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Abstract

The structure of naming systems in natural lan-
guages hinges on a trade-off between high in-
formativeness and low complexity. Prior work
capitalizes on information theory to formalize
these notions; however, these studies gener-
ally rely on two assumptions: (i) optimal lis-
teners, and (ii) universal communicative need
across languages. Here, we address these limi-
tations by introducing an information-theoretic
framework for discrete object naming systems,
and we use it to prove that an optimal trade-
off is achievable only when the listener’s de-
coder is equivalent to the Bayesian decoder of
the speaker. Adopting a referential game setup
from emergent communication, and focusing
on the semantic domain of kinship, we show
that our notion of optimality is not only theoret-
ically achievable but also emerges empirically
in learned communication systems.

1 Introduction

Languages across the world exhibit substantial vari-
ation in their lexical systems. On the surface level,
lexical items that refer to equivalent meanings are
expressed in different word forms (e.g., the word
aunt in English is tia in Spanish), but also at
the semantic level, meaning partitions vary cross-
linguistically (in Vietnamese, there are different
words for aunt, depending on whether she is the
younger or elder sister of one’s mother or father).
Despite the richness of this variation, it does not
appear to be arbitrary. A growing body of work
suggests that languages do not explore the space
of possible semantic partitions freely, as evidenced
by constrained and recurrent cross-linguistic pat-
terns (Kemp and Regier, 2012; Regier et al., 2015;
Zaslavsky et al., 2018; Kemp et al., 2018; Carr
et al., 2020; Chaabouni et al., 2021). Instead, the
structure of object naming systems appears to re-
flect pressures for communicative—and possibly
cognitive—efficiency. These pressures are thought

to be domain-general, as similar patterns have been
observed across semantic domains such as kinship,
color, and general object categorization. In partic-
ular, these studies suggest that languages tend to
evolve toward object naming systems that approx-
imate an (often near-)optimal trade-off between
informativeness and complexity.

To formalize this trade-off, much of the prior
work capitalizes on constructs from information
theory (Shannon, 1948). Informativeness is typi-
cally quantified by the amount of information pre-
served in communication—often framed as the in-
verse of information loss—while complexity mea-
sures how concisely a language compresses mean-
ing into words. These frameworks define opti-
mal trade-off boundaries: curves along which no
system can reduce complexity without increasing
information loss, or decrease information loss with-
out becoming more complex.

As an example, Kemp and Regier (2012) demon-
strate that natural kinship systems lie near the op-
timal trade-off frontier. However, since their mea-
sure of complexity is based on the shortest kin-
ship description in a language, it is not analytically
tractable to derive a closed-form expression for the
trade-off curve. As a workaround, they approxi-
mate the curve using a set of generated hypothetical
systems. In contrast, the Information Bottleneck
(IB) framework (Tishby et al., 2000) enables Za-
slavsky et al. (2018, 2019); Chaabouni et al. (2021)
to derive theoretical, closed-form approximations
of the optimal trade-off frontier in domains such as
color, container, and animal naming.

However, these studies generally rely on two sim-
plifying assumptions: (i) that listeners are optimal
in the Bayesian sense, and (ii) that a universal com-
municative need distribution, i.e., a distribution
over the object space, applies uniformly across all
languages. The first assumption overlooks the im-
pact of listener suboptimality, which can arise from
various factors in real-world settings (Gibson et al.,



2019). The second assumption clearly oversimpli-
fies the cultural and linguistic diversity observed
across natural communication systems.

In this work, we revisit the question of how
to measure optimality in object naming systems,
particularly in scenarios where the objects are in-
herently discrete. Building on prior work such
as Kemp and Regier (2012) and Zaslavsky et al.
(2018), our approach is grounded in information
theory. Unlike these earlier studies, however, we
derive an exact, closed-form expression for the op-
timal trade-off curve. This formulation enables us
to analyze how both optimal and suboptimal lis-
teners influence the informativeness—complexity
trade-off in communication. Moreover, because
the optimal curve is agnostic to the communicative
need distribution, it supports meaningful compar-
isons of communication systems across varying
distributions over the objects to be named.

Our contributions are as follows. First, we intro-
duce an information-theoretic framework that for-
mally characterizes information loss, complexity,
and optimality in discrete object naming systems.
Second, using this framework, we prove that object
naming achieves an optimal trade-off under a spe-
cific and well-defined condition—namely, when
the listener’s decoder is equivalent to the Bayesian
decoder the speaker. Third, adopting a referential
game setup commonly used in emergent commu-
nication (Lazaridou and Baroni, 2020; Lazaridou
et al., 2017; Havrylov and Titov, 2017; Chaabouni
et al., 2022), and focusing on the semantic domain
of kinship, we show that our notion of optimality is
not only theoretically achievable but also emerges
empirically in learned communication systems.

2 Background

The observed structure of object naming systems
in natural languages appears to balance complex-
ity and informativeness, often achieving a near-
optimal trade-off. However, the definition of op-
timality is underpinned by the definitions of com-
plexity and informativeness, and those are not
unique. A relevant distinction lies in the fact that
some of these domains are inherently continuous
(e.g., color), while others are concerned with dis-
crete ‘objects’, such as kinship. Here we focus on
two representative cases of this distinction.

2.1 Optimality in Color Naming

Zaslavsky et al. (2018) introduce an information-
theoretic framework for quantifying the trade-off

between informativeness and complexity in lexi-
cal systems. Focusing on the continuous domain
of color, they propose that natural color naming
systems approximate optimal trade-offs by com-
pressing perceptual meanings into words in a man-
ner consistent with the Information Bottleneck (IB)
principle (Tishby et al., 2000), provided that listen-
ers are optimal in the Bayesian sense.

In this framework, meanings are modeled as
probability distributions over perceptual states—
in this case, color stimuli—while lexical items
are treated as compressed representations of these
distributions. The IB objective seeks an encoder
q(w|m) that maps meanings m to words w by min-
imizing the following functional:

Folg(wim)] = Io(M; W) = BI,(W; U),

where I,(M; W), the mutual information between
meanings and words, quantifies the complexity of
the lexicon, and I,(W;U) measures how much
information about the environment is preserved
through language. The trade-off parameter 8 > 1
controls the balance between compression and in-
formativeness. By approximately minimizing this
functional across a range of 3 values, the authors
trace out the optimal trade-off curve in the two-
dimensional space defined by informativeness and
complexity. Using data from the World Color Sur-
vey (Cook et al., 2005), they demonstrate that nat-
ural languages approximate near-optimal solutions
for color naming, close to the optimal trade-off
frontier defined by the IB curve.

2.2 Optimality in Kinship Naming

Every society uses language to refer to family mem-
bers, or kin, through a system of lexical items that
categorize familial roles (e.g., father and sister).
A relevant source of cross-linguistic variation lies
in how kinship meaning space is partitioned, or in
other words, which family members are considered
part of the same semantic category. For example, in
English, both maternal and paternal grandmothers
fall under the same category (grandmother). In
contrast, Vietnamese differentiates both lineage and
age, employing distinct terms for maternal versus
paternal grandparents, and for older versus younger
siblings (Van Luong, 1989). At the other extreme,
Tagalog collapses the gender distinction entirely,
using a single term (kapatid) for both brother and
sister (Murdock, 1970).

Kemp and Regier (2012) observe that kinship
systems appear to reflect a trade-off between



informativeness—here, the ability to distinguish
between kin members based on kinship names—
and complexity. The latter relies on a symbolic
rule system to characterize the meaning of kinship
names through logical compositions of primitives
(e.g., mother would be PARENT & OLDER & FE-
MALE). Complexity is then quantified as the min-
imal number of logical rules needed to generate
the system. Informativeness is measured as the ex-
pected Kullback-Leibler (KL) divergence between
intended and inferred referents, averaged over a
communicative need distribution.

3 Framework

In this section, we introduce our information-
theoretic framework that formalizes the trade-off in
object naming. Specifically, we consider a scenario
where there is a pool I/ of objects, associated with
a communicative need distribution p(-). A Speaker
aims to communicate about an object u ~ p(u) by
selecting a message (or name) w € W with encod-
ing probability gs(w|u). The Speaker sends this
message to a Listener, who then attempts to infer
the intended object using a decoder ¢;(u|w).

As illustrated in Figure 1, consider an English-
speaking Speaker who wishes to refer to the
object © = elder brother. Due to the struc-
ture of English kinship terminology, the most
specific term available is w = “brother”, and
the Speaker deterministically selects it, i.e.,
qs(“brother”|elder brother) = 1. Upon re-
ceiving the message, an English-speaking Lis-
tener infers that the referent could be either el-
der brother or younger brother, assigning equal
probabilities:  g;(elder brother|“brother”) =
qi(younger brother|“brother”) = 0.5.

3.1 Complexity

Inspired by Zaslavsky et al. (2018), and viewing the
framework through the lens of Shannon’s commu-
nication model (Shannon, 1948), we quantify com-
plexity as the amount of information the Speaker
compresses through its encoder gs(w|u). This is
measured by the mutual information between the
object random variable U and the message random
variable W:

gs(wlu)

C=1,U;W)
QS Zp ps(w)

u) gs(wlu) IOg

where ps(w) = >, P(u)gs(wlu) is the
marginal distribution over messages. Intuitively,
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Figure 1: Illustration of two English-speaking agents
playing the kinship naming game. The Speaker (left)
selects a family member and produces a name. The Lis-
tener (right) receives the name and infers which member
is being referred to.

this quantity captures the average amount of in-
formation that a message w conveys about the in-
tended object u. If the same message is used for
every meaning, mutual information is zero. Con-
versely, if each meaning is encoded with a distinct
message, mutual information reaches its maximum
value—the entropy H (U). Thus, complexity is
bounded by 0 < C < H(U).

Notably, this measure of complexity increases
with lexical granularity: when the communica-
tion system encodes many fine-grained distinctions
among meanings, the mutual information is high;
when multiple meanings are collapsed onto a single
message, the complexity is correspondingly low.

3.2 Information Loss

Information loss quantifies how much information
is not preserved throughout the communication
process, and is therefore directly related to the er-
rors made by the Listener when picking a referent.
We define information loss as the expected cross-
entropy between the true referent and the Listener’s
prediction, i.e., the standard loss function in multi-
class classification:

L= —Eup Bung,(u) log g (ulw)

Intuitively, the more confident the Listener can be
about the intended object u given the message w,
the lower the information loss. Conversely, uncer-
tainty in decoding leads to higher loss.

3.3 Optimality

Let gs(u|w) o< gs(w|u)p(u) be the Speaker’s
Bayesian decoder. We prove in Appendix A that:

> H(U)-C (1)
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Figure 2: Visualization of the optimal trade-off curve
(red line) and the feasible region (white area) encom-
passing all valid communication systems. The Eu-
clidean distance from a system with complexity C' and
information loss L (the blue dot) to the curve is given

by d = Ewnp, [Dxe(Gslla)] /v2.

The inequality follows from the non-negativity of
the KL divergence.

This proof is an important contribution due to
the following reasons. First of all, a crucial result
from this identity is that equality holds if and only
if g = ¢s. This implies that, for discrete object
naming, the optimal trade-off is achieved when the
Listener’s decoder exactly matches the Bayesian
decoder of the Speaker.

Second, unlike the frameworks proposed by
Kemp and Regier (2012) and Zaslavsky et al.
(2018), Equation 1 provides an exact, closed-form
expression for the optimal trade-off curve. In ad-
dition, it offers a quantitative measure of deviation
from this curve. Specifically, we can compute the
Euclidean distance from a given communication

system to the curve analytically by d = %

3.4 Need-agnostic Optimal Curve

The curve L = H(U)—C described above depends
on the communicative need distribution p(u), due
to the inclusion of the entropy term H (U). This
dependency complicates cross-linguistic compar-
isons of optimality, as different need distributions
induce different optimal curves in the complex-
ity—information loss space. To address this issue,
prior work—including Kemp and Regier (2012)
and Zaslavsky et al. (2018)—has often assumed a
universal, fixed need distribution across languages.

Our framework offers a more principled alter-
native: by defining an adjusted complexity C' =
C — H(U) < 0, we transform the optimal curve
into the simplified form L = —C'. This reformula-
tion removes the dependence of the optimal trade-
off curve on p(u), while preserving Euclidean dis-
tance—thereby enabling meaningful comparisons
across languages, regardless of their underlying
communicative needs. Notably, the smaller C is,
the less complex the system is, and the more capac-
ity it has to increase in complexity. When C' = 0,
the system reaches its maximum allowable com-
plexity under the given need distribution.

Figure 2 illustrates the optimal trade-off curve,
along with the feasible region in which all valid
communication systems must lie. In Appendix B,
we demonstrate that our framework is compatible
with Zaslavsky et al. (2018)’s IB framework.

4 Kinship Case Study

We present a case study of object naming in the
domain of kinship, based on the familial structure
introduced by Kemp and Regier (2012). Illustrated
in Figure 3, this structure includes 33 family mem-
bers, spanning five generations, with a designated
ego representing the speaker. Since kinship terms
in some languages—such as Korean—depend on
the (binarized) gender of the speaker, we consider
two ego identities: Alice (female) and Bob (male).
We examine two types of kinship naming termi-
nologies: human (i.e., based on a sample of natural
languages) and neural network-based (i.e., emerg-
ing from neural-network (NN) agents simulations).
In the former case, we assume a simple probabilis-
tic model to formalize encoding and decoding of
messages by Speaker and Listener, while in the lat-
ter, the encoder and decoder are learned with the
same neural network agents, which develop their
own kinship terminology while playing a referen-
tial game. We refer to these systems as HP (for
Human-Probabilistic) and NN, respectively.

4.1 Human (HP) Kinship Systems

We investigate kinship naming across four natu-
ral languages—English, Dutch, Spanish, and Viet-
namese. We estimate the communicative need dis-
tribution p(u), the Speaker’s encoder ¢s(w|u), and
the corresponding Bayesian decoder ¢, (u|w) using
frequency counts extracted from text corpora, as
in Kemp and Regier (2012) (however, unlike this
study, we estimate a separate need distribution for



each language).

Concretely, for each family member u, we com-
pile a set of commonly used referring expres-
sions T'(u), e.g., “mother,” “mommy,” “mom”
for mother. For each term w € T'(u), we esti-
mate count(u, w)—the number of times w refers
to u—by searching the corpora using possessive
constructions with the first person singular pronoun
in each language, such as “my mother”. If a term
is polysemous (e.g., “brother” can refer to either
elder brother or younger brother), the count is
evenly divided among all plausible referents w.

We then compute the total frequency of each
referent u by summing the counts across all its
corresponding terms

count(u) = Z count(u, w)
weT (u)

Let F be the set of all family members excluding
ego, we finally estimate the required distributions

count(u)

p(u) = 5

(U) ) qs(w]u) =

v F count count(u)

gs(wlu)p(u)
ver 4s(w[v)p(v)

Further details regarding the corpora used and
the counts are presented in Appendix G.

gs(ulw) = 5

4.2 Emergent (NN) Kinship Systems

In order to prompt the emergence of a neural-
network based kinship system, we frame the model
task as a referential game in which the referents are
family members (see Figure 1). The NN-Speaker
is given access to the full family tree along with a
randomly selected target individual. Based on this
input, the Speaker generates a message intended to
identify the target. Upon receiving the message and
observing a candidate set that includes the target,
the NN-Listener must infer which candidate the
NN-Speaker is referring to.

4.2.1 Input encoding

Most of the literature in language emergence uses
input representations based on images (Havrylov
and Titov, 2017; Lazaridou et al., 2017; Evtimova
et al., 2018; Bouchacourt and Baroni, 2018) or fea-
ture vectors (Kottur et al., 2017; Chaabouni et al.,
2020). The tree-like structure of a family tree, how-
ever, motivates the use of a structure that is more
akin to trees—such as graphs.

A kinship graph consists of 33 nodes, including
a designated ego node, which can be either “Bob”

count(u, w)

Male
Female

Older (circle)
Younger (square)
Ego

Figure 3: The kinship graph is adapted from the familial
structures described by Kemp and Regier (2012). Nodes
are labeled using abbreviations, where “F”, “M”, “B”,
“Z2”,“S”, “D”, “y”, and “e” stand for “father”, “mother”,

“brother”, “sister”, “son”, “daughter”, “younger”, and

“elder”, respectively. For example, MBe denotes the
“mother’s elder brother”. Each edge in the graph is
bidirectional, labeled parent-of when traversing top-
down and child-of when traversing bottom-up.

(male) or “Alice” (female). The graph is adapted
from the used family tree and is visualized in Fig-
ure 3. Each node represents an individual family
member and is annotated with categorical features
that encode key relational distinctions:

 Gender (male or female),!
* Gender relative to ego (equal or different),
* Age relative to ego (older or younger),

* Age relative to parent (older or younger)

All features are one-hot encoded and are designed
to reflect the compositional kinship semantics used
in Kemp and Regier (2012).

To connect nodes (i.e., family members), we di-
verge from Kemp and Regier (2012) by using only
the two most primitive relationships—parent-of
and child-of—which allow bidirectional traversal
across generations. For example, the node F' (fa-
ther) connects to Bob (ego) via “F is parent of
Bob,” and to Be (Bob’s elder brother) via “F is
parent of Be”’; correspondingly, Bob and Be each
connect back to F via child-of edges. More com-
plex relationships in the kinship trees of Kemp and
Regier (2012), such as sibling-of, must instead be
inferred compositionally from the primitive rela-
tions. This design encourages agents to discover

"'We consider only binary gender distinctions, consistent
with those typically encoded in human kinship systems.



and exploit relational structure rather than rely on
shortcut or explicitly labeled edges.

We observe that the kinship graph contains
redundant information. For instance, determin-
ing whether two individuals are brothers can be
achieved by checking whether they share either the
same mother or the same father. To eliminate such
redundancy, we apply a pruning procedure that re-
tains only the shortest paths from each node to the
ego. This results in a best-first-search tree. We
refer to this process as graph pruning.

4.2.2 Model architecture

Our agents are implemented as two neural net-
works. The NN-Speaker encodes the kinship graph
G using a graph neural network GNNj, producing
node-level embeddings:

[hi, ..., hss] = GNN,(G)

where h; € R? is the representation of the i-th
node. To generate a message, the Speaker con-
catenates the embeddings of the ego and target
nodes, transforms them via a two-layer network,
and applies the Gumbel-Softmax (GS) to sample a
one-token message w from a fixed vocabulary V:

SCOre, (U) = Wiex - Whig - Cat(hegm htarget)
w ~ GS(scores(u))

Here, Wyq € R%*2d and W, € RIVIXdn are
trainable weight matrices, and scorey(u) € RV
denotes the unnormalized scores for tokens. Unless
stated otherwise, we use a vocabulary of size |V| =
128 and a Gumbel-Softmax temperature of 1.5.

The NN-Listener receives the same graph along
with the sampled message w and infers the target
referent. It encodes the graph using another graph
neural network GNNj, identical in architecture to
the Speaker’s, and computes compatible scores be-
tween the message and family members:

[Vl, ceey V33] = GNN[(G)
score;(w,i) = e, -W-v; Viell,..., 33

where v; € R? is the embedding of node ¢, e,, €
R is the embedding of token w, and W & R >4
is a trainable bilinear transformation. The Lis-
tener selects the node with the highest score as its
prediction. In all experiments, we use three shared-
parameter graph neural layers, set d = 80 and
dp, = 20, and the NN-Speaker and NN-Listener do
not share parameters.

Graph neural networks (GNNs) serve as the
backbone of both agents, enabling the processing of
structured relational data and facilitating the emer-
gence of compositional communication. Given the
inherently relational nature of kinship structures,
we adopt RGCN (Schlichtkrull et al., 2018), which
is specifically designed for multi-relational graphs.
In addition, we explore alternative GNN architec-
tures and hyperparameter configurations, as de-
tailed in Appendix E.

4.2.3 Training

From the kinship graph described above, we gen-
erate a dataset of 10,000 data points, each cor-
responding to a single game turn. Each data
point consists of: (i) the full pruned kinship
graph with the ego node uniformly sampled from
{Bob, Alice}; (ii) a target node u uniformly se-
lected from the remaining 32 nodes; (iii) a distrac-
tor set D of five nodes, uniformly sampled from
the remaining nodes (i.e., excluding both the ego
and the target node).

We split the dataset into 80% for training and
20% for validation. The two agents are trained
jointly to minimize the following loss:

L=—- Z log
(u,D) 2

exp(score;(w, u))

ve{uluD exp(score;(w, v))
where w is the message generated by the Speaker
for target u.”> We use the Adam optimizer with a
learning rate of 1 x 1073, training for 500 epochs
using mini-batches of size 50.

4.2.4 Evaluation

To assess the generalizability of the learned com-
munication protocol, we evaluate the agents ev-
ery 5 epochs on a more challenging setting than
used during training or validation. Specifically,
the NN-Listener must identify the target node from
among all 32 possible family members (rather than
from a limited set of six candidates, as done during
training). The evaluation dataset thus consists of
2 x 32 = 64 data points, corresponding to each
combination of ego € {Bob, Alice} and the 32
non-ego family members as targets.

Unlike during training, the NN-Speaker operates
deterministically at evaluation time, producing the
most likely token: w* = arg max,, scores(u)[w];
hence ¢s(w|u) = [[w = w*]]. The NN-Listener

2Note that during training, w sampled from the Gumbel-

Softmax is a distribution over V, rather than a discrete token
as in evaluation.



computes a probability distribution over all can-
didates using a softmax over the score function:
q(ulw) o exp(score;(w, u)).

5 Experiments

We conduct computational experiments to validate
our theoretical framework on the optimality of kin-
ship naming across four languages: English, Dutch,
Spanish, and Vietnamese.

5.1 Systems

For each natural language, we evaluate kinship
naming between an HP-Speaker and one of the
following versions of the HP-Listener:

* Optimal HP-Listener, which employs a de-
coder identical to the Bayesian decoder used
by the HP-Speaker;

* Noise_r. HP-Listener (r. € (0, 1]), a variant
of the optimal Listener that introduces random
errors by misinterpreting a family member as
another with probability r. (i.e., with r, error
rate). The higher the value of r., the more the
HP-Listener deviates from the optimal one.

Each noisy (or suboptimal) HP-Listener is simu-
lated with a population of 10,000 listeners to ensure
reliable performance estimates.

We also evaluate the communication perfor-
mance of our neural network agents (NN) under
each language-specific communicative need distri-
bution.?> The communication setup is ego-specific,
with ego € {Bob, Alice}. Following the configu-
ration described in Section 4 and summarized in
Appendix C, we repeat training and evaluation 50
times to account for variability across runs.

5.2 Metrics

Since our primary interest lies in the optimality of
the complexity-information loss tradeoff, our pri-
mary performance metric is the Euclidean distance
to the optimal curve, defined in Section 3.3.

In addition, under each language’s communica-
tive need distribution, we evaluate accuracy, de-
fined as the expected probability that a Listener
correctly identifies the intended referent family
member: B, g, (-u) [q(u|w)]. This is a re-
laxed variant of traditional accuracy, since the pre-
cise predictions of (natural language) Listeners are

3We use the EGG framework (Kharitonov et al., 2019) and
the PyTorch Geometric library (Fey and Lenssen, 2019). Our
source code is publicly available at abc.anonymized.xyz.
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Figure 4: (Top) Trade-offs of HP and NN systems, av-
eraged over 50 runs (standard deviation shown as light
gray ellipses). Trade-offs under suboptimal HP-Listener
conditions collectively form lines approximately paral-
lel to the optimal curve. Lines are annotated with error
rate r. and distance d to the optimal curve. (Bottom)
Accuracy of NN and human systems with optimal HP-
Listener.

not directly observable due to polysemy (e.g., the
term “brother” may refer to either elder brother
or younger brother).

5.3 Results

The impact of sub-optimal HP-Listeners. We
evaluate four suboptimal HP-Listeners with error
rates r. € {0.1%,0.5%,1%,2%}. Figure 4-top
shows the trade-off under each of these HP-Listener
conditions, plus the condition without noise (opti-
mal HP-Listener). The figure reveals that, across
all languages, communication with the optimal HP-
Listener lies exactly on the optimal curve (i.e., zero
distance), while communication with noisier Lis-
teners deviates progressively further from it. More-
over, HP-Listeners with lower error rates consis-
tently yield more favorable trade-offs than those
with higher error rates. These findings align with
the theoretical prediction outlined in Section 3.3,
which posits that trade-off optimality depends on
how closely the HP-Listener’s decoder approxi-
mates the Bayesian decoder of the HP-Speaker.
Interestingly, we observe that human commu-
nication systems in the three indoeuropean lan-
guages—English, Dutch, and Spanish—exhibit
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similar levels of adjusted complexity and informa-
tion loss (and also accuracy as shown in Figure 4-
bottom). In contrast, Vietnamese shows higher
information loss but lower adjusted complexity,
suggesting that it has more capacity to increase
complexity in order to improve informativeness.

HP vs NN. Since the NN models are trained to
minimize information loss, they are not inherently
constrained by complexity. Fortunately, we find
that early stopping serves as an effective mecha-
nism for limiting complexity, therefore we select
the checkpoint with accuracy closest to that of hu-
man communication (see Figure 4-bottom).

Figure 4-top shows that the NN communication
system achieves trade-offs that are closer to the op-
timal curve than human communication with the
error_1% HP-Listener. This suggests that com-
munication systems emerging from object naming
tasks can approach theoretical optimality without
incurring exhaustive complexity—similar to hu-
man communication.*

NN naming system evolves towards optimality.
Building on the previous results, we examine the
evolution of NN communication over time. Fig-
ure 5 shows the trade-offs under the communicative
need distribution for English (results for other lan-
guages are in Appendix D).

Initially, the emergent communication exhibits
moderate complexity but high information loss, as
agents rely on only a few vocabulary terms, re-
sulting in a simple but inefficient language. As
training progresses, information loss gradually de-
creases at the cost of increasing complexity, with
the trade-off trajectory approaching the optimal
curve. This trend suggests that agents progressively
expand their vocabulary usage to enhance commu-
nicative success, thereby reducing information loss
while incurring greater complexity.

6 Discussion and Conclusion

We have presented an information-theoretic frame-
work to measure the trade-off between information
loss and complexity in discrete object naming sys-
tems. We have shown that optimality is reached
only when assuming a perfect HP-Listener. This
has consequences for communication settings in

“Note that information loss is not an absolute indicator
of accuracy—for example, in the case of Vietnamese. This
is analogous to what is commonly observed between log-
likelihood and accuracy in classification tasks.
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Figure 5: Trajectories of NN systems over time,
recorded every 10 epochs, under the English commu-
nicative need distribution. Results are averaged over 50
runs, with standard deviation represented by ellipses.

which perfect message reception cannot be guar-
anteed, which is in fact common in noisy realistic
scenarios; in fact, even human listeners with clini-
cally normal hearing struggle with decoding in ev-
eryday communication (Ruggles et al., 2011). Our
framework allows for the estimation of trade-offs
that systems can achieve under realistic conditions,
whether in human communication or in applied set-
tings where message passing between agents may
be subject to perturbations.

The human kinship systems we have analyzed
abide to the above: under the assumption of an opti-
mal HP-Listener, these systems are exactly optimal.
Interestingly, the trade-offs vary between language
families, with Vietnamese affording lower com-
plexity than the indoeuropean languages, at the cost
of informativeness. The reason for cross-linguistic
contrasts must lie either on the semantic partitions
into kinship categories, or on differences in com-
municative need. We leave this analysis to future
work, along with an expansion on the analyzed
languages and linguistic families.

Finally, we have shown that NN models exhibit
a trade-off comparable to that of HP systems with
less than 1% noise. This suggests that optimiz-
ing only for communication accuracy (or informa-
tion loss) and applying early stopping are sufficient
mechanisms to trigger the learning and evolution-
ary dynamics that result in the observed trade-offs.

Overall, our framework allows us to characterize
discrete naming systems in general, and analyze
kinship naming systems in particular, both as found
in human language and as emerging from com-
munication games. Our results bode well for the
use of emergent communication setups to develop
efficient naming systems in any applied settings.



7 Limitations

As in Zaslavsky et al. (2018)’s Information Bot-
tleneck framework, we measure complexity as the
mutual information between the object and word
random variables. This quantity is upper-bounded
by the entropy of the communicative need distribu-
tion. However, this measure does not fully capture
the richness of natural languages: in principle, a
language can achieve unbounded complexity by
continually expanding its vocabulary.

We restrict our NN communication systems to
one-token messages, whereas natural languages of-
ten employ compositional expressions to refer to
kinship relations—i.e., components of the expres-
sion systematically correspond to semantic proper-
ties of the kin category. For example, in English,
the prefix grand- consistently denotes parent-of-
, while in Spanish, the suffixes -a and -o typi-
cally indicate female and male family members,
respectively. Such compositional strategies can-
not emerge in our current setup. Additionally, be-
cause the NN-Speaker generates names determin-
istically, the emergent language lacks synonymy,
which is common in natural languages (e.g., in En-
glish mother may be referred to as either “mother”
or “mum”).

References

Diane Bouchacourt and Marco Baroni. 2018. How
agents see things: On visual representations in an
emergent language game. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 981-985, Brussels, Bel-
gium. Association for Computational Linguistics.

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In Interna-
tional Conference on Learning Representations.

Jon W. Carr, Kenny Smith, Jennifer Culbertson, and
Simon Kirby. 2020. Simplicity and informativeness
in semantic category systems. Cognition, 202.

Rahma Chaabouni, Eugene Kharitonov, Diane Boucha-
court, Emmanuel Dupoux, and Marco Baroni. 2020.
Compositionality and Generalization In Emergent
Languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4427-4442, Online. Association for Computa-
tional Linguistics.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel
Dupoux, and Marco Baroni. 2021. Communi-
cating artificial neural networks develop efficient
color-naming systems. Proceedings of the National
Academy of Sciences, 118(12).

Rahma Chaabouni, Florian Strub, Florent Altché, Eu-
gene Tarassov, Corentin Tallec, Elnaz Davoodi,
Kory Wallace Mathewson, Olivier Tieleman, An-
geliki Lazaridou, and Bilal Piot. 2022. Emergent
Communication at Scale. In International Confer-
ence on Learning Representations.

Richard Cook, Paul Kay, and Terry Regier. 2005. The
World Color Survey Database, pages 223-VII.

Mark Davies. 2002—-2024. Corpus del espaiiol. Online
linguistic resource providing historical and modern
Spanish texts.

Mark Davies. 2010. The corpus of contemporary amer-
ican english as the first reliable monitor corpus of
english. LLC, 25:447-464.

Katrina Evtimova, Andrew Drozdov, Douwe Kiela, and
Kyunghyun Cho. 2018. Emergent Communication
in a Multi-Modal, Multi-Step Referential Game. In
International Conference on Learning Representa-
tions.

Matthias Fey and Jan Eric Lenssen. 2019. Fast
graph representation learning with pytorch geomet-
ric. arXiv preprint arXiv:1903.02428.

Edward Gibson, Richard Futrell, Steven P Piantadosi,
Isabelle Dautriche, Kyle Mahowald, Leon Bergen,
and Roger Levy. 2019. How efficiency shapes human
language. Trends in cognitive sciences, 23(5):389—
407.


https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.1016/j.cognition.2020.104289
https://doi.org/10.1016/j.cognition.2020.104289
https://doi.org/10.1016/j.cognition.2020.104289
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.18653/v1/2020.acl-main.407
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://doi.org/10.1073/pnas.2016569118
https://openreview.net/forum?id=AUGBfDIV9rL
https://openreview.net/forum?id=AUGBfDIV9rL
https://openreview.net/forum?id=AUGBfDIV9rL
https://doi.org/10.1016/B978-008044612-7/50064-0
https://doi.org/10.1016/B978-008044612-7/50064-0
https://doi.org/10.1016/B978-008044612-7/50064-0
https://www.corpusdelespanol.org/now/
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://openreview.net/forum?id=rJGZq6g0-
https://openreview.net/forum?id=rJGZq6g0-
https://openreview.net/forum?id=rJGZq6g0-

Serhii Havrylov and Ivan Titov. 2017. Emergence
of Language with Multi-agent Games: Learning to
Communicate with Sequences of Symbols. In Ad-
vances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.

Charles Kemp and Terry Regier. 2012. Kinship cate-
gories across languages reflect general communica-
tive principles. Science, 336:1049-1054.

Charles Kemp, Yang Xu, and Terry Regier. 2018. Se-
mantic typology and efficient communication. An-
nual Review of Linguistics, 4:109—128.

Eugene Kharitonov, Rahma Chaabouni, Diane Boucha-
court, and Marco Baroni. 2019. EGG: a toolkit for
research on Emergence of lanGuage in Games. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-1IJCNLP): System Demonstra-
tions, pages 55-60, Hong Kong, China. Association
for Computational Linguistics.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Ba-
tra. 2017. Natural Language Does Not Emerge ‘Nat-
urally’ in Multi-Agent Dialog. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2962-2967, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Angeliki Lazaridou and Marco Baroni. 2020. Emergent
multi-agent communication in the deep learning era.
CoRR, abs/2006.02419.

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2017. Multi-Agent Cooperation and
the Emergence of (Natural) Language. In Inferna-
tional Conference on Learning Representations.

George Peter Murdock. 1970. Kin term patterns and
their distribution. Ethnology, 9(2):165-208.

Nelleke Oostdijk, Martin Reynaert, Véronique Hoste,
and Ineke Schuurman. 2013. The construction of
a 500-million-word reference corpus of contempo-
rary written Dutch. In Essential Speech and Lan-
guage Technology for Dutch: Results by the STEVIN-
programme, chapter 13. Springer Verlag.

Nam Pham. 2024. vietvault (revision bee0136).

Terry Regier, Charles Kemp, and Paul Kay. 2015. Word
meanings across languages support efficient com-
munication. The handbook of language emergence,
pages 237-263.

Dorea Ruggles, Hari Bharadwaj, and Barbara G. Shinn-
Cunningham. 2011. Normal hearing is not enough to
guarantee robust encoding of suprathreshold features
important in everyday communication. Proceedings
of the National Academy of Sciences, 108(37):15516—
15521.

10

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph con-
volutional networks. In /5th Extended Semantic
Web Conference (ESWC), pages 593—607. Springer,
Cham.

Claude E Shannon. 1948. A mathematical theory of
communication. The Bell system technical journal,
27(3):379-423.

Naftali Tishby, Fernando C Pereira, and William Bialek.
2000. The information bottleneck method. arXiv
preprint physics/0004057.

Hy Van Luong. 1989. Vietnamese kinship: structural
principles and the socialist transformation in northern
vietnam. The Journal of Asian Studies, 48(4):741—
756.

Noga Zaslavsky, Charles Kemp, Terry Regier, and Naf-
tali Tishby. 2018. Efficient compression in color
naming and its evolution. Proceedings of the Na-
tional Academy of Sciences, 115:7937-7942.

Noga Zaslavsky, Terry Regier, Naftali Tishby, and
Charles Kemp. 2019. Semantic categories of artifacts
and animals reflect efficient coding. In Proceedings
of the 41th Annual Meeting of the Cognitive Sci-
ence Society, CogSci 2019: Creativity + Cognition +
Computation, Montreal, Canada, July 24-27, 2019,
pages 1254-1260. cognitivesciencesociety.org.


https://proceedings.neurips.cc/paper_files/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf
https://doi.org/10.1126/science.1218811
https://doi.org/10.1126/science.1218811
https://doi.org/10.1126/science.1218811
https://doi.org/10.1126/science.1218811
https://doi.org/10.1126/science.1218811
https://doi.org/10.1146/annurev-linguistics-011817-045406
https://doi.org/10.1146/annurev-linguistics-011817-045406
https://doi.org/10.1146/annurev-linguistics-011817-045406
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.18653/v1/D19-3010
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/D17-1321
https://doi.org/10.18653/v1/D17-1321
https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/2006.02419
https://arxiv.org/abs/2006.02419
https://openreview.net/forum?id=Hk8N3Sclg
https://openreview.net/forum?id=Hk8N3Sclg
https://openreview.net/forum?id=Hk8N3Sclg
https://portal.clarin.ivdnt.org/opensonar_frontend/opensonar/search
https://portal.clarin.ivdnt.org/opensonar_frontend/opensonar/search
https://portal.clarin.ivdnt.org/opensonar_frontend/opensonar/search
https://portal.clarin.ivdnt.org/opensonar_frontend/opensonar/search
https://portal.clarin.ivdnt.org/opensonar_frontend/opensonar/search
https://doi.org/10.57967/hf/2210
https://doi.org/10.1073/pnas.1108912108
https://doi.org/10.1073/pnas.1108912108
https://doi.org/10.1073/pnas.1108912108
https://doi.org/10.1073/pnas.1108912108
https://doi.org/10.1073/pnas.1108912108
https://doi.org/10.1073/pnas.1800521115
https://doi.org/10.1073/pnas.1800521115
https://doi.org/10.1073/pnas.1800521115
https://mindmodeling.org/cogsci2019/papers/0229/index.html
https://mindmodeling.org/cogsci2019/papers/0229/index.html
https://mindmodeling.org/cogsci2019/papers/0229/index.html

A A Lower bound for Information Loss

In this appendix we derive a lower bound for infor-
mation loss.

L = = EupEog, (u) log qi(ulw)
= p(u) ) gs(wlu) log gi(ulw)
—> p() " gs(wlu)

gs(wl) q(ulw)py(w)
log [p(“) pe)  gu(wlu)p(a)
—> p(u)

> as(w|u) log p(w)
—Zp qu wlu) log
- Zp(u

)qu(w|u) log

gs(w|u)
ps(w)
qi(uw)ps(w)
gs(wlu)p(u)

Z—Zp )log p(u
3 whi) 1og 10
Zp w)gs(w]u) log £ (0]
ds(u|w)

+ Zps(w) Z Gs(ulw) log

@ (uw)

=H(U) = C + Eunp, [Dxr(ds/lar)]
where:
* HU) = =, p(u)logp(u) is the entropy

of the communicative need distribution;

* (' is the complexity, as defined in Section 3.1;

. _ sy
Gs(ulw) = =)

coder of the Speaker.

is the Bayesian de-

Since the KL divergence is always non-negative,
the information loss is lower-bounded by:

L>HU)-C.

This bound is achieved when ¢; = s, i.e., when
the Listener’s decoder is identical to the Bayesian
decoder of the Speaker.

B Compatibility with the Information
Bottleneck Framework (Zaslavsky
et al., 2018)

In Zaslavsky et al. (2018)’s Information Bottleneck
(IB) framework for color naming (Figure 6), the
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Speaker and Listener communicate about colors
u € U, where U represents a continuous perceptual
space. Upon perceiving a color u, the Speaker
selects a meaning m, modeled as a distribution over
U, and then generates a name w using the encoder
gs(w|m). The Listener decodes the message using:

= Gs(m|w) m(u

which defines the Bayesian-optimal listener.

In this framework, assuming a Bayesian-optimal
Listener, complexity is quantified as the mutual in-
formation between the Speaker’s meaning variable
M and the word variable W:

gs(w|m)

ps(w)

Iy, (M;W) Zps m) qs(w|m) log

while informativeness is captured by the mutual in-
formation I, (W; U), measuring how much infor-
mation the word conveys about the original object.
Following the IB principle, an optimal trade-
off between complexity and informativeness is
achieved by minimizing the following objective:

Fslgs(wlm)] = 1g,(M; W) = BI,, (W;U),

where 5 > 1 is a trade-off parameter that balances
compression and informativeness.

When adapting the IB framework to a discrete
domain such as kinship, the objects u are inherently
discrete. In this setting, we can assume a one-to-
one correspondence between the object set U/ and
the agents’ meaning space, allowing us to conflate
u and m, as well as the corresponding random
variables U and M. This assumption is consistent
with Zaslavsky et al. (2018), who, in their color
naming experiment, discretize the color space into
a finite set of color chips, each of which is mapped
to a distinct meaning. Under this assumption, the
Bayesian Listener’s decoder simplifies to:

e (u) = Gs(ulw),
which is identical to the Bayesian decoder of the
Speaker in our framework.

In this discrete setting, complexity and informa-
tiveness converge to the same quantity, and the IB
objective reduces to:

13, (U; W) = Bl (W3 U)
= (1=, (W;U).

Filgs(wim)] =
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Figure 6: (A) Schematic of the communication model
from Zaslavsky et al. (2018). (B) Example of color
communication. (Figure adapted from Zaslavsky et al.
(2018))

Two cases arise: (i) If 8 = 1, the objective equals
zero, regardless of the system’s informativeness or
complexity; (i) If 5 > 1, the objective is min-
imized when the system achieves maximal com-
plexity, which corresponds to the entropy H(U)
of the object distribution. However, since natural
languages tend to balance informativeness with ef-
ficiency rather than maximize complexity, the latter
case is not of primary interest.

The first case (6 = 1) clearly establishes that
a system in which the Listener’s decoder matches
the Bayesian decoder of the Speaker achieves an
optimal trade-off. This outcome is fully compati-
ble with our theoretical framework. Nonetheless,
the IB framework, by using I, (W;U) to measure
informativeness, does not account for the impact
of suboptimal listeners. Moreover, it assumes a
fixed communicative need distribution p(u), and
thus does not capture cross-linguistic variability in
communicative demands.

C Hyper-parameters

We show relevant hyper-parameters for all exper-
iments in Table 1. Gumbel-softmax temperature
controls the Gumbel-softmax sampling distribu-
tion: lower values tend towards a one-hot encod-
ing, whereas higher values tend towards a uniform
encoding.

D The evolution of NN Kinship System

We show in Figure 7 how NN communication
evolved during training in the environments of the
four languages: English, Dutch, Spanish, and Viet-
namese.
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Figure 7: Evolution of complexity and information loss
in ego-specific NN communication (average over 50
runs) under four communicative need distributions En-
glish, Dutch, Spanish, and Vietnamese.



Table 1: Hyperparameter settings used in our experiments. The third column reports the values selected for the
main study, while the last column lists the values considered during architecture search.

Hyperparameter Value (main study) Values (architecture search)
embedding dimensions d 80 -
hidden dimension dj, 20 -
Model Architecture Graph neural net RGCN RGCN, GATv2Conv
# graph net layers 3 -
Vocabulary size |V 128 16, 32, 64, 128, 256
Graph pruning True True, False
Optimizer Adam -
Learning rate 1x1073 -
Training Batch size 50 -
# distractors 5 -
Gumbel-softmax temperature 1.5 -
0o Chan;eé
0.8 0.8 — Zi
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Figure 8: Evaluation accuracy, for simulations with and
without pruning (n=40 runs, varying initialization).

E Impact of Model Architecture on
Performance

We investigate the impact of architectural choices
that led to the NN-agents used in the main study.
Specifically, we examine three factors: graph prun-
ing, layer type, and channel capacity (i.e., vocabu-
lary size) in the environment of uniform commu-
nicative need distribution.

In the first study, based on the configuration
described in Section 4 and summarized in Ap-
pendix C, we construct four variants by system-
atically varying the use of graph pruning and the
choice of layer type (either RGCN (Schlichtkrull
et al., 2018) or GATv2Conv (Brody et al., 2022)).
As shown in Figure 8, both graph pruning and the
use of RGCN layers are critical for achieving high
communicative success, each contributing approx-
imately 20 percentage points to the final communi-
cation accuracy of the NN-agents.

In the second study, we vary the vocabulary size
(16, 32, 64, 128, 256) to examine the effect of
channel capacity. Figure 9 demonstrates that a suf-
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Epoch

Figure 9: Evaluation accuracy, for simulations with
pruning and RGCN layer (n=50 runs in total, with 10
different initializations for each vocabulary size).

ficiently large vocabulary relative to the size of the
object set (32 kinship terms in our case) is crucial.
For instance, a vocabulary size of 16 constrains
communication to approximately 50% accuracy. In
contrast, increasing the vocabulary size to 32 or
greater substantially improves accuracy to 80% and
above.

F Human Communication with
Suboptimal HP-Listeners

We investigate the impact of suboptimal HP-
Listeners on human communication across four
language environments: English, Dutch, Spanish,
and Vietnamese. Figure 10 reports both the dis-
tance to the optimal trade-off curve and the accu-
racy of the corresponding communication systems.
The results reveal a linear relationship between
the HP-Listener’s error rate and both distance and
accuracy. This finding supports our theoretical
framework, confirming that communication with
noisier HP-Listeners—i.e., those that deviate more
from the optimal Listener—results in trade-offs



that lie further from the optimal curve.

-®- English ¢‘
-®- Dutch ’¢’
20 -®- Spanish Rad
-®- Vietnamese L
’
l"
Cd
15 - ’/'
[ l'
o ’
c i
© td
k) s
5 10 L
/”
’1
/”
5 1 g
/”
¥
,/
01 &
T T T T T T
0 20 40 60 80 100
error rate (%)
\ -®- English
~ —e-
80 4 \\\. ® Dutch
A —®- Spanish
A N
AN -®- Vietnamese
Sa
S
~a
SN
60 - RS
SN
= AN
s SN
> \\\\
O SN
® S
5 40 RN
o A
o S
© \\\
Y
N,
1KY
Y
.
20 S
S,
¥,
‘\
.,
\\\
N,
N,
04 A J
T T T T T T
0 20 40 60 80 100

error rate (%)

Figure 10: (Top) Distance to the optimal curve and
(Bottom) accuracy of human communication with
suboptimal Listeners at varying error rates r. €
{0,0.001, 0.005,0.01,0.02,0.1,1.0}. Dashed lines in-
dicate the linear relationship between error rate and
distance/accuracy.

G Kinship counts

We extract counts of family-member and kinship-
term pairs (see Table 2) from text corpora in four
languages: English, Dutch, Spanish, and Viet-
namese.

* English: We use the Corpus of Contemporary
American English (COCA) (Davies, 2010), a
widely-used and balanced corpus of American
English. It contains over one billion words
from 1990-2019, covering eight genres such
as spoken language, fiction, news, academic
writing, and web content.

* Dutch: We use the SoNaR corpus (Oostdijk
et al., 2013), a 500-million-word reference
corpus of contemporary Dutch that includes
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both written and spoken data. SoNaR inte-
grates material from various sources such as
newspapers, newsletters, books, websites, and
transcripts, offering broad coverage of modern
Dutch across genres.

Spanish: We use the NOW (News on
the Web) corpus from the Corpus del
Espaiiol (Davies, 2002-2024), which includes
approximately 7.6 billion words from web-
based newspapers and magazines across 21
Spanish-speaking countries, collected be-
tween 2012 and 2019. This corpus provides
broad coverage of modern written Spanish as
used in news media.

Vietnamese: We use the VietVault cor-
pus (Pham, 2024), a dataset filtered and cu-
rated from Common Crawl dumps prior to
2023. The full corpus contains 80GB of raw
Vietnamese text spanning multiple domains.
For our analysis, we sample a 5GB subset
from the corpus to extract counts.



Table 2: Counts for (family-member, term) pairs from text corpora.

| English Dutch Spanish Northern Vietnamese
Gen. | Label Full Name Term Count | Term Count | Term Count Term Count
Ist MM mother’s mother Grandmother 3949 Grootmoeder 529 Abuela 8577.5 ba ngoai 210
Grandma 882 Oma 548.5 Yaya 10 ba 411.5
Gran 25.5
MF mother’s father Grandfather 3189 Grootvader 720 Abuelo 8075.5 ong ngoai 125
Grandpa 399.5 Opa 361.5 Yayo 2 ong 1210
FM father’s mother Grandmother 3949 Grootmoeder 529 Abuela 8577.5 ba noi 266
Grandma 882 Oma 548.5 Yaya 10 ba 411.5
Gran 25.5
FF father’s father Grandfather 3189 Grootvader 720 Abuelo 8075.5 ong noi 290
Grandpa 399.5 Opa 361.5 Yayo 2 ong 1210
2nd M mother Mother 65458 Moeder 18009 Madre 64464 me 18004
Mom 29849 Mama 1511 Mama 1295
Mommy 707 Ma 1186 Mami 1071
Momma 388 Mamad 52914
F father Father 63318 Vader 19939 Padre 77214 bd 5021
Dad 31100 Papa 896 Papa 1250 cha 3390
Daddy 3017 Pa 1346 Papi 512
Papa 47494
MZzZy mother’s younger sister Aunt 1022 Tante 204.75 Tia 1404.75 di 243
Auntie 29 Tita L5
MBy  mother’s younger brother Uncle 1501.75 Oom 509 Tio 1404.75 cau 237
Tito 25
MZe mother’s elder sister Aunt 1022 Tante 204.75 Tia 1404.75 béc gdi 2.5
Auntie 29 Tita 1.5 bac 96.5
MBe  mother’s elder brother Uncle 1501.75 Oom 509 Tio 1404.75 béc trai 2
Tito 2.5 béac 96.5
FZy father’s younger sister Aunt 1022 Tante 204.75 Tia 1404.75 co 435
Auntie 29 Tita 1.5
FBy father’s younger brother Uncle 1501.75 Oom 509 Tio 1404.75 chi 388
Tito 2.5
FZe father’s elder sister Aunt 1022 Tante 204.75 Tia 1404.75 bac gai 2.5
Auntie 29 Tita 1.5 bac 96.5
FBe father’s elder brother Uncle 1501.75 Oom 509 Tio 1404.75 bdc trai 2
Tito 2.5 bac 96.5
3rd Zy younger sister Sister 9587.5 Zus 2029.5 | Hermana 13610.5 em 2425.5
Sis 43.5 Zusje 826 Tata 82 em gai 849
By younger brother Brother 11687 Broer 2968 | Hermano 22723 em 2425.5
Bro 63.5 Broertje 565 Tete 4 em trai 459
Ze elder sister Sister 9587.5 Zus 2029.5 | Hermana 13610.5 chi 1752
Sis 435 Tata 82
Be elder brother Brother 11687 Broer 2968 Hermano 22723 anh 3173
Bro 63.5 Tete 4
4th D daughter Daugther 23571 Dochter 10378 Hija 68744 con 5296.5
Dochtertje 1580 con géi 2543
S son Son 28815 Zoon 8737 Hijo 94575 con 5296.5
Zoontje 3753 con trai 2370
ZyD younger sister’s daugter Niece 326.25 Nicht 71.75 Sobrina 746 chau 275.33
Nichtje 121.75 chdu ho 4
ZyS yougher sister’s son Nephew 339.25 Neef 177.75 | Sobrino 1067 chau 275.33
Neefje 76.5 chau ho 4
ByD younger brother’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 chau 275.33
Nichtje 121.75 chdu ho 4
ByS younger brother’s son Nephew 339.25 Neef 177.75 | Sobrino 1067 chau 275.33
Neefje 76.5 chéau ho 4
ZeD elder sister’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 chau 275.33
Nichtje 121.75 chdu ho 4
ZeS elder sister’s son Nephew 339.25 Neef 177.75 | Sobrino 1067 chau 275.33
Neefje 76.5 chau ho 4
BeD elder brother’s daughter Niece 326.25 Nicht 71.75 Sobrina 746 chau 275.33
Nichtje 121.75 chau ho 4
BeS elder brother’s son Nephew 339.25 Neef 177.75 | Sobrino 1067 chau 275.33
Neefje 76.5 chau ho 4
5th DD daughter’s daughter Granddaughter 370 Kleindochter 87 Nieta 1304 chau 275.33
chdu ngoai 30
DS daughter’s son Grandson 478 Kleinzoon 117 Nieto 1685.5 chau 275.33
chau ngoai 30
SD son’s daughter Granddaughter 370 Kleindochter 87 Nieta 1304 chau 275.33
chau noi 25
SS son’s son Grandson 478 Kleinzoon 117 Nieto 1685.5 chau 275.33
chau noi 25
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