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Abstract

The structure of naming systems in natural lan-001
guages hinges on a trade-off between high in-002
formativeness and low complexity. Prior work003
capitalizes on information theory to formalize004
these notions; however, these studies gener-005
ally rely on two assumptions: (i) optimal lis-006
teners, and (ii) universal communicative need007
across languages. Here, we address these limi-008
tations by introducing an information-theoretic009
framework for discrete object naming systems,010
and we use it to prove that an optimal trade-011
off is achievable only when the listener’s de-012
coder is equivalent to the Bayesian decoder of013
the speaker. Adopting a referential game setup014
from emergent communication, and focusing015
on the semantic domain of kinship, we show016
that our notion of optimality is not only theoret-017
ically achievable but also emerges empirically018
in learned communication systems.019

1 Introduction020

Languages across the world exhibit substantial vari-021

ation in their lexical systems. On the surface level,022

lexical items that refer to equivalent meanings are023

expressed in different word forms (e.g., the word024

aunt in English is tía in Spanish), but also at025

the semantic level, meaning partitions vary cross-026

linguistically (in Vietnamese, there are different027

words for aunt, depending on whether she is the028

younger or elder sister of one’s mother or father).029

Despite the richness of this variation, it does not030

appear to be arbitrary. A growing body of work031

suggests that languages do not explore the space032

of possible semantic partitions freely, as evidenced033

by constrained and recurrent cross-linguistic pat-034

terns (Kemp and Regier, 2012; Regier et al., 2015;035

Zaslavsky et al., 2018; Kemp et al., 2018; Carr036

et al., 2020; Chaabouni et al., 2021). Instead, the037

structure of object naming systems appears to re-038

flect pressures for communicative—and possibly039

cognitive—efficiency. These pressures are thought040

to be domain-general, as similar patterns have been 041

observed across semantic domains such as kinship, 042

color, and general object categorization. In partic- 043

ular, these studies suggest that languages tend to 044

evolve toward object naming systems that approx- 045

imate an (often near-)optimal trade-off between 046

informativeness and complexity. 047

To formalize this trade-off, much of the prior 048

work capitalizes on constructs from information 049

theory (Shannon, 1948). Informativeness is typi- 050

cally quantified by the amount of information pre- 051

served in communication—often framed as the in- 052

verse of information loss—while complexity mea- 053

sures how concisely a language compresses mean- 054

ing into words. These frameworks define opti- 055

mal trade-off boundaries: curves along which no 056

system can reduce complexity without increasing 057

information loss, or decrease information loss with- 058

out becoming more complex. 059

As an example, Kemp and Regier (2012) demon- 060

strate that natural kinship systems lie near the op- 061

timal trade-off frontier. However, since their mea- 062

sure of complexity is based on the shortest kin- 063

ship description in a language, it is not analytically 064

tractable to derive a closed-form expression for the 065

trade-off curve. As a workaround, they approxi- 066

mate the curve using a set of generated hypothetical 067

systems. In contrast, the Information Bottleneck 068

(IB) framework (Tishby et al., 2000) enables Za- 069

slavsky et al. (2018, 2019); Chaabouni et al. (2021) 070

to derive theoretical, closed-form approximations 071

of the optimal trade-off frontier in domains such as 072

color, container, and animal naming. 073

However, these studies generally rely on two sim- 074

plifying assumptions: (i) that listeners are optimal 075

in the Bayesian sense, and (ii) that a universal com- 076

municative need distribution, i.e., a distribution 077

over the object space, applies uniformly across all 078

languages. The first assumption overlooks the im- 079

pact of listener suboptimality, which can arise from 080

various factors in real-world settings (Gibson et al., 081
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2019). The second assumption clearly oversimpli-082

fies the cultural and linguistic diversity observed083

across natural communication systems.084

In this work, we revisit the question of how085

to measure optimality in object naming systems,086

particularly in scenarios where the objects are in-087

herently discrete. Building on prior work such088

as Kemp and Regier (2012) and Zaslavsky et al.089

(2018), our approach is grounded in information090

theory. Unlike these earlier studies, however, we091

derive an exact, closed-form expression for the op-092

timal trade-off curve. This formulation enables us093

to analyze how both optimal and suboptimal lis-094

teners influence the informativeness–complexity095

trade-off in communication. Moreover, because096

the optimal curve is agnostic to the communicative097

need distribution, it supports meaningful compar-098

isons of communication systems across varying099

distributions over the objects to be named.100

Our contributions are as follows. First, we intro-101

duce an information-theoretic framework that for-102

mally characterizes information loss, complexity,103

and optimality in discrete object naming systems.104

Second, using this framework, we prove that object105

naming achieves an optimal trade-off under a spe-106

cific and well-defined condition—namely, when107

the listener’s decoder is equivalent to the Bayesian108

decoder the speaker. Third, adopting a referential109

game setup commonly used in emergent commu-110

nication (Lazaridou and Baroni, 2020; Lazaridou111

et al., 2017; Havrylov and Titov, 2017; Chaabouni112

et al., 2022), and focusing on the semantic domain113

of kinship, we show that our notion of optimality is114

not only theoretically achievable but also emerges115

empirically in learned communication systems.116

2 Background117

The observed structure of object naming systems118

in natural languages appears to balance complex-119

ity and informativeness, often achieving a near-120

optimal trade-off. However, the definition of op-121

timality is underpinned by the definitions of com-122

plexity and informativeness, and those are not123

unique. A relevant distinction lies in the fact that124

some of these domains are inherently continuous125

(e.g., color), while others are concerned with dis-126

crete ‘objects’, such as kinship. Here we focus on127

two representative cases of this distinction.128

2.1 Optimality in Color Naming129

Zaslavsky et al. (2018) introduce an information-130

theoretic framework for quantifying the trade-off131

between informativeness and complexity in lexi- 132

cal systems. Focusing on the continuous domain 133

of color, they propose that natural color naming 134

systems approximate optimal trade-offs by com- 135

pressing perceptual meanings into words in a man- 136

ner consistent with the Information Bottleneck (IB) 137

principle (Tishby et al., 2000), provided that listen- 138

ers are optimal in the Bayesian sense. 139

In this framework, meanings are modeled as 140

probability distributions over perceptual states— 141

in this case, color stimuli—while lexical items 142

are treated as compressed representations of these 143

distributions. The IB objective seeks an encoder 144

q(w|m) that maps meanings m to words w by min- 145

imizing the following functional: 146

Fβ[q(w|m)] = Iq(M ;W )− βIq(W ;U), 147

where Iq(M ;W ), the mutual information between 148

meanings and words, quantifies the complexity of 149

the lexicon, and Iq(W ;U) measures how much 150

information about the environment is preserved 151

through language. The trade-off parameter β ≥ 1 152

controls the balance between compression and in- 153

formativeness. By approximately minimizing this 154

functional across a range of β values, the authors 155

trace out the optimal trade-off curve in the two- 156

dimensional space defined by informativeness and 157

complexity. Using data from the World Color Sur- 158

vey (Cook et al., 2005), they demonstrate that nat- 159

ural languages approximate near-optimal solutions 160

for color naming, close to the optimal trade-off 161

frontier defined by the IB curve. 162

2.2 Optimality in Kinship Naming 163

Every society uses language to refer to family mem- 164

bers, or kin, through a system of lexical items that 165

categorize familial roles (e.g., father and sister). 166

A relevant source of cross-linguistic variation lies 167

in how kinship meaning space is partitioned, or in 168

other words, which family members are considered 169

part of the same semantic category. For example, in 170

English, both maternal and paternal grandmothers 171

fall under the same category (grandmother). In 172

contrast, Vietnamese differentiates both lineage and 173

age, employing distinct terms for maternal versus 174

paternal grandparents, and for older versus younger 175

siblings (Van Luong, 1989). At the other extreme, 176

Tagalog collapses the gender distinction entirely, 177

using a single term (kapatid) for both brother and 178

sister (Murdock, 1970). 179

Kemp and Regier (2012) observe that kinship 180

systems appear to reflect a trade-off between 181

2



informativeness—here, the ability to distinguish182

between kin members based on kinship names—183

and complexity. The latter relies on a symbolic184

rule system to characterize the meaning of kinship185

names through logical compositions of primitives186

(e.g., mother would be PARENT & OLDER & FE-187

MALE). Complexity is then quantified as the min-188

imal number of logical rules needed to generate189

the system. Informativeness is measured as the ex-190

pected Kullback-Leibler (KL) divergence between191

intended and inferred referents, averaged over a192

communicative need distribution.193

3 Framework194

In this section, we introduce our information-195

theoretic framework that formalizes the trade-off in196

object naming. Specifically, we consider a scenario197

where there is a pool U of objects, associated with198

a communicative need distribution p(·). A Speaker199

aims to communicate about an object u ∼ p(u) by200

selecting a message (or name) w ∈ W with encod-201

ing probability qs(w|u). The Speaker sends this202

message to a Listener, who then attempts to infer203

the intended object using a decoder ql(u|w).204

As illustrated in Figure 1, consider an English-205

speaking Speaker who wishes to refer to the206

object u = elder brother. Due to the struc-207

ture of English kinship terminology, the most208

specific term available is w = “brother”, and209

the Speaker deterministically selects it, i.e.,210

qs(“brother”|elder brother) = 1. Upon re-211

ceiving the message, an English-speaking Lis-212

tener infers that the referent could be either el-213

der brother or younger brother, assigning equal214

probabilities: ql(elder brother|“brother”) =215

ql(younger brother|“brother”) = 0.5.216

3.1 Complexity217

Inspired by Zaslavsky et al. (2018), and viewing the218

framework through the lens of Shannon’s commu-219

nication model (Shannon, 1948), we quantify com-220

plexity as the amount of information the Speaker221

compresses through its encoder qs(w|u). This is222

measured by the mutual information between the223

object random variable U and the message random224

variable W :225

C = Iqs(U ;W ) =
∑
u,w

p(u) qs(w|u) log
qs(w|u)
ps(w)

226

where ps(w) =
∑

u∈U p(u) qs(w|u) is the227

marginal distribution over messages. Intuitively,228

Figure 1: Illustration of two English-speaking agents
playing the kinship naming game. The Speaker (left)
selects a family member and produces a name. The Lis-
tener (right) receives the name and infers which member
is being referred to.

this quantity captures the average amount of in- 229

formation that a message w conveys about the in- 230

tended object u. If the same message is used for 231

every meaning, mutual information is zero. Con- 232

versely, if each meaning is encoded with a distinct 233

message, mutual information reaches its maximum 234

value—the entropy H(U). Thus, complexity is 235

bounded by 0 ≤ C ≤ H(U). 236

Notably, this measure of complexity increases 237

with lexical granularity: when the communica- 238

tion system encodes many fine-grained distinctions 239

among meanings, the mutual information is high; 240

when multiple meanings are collapsed onto a single 241

message, the complexity is correspondingly low. 242

3.2 Information Loss 243

Information loss quantifies how much information 244

is not preserved throughout the communication 245

process, and is therefore directly related to the er- 246

rors made by the Listener when picking a referent. 247

We define information loss as the expected cross- 248

entropy between the true referent and the Listener’s 249

prediction, i.e., the standard loss function in multi- 250

class classification: 251

L = −Eu∼p Ew∼qs(·|u) log ql(u|w) 252

Intuitively, the more confident the Listener can be 253

about the intended object u given the message w, 254

the lower the information loss. Conversely, uncer- 255

tainty in decoding leads to higher loss. 256

3.3 Optimality 257

Let q̃s(u|w) ∝ qs(w|u) p(u) be the Speaker’s 258

Bayesian decoder. We prove in Appendix A that: 259

L = H(U)− C + Ew∼ps [DKL(q̃s∥ql)] 260

≥ H(U)− C (1) 261
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Figure 2: Visualization of the optimal trade-off curve
(red line) and the feasible region (white area) encom-
passing all valid communication systems. The Eu-
clidean distance from a system with complexity C and
information loss L (the blue dot) to the curve is given
by d = Ew∼ps [DKL(q̃s∥ql)] /

√
2.

The inequality follows from the non-negativity of262

the KL divergence.263

This proof is an important contribution due to264

the following reasons. First of all, a crucial result265

from this identity is that equality holds if and only266

if ql = q̃s. This implies that, for discrete object267

naming, the optimal trade-off is achieved when the268

Listener’s decoder exactly matches the Bayesian269

decoder of the Speaker.270

Second, unlike the frameworks proposed by271

Kemp and Regier (2012) and Zaslavsky et al.272

(2018), Equation 1 provides an exact, closed-form273

expression for the optimal trade-off curve. In ad-274

dition, it offers a quantitative measure of deviation275

from this curve. Specifically, we can compute the276

Euclidean distance from a given communication277

system to the curve analytically by d = L−H(U)+C√
2

.278

3.4 Need-agnostic Optimal Curve279

The curve L = H(U)−C described above depends280

on the communicative need distribution p(u), due281

to the inclusion of the entropy term H(U). This282

dependency complicates cross-linguistic compar-283

isons of optimality, as different need distributions284

induce different optimal curves in the complex-285

ity–information loss space. To address this issue,286

prior work—including Kemp and Regier (2012)287

and Zaslavsky et al. (2018)—has often assumed a288

universal, fixed need distribution across languages.289

Our framework offers a more principled alter- 290

native: by defining an adjusted complexity C̃ = 291

C − H(U) ≤ 0, we transform the optimal curve 292

into the simplified form L = −C̃. This reformula- 293

tion removes the dependence of the optimal trade- 294

off curve on p(u), while preserving Euclidean dis- 295

tance—thereby enabling meaningful comparisons 296

across languages, regardless of their underlying 297

communicative needs. Notably, the smaller C̃ is, 298

the less complex the system is, and the more capac- 299

ity it has to increase in complexity. When C̃ = 0, 300

the system reaches its maximum allowable com- 301

plexity under the given need distribution. 302

Figure 2 illustrates the optimal trade-off curve, 303

along with the feasible region in which all valid 304

communication systems must lie. In Appendix B, 305

we demonstrate that our framework is compatible 306

with Zaslavsky et al. (2018)’s IB framework. 307

4 Kinship Case Study 308

We present a case study of object naming in the 309

domain of kinship, based on the familial structure 310

introduced by Kemp and Regier (2012). Illustrated 311

in Figure 3, this structure includes 33 family mem- 312

bers, spanning five generations, with a designated 313

ego representing the speaker. Since kinship terms 314

in some languages—such as Korean—depend on 315

the (binarized) gender of the speaker, we consider 316

two ego identities: Alice (female) and Bob (male). 317

We examine two types of kinship naming termi- 318

nologies: human (i.e., based on a sample of natural 319

languages) and neural network-based (i.e., emerg- 320

ing from neural-network (NN) agents simulations). 321

In the former case, we assume a simple probabilis- 322

tic model to formalize encoding and decoding of 323

messages by Speaker and Listener, while in the lat- 324

ter, the encoder and decoder are learned with the 325

same neural network agents, which develop their 326

own kinship terminology while playing a referen- 327

tial game. We refer to these systems as HP (for 328

Human-Probabilistic) and NN, respectively. 329

4.1 Human (HP) Kinship Systems 330

We investigate kinship naming across four natu- 331

ral languages—English, Dutch, Spanish, and Viet- 332

namese. We estimate the communicative need dis- 333

tribution p(u), the Speaker’s encoder qs(w|u), and 334

the corresponding Bayesian decoder q̃s(u|w) using 335

frequency counts extracted from text corpora, as 336

in Kemp and Regier (2012) (however, unlike this 337

study, we estimate a separate need distribution for 338
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each language).339

Concretely, for each family member u, we com-340

pile a set of commonly used referring expres-341

sions T (u), e.g., “mother,” “mommy,” “mom”342

for mother. For each term w ∈ T (u), we esti-343

mate count(u,w)—the number of times w refers344

to u—by searching the corpora using possessive345

constructions with the first person singular pronoun346

in each language, such as “my mother”. If a term347

is polysemous (e.g., “brother” can refer to either348

elder brother or younger brother), the count is349

evenly divided among all plausible referents u.350

We then compute the total frequency of each351

referent u by summing the counts across all its352

corresponding terms353

count(u) =
∑

w∈T (u)

count(u,w)354

Let F be the set of all family members excluding355
ego, we finally estimate the required distributions356

p(u) =
count(u)∑
v∈F count(v)

; qs(w|u) =
count(u,w)

count(u)
357

358
q̃s(u|w) =

qs(w|u)p(u)∑
v∈F qs(w|v)p(v)

359

Further details regarding the corpora used and360

the counts are presented in Appendix G.361

4.2 Emergent (NN) Kinship Systems362

In order to prompt the emergence of a neural-363

network based kinship system, we frame the model364

task as a referential game in which the referents are365

family members (see Figure 1). The NN-Speaker366

is given access to the full family tree along with a367

randomly selected target individual. Based on this368

input, the Speaker generates a message intended to369

identify the target. Upon receiving the message and370

observing a candidate set that includes the target,371

the NN-Listener must infer which candidate the372

NN-Speaker is referring to.373

4.2.1 Input encoding374

Most of the literature in language emergence uses375

input representations based on images (Havrylov376

and Titov, 2017; Lazaridou et al., 2017; Evtimova377

et al., 2018; Bouchacourt and Baroni, 2018) or fea-378

ture vectors (Kottur et al., 2017; Chaabouni et al.,379

2020). The tree-like structure of a family tree, how-380

ever, motivates the use of a structure that is more381

akin to trees–such as graphs.382

A kinship graph consists of 33 nodes, including383

a designated ego node, which can be either “Bob”384

Figure 3: The kinship graph is adapted from the familial
structures described by Kemp and Regier (2012). Nodes
are labeled using abbreviations, where “F”, “M”, “B”,
“Z”, “S”, “D”, “y”, and “e” stand for “father”, “mother”,
“brother”, “sister”, “son”, “daughter”, “younger”, and
“elder”, respectively. For example, MBe denotes the
“mother’s elder brother”. Each edge in the graph is
bidirectional, labeled parent-of when traversing top-
down and child-of when traversing bottom-up.

(male) or “Alice” (female). The graph is adapted 385

from the used family tree and is visualized in Fig- 386

ure 3. Each node represents an individual family 387

member and is annotated with categorical features 388

that encode key relational distinctions: 389

• Gender (male or female),1 390

• Gender relative to ego (equal or different), 391

• Age relative to ego (older or younger), 392

• Age relative to parent (older or younger) 393

All features are one-hot encoded and are designed 394

to reflect the compositional kinship semantics used 395

in Kemp and Regier (2012). 396

To connect nodes (i.e., family members), we di- 397

verge from Kemp and Regier (2012) by using only 398

the two most primitive relationships—parent-of 399

and child-of—which allow bidirectional traversal 400

across generations. For example, the node F (fa- 401

ther) connects to Bob (ego) via “F is parent of 402

Bob,” and to Be (Bob’s elder brother) via “F is 403

parent of Be”; correspondingly, Bob and Be each 404

connect back to F via child-of edges. More com- 405

plex relationships in the kinship trees of Kemp and 406

Regier (2012), such as sibling-of, must instead be 407

inferred compositionally from the primitive rela- 408

tions. This design encourages agents to discover 409

1We consider only binary gender distinctions, consistent
with those typically encoded in human kinship systems.
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and exploit relational structure rather than rely on410

shortcut or explicitly labeled edges.411

We observe that the kinship graph contains412

redundant information. For instance, determin-413

ing whether two individuals are brothers can be414

achieved by checking whether they share either the415

same mother or the same father. To eliminate such416

redundancy, we apply a pruning procedure that re-417

tains only the shortest paths from each node to the418

ego. This results in a best-first-search tree. We419

refer to this process as graph pruning.420

4.2.2 Model architecture421

Our agents are implemented as two neural net-422

works. The NN-Speaker encodes the kinship graph423

G using a graph neural network GNNs, producing424

node-level embeddings:425

[h1, . . . ,h33] = GNNs(G)426

where hi ∈ Rd is the representation of the i-th427

node. To generate a message, the Speaker con-428

catenates the embeddings of the ego and target429

nodes, transforms them via a two-layer network,430

and applies the Gumbel-Softmax (GS) to sample a431

one-token message w from a fixed vocabulary V:432

scores(u) = Wlex ·Whid · cat(hego,htarget)433

w ∼ GS(scores(u))434

Here, Whid ∈ Rdh×2d and Wlex ∈ R|V|×dh are435

trainable weight matrices, and scores(u) ∈ R|V|436

denotes the unnormalized scores for tokens. Unless437

stated otherwise, we use a vocabulary of size |V| =438

128 and a Gumbel-Softmax temperature of 1.5.439

The NN-Listener receives the same graph along440

with the sampled message w and infers the target441

referent. It encodes the graph using another graph442

neural network GNNl, identical in architecture to443

the Speaker’s, and computes compatible scores be-444

tween the message and family members:445

[v1, . . . ,v33] = GNNl(G)446

scorel(w, i) = e⊤w ·W · vi ∀i ∈ [1, . . . , 33]447

where vi ∈ Rd is the embedding of node i, ew ∈448

Rdh is the embedding of token w, and W ∈ Rdh×d449

is a trainable bilinear transformation. The Lis-450

tener selects the node with the highest score as its451

prediction. In all experiments, we use three shared-452

parameter graph neural layers, set d = 80 and453

dh = 20, and the NN-Speaker and NN-Listener do454

not share parameters.455

Graph neural networks (GNNs) serve as the 456

backbone of both agents, enabling the processing of 457

structured relational data and facilitating the emer- 458

gence of compositional communication. Given the 459

inherently relational nature of kinship structures, 460

we adopt RGCN (Schlichtkrull et al., 2018), which 461

is specifically designed for multi-relational graphs. 462

In addition, we explore alternative GNN architec- 463

tures and hyperparameter configurations, as de- 464

tailed in Appendix E. 465

4.2.3 Training 466

From the kinship graph described above, we gen- 467

erate a dataset of 10,000 data points, each cor- 468

responding to a single game turn. Each data 469

point consists of: (i) the full pruned kinship 470

graph with the ego node uniformly sampled from 471

{Bob,Alice}; (ii) a target node u uniformly se- 472

lected from the remaining 32 nodes; (iii) a distrac- 473

tor set D of five nodes, uniformly sampled from 474

the remaining nodes (i.e., excluding both the ego 475

and the target node). 476

We split the dataset into 80% for training and 477

20% for validation. The two agents are trained 478

jointly to minimize the following loss: 479

L = −
∑
(u,D)

log
exp(scorel(w, u))∑

v∈{u}∪D exp(scorel(w, v))
480

where w is the message generated by the Speaker 481

for target u.2 We use the Adam optimizer with a 482

learning rate of 1× 10−3, training for 500 epochs 483

using mini-batches of size 50. 484

4.2.4 Evaluation 485

To assess the generalizability of the learned com- 486

munication protocol, we evaluate the agents ev- 487

ery 5 epochs on a more challenging setting than 488

used during training or validation. Specifically, 489

the NN-Listener must identify the target node from 490

among all 32 possible family members (rather than 491

from a limited set of six candidates, as done during 492

training). The evaluation dataset thus consists of 493

2 × 32 = 64 data points, corresponding to each 494

combination of ego ∈ {Bob,Alice} and the 32 495

non-ego family members as targets. 496

Unlike during training, the NN-Speaker operates 497

deterministically at evaluation time, producing the 498

most likely token: w∗ = argmaxw scores(u)[w]; 499

hence qs(w|u) = [[w = w∗]]. The NN-Listener 500

2Note that during training, w sampled from the Gumbel-
Softmax is a distribution over V , rather than a discrete token
as in evaluation.
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computes a probability distribution over all can-501

didates using a softmax over the score function:502

ql(u|w) ∝ exp(scorel(w, u)).503

5 Experiments504

We conduct computational experiments to validate505

our theoretical framework on the optimality of kin-506

ship naming across four languages: English, Dutch,507

Spanish, and Vietnamese.508

5.1 Systems509

For each natural language, we evaluate kinship510

naming between an HP-Speaker and one of the511

following versions of the HP-Listener:512

• Optimal HP-Listener, which employs a de-513

coder identical to the Bayesian decoder used514

by the HP-Speaker;515

• Noise_re HP-Listener (re ∈ (0, 1]), a variant516

of the optimal Listener that introduces random517

errors by misinterpreting a family member as518

another with probability re (i.e., with re error519

rate). The higher the value of re, the more the520

HP-Listener deviates from the optimal one.521

Each noisy (or suboptimal) HP-Listener is simu-522

lated with a population of 10,000 listeners to ensure523

reliable performance estimates.524

We also evaluate the communication perfor-525

mance of our neural network agents (NN) under526

each language-specific communicative need distri-527

bution.3 The communication setup is ego-specific,528

with ego ∈ {Bob,Alice}. Following the configu-529

ration described in Section 4 and summarized in530

Appendix C, we repeat training and evaluation 50531

times to account for variability across runs.532

5.2 Metrics533

Since our primary interest lies in the optimality of534

the complexity-information loss tradeoff, our pri-535

mary performance metric is the Euclidean distance536

to the optimal curve, defined in Section 3.3.537

In addition, under each language’s communica-538

tive need distribution, we evaluate accuracy, de-539

fined as the expected probability that a Listener540

correctly identifies the intended referent family541

member: Eu∼p, w∼qs(·|u) [ql(u|w)]. This is a re-542

laxed variant of traditional accuracy, since the pre-543

cise predictions of (natural language) Listeners are544

3We use the EGG framework (Kharitonov et al., 2019) and
the PyTorch Geometric library (Fey and Lenssen, 2019). Our
source code is publicly available at abc.anonymized.xyz.
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Figure 4: (Top) Trade-offs of HP and NN systems, av-
eraged over 50 runs (standard deviation shown as light
gray ellipses). Trade-offs under suboptimal HP-Listener
conditions collectively form lines approximately paral-
lel to the optimal curve. Lines are annotated with error
rate re and distance d to the optimal curve. (Bottom)
Accuracy of NN and human systems with optimal HP-
Listener.

not directly observable due to polysemy (e.g., the 545

term “brother” may refer to either elder brother 546

or younger brother). 547

5.3 Results 548

The impact of sub-optimal HP-Listeners. We 549

evaluate four suboptimal HP-Listeners with error 550

rates re ∈ {0.1%, 0.5%, 1%, 2%}. Figure 4-top 551

shows the trade-off under each of these HP-Listener 552

conditions, plus the condition without noise (opti- 553

mal HP-Listener). The figure reveals that, across 554

all languages, communication with the optimal HP- 555

Listener lies exactly on the optimal curve (i.e., zero 556

distance), while communication with noisier Lis- 557

teners deviates progressively further from it. More- 558

over, HP-Listeners with lower error rates consis- 559

tently yield more favorable trade-offs than those 560

with higher error rates. These findings align with 561

the theoretical prediction outlined in Section 3.3, 562

which posits that trade-off optimality depends on 563

how closely the HP-Listener’s decoder approxi- 564

mates the Bayesian decoder of the HP-Speaker. 565

Interestingly, we observe that human commu- 566

nication systems in the three indoeuropean lan- 567

guages—English, Dutch, and Spanish—exhibit 568
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similar levels of adjusted complexity and informa-569

tion loss (and also accuracy as shown in Figure 4-570

bottom). In contrast, Vietnamese shows higher571

information loss but lower adjusted complexity,572

suggesting that it has more capacity to increase573

complexity in order to improve informativeness.574

HP vs NN. Since the NN models are trained to575

minimize information loss, they are not inherently576

constrained by complexity. Fortunately, we find577

that early stopping serves as an effective mecha-578

nism for limiting complexity, therefore we select579

the checkpoint with accuracy closest to that of hu-580

man communication (see Figure 4-bottom).581

Figure 4-top shows that the NN communication582

system achieves trade-offs that are closer to the op-583

timal curve than human communication with the584

error_1% HP-Listener. This suggests that com-585

munication systems emerging from object naming586

tasks can approach theoretical optimality without587

incurring exhaustive complexity—similar to hu-588

man communication.4589

NN naming system evolves towards optimality.590

Building on the previous results, we examine the591

evolution of NN communication over time. Fig-592

ure 5 shows the trade-offs under the communicative593

need distribution for English (results for other lan-594

guages are in Appendix D).595

Initially, the emergent communication exhibits596

moderate complexity but high information loss, as597

agents rely on only a few vocabulary terms, re-598

sulting in a simple but inefficient language. As599

training progresses, information loss gradually de-600

creases at the cost of increasing complexity, with601

the trade-off trajectory approaching the optimal602

curve. This trend suggests that agents progressively603

expand their vocabulary usage to enhance commu-604

nicative success, thereby reducing information loss605

while incurring greater complexity.606

6 Discussion and Conclusion607

We have presented an information-theoretic frame-608

work to measure the trade-off between information609

loss and complexity in discrete object naming sys-610

tems. We have shown that optimality is reached611

only when assuming a perfect HP-Listener. This612

has consequences for communication settings in613

4Note that information loss is not an absolute indicator
of accuracy—for example, in the case of Vietnamese. This
is analogous to what is commonly observed between log-
likelihood and accuracy in classification tasks.
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Figure 5: Trajectories of NN systems over time,
recorded every 10 epochs, under the English commu-
nicative need distribution. Results are averaged over 50
runs, with standard deviation represented by ellipses.

which perfect message reception cannot be guar- 614

anteed, which is in fact common in noisy realistic 615

scenarios; in fact, even human listeners with clini- 616

cally normal hearing struggle with decoding in ev- 617

eryday communication (Ruggles et al., 2011). Our 618

framework allows for the estimation of trade-offs 619

that systems can achieve under realistic conditions, 620

whether in human communication or in applied set- 621

tings where message passing between agents may 622

be subject to perturbations. 623

The human kinship systems we have analyzed 624

abide to the above: under the assumption of an opti- 625

mal HP-Listener, these systems are exactly optimal. 626

Interestingly, the trade-offs vary between language 627

families, with Vietnamese affording lower com- 628

plexity than the indoeuropean languages, at the cost 629

of informativeness. The reason for cross-linguistic 630

contrasts must lie either on the semantic partitions 631

into kinship categories, or on differences in com- 632

municative need. We leave this analysis to future 633

work, along with an expansion on the analyzed 634

languages and linguistic families. 635

Finally, we have shown that NN models exhibit 636

a trade-off comparable to that of HP systems with 637

less than 1% noise. This suggests that optimiz- 638

ing only for communication accuracy (or informa- 639

tion loss) and applying early stopping are sufficient 640

mechanisms to trigger the learning and evolution- 641

ary dynamics that result in the observed trade-offs. 642

Overall, our framework allows us to characterize 643

discrete naming systems in general, and analyze 644

kinship naming systems in particular, both as found 645

in human language and as emerging from com- 646

munication games. Our results bode well for the 647

use of emergent communication setups to develop 648

efficient naming systems in any applied settings. 649
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7 Limitations650

As in Zaslavsky et al. (2018)’s Information Bot-651

tleneck framework, we measure complexity as the652

mutual information between the object and word653

random variables. This quantity is upper-bounded654

by the entropy of the communicative need distribu-655

tion. However, this measure does not fully capture656

the richness of natural languages: in principle, a657

language can achieve unbounded complexity by658

continually expanding its vocabulary.659

We restrict our NN communication systems to660

one-token messages, whereas natural languages of-661

ten employ compositional expressions to refer to662

kinship relations—i.e., components of the expres-663

sion systematically correspond to semantic proper-664

ties of the kin category. For example, in English,665

the prefix grand- consistently denotes parent-of-666

, while in Spanish, the suffixes -a and -o typi-667

cally indicate female and male family members,668

respectively. Such compositional strategies can-669

not emerge in our current setup. Additionally, be-670

cause the NN-Speaker generates names determin-671

istically, the emergent language lacks synonymy,672

which is common in natural languages (e.g., in En-673

glish mother may be referred to as either “mother”674

or “mum”).675
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A A Lower bound for Information Loss808

In this appendix we derive a lower bound for infor-809

mation loss.810

L =− Eu∼pEw∼qs(·|u) log ql(u|w)811

=−
∑
u

p(u)
∑
w

qs(w|u) log ql(u|w)812

=−
∑
u

p(u)
∑
w

qs(w|u)813

log

[
p(u)

qs(w|u)
ps(w)

· ql(u|w)ps(w)
qs(w|u)p(u)

]
814

=−
∑
u

p(u)
∑
w

qs(w|u) log p(u)815

−
∑
u

p(u)
∑
w

qs(w|u) log
qs(w|u)
ps(w)

816

−
∑
u

p(u)
∑
w

qs(w|u) log
ql(u|w)ps(w)
qs(w|u)p(u)

817

=−
∑
u

p(u) log p(u)818

−
∑
u,w

p(u)qs(w|u) log
qs(w|u)
ps(w)

819

+
∑
w

ps(w)
∑
u

q̃s(u|w) log
q̃s(u|w)
ql(u|w)

820

=H(U)− C + Ew∼ps [DKL(q̃s∥ql)]821

where:822

• H(U) = −
∑

u p(u) log p(u) is the entropy823

of the communicative need distribution;824

• C is the complexity, as defined in Section 3.1;825

• q̃s(u|w) = qs(w|u) p(u)
ps(w) is the Bayesian de-826

coder of the Speaker.827

Since the KL divergence is always non-negative,828

the information loss is lower-bounded by:829

L ≥ H(U)− C.830

This bound is achieved when ql = q̃s, i.e., when831

the Listener’s decoder is identical to the Bayesian832

decoder of the Speaker.833

B Compatibility with the Information834

Bottleneck Framework (Zaslavsky835

et al., 2018)836

In Zaslavsky et al. (2018)’s Information Bottleneck837

(IB) framework for color naming (Figure 6), the838

Speaker and Listener communicate about colors 839

u ∈ U , where U represents a continuous perceptual 840

space. Upon perceiving a color u, the Speaker 841

selects a meaning m, modeled as a distribution over 842

U , and then generates a name w using the encoder 843

qs(w|m). The Listener decodes the message using: 844

m̂w(u) =
∑
m

q̃s(m|w)m(u), 845

which defines the Bayesian-optimal listener. 846

In this framework, assuming a Bayesian-optimal 847

Listener, complexity is quantified as the mutual in- 848

formation between the Speaker’s meaning variable 849

M and the word variable W : 850

Iqs(M ;W ) =
∑
m,w

ps(m) qs(w|m) log
qs(w|m)

ps(w)
, 851

while informativeness is captured by the mutual in- 852

formation Iqs(W ;U), measuring how much infor- 853

mation the word conveys about the original object. 854

Following the IB principle, an optimal trade- 855

off between complexity and informativeness is 856

achieved by minimizing the following objective: 857

Fβ[qs(w|m)] = Iqs(M ;W )− βIqs(W ;U), 858

where β ≥ 1 is a trade-off parameter that balances 859

compression and informativeness. 860

When adapting the IB framework to a discrete 861

domain such as kinship, the objects u are inherently 862

discrete. In this setting, we can assume a one-to- 863

one correspondence between the object set U and 864

the agents’ meaning space, allowing us to conflate 865

u and m, as well as the corresponding random 866

variables U and M . This assumption is consistent 867

with Zaslavsky et al. (2018), who, in their color 868

naming experiment, discretize the color space into 869

a finite set of color chips, each of which is mapped 870

to a distinct meaning. Under this assumption, the 871

Bayesian Listener’s decoder simplifies to: 872

m̂w(u) = q̃s(u|w), 873

which is identical to the Bayesian decoder of the 874

Speaker in our framework. 875

In this discrete setting, complexity and informa- 876

tiveness converge to the same quantity, and the IB 877

objective reduces to: 878

Fβ[qs(w|m)] = Iqs(U ;W )− βIqs(W ;U) 879

= (1− β)Iqs(W ;U). 880

11



Figure 6: (A) Schematic of the communication model
from Zaslavsky et al. (2018). (B) Example of color
communication. (Figure adapted from Zaslavsky et al.
(2018))

Two cases arise: (i) If β = 1, the objective equals881

zero, regardless of the system’s informativeness or882

complexity; (ii) If β > 1, the objective is min-883

imized when the system achieves maximal com-884

plexity, which corresponds to the entropy H(U)885

of the object distribution. However, since natural886

languages tend to balance informativeness with ef-887

ficiency rather than maximize complexity, the latter888

case is not of primary interest.889

The first case (β = 1) clearly establishes that890

a system in which the Listener’s decoder matches891

the Bayesian decoder of the Speaker achieves an892

optimal trade-off. This outcome is fully compati-893

ble with our theoretical framework. Nonetheless,894

the IB framework, by using Iqs(W ;U) to measure895

informativeness, does not account for the impact896

of suboptimal listeners. Moreover, it assumes a897

fixed communicative need distribution p(u), and898

thus does not capture cross-linguistic variability in899

communicative demands.900

C Hyper-parameters901

We show relevant hyper-parameters for all exper-902

iments in Table 1. Gumbel-softmax temperature903

controls the Gumbel-softmax sampling distribu-904

tion: lower values tend towards a one-hot encod-905

ing, whereas higher values tend towards a uniform906

encoding.907

D The evolution of NN Kinship System908

We show in Figure 7 how NN communication909

evolved during training in the environments of the910

four languages: English, Dutch, Spanish, and Viet-911

namese.912
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Figure 7: Evolution of complexity and information loss
in ego-specific NN communication (average over 50
runs) under four communicative need distributions En-
glish, Dutch, Spanish, and Vietnamese.
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Table 1: Hyperparameter settings used in our experiments. The third column reports the values selected for the
main study, while the last column lists the values considered during architecture search.

Hyperparameter Value (main study) Values (architecture search)

Model Architecture

embedding dimensions d 80 –
hidden dimension dh 20 –
Graph neural net RGCN RGCN, GATv2Conv
# graph net layers 3 –
Vocabulary size |V| 128 16, 32, 64, 128, 256
Graph pruning True True, False

Training

Optimizer Adam –
Learning rate 1× 10−3 –
Batch size 50 –
# distractors 5 –
Gumbel-softmax temperature 1.5 –

Figure 8: Evaluation accuracy, for simulations with and
without pruning (n=40 runs, varying initialization).

E Impact of Model Architecture on913

Performance914

We investigate the impact of architectural choices915

that led to the NN-agents used in the main study.916

Specifically, we examine three factors: graph prun-917

ing, layer type, and channel capacity (i.e., vocabu-918

lary size) in the environment of uniform commu-919

nicative need distribution.920

In the first study, based on the configuration921

described in Section 4 and summarized in Ap-922

pendix C, we construct four variants by system-923

atically varying the use of graph pruning and the924

choice of layer type (either RGCN (Schlichtkrull925

et al., 2018) or GATv2Conv (Brody et al., 2022)).926

As shown in Figure 8, both graph pruning and the927

use of RGCN layers are critical for achieving high928

communicative success, each contributing approx-929

imately 20 percentage points to the final communi-930

cation accuracy of the NN-agents.931

In the second study, we vary the vocabulary size932

(16, 32, 64, 128, 256) to examine the effect of933

channel capacity. Figure 9 demonstrates that a suf-934

Figure 9: Evaluation accuracy, for simulations with
pruning and RGCN layer (n=50 runs in total, with 10
different initializations for each vocabulary size).

ficiently large vocabulary relative to the size of the 935

object set (32 kinship terms in our case) is crucial. 936

For instance, a vocabulary size of 16 constrains 937

communication to approximately 50% accuracy. In 938

contrast, increasing the vocabulary size to 32 or 939

greater substantially improves accuracy to 80% and 940

above. 941

F Human Communication with 942

Suboptimal HP-Listeners 943

We investigate the impact of suboptimal HP- 944

Listeners on human communication across four 945

language environments: English, Dutch, Spanish, 946

and Vietnamese. Figure 10 reports both the dis- 947

tance to the optimal trade-off curve and the accu- 948

racy of the corresponding communication systems. 949

The results reveal a linear relationship between 950

the HP-Listener’s error rate and both distance and 951

accuracy. This finding supports our theoretical 952

framework, confirming that communication with 953

noisier HP-Listeners—i.e., those that deviate more 954

from the optimal Listener—results in trade-offs 955
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that lie further from the optimal curve.956

0 20 40 60 80 100
error rate (%)

0

5

10

15

20

di
st

an
ce

English
Dutch
Spanish
Vietnamese

0 20 40 60 80 100
error rate (%)

0

20

40

60

80

ac
cu

ra
cy

 (%
)

English
Dutch
Spanish
Vietnamese

Figure 10: (Top) Distance to the optimal curve and
(Bottom) accuracy of human communication with
suboptimal Listeners at varying error rates re ∈
{0, 0.001, 0.005, 0.01, 0.02, 0.1, 1.0}. Dashed lines in-
dicate the linear relationship between error rate and
distance/accuracy.

G Kinship counts957

We extract counts of family-member and kinship-958

term pairs (see Table 2) from text corpora in four959

languages: English, Dutch, Spanish, and Viet-960

namese.961

• English: We use the Corpus of Contemporary962

American English (COCA) (Davies, 2010), a963

widely-used and balanced corpus of American964

English. It contains over one billion words965

from 1990–2019, covering eight genres such966

as spoken language, fiction, news, academic967

writing, and web content.968

• Dutch: We use the SoNaR corpus (Oostdijk969

et al., 2013), a 500-million-word reference970

corpus of contemporary Dutch that includes971

both written and spoken data. SoNaR inte- 972

grates material from various sources such as 973

newspapers, newsletters, books, websites, and 974

transcripts, offering broad coverage of modern 975

Dutch across genres. 976

• Spanish: We use the NOW (News on 977

the Web) corpus from the Corpus del 978

Español (Davies, 2002–2024), which includes 979

approximately 7.6 billion words from web- 980

based newspapers and magazines across 21 981

Spanish-speaking countries, collected be- 982

tween 2012 and 2019. This corpus provides 983

broad coverage of modern written Spanish as 984

used in news media. 985

• Vietnamese: We use the VietVault cor- 986

pus (Pham, 2024), a dataset filtered and cu- 987

rated from Common Crawl dumps prior to 988

2023. The full corpus contains 80GB of raw 989

Vietnamese text spanning multiple domains. 990

For our analysis, we sample a 5GB subset 991

from the corpus to extract counts. 992
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Table 2: Counts for (family-member, term) pairs from text corpora.

English Dutch Spanish Northern Vietnamese

Gen. Label Full Name Term Count Term Count Term Count Term Count

1st MM mother’s mother Grandmother 3949 Grootmoeder 529 Abuela 8577.5 bà ngoại 210
Grandma 882 Oma 548.5 Yaya 10 bà 411.5

Gran 25.5
MF mother’s father Grandfather 3189 Grootvader 720 Abuelo 8075.5 ông ngoại 125

Grandpa 399.5 Opa 361.5 Yayo 2 ông 1210
FM father’s mother Grandmother 3949 Grootmoeder 529 Abuela 8577.5 bà nội 266

Grandma 882 Oma 548.5 Yaya 10 bà 411.5
Gran 25.5

FF father’s father Grandfather 3189 Grootvader 720 Abuelo 8075.5 ông nội 290
Grandpa 399.5 Opa 361.5 Yayo 2 ông 1210

2nd M mother Mother 65458 Moeder 18009 Madre 64464 mẹ 18004
Mom 29849 Mama 1511 Mama 1295

Mommy 707 Ma 1186 Mami 1071
Momma 388 Mamá 52914

F father Father 63318 Vader 19939 Padre 77214 bố 5021
Dad 31100 Papa 896 Papa 1250 cha 3390

Daddy 3017 Pa 1346 Papi 512
Papá 47494

MZy mother’s younger sister Aunt 1022 Tante 204.75 Tía 1404.75 dì 243
Auntie 29 Tita 1.5

MBy mother’s younger brother Uncle 1501.75 Oom 509 Tío 1404.75 cậu 237
Tito 2.5

MZe mother’s elder sister Aunt 1022 Tante 204.75 Tía 1404.75 bác gái 2.5
Auntie 29 Tita 1.5 bác 96.5

MBe mother’s elder brother Uncle 1501.75 Oom 509 Tío 1404.75 bác trai 2
Tito 2.5 bác 96.5

FZy father’s younger sister Aunt 1022 Tante 204.75 Tía 1404.75 cô 435
Auntie 29 Tita 1.5

FBy father’s younger brother Uncle 1501.75 Oom 509 Tío 1404.75 chú 388
Tito 2.5

FZe father’s elder sister Aunt 1022 Tante 204.75 Tía 1404.75 bác gái 2.5
Auntie 29 Tita 1.5 bác 96.5

FBe father’s elder brother Uncle 1501.75 Oom 509 Tío 1404.75 bác trai 2
Tito 2.5 bác 96.5

3rd Zy younger sister Sister 9587.5 Zus 2029.5 Hermana 13610.5 em 2425.5
Sis 43.5 Zusje 826 Tata 82 em gái 849

By younger brother Brother 11687 Broer 2968 Hermano 22723 em 2425.5
Bro 63.5 Broertje 565 Tete 4 em trai 459

Ze elder sister Sister 9587.5 Zus 2029.5 Hermana 13610.5 chị 1752
Sis 43.5 Tata 82

Be elder brother Brother 11687 Broer 2968 Hermano 22723 anh 3173
Bro 63.5 Tete 4

4th D daughter Daugther 23571 Dochter 10378 Hija 68744 con 5296.5
Dochtertje 1580 con gái 2543

S son Son 28815 Zoon 8737 Hijo 94575 con 5296.5
Zoontje 3753 con trai 2370

ZyD younger sister’s daugter Niece 326.25 Nicht 71.75 Sobrina 746 cháu 275.33
Nichtje 121.75 cháu họ 4

ZyS yougher sister’s son Nephew 339.25 Neef 177.75 Sobrino 1067 cháu 275.33
Neefje 76.5 cháu họ 4

ByD younger brother’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 cháu 275.33
Nichtje 121.75 cháu họ 4

ByS younger brother’s son Nephew 339.25 Neef 177.75 Sobrino 1067 cháu 275.33
Neefje 76.5 cháu họ 4

ZeD elder sister’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 cháu 275.33
Nichtje 121.75 cháu họ 4

ZeS elder sister’s son Nephew 339.25 Neef 177.75 Sobrino 1067 cháu 275.33
Neefje 76.5 cháu họ 4

BeD elder brother’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 cháu 275.33
Nichtje 121.75 cháu họ 4

BeS elder brother’s son Nephew 339.25 Neef 177.75 Sobrino 1067 cháu 275.33
Neefje 76.5 cháu họ 4

5th DD daughter’s daughter Granddaughter 370 Kleindochter 87 Nieta 1304 cháu 275.33
cháu ngoại 30

DS daughter’s son Grandson 478 Kleinzoon 117 Nieto 1685.5 cháu 275.33
cháu ngoại 30

SD son’s daughter Granddaughter 370 Kleindochter 87 Nieta 1304 cháu 275.33
cháu nội 25

SS son’s son Grandson 478 Kleinzoon 117 Nieto 1685.5 cháu 275.33
cháu nội 25
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