it is more
closely related to built-up areas, which include both GP of-
fices and pharmacies. This discrepancy likely stems from
the LLM’s failure to consider the specific context of our
dataset, i.e., England in 2019. While in some contexts ac-
cess to healthcare might be a key factor influencing prescrip-
tions, especially in areas heavily lacking it, this is likely not
the case in modern-day England. Furthermore, although the
SLM identified significant positive interactions between age
and antidepressant prescriptions, our causal graph does not
support this finding. While old age is linked to an increased
risk of depression (Lu and Peng 2019), some studies pro-
pose that human well-being follows a U-shaped trajectory
throughout life (Blanchflower and Oswald 2016; Blanch-
flower and Bryson 2022). These nonlinear responses may
result in divergent outcomes.

6 Conclusion
We linked socio-demographic and environmental factors to
per capita antidepressant prescriptions using 28,640 LSOA-
level areas in England for the year 2019. Given these high-
quality aggregated data, we explored statistical methods
(SLM and Pearson’s r), ML method (LLM), and the com-
bination of both (our framework) to uncover the complex
interactions among the variables. Causal graph analyses fur-
ther revealed higher-level structural properties. For each of
these approaches, we analyzed their pros and cons and ex-
plored the potential causal findings they could reveal, while
also discussing pitfalls in ecological public health research.

Generally, making causal inferences from a large set of
potential exposures is challenging due to confounding fac-
tors, partially fulfilled assumptions, collinearity, and non-
linear interdependence. The observational causal discovery
still requires verification with domain knowledge, wherein
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LLM might serve as a potential resource. Our findings un-
derscore ethnicity, green spaces, and urban density as indi-
rect causal drivers of antidepressant prescriptions, likely me-
diated by latent factors such as cultural attitudes and depres-
sion risk.

Despite the findings, our approach faces some limitations.
First, the current model cannot adequately handle non-linear
relationships among variables. While kernel-based condi-
tional independence tests offer a potential solution, their
scalability to large datasets poses a significant challenge.
Second, noisy measurements in the data can impact the ac-
curacy of our outputs. Last, the use of aggregated data in-
stead of individual-level data raises key concerns about eco-
logical fallacy. Future work should incorporate individual-
level data to mitigate ecological fallacy, and extend to tem-
poral data to help address issues such as reverse causation.
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8 Appendices
8.1 Socio- and environmental variables.

The data and variables used in this study are listed in Table 1.

8.2 LLM querying

Recent advances in Artificial Intelligence have given rise
to LLMs, sophisticated systems built by analyzing vast
datasets with trillions of textual elements through self-
supervised (Liu et al. 2023) and semi-supervised learning
approaches (Ganaie et al. 2022). These models create a prob-
abilistic framework (Wei et al. 2023) capable of producing
text that closely resembles human writing in both complex-
ity and flow.

We have, specifically, adapted the prompt for the pairwise
causal discovery from (Kıcıman et al. 2023) to our public
health context by adding the appropriate system role. We
include the statements
‘‘[...] you are an advanced expert
specializing in causal reasoning
within the realm of Public Health
research. [...] you are proficient
in identifying, assessing, and
interpreting the complex interactions
among variables.’’,
and describing carefully the type of variables that the system
would get for our task. Specifically, we include the following
explanations
‘‘You will receive input featuring
two variables pertinent to Public
Health research, each representing
attributes of geographically-defined
areas within a country. Specifically:
Socio-demographic Variables will
be prefixed with "c", Environmental
Variables prefixed with "e" [...], and
Health Condition Variables prefixed
with "o" [...]’’.

The prompt instruction for the LLM is then to answer
‘‘Which cause-and-effect relationship
is more likely? If none of the
relationships is likely, output N. If
they are both likely, output B.’’.
By applying such a prompt to each pair of our variables, we
were presented with the output in the form of

“<Answer>L/R/N/B<Answer>”,
where L means “changing the first variable causes a change
in the second”, R means “changing the second variable
causes a change in the first”, B means “there is a latent vari-
able affecting both”, and N means “the variables are likely
unrelated”.

8.3 Correlation coefficient

The Correlation coefficient among exposures and antide-
pressants are in Fig. 6.

Figure 6: The correlation coefficient for each variable pair
was computed using the dataset in 2019. This measure pro-
vides statistical insights between two variables. The val-
ues are in the range from -1 to +1, where ±1 indicates the
strongest possible correlation and 0 indicates no correlation.

8.4 Spatial Lag Models
Considering the spatial autocorrelation present in our
dataset, Pearson’s correlation coefficient may overestimate
the associations. Therefore, we performed the Spatial Lag
Model (SLM) on antidepressants. SLM utilized all factors
from Table 1 as independent variables. However, Asian and
Mixed were excluded to mitigate multicollinearity among
ethnic groups. The results suggest that four factors show
statistically significant (P < 0.01) negative coefficients
with antidepressants: high-skilled (β = −0.4036, P = 0),
unemployed (β = −0.3033, P = 0), room occupancy
(β = −0.2219, P = 0.0001), and pharmacy distance (β =
−0.1355, P = 0.0013). Conversely, four factors show sta-
tistically significant (P < 0.01) positive coefficients with
antidepressants: age (β = 0.3816, P = 0), White (β =
0.3614, P = 0), born in UK (β = 0.3542, P = 0), and local
authority (β = 0.0842, P = 0.0094) (Appendices Table.2).
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Type Category Variablesource Explanation

so
ci

o-
de

m
og

ra
ph

ic

Ethnicity

Asiana Percentage of Asian ethnicity
Blacka Percentage of Black ethnicity
Mixeda Percentage of Mixed ethnicity
Whitea Percentage of White ethnicity

Migration indicator Born in UKa Percentage born in UK
Residential mobilityb Percentage of people who relocated to this area

Room occupancy Room occupancya Average percentage of occupancy rating rooms.
A higher value suggests that the rooms are over-
occupied, while a lower value indicates that the
rooms are under-occupied.

Professions High-skilleda Percentage of high-skilled jobs (managers, direc-
tors, senior officials, professional and technical oc-
cupations)

Unemployment Unemployeda Percentage of unemployed
Age Agea Average age of residents in the designated area
Marital status Marrieda Percentage of married
Net income Average incomea Average net annual income
Gender Malea Percentage of male

Population Population densitya Population density
Total populationa Total population

Medical access GP distancec Distance to the nearest general practitioner (GP)
Pharmacy distancec Distance to the nearest pharmacy

E
nv

ir
on

m
en

ta
l

Climate
Solar radiationa Surface solar radiation downwards is the amount

of solar radiation (sunlight) that is incident on the
Earth’s surface.

Precipitationa Amount of precipitation that has fallen over a spec-
ified area during a given time period.

Temperaturea Air temperature at a height of 2 meters above the
ground

Air quality Ozonea Ozone concentration
PM2.5

a Particulate matter with a diameter less than 2.5 mi-
crometers

Greenery NDVIa Normalized difference vegetation index

Land cover
Watera Percentage of water area
Treesa Percentage of tree area
Built-upa Percentage of urban areas that are characterized by

a high concentration of buildings, infrastructure,
and human-made features

Geography Local authorityd 371 local government areas responsible for services
such as education, transportation, planning applica-
tions, and waste collection and disposal

Outcome (per capita) antidepressantsa The total annual quantity of antidepressant pre-
scriptions per capita

Table 1: Socio-demographic, environmental factors, and outcome variable used in this study. The environmental variable metrics
represent average annual levels within the specified areas. The data are from multiple sources, including a. MedSat dataset, b.
Access to Healthy Assets & Hazards (AHAH) dataset, c. CDRC Residential Mobility and Deprivation (RMD) Index (LSOA
Geography) dataset, and d. Lower Tier Local Authorities to Inner and Outer London Lookup Table for England.
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Variable Coefficient Std.Error z-Statistic Probability
Black -0.0279 0.0402 -0.6945 0.4874
White 0.3614 0.0759 4.7582 0.0000
Born in UK 0.3542 0.0721 4.9111 0.0000
Residential mobility -0.0458 0.0354 -1.2960 0.1950
Room occupancy -0.2219 0.0570 -3.8912 0.0001
High-skilled -0.4036 0.0449 -8.9878 0.0000
Unemployed -0.3033 0.0367 -8.2622 0.0000
Age 0.3816 0.0554 6.8900 0.0000
Married -0.0218 0.0579 -0.3774 0.7059
Average income -0.0795 0.0453 -1.7567 0.0790
Male 0.0324 0.0269 1.2049 0.2282
Population density 0.0437 0.0432 1.0116 0.3117
Total population -0.0679 0.0284 -2.3887 0.0169
GP distance -0.0183 0.0428 -0.4278 0.6688
Pharmacy distance -0.1355 0.0422 -3.2077 0.0013
Solar radiation -0.0303 0.0273 -1.1115 0.2663
Precipitation -0.0801 0.0344 -2.3289 0.0199
Temperature 0.0214 0.0437 0.4903 0.6239
Ozone 0.0029 0.0362 0.0791 0.9369
PM2.5 0.0467 0.0419 1.1146 0.2650
NDVI -0.0382 0.0297 -1.2861 0.1984
Water -0.0177 0.0286 -0.6174 0.5370
Trees 0.0160 0.0335 0.4766 0.6336
Built-up -0.0982 0.0452 2.1740 0.0297
Local authority 0.0842 0.0299 2.8148 0.0049
Antidepressants 0.9502 0.0016 592.8623 0.0000

Table 2: SLM results using the dataset in 2019. The dependent variable is antidepressants. Probability less than 0.01 is consid-
ered significant, as highlighted by the bold text.
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