
Improving protein-ligand complex generation with
force field guidance

Helen Lai
Molecular AI, Discovery Sciences, R&D

AstraZeneca, UK
helen.lai1@astrazeneca.com

Tingyu Wang
NVIDIA, Santa Clara, CA, USA

tingyuw@nvidia.com

Hassan Sirelkhatim
NVIDIA, London, UK

hsirelkhatim@nvidia.com

Joe Eaton
NVIDIA, Santa Clara, CA, USA

featon@nvidia.com

Howard Huang
NVIDIA, Santa Clara, CA, USA
howardhuangb@gmail.com

Brad Rees
NVIDIA, Santa Clara, CA, USA

brees@nvidia.com

Ola Engkvist
Molecular AI, Discovery Sciences, R&D, AstraZeneca, Sweden

Chalmers University of Technology, Sweden
ola.engkvist@astrazeneca.com

Jon Paul Janet
Molecular AI, Discovery Sciences, R&D

AstraZeneca, Sweden
jonpaul.janet@astrazeneca.com

Xiaoyun Wang
NVIDIA, Santa Clara, CA, USA

xiaoyunw@nvidia.com

Alessandro Tibo∗
Molecular AI, Discovery Sciences, R&D

AstraZeneca, Sweden
alessandro.tibo@astrazeneca.com

Abstract

Generative models based on diffusion and flow matching have recently been ap-
plied to structure-based drug design, but their outputs often include unrealistic
protein–ligand interactions that fail to obey the laws of physics. We present an
energy guidance framework that incorporates a molecular mechanics force field
(MMFF94) directly into the sampling process. The method steers molecular gen-
eration toward more physically plausible and energetically stable conformations
without retraining the underlying model. We evaluate this approach using two state-
of-the-art architectures, SemlaFlow, a flow matching model and EDM, a diffusion
model, on the PDBBind dataset. Across both models, energy guidance improves
binding affinity predictions, reduces strain energy by up to 75%, and generates
over 1,000 ligands with better docking scores than native ligands. These results
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demonstrate that lightweight, physics-based guidance can significantly enhance
generative drug design while preserving chemical validity and diversity.

1 Introduction

Structure-based drug design (SBDD) plays a central role in modern drug discovery [1], focusing
on the design and optimization of ligand molecules that exhibit strong binding affinity to a specific
protein receptor site informed by an experimentally observed or predicted 3D structure of the target.
By leveraging the three-dimensional structural information of target proteins, SBDD enables the
rational design of compounds that bind tightly to the target structure, for example via formation
of specific interactions with amino acids in the target [2] (such as hydrogen bonds) or occupying
hydrophobic pockets resulting in the displacement of energetically unfavorable waters [3]. SBDD
is traditionally achieved using molecular docking [4], which uses physics-inspired approaches to
position a given molecule in various conformations relative to a static target structure to find the most
favorable binding position by predicting and subsequently minimizing the strength and energy strain
of that interaction. These docking programs typically incorporate force fields, parameterized potential
energy surfaces for atomic systems that are used to estimate both the strength of the protein-ligand
interaction as well as the strain of the ligand.

Recent advances in “3D generation methods” leveraging diffusion or flow matching methods now
allow machine learning models to create binding poses [5] or directly design potential binders
conditioned on a provided target structure in a purely data-driven manner. This last category is
particularly attractive as these models can potentially directly propose ligands that are complementary
to the given target, eliminating the need for an additional ligand search strategies and profiling of
potentially millions of ligands to find binders. However, many groups [6–9] have identified that
the poses generated by these methods often fail rudimentary sanity checks relating to physically
achievable bond distances and angles, fail to make meaningful interactions with the targets or are
simply nonphysically strained geometries. While improvements over the initial generation of such
models have been made [10], to produce physically reasonable geometries it remains standard practice
to minimize the proposed geometries with respect to a classical force field after generation.

Our Contributions

We introduce a novel, training-free force field guidance framework that steers ligand generation using
empirical molecular mechanics (e.g., MMFF94) during diffusion or flow-based sampling—without
modifying or retraining the base generative model (e.g., EDM or Semflaflow by [11]). Our method
operates as a plug-in during inference time, leveraging energy feedback to generate poses with lower
strain and better interactions with the protein structure.

Our main contributions are as follows:

• Energy-based guidance without retraining: Unlike methods that require gradients from
neural affinity predictors (e.g., BADGER [12]), our approach injects classical force field
feedback (MMFF94) directly during the posterior sampling step.

• Improved docking and strain metrics: In benchmarks against unconditional EDM and
Semflaflow, our guided inference yields consistently better AutoDock Vina scores and lower
ligand strain energy, even after optimizing the final structures using the same force field.

• Compatibility and flexibility: Because the guidance module is external, it can be applied
broadly to multiple generative backbones—without retraining or architecture modifications,
and can be applied to arbitrary differentiable potential energy functions.

• Theoretical guarantee of stability. We prove in Appendix B that our energy guidance
framework decreases the energy of the generated conformations at each step, assuming
Lipschitz continuity of the energy gradient.

2 Related Work

Guided Diffusion and flow matching models. In recent years, diffusion and flow matching models
have gained significant popularity and demonstrated strong generative capabilities across diverse
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domains such as text-to-image generation [13, 14], natural language processing [15], and molecular
design for drug discovery [16, 11]. The original formulation of the diffusion and flow matching
models support only unconditional generation. However, recent developments have introduced
mechanisms to guide the generation process towards desired outputs. Two foundational approaches
in this direction are classifier-guided diffusion and classifier-free guided diffusion.

In classifier-guided diffusion, an external classifier is trained separately to predict the target category
from a given sample [17]. During inference, at each diffusion step, the gradient of the classifier’s
output with respect to the current sample is computed and added to the predicted noise estimate. In
contrast, classifier-free guidance does not require a separate classifier. Instead, the diffusion model is
jointly trained on both conditional and unconditional data [18]. At inference time, guidance is applied
by taking a weighted combination of the conditional and unconditional noise predictions. A scaling
factor controls the strength of the conditioning, allowing for flexible adjustment of the generation
process without relying on external models. Both methods discussed above are primarily designed
for categorical conditioning, with classifier-free guidance also supporting text embeddings. However,
these approaches are insufficient for our setting, where the conditioning variable is continuous in
nature—for example, a molecular force field.

Another line of work extends the conditioning framework to the continuous regime by training the
model to directly learn the gradient of the log-conditional density, ∇xt

log p(xt | y) [19], where xt
denotes the generated sample at time t and y the desiderata label. An alternative approach adopts a
reinforcement learning paradigm, reformulating the iterative denoising process of a diffusion model
as a multi-step Markov Decision Process (MDP). In this framework, policy gradient methods are
applied to optimize the sampling trajectory such that the generated samples maximize a task-specific
reward, such as human feedback [20, 21].

Although the two approaches above support continuous conditioning variables, they still require
retraining the diffusion model for each new conditioning input. This limitation becomes particularly
restrictive in structure-based drug design (SBDD), where different stages of a project—or entirely
different projects—may involve varying conditioning inputs. The need to retrain the model for each
new application is both time-consuming and computationally expensive. In the following sections, we
describe the molecular generation task and detail the specific form of conditioning used in this work:
differentiable molecular force field descriptors. We then introduce our proposed method—an adapta-
tion of classifier-guided diffusion—that enables flexible integration of differentiable conditioning
signals during sampling, without requiring retraining of the diffusion model nor the descriptors.

Molecular force fields. A molecular force field is a set of mathematical functions and parameters
used to estimate the potential energy of a system of atoms based on their positions. Force fields
are central to methods like molecular mechanics (MM) and molecular dynamics (MD) simulations.
Over the years, various force fields have been developed for different applications—among the
most prominent are AMBER [22], CHARMM [23], MMFF94 [24], and UFF [25]. AMBER and
CHARMM are primarily tailored for large biomolecular systems such as proteins, peptides, and
their interactions with ligands. While they offer high accuracy, their computational cost can be
significant due to complex parameterization. This will become a major bottleneck in the current
guidance framework where the force field evaluations need to be performed repeatedly during the
denoising process. On the other hand, MMFF94 and UFF are designed for small, drug-like molecules
and are much faster. However, UFF tends to be overly generic and is the least accurate among them,
while MMFF94 shows a better balance between speed and accuracy, though it is traditionally limited
to intra-ligand interactions [26]. In this work, we therefore rely on MMFF94, which we extend
by conditioning it on the protein pocket. We provide a GPU implementation that enables fast and
differentiable interaction modeling, making it suitable for integration into diffusion and flow matching
sampling workflows.

3 Methods

In this section, we present a strategy for enhancing molecular sampling from flow matching and
diffusion models guided by a chemo-physics score—specifically, the MMFF94 force field [24].
Importantly, our method does not require any fine-tuning of the pretrained diffusion model; instead,
we act solely at inference time. This allows for a flexible integration of domain-specific knowledge
without compromising the generality of the learned generative process.
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We denote with X the molecular space, whose elements are molecules X ∈ X , each represented as a
graph X = (V,E), where V is the set of nodes (atoms) and E ⊆ V × V is the set of edges (bonds).
Each node v ∈ V corresponds to an atom and is represented as a 3-tuple:

v = (x, a, c), (1)

where x ∈ R3 denotes the 3D spatial coordinate of the atom, a is the atom type, and c is the formal
charge. Note that both a and c are categorical variables. Each edge e = (vi, vj) ∈ E corresponds
to a bond between atoms vi and vj and is associated with a bond type attribute bij , which in our
setting can be one of: single, double, triple, or aromatic. In addition to molecules, we model proteins
(pockets) using a simpler representation. Unlike molecules, proteins are often provided as PDB files
where explicit bond information is typically not included and must be inferred. Therefore, denoting
the protein space as Y , each protein Y ∈ Y is represented as a set of nodes v ∈ V , following the
same semantic framework as in Equation 1. It is important to note that, throughout this paper, we do
not distinguish between separate spaces for proteins and protein pockets, as the latter are regarded as
a subset of the atoms comprising the original protein.

3.1 Conditional flow matching

Conditional flow matching [27–29] is a generative framework that directly models a continuous-time
transport map between the noise distribution and the data distribution via an ordinary differential
equation (ODE). A conditional flow matching defines a time-dependent conditional probability
distribution pt|1(· | z = (X1, X0)), where X1 ∈ X and X0 ∼ p0|1 are a molecule and a sample
drawn from a prior distribution p0|1, respectively. A common choice for pt|1, in the case of continuous
variables [27], is a Gaussian distribution centered at the linear interpolation Xt = tX1 + (1− t)X0

with a constant standard deviation. From this conditional distribution, the conditional vector field
u(· | t, z = (X1, X0)) can be analytically derived as

u(· | t, z) = X1 −X0. (2)

We model the vector field in using a neural network parametrized by a set of weights θ, uθ :
[0, 1]×X → X , and train it to reconstruct the vector field defined in Equation 2. Instead of training
the model to predict X1 − X0, we can train uθ to reconstruct clean data X1 from noisy inputs
Xt [30, 31], and subsequently recover the underlying vector field. For instance, in the continuous
setting, the following identity holds [11]:

X1 −X0 =
1

1− t
(X1 −Xt). (3)

To enable the generation of molecules that bind to protein targets, we extend the vector field uθ to
incorporate conditioning on a protein pocket Y ∈ Y . We therefore redefine the neural network as

uθ : [0, 1]×X × Y → X , (4)

where Y denotes the space of protein pockets. To generate novel molecular samples, the vector
field uθ is integrated using a standard ODE solver. A basic Euler integration scheme is presented
in Algorithm 1. As the backbone architecture, we adopt SemlaFlow [11], augmented to support
conditioning on protein pockets. Details of this extension are provided in Section 3.2.

Algorithm 1 Conditional Flow Matching Sampling
Inputs: Number of steps T , learned vector field uθ, prior pt|1, protein Y .

1: Initialize X0 ∼ p0|1, ∆T = 1
T

2: for i = 0 to T − 1 do
3: t = i ·∆T
4: X̂1 = uθ(t,Xt, Y )

5: v = 1
1−t (X̂1 −Xt)

6: Xt+∆T = Xt +∆T · v
7: end for
8: return X1
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3.2 Protein conditioning

For our diffusion and flow matching models, we adopt SemlaFlow [11] and the Equivariant Diffusion
Model (EDM) [16], both extended to support protein conditioning. In this section, we describe the
key architectural modifications introduced to enable conditioning on protein structures, particularly
focusing on changes to the model layers.

Let us consider two tensors, x ∈ Rm×d and y ∈ Rn×d, with dimensions m × d and n × d,
respectively. Here, x and y represent the feature vectors at any layer associated with ligand and
protein atoms, respectively. The conditioning is applied within the attention layer, and its core idea
can be summarized as follows:

xi = xi +
∑
i ̸=j

xi − xj
∥xi − xj∥

ϕinv +
∑
k

xi − yk
∥xi − yk∥

ψinv, (5)

where the right-hand summation (highlighted in blue) in Equation 5 represents the protein conditioning
we introduced. The functions, ϕinv and ψinv are learnable mappings applied to invariant features,
such as atom and bond types.

3.3 Energy guidance

In the context of molecular generation, both diffusion models and flow matching have been leveraged
to learn distributions over molecular graphs or 3D structures. However, these models are often trained
solely on data likelihood objectives, potentially ignoring important physical or chemical properties
that govern molecular stability. Our method addresses this gap by incorporating a chemo-physics
score (MMFF94) into the inference process, biasing the generation towards physically plausible
and energetically favorable molecules. Furthermore, we extended the two non-bonded interaction
terms of MMFF94—van der Waals and electrostatic interactions—to account for the protein used to
condition the generations. Formally, we denote the extended MMFF94 with a function mapping a
protein and molecule into a real value number, E : X × Y → R, defined as

E(X,Y ) = MMFF94(X) + EvdW (X,Y ) + EQ(X,Y ), (6)

where the terms EvdW (X,Y ) and EQ(X,Y ) model the Van der Waals and electrostatic interactions
between a ligand X and a protein Y . The implementation is available at https://github.com/
MolecularAI/TorchMMFF94. E is then used to steer the generation of the molecules towards
regions with lower energies. To this end, we modified Algorithm 1 by incorporating an additional
gradient-based term, scaled by a hyperparameter λ > 0 which governs the contribution of the gradient
to the overall objective (see Algorithm 2). As shown in Appendix B, when λ is chosen below 2/L
(with L denoting the local Lipschitz constant of ∇(E ◦ f)), each gradient-guided step guarantees
non-increasing total energy, thereby maintaining numerical stability during sampling.

Algorithm 2 Conditional Flow Matching Sampling with Energy Guidance
Inputs: Number of steps T , learned vector field uθ (as Equation 4), prior pt|1, protein Y , energy

function E, λ > 0.
1: Initialize X0 ∼ p0|1, ∆T = 1

T
2: for i = 0 to T − 1 do
3: t = i ·∆T
4: X̂1 = uθ(t,Xt, Y )

5: v = 1
1−t (X̂1 −Xt)

6: Xt+∆T = Xt +∆T · v − λ∇Xt
E(X̂1, Y )

7: end for
8: return X1

4 Experiments

4.1 Dataset

We use PDBBind [32] as our benchmark to demonstrate the quality of the generated ligands binding
to proteins. PDBBind contains 19,443 protein–ligand complexes. From this dataset, we exclude 144
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complexes to form our test set. These test pairs have no receptor overlap with the training set and are
selected identically to those used in DiffDock [5] (i.e., timesplit_test_no_rec_overlap in the
DiffDock repository). While there has been some disagreement regarding the test set chosen by the
authors of DiffDock (see, e.g., [33]), our objective here is not docking but rather the generation of
novel molecules within protein pockets. Therefore, this test set is suitable for our purposes.

We apply a series of preprocessing steps to the dataset using the Schrödinger suite [34]. First, we
identify the protein associated with each ligand based on the distance between ligand and protein
atoms. Next, we use Schrödinger’s PrepWizard to prepare both the protein and the ligand, correcting
geometries and assigning appropriate protonation states. After preparation, we recompute the docking
score using Glide. If the complex successfully passes through the entire pipeline and receives a
negative Glide score, we retain the pair; otherwise, it is discarded. The final training set consists of
18,990 protein–ligand pairs, and the test set includes 140 pairs. Although Schrödinger Glide [35] is a
commercial software package, we release the code necessary to reproduce our preprocessing pipeline.
However, running it will require a valid Schrödinger license.

Following [36], for each protein we extract a binding pocket by selecting all residues that have at
least one atom within 3.5Å of the native ligand and contain more than 10 atoms in total.

4.2 Experimental setup

We evaluated our energy guidance method using two state-of-the-art generative models for molecular
design: SemlaFlow [11], a flow matching-based generative model, and EDM [16] (in Appendix A),
an equivariant diffusion model. Both models were initially pretrained on the GeomDrugs dataset [37],
which contains approximately 37 million molecular conformations across more than 450,000 unique
small molecules. Notably, this dataset does not include any protein structures. We adopted the
default hyperparameters as reported in the respective original publications. Following pretraining,
we fine-tuned each model on protein-ligand complexes from the PDBBind dataset, using the
protein-ligand pair representation described in Section 4.1. For each protein pocket in the test set
(140 targets in total), we generated 128 candidate ligands per model. To comprehensively assess the
quality of the generated ligands, we employed a suite of evaluation metrics encompassing binding
affinity, chemical validity, drug-likeness, intermolecular interactions, and conformational strain:
Glide Score: Estimated binding affinities computed using Schrödinger’s Glide, a widely used com-
mercial docking software. Glide employs a physics-based scoring function that combines molecular
mechanics with empirical terms, accounting for van der Waals interactions, electrostatics, ligand
strain, hydrophobic enclosure, hydrogen bonding, desolvation effects, and other force-field-derived
contributions. Its scoring function is optimized to balance computational efficiency with predictive
accuracy, making it suitable for high-throughput virtual screening and lead optimization [35].
Vina Score: An alternative open-source binding affinities estimation method. Vina employs an
empirical scoring function that estimates ligand-protein binding based on steric complementarity,
hydrogen bonding, hydrophobic interactions, and torsional flexibility penalties [38]. While its energy
model is less detailed than Glide’s physics-based scoring, Vina score remains a standard benchmark
in molecular docking studies.
QED (Quantitative Estimate of Drug-likeness): A scalar score ranging from 0 to 1 that quantifies
how drug-like a molecule is, with higher values indicating more favorable properties. QED integrates
multiple physicochemical descriptors commonly associated with approved oral drugs, including
molecular weight, lipophilicity (logP), number of hydrogen bond donors and acceptors, polar surface
area, number of rotatable bonds, presence of structural alerts, and the number of aromatic rings [39].
PoseBuster Ratio (PBR): The proportion of generated ligands that pass all PoseBuster quality
checks, serving as a proxy for structural and chemical plausibility [6].
Better-Than-Native Count (BNC): The number of generated ligands achieving a better (i.e., lower)
docking score than the corresponding native ligand.
Validity: The percentage of generated molecules that are both syntactically correct (i.e., can be parsed
into molecular graphs) and chemically interpretable. Validity is assessed using cheminformatics
tools such as RDKit, which ensures that molecules can be successfully parsed from SMILES
representations and can initialize a force field object (e.g., MMFF94).
Number of Interactions: The number of hydrogen bonds formed between the generated ligands and
protein, computed using the prolif library [40].
Strain Energy: Defined as the difference in energy between the generated ligand conformation and
its MMFF94-optimized geometry, normalized by the number of heavy atoms. Lower strain energy
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indicates more realistic and energetically favorable molecular conformations.

Importantly, we evaluate performance under two settings: (1) using the raw, unrefined ligand
conformations directly output by the generative models, and (2) using conformations that have been
post-processed via conditional MMFF94 minimization. In contrast to prior approaches that perform
full re-docking or extensive pose refinement, our strategy is intentionally lightweight—designed to
preserve the original generative intent while allowing for minor energy-based adjustments.

4.3 Results

We report the results for SemlaFlow in Tables 1 and 2. Note that the metrics were computed directly
on the generated ligands, without any re-docking. Table 1 reports the Vina and Glide negative
ratios—that is, the proportion of generated ligands with negative scores (VR < 0 and GR < 0)—as
well as the average Vina and Glide scores (VS and GS), both expressed in kcal/mol. We also
report results after applying protein-conditioned post-optimization to the generated ligands (denoted
by + OPT in the Tables). The results highlight the benefits of incorporating force-field guidance
during inference. Using MMFF94 guidance alone yields substantial improvements: VR increases
from 47.00% to 64.25%, while GR improves even more dramatically, from 19.41% to 56.61%.
Correspondingly, VS shifts from an unfavorable 3.04 kcal/mol to a much more favorable -4.20
kcal/mol, indicating better ligand poses. Applying post-optimization alone to the baseline model
without guidance also leads to significant gains, with VR reaching 64.98% and VS improving to
-4.23 kcal/mol. However, the best performance is achieved by combining MMFF94 guidance with
post-optimization, which yields the highest negative ratios for both metrics: 65.59% for VR and
59.06% for GR. Most notably, this combined strategy produces the strongest VS of -5.21 kcal/mol,
representing an improvement of over 8 kcal/mol compared to the baseline model without guidance
(3.04 kcal/mol).

Table 1: Vina and Glide docking score evaluation for SemlaFlow. VR < 0 denotes negative vina score
ratio, GR < 0 denotes negative docking score ratio, VS denotes the average Vina score in kcal/mol,
and GS denotes the average Glide score in kcal/mol.

METHOD VR < 0 GR < 0 VS GS

NO GUIDANCE 47.00% 19.41% 3.04 -4.45
GUIDANCE 64.25% 56.61% -4.20 -4.81
NO GUIDANCE + OPT 64.98% 53.85% -4.23 -5.21
GUIDANCE + OPT 65.59% 59.06% -5.21 -5.03

Table 2 reports complementary metrics to docking scores, namely QED, PoseBuster ratio (PBR),
better-than-native ligand count (BNC), validity (VALID), number of interactions (# INTERACTIONS),
and strain energy (kcal/mol). Incorporating guidance increases BNC from 296 to 696 (a 135%
improvement), while substantially reducing strain energy from 6.58 kcal/mol to 1.54 kcal/mol. This
reduction is particularly important, as strain energy is directly influenced by guidance during inference,
in contrast to docking scores, which improve more indirectly. The post-optimization strategy without
guidance also provides considerable benefits, achieving a BNC of 731 and lowering strain energy to
1.04 kcal/mol. The combination of guidance with post-optimization delivers the strongest results,
with the highest BNC of 1152 (nearly a 4-fold improvement over baseline) and the lowest strain
energy of 0.78 kcal/mol (an 8-fold reduction). Overall, this combined strategy reduces strain energy
from 6.58 kcal/mol to 0.78 kcal/mol while maintaining robust performance across other metrics,
including 34.83% PBR, 67.50% validity, and high molecular diversity (97.16%).

We plot the distributions of Glide Score, Vina Score, and strain energy for molecules generated with
and without guidance using the SemlaFlow model. Glide Score distributions (Figure 1 (a)) show
that molecules generated with guidance exhibit a tighter distribution centered around lower (more
favorable) scores compared to those without guidance. Vina Score distributions (Figure 1 (b)) follow
a similar trend, where the guided molecules cluster more tightly around favorable scores (e.g., < -5
kcal/mol), whereas the no-guidance set includes a wider spread and a greater number of high (less
favorable) outliers. This again supports the conclusion that guidance improves the consistency and
quality of the generated molecular poses. Strain Energy distributions (Figure 1 (c)) reveal that the
guided group tends to produce molecules with significantly lower strain energy. The distribution is
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Table 2: Quality metrics for SemlaFlow. QED reports the average quantitative estimate of drug-
likeness. PBR denotes the PoseBuster pass ratio. BNC gives the number of compounds whose
docking scores are better than those of the native ligands. VALID indicates the proportion of valid
molecules among the generated set. # INTERACTIONS specifies the average number of hydrogen
bonds formed between generated ligands and their target proteins. STRAIN ENERGY reports the
average conformational strain energy. The overall molecular diversity is 97.16%.

METHOD QED PBR BNC VALID # INTERACTIONS STRAIN ENERGY

NO GUIDANCE 0.66 16.28% 296 69.55% 0.79 6.58
GUIDANCE 0.66 39.33% 696 67.72% 0.77 1.54
NO GUIDANCE + OPT 0.66 37.48% 731 69.55% 0.91 1.04
GUIDANCE + OPT 0.65 34.83% 1152 67.50% 0.86 0.78

sharply peaked around 2–3 kcal/mol for guided molecules, while the unguided set shows a broader
distribution with a heavier tail, suggesting a higher incidence of conformational strain in the absence
of guidance. Finally, Figure 2 depicts some examples showing the impact of the energy guidance.

10.0 7.5 5.0 2.5 0.0 2.5 5.0
(a) Glide Score
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Figure 1: Distributions of (a) Glide Score, (b) Vina Score, and (c) Strain Energy for molecules
generated with and without guidance using the SemlaFlow model. Guided molecules exhibit tighter
distributions around more favorable scores and lower strain energy, whereas unguided molecules
show broader distributions with higher variance and more unfavorable outliers.

5 Conclusion

This study introduces a novel energy-guided framework for protein-conditioned molecular generation
that integrates physics-based MMFF94 force field constraints into diffusion and flow matching models.
Our approach extends the MMFF94 force field to explicitly model protein-ligand interactions through
van der Waals and electrostatic terms, enabling gradient-based steering during generation. It offers a
lightweight yet effective alternative to existing methods that depend on computationally intensive
re-docking or pose refinement. A comprehensive evaluation on the PDBBind dataset demonstrates
substantial improvements across critical drug discovery metrics. Most notably, strain energy was
reduced by 88% for SemlaFlow (6.58 to 0.78 kcal/mol/heavy atom) and 77% for EDM (3.73 to
0.87 kcal/mol/heavy atom), indicating significantly more energetically favorable conformations.
Better-than-native counts increased by factors of 3.9× and 1.9×, respectively, while binding affinity
predictions showed dramatic improvements, with negative Vina score ratios increasing from 47.00%
to 65.59% for SemlaFlow. Compared to baseline models, where the loss function only encourages the
model to match the data distribution in the training set, force-field guidance pushes samples toward
physically plausible regions, leading to better docking scores out-of-the-box. The consistency of
improvements across two distinct generative architectures establishes the broad applicability of our
energy guidance approach. In addition to empirical improvements, our theoretical analysis offers a
rigorous link between deep generative sampling and classical energy-descent theory. Importantly,
these quality enhancements are achieved while maintaining high molecular diversity (>80%) and
chemical validity, ensuring that improved binding characteristics do not restrict chemical space
exploration.
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a b

c d

Figure 2: Some representative examples illustrating the impact of guidance terms on generated
molecular composition from the EDM model. Results for generation with a fixed starting noise with
guidance (a and c) and without guidance (b and d) for the Epstein-Barr Virus Nuclear Antigen-1 (top
row, PBD:6NPM) and the Epstein-Barr Virus Nuclear Antigen-1 (top row, PBD:6NPM) and Aspartate
semialdehyde dehydrogenase (bottom row, PBD:6C85). Proteins are shown as gray cartoons with
some pocked residues shown with sticks, while generated ligands are shown with a ball-and-stick
representations, with guidance samples colored with cyan carbons and default samples colored with
green carbons.
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A Diffusion models

Alternatively to conditional flow matching models, diffusion models [41] are another class of gen-
erative models that learn to sample complex data distributions by learning to reverse a process
that adds noise to the data. For clarity and consistency throughout the paper, we slightly depart
from the standard notation commonly used in diffusion models by introducing a relabeling func-
tion, τ(t) = ⌊T (1− t)⌉, where ⌊·⌉ is the round to nearest integer operator, t ∈ [0, 1] denotes the
normalized time and T is the total number of time steps. With this convention, we denote the clean
sample as Xτ(1) and the noisy sample as Xτ(0). Note that this remains consistent with the typical
diffusion model notation, where Xτ(1) = X0 (clean) and Xτ(0) = XT (noisy). This choice aligns
with the flow matching notation introduced in Section 3, enabling a unified presentation across both
paradigms. Diffusion models consist of two steps: forward and reverse processes. In the forward
process, a sample from the data distribution is progressively perturbed by adding noise, eventually
mapping it to a simple known prior distribution pτ(0) (e.g., Gaussian noise for continuous data). The
reverse process is then learned via a neural network that gradually denoises the sample, reconstructing
a data point from the noise.

Formally, given a data point Xτ(1), the forward process defines a Markov chain of T steps:

Xτ(1) → Xτ(1−∆T ) → · · · → Xτ(0), (7)

where ∆T = 1/T and Xτ(0) ∼ pτ(0) for sufficiently large T . The reverse process is modeled by a
neural network pθ, parameterized by weights θ, and can be formulated in several equivalent ways: by
directly estimating Xτ(t+∆T ) from Xτ(t) [42], by predicting the noise added at each step [41], or by
predicting the original clean sample Xτ(1) [43]. For convenience, we adopt the latter formulation,
i.e., modeling

pθ(Xτ(1) | Xτ(t)), (8)
as it enables direct computation of molecular energy at each step based on the current estimate of the
original structure. Additionally, we extend our model to condition on proteins, resulting in modeling

pθ(Xτ(1) | Xτ(t), Y ). (9)

As the backbone architecture, we adopt EDM [16], augmented to support conditioning on protein
pockets (see Section 3.2 for the details). The sampling procedure is depicted in Algorithm 3.
COMPUTEPOSTERIOR allows to samples Xτ(t+∆T ) given X̂τ(1) and Xτ(t).

Algorithm 3 Diffusion Model Sampling
Inputs: Number of steps T , learned denoiser pθ (as Equation 9), prior pτ(0), protein Y

1: Initialize Xτ(0) ∼ pτ(0)
2: for i = 0 to T − 1 do
3: t = i ·∆T
4: X̂τ(1) ∼ pθ(Xτ(1) | Xτ(t), Y )

5: Xτ(t+∆T ) = COMPUTEPOSTERIOR(X̂τ(1), Xτ(t))
6: end for
7: return Xτ(1)

The COMPUTEPOSTERIOR function models the distribution N (Xτ(t+∆T );µt(X̂τ(1), Xτ(t)), β̃I),
where

µt(X̂1, Xτ(t)) =

√
ᾱτ(t+∆T ) βτ(t)

1− ᾱτ(t)
X̂τ(1) +

√
ατ(t) (1− ᾱτ(t+∆T ))

1− ᾱτ(t)
Xτ(t),

and

β̃ =
1− ᾱτ(t+∆T )

1− ᾱτ(t)
βτ(t), ατ(t) = 1− βτ(t), ᾱτ(t) =

τ(t)∏
s=τ(1−∆T )

αs.
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The values βτ(t) are typically chosen deterministically, with a common choice being the cosine
schedule [43]. Algorithm 4 shows the inference procedure guided by the energy function.

Algorithm 4 Diffusion Model Sampling with Energy Guidance
Inputs: Number of steps T , learned denoiser pθ (as Equation 9), prior pτ(0), protein Y , energy

function E, λ > 0.
1: Initialize Xτ(0) ∼ pτ(0)
2: for i = 0 to T − 1 do
3: t = i ·∆T
4: X̂τ(1) ∼ pθ(Xτ(1) | Xτ(t), Y )

5: X̂τ(t+∆T ) = COMPUTEPOSTERIOR(X̂τ(1), Xτ(t))− λ∇Xτ(t)
E(X̂τ(1), Y )

6: end for
7: return Xτ(1)

Similarly to SemlaFlow, Tables 3 and 4 report the same quality metrics for EDM. Consistent with
SemlaFlow, the results here demonstrate a clear trend of improved performance across most metrics,
with the combined guidance and post-optimization approach achieving superior outcomes in the
majority of evaluation criteria. In Table 3, VR increases from 64.26% in the baseline to 74.45% with
guidance and post-optimization, and VS improves from 1.01 kcal/mol to –4.05 kcal/mol. By contrast,
GS remains relatively stable across all methods (–5.16 kcal/mol to –4.76 kcal/mol), while GR shows
a marked increase from 20.84% in the baseline to 47.96% with guidance and post-optimization.

Table 3: Vina and Glide docking score evaluation for EDM. VR < 0 denotes negative vina score
ratio, GR < 0 denotes negative docking score ratio, VS denotes the average Vina score in kcal/mol,
and GS denotes the average Glide score in kcal/mol.

METHOD VR < 0 GR < 0 VS GS

NO GUIDANCE 64.26% 20.84% 1.01 -5.16
GUIDANCE 68.45% 39.49% -2.43 -5.19
NO GUIDANCE + OPT 72.81% 35.23% -2.43 -4.92
GUIDANCE + OPT 74.45% 47.96% -4.05 -4.76

Table 4 presents the molecule quality metrics for the EDM model. PBR increases notably from
25.23% in the baseline to 37.51% for the guidance case. BNC more than doubles from 540 to 1118,
demonstrating that guidance enables the generation of significantly more molecules that outperform
native binding conformations. The strain energy also shows considerable improvement, decreasing
from 3.73 kcal/mol to 2.67 kcal/mol, reflecting more energetically favorable molecular conformations.
When adopting post-optimization BNC increases from 540 to 801, while strain energy reduces
from 3.73 kcal/mol to 1.25 kcal/mol. PBR also improves from 25.23% to 33.66%. With guidance
and post-optimization, the strain energy decreases to 0.87 kcal/mol, representing a substantial 77%
reduction compared to the baseline value of 3.73 kcal/mol. Note that post-optimization alone does
not yield the best results in strain energy; such improvements are observed only when it is combined
with guidance.

Table 4: Quality metrics for EDM. QED reports the average quantitative estimate of drug-likeness.
PBR denotes the PoseBuster pass ratio. BNC gives the number of compounds whose docking scores
are better than those of the native ligands. VALID indicates the proportion of valid molecules among
the generated set. # INTERACTIONS specifies the average number of hydrogen bonds formed between
generated ligands and their target proteins. STRAIN ENERGY reports the average conformational
strain energy. The overall molecular diversity is 81.30%

METHOD QED PBR BNC VALID # INTERACTIONS STRAIN ENERGY

NO GUIDANCE 0.46 25.23% 540 81.26% 2.19 3.73
GUIDANCE 0.42 37.51% 1118 77.68% 2.13 2.67
NO GUIDANCE + OPT 0.46 33.66% 801 81.26% 1.83 1.25
GUIDANCE + OPT 0.42 33.85% 1052 77.68% 1.79 0.87
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B Theoretical insights

Lemma 1 (Descent lemma) Let g : Rn → R be continuously differentiable with L–Lipschitz
gradient:

∥∇g(u)−∇g(v)∥ ≤ L∥u− v∥ ∀u, v ∈ Rn.

Then for all x, y ∈ Rn,

g(y) ≤ g(x) + ∇g(x)⊤(y − x) + L
2 ∥y − x∥2.

Fix x, y ∈ Rn and define the line segment γ(t) = x+ t(y − x) for t ∈ [0, 1]. By the Fundamental
Theorem of Calculus applied to the scalar function t 7→ g(γ(t)),

g(y)− g(x) =

∫ 1

0

d

dt
g(γ(t)) dt =

∫ 1

0

∇g(γ(t))⊤γ′(t) dt =

∫ 1

0

∇g(γ(t))⊤(y − x) dt.

Add and subtract ∇g(x) inside the integrand:

g(y)− g(x) = ∇g(x)⊤(y − x) +

∫ 1

0

(
∇g(γ(t))−∇g(x)

)⊤
(y − x) dt.

By Cauchy–Schwarz and the Lipschitz property of ∇g,∣∣(∇g(γ(t))−∇g(x))⊤(y−x)
∣∣ ≤ ∥∇g(γ(t))−∇g(x)∥ ∥y−x∥ ≤ L ∥γ(t)−x∥ ∥y−x∥ = L t ∥y−x∥2.

Therefore,

g(y)− g(x) ≤ ∇g(x)⊤(y − x) +

∫ 1

0

L t ∥y − x∥2 dt = ∇g(x)⊤(y − x) + L
2 ∥y − x∥2,

which is the claimed inequality.

Theorem 2 Let E : Rm → R and f : Rn → Rm be C1 functions, and define the composite

g(x) := E(f(x)), x ∈ Rn.

Suppose g is L–smooth, i.e.,

∃L > 0 such that ∥∇g(x)−∇g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

Then it follows that

E(f(x− λ∇g(x))) ≤ E(f(x)), 0 < λ < 2
L , (10)

with strict inequality whenever ∇g(x) ̸= 0.

**Step 1 (Descent lemma).** For any L–smooth function g, we have

g(y) ≤ g(x) +∇g(x)⊤(y − x) +
L

2
∥y − x∥2. (11)

—

**Step 2 (Gradient step).** Choose

y = x− λ∇g(x), λ > 0.

Substituting into (11) gives

g(x− λ∇g(x)) ≤ g(x) +∇g(x)⊤(−λ∇g(x)) + L

2
∥− λ∇g(x)∥2

= g(x)− λ∥∇g(x)∥2 + Lλ2

2
∥∇g(x)∥2.

—

**Step 3 (Condition on step size).** Rearranging yields

g(x− λ∇g(x)) ≤ g(x)−
(
λ− Lλ2

2

)
∥∇g(x)∥2. (12)
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If 0 < λ < 2
L , then the coefficient λ − Lλ2

2 is strictly positive. Hence: - If ∇g(x) ̸= 0, inequality
(12) is strict:

g(x− λ∇g(x)) < g(x).

- If ∇g(x) = 0, then x is a stationary point and equality holds:

g(x− λ∇g(x)) = g(x).

—

**Conclusion.** Since g(x) = E(f(x)), we deduce that under the L–smoothness assumption on g,
one gradient step yields

E(f(x− λ∇g(x))) ≤ E(f(x)), 0 < λ < 2
L ,

with strict inequality whenever ∇g(x) ̸= 0.
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