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ABSTRACT

The training process of RL requires many trial-and-errors that are costly in real-
world applications. To avoid the cost, a promising solution is to learn the policy
from an offline dataset, e.g., to learn a simulator from the dataset, and train optimal
policies in the simulator. By this approach, the quality of policies highly relies on
the fidelity of the simulator. Unfortunately, due to the stochasticity and unsteadiness
of the real-world and the unavailability of online sampling, the distortion of the
simulator is inevitable. In this paper, based on the model learning technique, we
propose a new paradigm to learn an RL policy from offline data in the real-world
sequential recommendation system (SRS). Instead of increasing the fidelity of
models for policy learning, we handle the distortion issue via learning to adapt to
diverse simulators generated by the offline dataset. The adaptive policy is suitable
to real-world environments where dynamics are changing and have stochasticity
in the offline setting. Experiments are conducted in synthetic environments and a
real-world ride-hailing platform. The results show that the method overcomes the
distortion problem and produces robust recommendations in the unseen real-world.

1 INTRODUCTION

Recent studies have shown that reinforcement learning (RL) is a promising approach for real-world
applications, e.g., sequential recommendation systems (SRS) (Wang et al., 2018; Zhao et al.; 2019;
Cai et al., 2017), which make multiple rounds of recommendations for customers and maximize
long-term recommendation performance. However, the high trial-and-error costs in the real-world
obstruct further applications of RL methods (Strehl et al., 2006; Levine et al., 2018).

Offline (batch) RL is to learn policies with a static dataset collected by behavior policies without
additional interactions with the environment (Levine et al., 2020; Siegel et al.; Wang et al., 2020;
Kumar et al., 2019). Since it avoids costly trial-and-errors in the real environment, offline RL
algorithms are promising to cost-sensitive applications (Levine et al., 2020). One scheme of offline
RL is learning a simulator from the dataset. In this way, RL policies can be learned from the
simulator directly. Although prior works on model-based learning have achieved significant efficiency
improvements in online RL by learning dynamics models (Kaiser et al., 2020; Wang et al., 2019;
Heess et al.; Luo et al., 2019), building an accurate simulator is still difficult, especially in offline
RL. In particular, the offline dataset may not cover the whole state-action space, and there is no way
for sampling in the real-world to recover the prediction error of the learned simulator. The learned
policies tend to exploit regions where insufficient data are available, which causes the instability of
policy learning (Kurutach et al., 2018; Zhang et al., 2015; Viereck et al., 2017). By overcoming the
problem, recent studies in offline model-based RL (Yu et al., 2020; Kidambi et al., 2020) have made
significant progress in MuJoCo environments (Todorov et al., 2012). These methods learn policies
with uncertainty penalties. The uncertainty here is a function to evaluate the confidence of prediction
correctness, which often implemented with ensemble techniques (Lowrey et al., 2019; Osband et al.,
2018). By giving large rewards penalty (Yu et al., 2020) or trajectory truncation (Kidambi et al., 2020)
with large uncertainty on dynamics models, policy exploration is constrained in the regions where the
uncertainty of model prediction is small, so that to avoid optimizing policy to exploit regions with
bad generalization ability.

However, in real-world applications like SRS, several realistic problems of the current offline learning
methods are ignored. First, take SRS as an example, customer behaviors (i.e., the environment)
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are non-stationary and thus change across different periods and locations. Therefore, besides the
prediction error induced by model approximation, the transitions in the offline dataset also can be
inaccurate in the future (Krueger et al., 2019; Chen et al., 2018; Zhao et al., 2018; Thomas et al.,
2017; Li & de Rijke, 2019). Second, different from traditional RL environments which are overall
deterministic (Brockman et al., 2016), real-world environments often introduce stochasticity. For
example, after recommending a production to a customer, it is hard to model the user’s decisions
without stochasticity (e.g., buying it or not), even with large enough data. Hidden confounder fac-
tors (Forney et al.; Bareinboim et al., 2015; Shang et al., 2019) obstruct the deterministic predictions.
As a result, the uncertainty regions are drastically increased and thus the exploration of policy learning
are obscured.

In this paper, instead of constraining policy exploration in high-confidence regions, we study to
handle the offline issue by learning to adapt. We propose an adaptive policy which is trained to
make optimal actions efficiently in regions with high confidence for model prediction. While in
regions with large uncertainty, the policy is trained to identify the representation of each dynamics
model and adapt the optimal decisions on the representation. When deploying the policy in the
environment, the policy identifies the dynamics in the real-world through interaction, then adapt its
behavior. The module to represent the dynamics models is named environment-context extractor. The
extractor and adaptive policy should be learned in a diverse simulator set and thus can generalize to
unknown situations. As a solution, we propose to use model-learning techniques with augmentation
approaches to generate a simulator set to cover real-world situations. In this way, with a sufficiently
large simulator set, the learned policy can adapt robustly in unknown real-world environments.

To learn the adaptive policy and environment-context extractor, we first analyze and formulate
the environment context representation problem in SRS. In SRS scenarios, the recommendation
platforms interact with customers. Each customer can be regarded as an environment in the view
of the RL paradigm. The environments include a two-level structure: in the high-level structure,
a recommendation platform serves customers from multiple domains (e.g., in different cities and
countries). In the low-level structure (i.e., for each domain), there are numerous customers with
different behaviors, and the behaviors are dependent on the domain they current in. Although there
have been recent interests in learning the representation of environment parameters based on the
agent’s trajectories in the robotics domain (Peng et al., 2018; Akkaya et al., 2019; Zhu et al., 2018;
Sadeghi et al.), the environment-context representation problem in SRS has never been proposed
and the two-level environment structure makes the environment context agnostic based on a single
customer’s trajectory without considering the domain he/she current in. As a solution, we use a
special network to embed the domain information and show that the additional domain information is
necessary for representing the environment contexts in SRS.

As the result, we propose Offline learning with Adaptive Policy in sequential Recommendation Sys-
tems (OapRS), as a new paradigm to solve an offline problem that policies can applied to real-world
applications without any additional online sample. By learning to adapt with the representation of dy-
namics, OapRS is suitable to real-world scenarios in which environments are non-stationary and have
stochasticity. As far as we know, this is also the first study on reality-gap and the environment-context
representation problem in SRS. We conduct experiments in a reproducible synthetic environment and
a real-world recommendation scenario: the driver program recommendation system of a ride-hailing
platform. Our empirical evaluations demonstrate that OapRS can learn reasonable environment
contexts and makes robust recommendations in unseen environments.

2 RELATED WORK
Reinforcement learning (RL) has shown to be a promising approach for real-world sequential
recommendation systems (SRS) (Wang et al., 2018; Zhao et al.; 2019; Cai et al., 2017) to make
optimal recommendations with long-term performance. However, numerous online unconstrained
trial-and-errors in RL training obstruct the further applications of RL in “safety critical” SRS scenario
since it may result in large economic losses (Levine et al., 2020; Gilotte et al.; Theocharous et al.,
2015; Thomas et al., 2017). Many studies propose to overcome the problem by offline (batch)
RL (Lange et al., 2012).

Most prior works on offline RL introduce model-free algorithms. To overcome the extrapolation
error, which is introduced by the mismatch between the offline dataset and true state-action occu-
pancy (Wang et al., 2020), these methods are designed to constrain the target policy to be close
to the behavior policies (Wang et al., 2020; Kumar et al., 2019; Wu et al., 2019), apply ensemble
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Figure 1: Illustration of the OapRS compared with other methods. The line denotes the optimal
trajectory of the learned policies. There are several policies in domain randomization and OapRS
since the methods learn to adapt in multiple simulators. The gray oval denotes the consistency region.

methods for robust value function estimation (Agarwal et al., 2020), or re-weight with importance
sampling (Liu et al., 2019). Most recent studies have shown that learning robust policies from
the approximation of dynamics models has the potential to take actions outside the distribution on
behavior policies and thus can converge to better policies (Kidambi et al., 2020; Yu et al., 2020). To
remedy the extrapolation error, these methods learn policies from dynamics models with uncertainty
penalty. In particular, Kidambi et al. (2020) constructs terminating states based on a hard threshold
on uncertainty, while Yu et al. (2020) uses a soft reward penalty to incorporate uncertainty. The
uncertainty is often computed via the inconsistency of the ensemble dynamics model predictions on
each state-action pair to evaluate the confidence of predictions on next states. The penalty constrains
policy exploration and optimization in the regions with high consistency for better lower bound
performance in the deployment environment (Kidambi et al., 2020; Yu et al., 2020). However, in
SRS, the uncertainty estimation via the inconsistency will introduce two unexpected factors: (1)
inconsistency of predictions may come from the non-stationary of the environment. (2) the oracle
dynamics model itself may have high uncertainty (comes from the stochastic of the environment). As
a result, uncertainty estimation with these compounding factors may constrain the policy to explore
in a small region and thus hard to optimize.

An alternative to learning from dynamics model and deploying in real-world environments is domain
randomization techniques, which is a popular solution in the robotic domain (Tobin et al., 2017;
Sadeghi & Levine, 2017; Tobin et al., 2018; James et al., 2019; Peng et al., 2018; Akkaya et al.,
2019; Nagabandi et al.). In general, the framework trains a policy in numerous simulators, and then
deploys it to unknown target domains directly. The numerous simulators are constructed by sampling
different environment parameters, which are modeled by human experts with laws of physics in the
real-world. The algorithms can train a uniform policy (Tobin et al., 2017; Sadeghi & Levine, 2017;
Tobin et al., 2018; James et al., 2019) to maximize the expectation of the long-term rewards of the
simulators, or train an adaptive policy with online system identification (OSI) techniques (Peng et al.,
2018; Akkaya et al., 2019; Yu et al.) to extract the representation of the dynamics of the simulators
and maximize the performance metric of each simulator. In this paper, we adopt a similar idea of OSI
to construct the environment-parameter extractor and the adaptive policy. However, in the offline
setting, generating a simulator set by random sampling directly from the parameter space is not only
hard since we do not have the exact knowledge of a representation of environment parameters to
build the simulator, but inefficient because we only have access to the offline dataset to estimate the
real-world dynamics.

The difference between the aforementioned methods and OapRS is shown in Figure 2. Compared with
previous methods learned by uncertainty penalty (Kidambi et al., 2020; Yu et al., 2020) to constrain
policy learning (in Figure 1(c)), we learn to adapt decisions for all possible dynamics transitions
(which are learned by ensemble) in the states out of the consistency regions (in Figure 1(b)). While
learning in the entire dynamics space is an ideal solution to learn a robust policy (in Figure 1(a)),
for less training cost and better efficiency, the dynamics set is generated by an offline dataset and
model-learning algorithms with ensemble methods. In this way, we construct a consistency region
implicitly in which optimal trajectories are similar for each simulator, while the domain randomization
learns to adapt in the whole space without considering the knowledge of the offline dataset.

In SRS, the non-stationarity and stochasticity problems have been studied recently. On one hand,
Zhao et al. (2018); Chen et al. (2019) propose to handle the non-stationarity problem by optimizing
the policy with offline data directly and correct the policy by learning with additional online feedback
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data from customers. Our work focus on learning an adaptive policy from offline data directly, which
is important for safety critical applications. On the other hand, the stochasticity problem can be
modeled with confounder factors. Recent works show policy can make better decisions considering
hidden confounder factors when optimizing policy (Shang et al., 2019; Forney et al.; Bareinboim
et al., 2015). In this work, we consider stochasticity by learning dynamics models with hidden
confounder factors (Shang et al., 2019).

3 BACKGROUND AND NOTATIONS

In the standard RL framework, an agent interacts with an environment described as a Markov Decision
Process (MDP) (Sutton & Barto, 2018). The agent learns a policy π(at|st), which chooses an action
at ∈ A conditional on a particular state st ∈ S, at each time-step t ∈ {0, 1, ..., T}. S and A denote
the state and action spaces, respectively. The reward function rt = r(st, at) ∈ R evaluates the
immediate performance of action at given state st. The goal of RL is to find an optimal policy π∗,
which maximizes the multi-step cumulative discounted reward (i.e., long-term performance). The
objective is to maximize Jρ(π) = maxπ Eτ∼p(τ |π,ρ)

[∑T
k=0 γ

krt+k

]
, where γ denotes the discount

factor. p(τ |π, ρ) is the probability of generating a trajectory τ := [s0, a0, ..., aT−1, sT ] under the
policy π and a transition dynamics ρ(st+1|st, at), where T denotes the trajectory length. In particular,
p(τ | π) := ρ0(s0)

∏T
t=0 ρ(st+1 | st, at)π(st, at), where ρ0(s0) is the initial state distribution. A

common way to find an optimal policy π∗ is by optimizing the policy parameters with gradient ascent
along∇Jρ(π). SRS problem can be naturally formulated as an MDP. In general, the recommendation
system is a policy π, while the environment consists of numerous human customers. During the
learning process, the policy interacts with customers to execute the recommended action at based on
the customer state st.

In the offline RL problem, we assume that we are only given a static dataset D = {(si, ai, si+1)}Ni=1
collected by some unknown policies. The reward function r is given by human experts. The goal is
to output a sub-optimal policy π∗ to maximize Jρ with the static dataset.

SRS problem can be naturally formulated as an MDP. In general, the recommendation system is
the policy π, while customers can be regarded as the environment ρ. During the learning process,
the policy interacts with customers to execute the recommended action at based on the customer
state st. A set of recommendation business metrics define the immediate performance rt based on
customers’ feedback. In this work, we consider the non-stationarity of environment w.r.t time periods,
which is common in SRS applications (Thomas et al., 2017). We demonstrate the phenomenon in
Figure 14. We use subscript ρt to denote the dynamics model at time-step t so that the dynamics may
be different in different timesteps. We also model the stochasticity with hidden confounder (Shang
et al., 2019). In particular, there is a hidden policy πHt for each timestep t to output confounder
factors: xHt ∼ πHt (xH |st, at). The dynamics model output the next state based on st, at and the
confounder xHt , that is st+1 = ρt(st, at, x

H
t ). For the notation simplification, the following we still

use s′ = ρt(s, a) to denote the dynamics model with hidden confounder factors.

4 OAPRS: OFFLINE LEARNING WITH ADAPTIVE POLICY IN SEQUENTIAL
RECOMMENDATION SYSTEM

In the offline setting, the learned policies tend to exploit regions where the model is distorted since
insufficient data are available Kurutach et al. (2018). Prior offline model-based techniques have shown
great potential in learning a better policy without strict constraints in action selections (Yu et al.,
2020; Kidambi et al., 2020). However, the robust offline policy learning in real-world applications
is still challenging for following reasons: 1) In real-world applications like SRS, environments are
non-stationary, thus, besides model learning error, the transition information of the dataset can be
distorted too; 2) It is hard to predict the future states with high determinacy since there are many
hidden confounders in SRS (Shang et al., 2019). Since the environment has stochasticity, learning by
consistency penalties will obstruct the policy into a small region for exploration.

To output a robust policy in stochastic environments, we first study to handle the distortion problem
without relying on the consistency penalty and propose the learn to adapt framwork (in section 4.1).
Then we formulate and analyze the environment-context representation problem in SRS and propose
an environment-context extractor and an adaptive policy optimization method (in section 4.2). Finally,
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we discuss important practical details to improve the robustness of simulators and policy in offline
dataset (in section 4.3).

4.1 OFFLINE ADAPTIVE POLICY LEARNING

In this work, we assume that given a specific reward function r, any dynamics of environment
ρ(s′|s, a) ∈ T can be fully characterized with an environment-context vector z ∈ Z (e.g., the
friction coefficient in robotics), where T denotes a set of dynamics and Z denotes the space of the
context vectors. Formally, there is a mapping function φ : T → Z . We call φ an environment-
context extractor. We define the optimal environment-context extractor φ∗ the one that satisfies:
∃πφ∗ ∈ Π,∀ρ ∈ T , Jρ(πφ∗) = maxπ Jρ(π), where πφ := πφ(at|φ(zt|ρt), st) is an adaptive policy
and Π denotes the policy class. We discuss the input of φ in the next section. Besides, we define the
optimal adaptive policy π∗φ∗ the one that satisfies ∀ρ ∈ T , Jρ(π∗φ∗) = maxπ Jρ(π). With the optimal
φ∗ and π∗φ∗ , given any ρ in T , the adaptive policy can adapt to make the best decisions via the output
of environment-context z. To achieve this, given a dynamics model set T , we optimize φ and πφ by
the following objective function:

φ∗, π∗φ∗ = arg max
φ,πφ

Eρ∼T [Jρ(πφ)] , (1)

where ∼ denotes a sample strategy to draw dynamics models ρ from the dynamics set T w.r.t
P [ρ] > 0,∀ρ ∈ T . The strategy we used in OapRS is uniform sampling. When deployed in the
real-world ρr, OapRS infers the environment contexts by φ∗(ρrt ) and makes the best action by π∗φ∗ . If
all the variant of dynamics models in the real-world Tr fall into T , we can deploy the policy robustly
via the optimal φ∗ and π∗φ∗ .

To learn the robust φ∗ and π∗φ∗ for real-world deployment, the crucial problem is to construct a set of
dynamics {ρ} to cover the real-world dynamics set Tr. One ideal solution is to construct all possible
dynamics model in S ×A×S (or all possible context vectors in Z and the corresponding simulators
when we have the knowledge of the environment context) and optimize φ and π via equation 1 (Tobin
et al., 2017; Sadeghi & Levine, 2017; Tobin et al., 2018; James et al., 2019; Peng et al., 2018; Akkaya
et al., 2019). However, in real-world applications like SRS, we have no exact knowledge to formulate
customer behavior, and thus space Z is unknown. Besides, since the real-world fall in a subspace of
the dynamics space, constructing all possible dynamics model directly is costly and inefficient for
policy learning. We propose to regard model-learning algorithms G as an efficient generator to map
dataset to a dynamics model where the latent environment-context is near the real-world: G(D)→ ρ
(although does not match exactly). Then we construct a diverse dynamics set by augmenting on G
and D. In particular, for augmenting on D, we divide the offline dataset by the domain knowledge
(e.g., we can split the dataset by city, country, or time period in production recommendation systems);
for augmenting on G, we can select several model-learning algorithms or different hyper-parameters
for the same algorithm (Kurutach et al., 2018) to generate simulators.

We list the OapRS framework in Algorithm 1. The framework is robust to the distortion of simulators
since our goal is to generate a dynamics model in which the environment contexts are near the
distribution of the real-world instead of recovering the real-world dynamics exactly. The method is
also robust to stochastic environments since it learns to adapt to all possible situations in the state out
of the consistency region instead of doing penalty in the state with multiple situations. (as illustrated
in Figure 1(b)). Additionally, we point out that the framework is orthogonal to other techniques since
the reliable model-learning methods can reduce the requirement of dynamics augmentation to cover
the real-world parameter space.

4.2 OPTIMIZATION OF ADAPTIVE POLICY WITH ENVIRONMENT-CONTEXT EXTRACTOR

In this section, we formulate the environment-context representation problem in SRS. We first
define an environment-context dependent dynamics as follows: ρ(st+1|st, at, zt), where z is the
environment-context vector. Before learning the representation z by φ(z|ρ), the question is: What is
an suitable input to φ for representation learning.

In the SRS scenario, the recommendation policy interacts with customers in multiple domains. Each
domain consists of numerous customers. Taking the ride-hailing platform as an example, the platform
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Algorithm 1 OapRS framework
Input: φϕ as environment-context extractor, parameterized by ϕ; Adaptive policy network πθ
parameterized by θ; Offline expert data D; Model learning algorithm G; Rollout horizon
H;minibatch m for policy training
Process:

divide offline dataset intoN partitions {D̄} and generateM×N dynamics model {ρ} by ensemble
of M model learning technique G
for 1, 2, 3, ... do

random select the dynamics model ρi in {ρ} and sample s1 from D̄ which is used to train ρi
initialize buffer Drollout
for t=1,2,...,H do

sample zt from φ(zt|ρit) and then sample at from π(at|st, zt)
rollout one step st+1, rt+1 ∼ ρit(st, at) and then add (st+1, rt+1, st, at, zt) to Drollout
if t mod m == 0 then

Update φ and π with equation 1 by policy gradient (e.g., PPO) and then Drollout ← ∅
end if

end for
end for

provides services in multiple cities (i.e., domains), and interacts with numerous drivers in each city
(i.e., customers). To train a platform recommendation policy for customers, we regard each customer
as an environment ρ. Different from traditional agent controlling, in SRS, customer’s behavior is not
only dependent on the character, but the domain he/she belongs to. For instance, passengers’ demand
will be very different with time and cities geographically. Drivers in different cities might have
different engagement (i.e., online time) due to different demand and supply, which is independent
of their personas. Drivers’ behavior will also change when the domain he/she belongs to changes.
Based on the analysis, we propose that the input of φ should include personas information besides
domain information.

In the robotics domain, environment representation approaches, called system identification, have
been proposed recently (Peng et al., 2018; Akkaya et al., 2019; Yu et al.). The policy incorporates
an online system identification module φ(zt|st, τ0:t), which utilizes a history of past states and
actions τ0:t = [s0, a0, ..., st−1, at−1, st] to predict the parameters of the dynamics. Since ρ in
SRS is also dependent on domain information, we follow the system identification technique and
add the domain trajectory information T0:t = [S0, A0, S1, A1, ..., St] to the input. That is: zt =

φ(st, at−1, St, At−1, zt−1), where (Sdt , A
d
t−1) := {(si,dt , ai,dt−1)}Ni=1 , which includes N state-action

pairs at each time-step t. We use superscript d to denote the domain type.

Since the number of customers N can be large and vary from timestep to timestep, it is impractical to
feed (Sdt , A

d
t−1) to the neural network directly. In this work, we propose State-Action Distributional

variational AutoEncoder (SA-DAE) to solve this problem by inferring the latent embedding υ of X .
In the rest of this article, we use Xd

t := (Sdt , A
d
t−1) to for brevity. We first design the data generative

process based on the encoded variable υ based on the two assumptions: First, we assume state-action
pairs in Xd

t are i.i.d. sampled from a distribution pψdt (s, a), which is parameterized by ψdt for each
time-step t and domain d. Second, we also assume that the parameters ψ of the distribution are
generated by a distribution pθ(ψ|υ), parameterized by θ. It involves a latent continuous random
variable υ, which is generated from another prior distribution p(υ). Then the generation ofX includes
three steps: (1) sample υ from p(υ); (2) sample ψ from distribution pθ(ψ|υ) ; (3) sample pψ(s, a)
repeatedly to generate X .

Our target is to learn an embedding model qκ(υ|X) parameterized by κ, aligned with the posterior ap-
proximation pθ(υ|X). Using Kullback-Leibler Divergence (KLD) as the measurement, the objective
can be written as follows:

minLdae = minEX∼DX [KLD (qκ(υ|X)||pθ(υ|X))] , (2)

where the dataset DX := {Xd
t : d ∈ G, 0 < t ≤ T} includes state-action pairs in all time-steps

0 < t ≤ T and domains G, and the posterior pθ(υ|X) is the target distribution of qκ(υ|X). Under
the assumption of i.i.d. sampling on X , the probabilities of qκ(υ|X) and pθ(X|υ) can be estimated
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via likelihood:

qκ(υ|X) =

N∏
i=1

qκ

(
υ|s(i), a(i)

)
(3)

pθ(X|υ) =

N∏
i=1

pθ

(
s(i), a(i)|υ

)
=

N∏
i=1

pψ

(
s(i), a(i)

)
pθ(ψ|υ), (4)

where ψ denotes the parameters of distribution pψ. We give our theorem on the tractable evidence
lower bound (ELBO) in Theorem 1. We leave the proofs in the Appendix A.

Theorem 1 The tractable ELBO of state-action distributional variational inference is:

EX∼DX

[
Eqκ(υ|X)

[
N∑
i=1

log pθ

(
s(i)|υ

)
+ log pθ

(
a(i)|υ, s(i)

)]
+KLD (qκ(υ|X)||pθ(υ))

]
(5)

Theorem 1 give us a three-step pipeline to minimize the objective of equation 2: (1) sample a batch
of X = {(s, a)} from expert dataset DX ; (2) infer latent code υ via the likelihood probability
of equation 3; (3) compute the reconstructed log-probability of state-action pairs based on equation 4
and KL divergence between posterior and prior of υ, and then apply the gradient to κ and θ.

Finally, the function qκ embed the distribution of customer trajectory T0:t into the latent code
trajectory υ0:t. After that, the extractor φ can infer environment-context both with υ and τ . Then the
adaptive policy π (at | st, zt) samples an action based on zt.

4.3 ROBUST OFFLINE POLICY AND MODEL LEARNING IN IMPLEMENTATION

The dynamics model and policy are high-dimensional and complex to learn. We introduce three
important implementation techniques to handle these problems (more details can be found in the
Appendix F): (1) Semi dynamics model learning: To reduce the model learning complexity, with
domain expert knowledge, we learn the πh(s̄|s, a) and use a hand-coded function map(s′|s̄, s, a) to
construct the left of the states, instead of learning to predict s′ directly; (2) Confidence penalty: To
reduce the cost of dynamics model construction, we send policy with a large negative reward when
policy reach the unreal regions. The unreal region is judged by a expert rule. (3) Domain reward
normalization: Reward normalization is important for model-free RL algorithms (Engstrom et al.).
However, different simulators may have different reward scales. Instead of rescaling the reward with
a uniform scale, we rescale the reward for each domain.

5 EXPERIMENTS

In this work, we focus on the three research questions: (1) In SRS scenarios, can the adaptive policy
of OapRS make more robust decisions than other learn-to-adapt methods do? (2) By adapting to
the learned representation of the dynamics, can OapRS handle the distortion of the constructed
dynamics models? (3) Does non-steadiness and stochasticity in real-world applications actually
affect the performance of offline learning? If so, does OapRS overcome this challenge? We conduct
experiments in a synthetic environment and a real-world environment to answer these questions.

5.1 RESULTS IN SYNTHETIC ENVIRONMENT

To analyze the adaptability of OapRS and its robustness to distortion, we first conduct the experiments
in a synthetic environment in which the environment parameters z are configurable. The environment
is called the long-term customer satisfaction (LTS) problem, a sequential recommendation environ-
ment comes from Google RecSim (Ie et al., 2019). Instead of constructing dynamics set by learning
with augmentation (line 1 in Algorithm 1), for analyzing the results reasonably, we construct the
training dynamics set by selecting z directly, and control the difference of z between the training set
and the target domain to design different tasks. In particular, we construct the target dynamics with
ztest and select the training dynamics set by equidistant sampling parameters z from the space and
removing those ||z − ztest|| < α. The details of environment and experiment setup of the following
can be found in Appendix B.1.
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We first test the adaptability of OapRS in SRS. The algorithms we compared are (1) DR-UNI: The
domain randomization technique to learn a uniform policy ((Tobin et al., 2017)); (2) DR-OSI: An
online system identification algorithm proposed by Peng et al. (2018); (3) DIRECT: Train in the
dynamics model where z nearest to the target domain and deploy directly. (4) Upper Bound: A policy
trained in the target domain directly. We regarded it as the upper bound performance. We construct
three tasks: “LTS1”, “LTS2” and “LTS3”. The numbers after “LTS” denote the removing scale α. We
report our results in Figure 2. First, the results of DIRECT show that the performance degradation is
severe in the tasks. Without considering the difference between training and deploying, the policy
generates unpredictable behaviors. Second, all algorithms which consider learning from multiple
dynamic models can improve the robustness in unknown domains. However, the algorithms that
adapt by the representation of environments (OapRS and DR-OSI) reach better performance since
they try to find the optimal policy in the representation of the environment instead of maximizing the
expected performance in the training set. In addition, OapRS reaches the near-optimal performance
and does better than DR-OSI in difficult tasks (e.g., LTS3). The results demonstrate that without
considering the domain information, the representation can not be extracted well. In more difficult
tasks, the limitation of the representation ability restricts the performance of the adaptive policy. We
show more results about the SA-DAE and the extractor in Appendix C.
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Figure 2: Illustration of the performance in synthetic environments. The solid curves are the mean
reward and the shadow is the standard error of three seeds.

We then analyze the influence of dynamics distortion on OapRS. To mimic the process of offline
model-based learning, we follow the previous experiment setting at “LTS3”, but divide z into two
part: ze and zd. In particular, ze denotes the parameters that the behavior can be learned well by
dynamics model, which are equidistant sampled as before. And zd denotes the distortion parameters,
which are the same in all dynamic models if distortion does not exist. We generate the distorted
dynamics parameter ẑd by ẑd ∼ zd + U(−β, β) for training, where β can be regarded as the level
of distortion. Figure 3 shows the performance of OapRS in this setting. We can see in Figure 3(a)
that the deployment performance of OapRS with limited training set declines when the distortion
level becomes larger, but the performance is still better than the compared methods. However, in
Figure 3(b), we found that with enough sampled simulators, OapRS can overcome the distortion
problem well. As a conclusion, in empirically, by augmenting enough diverse dynamics models, it is
possible to overcome the distortion problem via OapRS.
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Figure 3: Illustration of the performance in distored synthetic environments. The solid curves are the
mean reward and the shadow is the standard error of three seeds. In limited setting, we sample β for
each simulator and fix it. In unlimited setting, we sample β for each simulator and each episode.
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5.2 EXPERIMENTS IN A REAL-WORLD APPLICATION

We finally test OapRS in the driver program recommendation (DPR) of a large-scale ride-hailing
platform in the real world (the detail of task setting can be seen Appendix B.2). The offline data
comes from a human policy. We construct the dynamics model set by DEMER (Shang et al., 2019)
for its ability to learn hidden confounders. For dynamics model augmentation, we divide the dataset
into 34 partitions by cities and time periods. For better comparison of algorithms and demonstrate the
offline learning performance in stochastic environments, we first conduct a semi-online experiment:
We leave one city in the dynamics set out for policy training, and test the policy performance in the
unseen city. We select three different cities for these experiments. The algorithms we compare are:
(1) MOPO: an offline model-based algorithm by consistency penalties. The dynamics models are
also trained in the same way as OapRS (Yu et al., 2020); (2) BCQ: an offline model-free algorithm by
constraining actions (Wang et al., 2020); (3) DEMER-policy: train a policy in one single dynamics
model without additional constrains but select the part of dataset nearest to the target environments to
learn the dynamics model. Here we select the dataset collected in the deployment city and the nearest
time period to train the dynamics model (note: the dataset are unseen to other algorithms). It is the
policy learning method in the original paper of DEMER (Shang et al., 2019). Figure 4(a), Figure 4(b)
and Figure 4(c) show the results. We finally deploy the policy trained by MOPO and OapRS to the
real-world and test the performance for 7 days. The results is shown in Figure4(d). We deploy the
policy from day 23 to day 29. Before deployment, drivers are recommended with the same human
expert policy. We found that the performance improvement of the MOPO policy is 0.1%, which is
similar to the expert policy, while the improvement of OapRS is 6.9%, which is significantly better
than the expert. The details of the results can be seen in Table 4.
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Figure 4: Illustration of the performance in semi-online and online tests. In the semi-online setting,
the Y-axis is the averaged long-term reward among the users in the environments. In the online test,
the Y-axis is the averaged daily reward. The rewards of online data are rescaled.

6 DISCUSSION

In this paper, we propose a new paradigm of model-based learning to solve the offline RL in real-
world applications. We focus on two realistic problems in real-world SRS applications: (1) real-world
environments are non-stationary; (2) real-world environments are often with stochasticity. Instead
of learning by penalty, constraint or randomization, OapRS solves the problem by learning to adapt
to diverse simulators generated by the offline dataset. We formulate and analyze the environment-
parameter representation learning problem in SRS and optimize the adaptive policy with the learned
environment representation. The experiment results show the adaptability of OapRS, the performance
decline of offline RL algorithms faced with the two realistic problems, and how OapRS work well in
this situation. Although we focus on the real-world application of SRS, we consider that OapRS can
be a general paradigm to solve the offline RL problem in other complex environments.
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A PROOF OF SA-DAE

We design the data generative process based on the encoded variable υ with two assumptions: First,
we assume that state-action pairs in X are i.i.d. sampled from a distribution pψ(s, a), which is
parameterized by ψ. Second, we also assume that the distribution parameters ψ are generated by a
distribution pθ(ψ|υ), parameterized by θ. It involves a latent continuous random variable υ, which
is generated from another prior distribution p(υ). Then, the generation of X includes three steps:
1) sample υ from p(υ); 2) sample ψ from distribution pθ(ψ|υ) ; 3) sample pψ(s, a) repeatedly to
generate X . A comparison with VAE on directed graphical model is shown in Figure 5.
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Figure 5: Comparison of SA-DAE and vanilla VAE through the directed graphical model. The circles
denote the variable nodes. The rounded rectangle denotes the dataset nodes, in which the notation in
the corner denotes the number of datasets. θ denotes the approximation parameters of the generative
model, and κ denotes the parameters of the variational approximation model.

Our target is to learn an embedding model qκ(υ|X) parameterized by κ, which aligned with the
posterior pθ(υ|X). Using KL divergence (KLD) as the measure of distribution, the objective function
can be written as follows:

minLsad = minEX∼DX [KLD (qκ(υ|X)||pθ(υ|X))] . (6)

where the dataset DX := {Xd
t : d ∈ G, 0 < t ≤ T} includes state-action pairs in all time-steps

0 < t ≤ T and domains G, and the posterior pθ(υ|X) is the target distribution of qκ(υ|X). We
provide the evidence lower bound (ELBO) of Equation equation 6 in Lemma 1.

Lemma 1 The ELBO of state-action distributional variational inference is:

ELBO = EX∼DX
[
Eqκ(υ|X) [log pθ(X|υ)]−KLD (qκ(υ|X)||pθ(υ))

]
Proof A.1

KLD(qκ(υ|X)||pθ(υ|X)) (7)

=Eqκ(υ|X)

[
log

qκ(υ|X)

pθ(υ|X)

]
=Eqκ(υ|X) [log qκ(υ|X)− log pθ(υ,X) + log pθ(X)]

=− L(θ, κ;X) + log pθ(X), (8)

Since log pθ(X) is independent of qκ(υ|X), minimizing Equation equation 7 is equivalent to maximize
L(θ, κ;X) in Equation equation 8.

14



Under review as a conference paper at ICLR 2021

Based on Bayes’s theorem, we have:
L(θ, κ;X) =Eqκ(υ|X) [− log qκ(υ|X) + log pθ(υ,X)]

=Eqκ(υ|X) [− log qκ(υ|X) + log (pθ(X|υ)pθ(υ))]

=Eqκ(υ|X)

[
log

pθ(υ)

qκ(υ|X)
+ log pθ(X|υ)

]
=Eqκ(υ|X) [log pθ(X|υ)]−KLD (qκ(υ|X)||pθ(υ)) ,

Under the assumption that X is i.i.d. sampled from DX , we obtain the evidence lower bound (ELBO)
objective:

maxEX∼DX
[
Eqκ(υ|X) [log pθ(X|υ)]−KLD (qκ(υ|X)||p(υ))

]
.

Theorem 2 The tractable ELBO of state-action distributional variational inference is:

EX∼DX

[
Eqκ(υ|X)

[
N∑
i=1

log pθ

(
s(i)|υ

)
+ log pθ

(
a(i)|υ, s(i)

)]
+KLD (qκ(υ|X)||p(υ))

]
(9)

Proof A.2 Under the assumption of i.i.d. sampling on X , the probability of qκ(υ|X) and pθ(X|υ)
can be estimated via likelihood:

qκ(υ|X) =

N∏
i=1

qκ

(
υ|s(i), a(i)

)
(10)

pθ(X|υ) =

N∏
i=1

pθ

(
s(i), a(i)|υ

)
=

N∏
i=1

pψ

(
s(i), a(i)

)
pθ(ψ|υ), (11)

where ψ denotes the parameters of distribution pψ .

In the reinforcement learning scenario, the action is sampled conditionally on the state, thus the
posterior pθ can be separated by:

pθ

(
s(i), a(i)|υ

)
=pθ

(
a(i)|υ, s(i)

)
pθ

(
s(i)|υ

)
=pψa

(
a(i)
)
pθ

(
ψa|υ, s(i)

)
pψs

(
s(i)
)
pθ (ψs|υ) , (12)

where ψs and ψa denote the decoded parameters of the distribution. Then the trac ELBO objective
can be written as:

EX∼DX
[
Eqκ(υ|X) [log pθ(X|υ)]−KLD (qκ(υ|X)||p(υ))

]
=EX∼DX

[
Eqκ(υ|X)

[
N∑
i

log pθ

(
x(i)|υ

)]
−KLD (qκ(υ|X)||p(υ))

]

=EX∼DX

[
Eqκ(υ|X)

[
N∑
i=1

log pθ

(
s(i)|υ

)
+ log pθ

(
a(i)|υ, s(i)

)]
+KLD (qκ(υ|X)||p(υ))

]
.

Since qκ
(
υ|s(i), a(i)

)
can be modeled with Gaussian distribution, the results are also a Gaus-

sian distribution Rakelly et al. (2019). Besides, pθ
(
a(i)|υ, s(i)

)
= pψa

(
a(i)
)
pθ
(
ψa|υ, s(i)

)
and

pθ
(
s(i)|υ

)
= pψs

(
s(i)
)
pθ (ψs|υ), where ψs and ψa denote the decoded parameters of the distribu-

tion. Thus, for any differentiable pψs and pψa , the ELBO objective is tractable.

In summary, SA-DAE has a three-step pipeline to minimize the objective of Equation equation 9:

1. Sample a batch of X from the dataset DX ;
2. Infer latent code υ via the likelihood probability based on Equation equation 10;
3. Compute the reconstructed log-probability of state-action pair based on Equation equation 12

and Equation equation 11, and compute the KL divergence between posterior and prior of υ,
then apply the gradient with respect to κ and θ.
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B EXPERIMENTAL SETTINGS

B.1 MULTIPLE-DOMAIN MULTIPLE-CUSTOMER LONG-TERM SATISFACTION PROBLEM (LTS)

Long-term satisfaction (Choc/Kale) problem comes from a synthetic environment in the Google
RecSim framework Ie et al. (2019). In this environment, the recommendation system sends items
of content to customers, and the goal is to maximize customers’ engagement in multiple timesteps.
The items of content are characterized by the score of clickbaitiness. The engagement of customers
is determined by the clickbaitiness score of content and the long-term satisfaction score. The
higher clickbaitiness score leads to a larger engagement directly but leads to a decrease in the long-
term satisfaction while the lower clickbaitiness score increases satisfaction but leads to a smaller
engagement directly. Moreover, the long-term satisfaction is a coefficient to rescale the engagement
of the given item of content. In particular, the value of engagement for customer i at timestep t is
sampled from a Gaussian distribution N

(
µit, σ

i
t
2
)

, which is parameterized by

µit :=
(
aitµ

i
c +

(
1− ait

)
µik
)
SAT it

σit :=
(
aitσ

i
c +

(
1− ait

)
σik
)
,

where i denotes the index of customer, ait denotes the clickbaitiness score of the given item. µic, µ
i
k,

σic and σik are hidden states of the customer i. SAT it denotes the long-term satisfaction score, which
is updated by at:

SAT it := sigmoid
(
his ×NPEit

)
NPEit := γiNPEit−1 − 2

(
ait − 0.5

)
,

where NPEit denotes the net positive exposure score of the customer i, γi denotes the memory
discount of NPEit , and his denotes the sensitivity ratio of NPE to satisfaction. γi and his are also
hidden states in this environment.

For the LTS environment, the hidden states µic, µ
i
k, σic, σ

i
k, his and γi define customer behaviors. To

construct the problem as the multiple-domain multiple-customer environment, we use µic to represent
the parameter of group information zd, which are the same among customers in the same simulator,
and the rest of the hidden states are randomly sampled for each customer, to represent the parameter
of z.

In our scenario, group-behavior parameters can only be identified through multiple customers’ trajecto-
ries via an unkown projection function f , i.e., ztd = f(T0:t), where T0:t = [S0, A0, ...St−1, At−1, St],
and S and A denote the state and action sets of all customers in the same domain. To model this
scenario in the synthetic environment, we need to design extra observations for each customer to infer
ztd. We consider the simplest case: zd is time-invariant and can be identified by St at any timestep t.
In implementation, each customer has an extra fixed observation sampled from Gaussian distribution
oi ∼ N (µc, ωc). Then zd is identifiable through multiple customers’ observation, since zd = Ei

[
oi
]
.

We construct the simulator in which µc = 14 as the test simulator and select the training simulators
by equidistant sampling parameters µc from environment-context space and removing those near the
testing simulator. The observation of customers is sampled at ωc = 4. Then we construct three tasks
with different transfer difficulties via controlling the removed range of parameters from training sets
{ρtrain}:

• LTS1: {ρtrain} = {ρµc : |µc − 14| ≥ 2 ∧ 6 ≤ µc < 22, µc ∈ N}
• LTS2: {ρtrain} = {ρµc : |µc − 14| ≥ 3 ∧ 6 ≤ µc < 22, µc ∈ N}
• LTS3: {ρtrain} = {ρµc : |µc − 14| ≥ 4 ∧ 6 ≤ µc < 22, µc ∈ N}

The environment-context space is set to µc ∈ [6, 22), taking 14 as the middle point, and we take the
number of 2, 3 and 4 as the removed range for LTS1, LTS2 and LTS3, respectively.

In distortion test, we follow the setting of LTS3 and select µk as the distored parameter. In particular,
for all simulators, µik ∼ 4+U(−β, β). Without considering distortion, µik is set to 4 for all customers
in the simulators.
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B.2 DRIVER PROGRAM SEQUENTIAL RECOMMENDATION PROBLEM

To demonstrate the effectiveness of the proposed method, we deploy OapRS in a real-world recom-
mendation application, for a large-scale ride-hailing platform. The goal of the platform is to balance
the demand from passengers and the supply of drivers, i.e., helping drivers finish more orders, and
satisfying the more trip demand from passengers. The driver program recommendation (DPR) is one
of the typical recommendation scenarios in the platform. In this scenario, to satisfy more demand
from passengers, we would like to maximize the engagement of drivers via recommending reasonable
items from the program. The engagement is characterized by the number of orders completed by
each driver. The programs contain tasks for the driver to accomplish. If the driver completes the
recommendation program, his/her engagement will increase. However, the difficulty of the task
has influences on the completion rate since drivers respond differently to tasks, which also affects
the effectiveness of recommendations. The responses are also changing for a driver over time. For
example, the base number of demand is not in the same order of magnitude among the different cities,
since the total passenger volumes vary. Hence, the drivers who have similar personas may behave
differently in different cities, leading to diverse recommended programs.

The driver program recommendation can be modeled as an MDP. For simplification, we assume the
influence among drivers can be ignored. It is reasonable since drivers almost have no ideas about
other drivers’ tasks. In the DPR environment, we regard each day as a timestep. At timestep t, the
recommendation system policy π sends a program ait = π(sit) to driver i based on the observed
feature sit. a

i
t denotes the program features to characterize the action. The reward rit is the number

of finished orders in the day. Our goal is to maximize the expectation of long-term engagement of
drivers in different cities.

We divide real-world data into seventeen cities with two different periods for simulator learning.
The Simulator is learned by technique Shang et al. (2019). Then the environment context is implied
in the learned simulator models. In the semi-online test, we evaluate the policy performance with
reality-gap via running the policy in the unseen city. The experiments allow testing the algorithms
on the reality-gap through city and time period transfer, which is essentially environment context
change.

C EXPERIMENTAL DETAILS IN LONG-TERM SATISFACTION PROBLEM

We first train a policy given oracle environment context in the synthetic simulators, to test the
effect of the environment contexts. Figure 6 shows the action distribution of optimal policies in
different contexts of µc. It can be seen that the larger µc leads to a larger percentage of the higher
clickbaitiness-score item selected. Thus, a transferable policy should be aware of the differences of
µc and adapt its decisions for better performance.
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Figure 6: Illustration of generative action distribution for optimal policies in LTS3. The score is
rescaled into (−1, 1) from (0, 30). We sample 750 trajectories of different customers and draw the
histogram of these sampled actions.

In the LTS environment, zd is only related to group state information S. Thus we train SA-DAE to
reconstruct the state distribution instead of the state-action distribution. We draw 1000 customers for
each simulator to the constructed state dataset DX . qκ

(
υ|s(i)

)
is a neural network which outputs the
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Gaussian distribution parameters of υ. The dimension of vector υ is 5 in this environment. We also
model pθ (ψs|υ) with a neural network, which outputs the parameters of Gaussian distributions. The
prior of υ is set to standard normal distribution, i.e., p(υ) = N (0, 1).
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Figure 7: Illustration of KL divergence of the training set and testing set in LTS3. The solid curves
are the mean reward of three seeds. The dark shadow is the standard error, and the light one is the
min-max range of three seeds.

We use KLD to measure the performance of reconstruction. Since pθ (ψs|υ) also outputs the
parameters of Gaussian distribution, we compute the KLD directly via the analytic expression of
Gaussian distribution between pθ (s|υ) and N (µc, ωc). We test the KLD every 100 epochs. Figure 7
shows that the KLD in the testing set finally converges to the range of 0.01 to 0.02. Figure 8 shows
the reconstruction distribution is also correlated.
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(c) histogram in traning set (µc = 6) at epoch
8000
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(d) histogram in testing set (µc = 14) at epoch
8000

Figure 8: Illustration of the histogram about customer feature of oi in reconstructed and real data in
the task of LTS3.
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Figure 9: Illustration of the visualization on υ. The X-axis denotes the first principal component,
and the Y-axis denotes the second one. Each cross point denotes the projection of the latent code for
the state distribution. The numbers with the same color to the point denote the ground-truth of µc.
Although qκ(υ|X) is a Gaussian distribution, we only draw the mean of the distribution for legibility.

To evaluate the embedding performance of SA-DAE, we project υ into two-dimensional vectors via
principal component analysis (PCA) Wold et al. (1987). We show the result of PCA in Figure 9. It can
be seen that, after 6000 epochs, the latent code can be represented by the first principal component.
And the value of µc linearly depends on the first principal component.

We finally test the robustness of environment-parameter extractor to the noise scale ωc. The result
can be seen in Figure 10. The results show that the environment-parameter extractor can also work
well in large noise ωc situations.
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Figure 10: Illustration of the performance in synthetic environments in different ωc. The solid curves
are the mean reward and the shadow is the standard error of three seeds.

D PPO IMPLEMENTATION OF OAPRS

We use PPO Schulman et al. (2017) as an example and any policy-based methods (i.e., TRPO
Schulman et al. (2015), SAC Haarnoja et al. (2018)) can also be plugged into the policy learning part.
The pseudocode of OapRS is summarized in Algorithm 2.
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Algorithm 2 OapRS implemented with PPO
Input:
Offline expert data D;
LSTM network φϕ as environment-context extractor, parameterized by ϕ
Adaptive policy network πθ and value function network Vθ, parameterized by θ
Model learning algorithm G; Rollout horizon H;minibatch m for policy training
Training epochs M
Process:

1: Divide the offline dataset into N partitions {D̄} and generate M ×N dynamics model {ρ} by
ensemble of M model learning technique DEMER (Shang et al., 2019) G.

2: Pretrain the state-action distributional embedding model qκ(υ|X) on {D̄}.
3: for 1, 2, 3, ... do
4: Random select the dynamics model ρi in {ρ} and sample s1 from D̄ which is used to train ρi
5: initialize buffer Drollout
6: for t=1,2,...,H do
7: Sample zt from φ(zt|ρit) and then sample at from π(at|st, zt)
8: rollout one step st+1, rt+1 ∼ ρit(st, at) and then add (st+1, rt+1, st, at, zt) to Drollout
9: if t mod m == 0 then

10: Compute the long-term reward estimates, R̂πθmt , for each time-step t.
11: Compute the advantage estimate, Âπθmt based on the value function Vθ(s, z) , where

z is the output of extractor φϕ.
12: Compute the gradient∇θ and∇ϕ of the PPO objective :

arg max
θ,ϕ

1

|Dm|T
∑
T ∈Dm

T∑
t=0

qκ(υt|Xt)
∑

st,at−1,at,zt∈T
LPPO(θ, ϕ, υt, st, at, at−1, zt).

13: Apply∇θ and∇ϕ.
14: Update value function by one-step gradient of the regression loss:

arg min
θ

1

|Dm|T
∑
T ∈Dm

T∑
t=0

qκ(υt|Xt)
∑

st,at−1∈T

(
Vθ(st, z

′
t)φϕ(z′t|z′t−1, st, at−1, υt)− R̂

πθm
t

)2
15: Update the state-action distributional embedding model qκ(υ|X) on Drollout
16: Drollout ← ∅
17: end if
18: end for
19: end for

E EXPERIMENTAL DETAILS IN REAL-WORLD RIDE-HAILING PLATFORM

We collect offline data from the platform and construct our real-world simulators by imitation from
data Shang et al. (2019). The results show that the order completion in the reconstructed simulators
is generally consistent with the real-world data.

We train the SA-DAE in the training set and test the reconstructed data distribution in the unseen envi-
ronment. The training dataset DX comes from human expert data in the training set. qκ

(
υ|s(i), a(i)

)
is a neural network which outputs the Gaussian distribution parameters of υ. The dimension of the
vector υ is 200 in this environment. pθ

(
ψa|υ, s(i)

)
and pθ (ψs|υ) are modeled with neural networks,

which output the parameters of the distributions. The action reconstruction is modeled with Gaussian
distribution since it is continuous in the environment. However, the state space includes continuous
and discrete features. For simplification, we assume the continuous features are independent of
discrete features. Thus we model them with Multivariate Gaussian distribution and categorical
distribution respectively. The prior of υ is set to standard normal distribution, i.e., p(υ) = N (0, 1).

We use KLD to measure the reconstruction performance. Since the dimension of state-action space is
high and the distribution is complex, we use Kernel Density Estimation (KDE) Rosenblatt (1956) to
estimate the probability density function (PDF) of real and reconstructed data. Then the KLD of two
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Figure 11: Illustration of the daily finished-order curves of the constructed simulator and real data.
Each column shows the results of the same city. Each row shows the results in the same period.

datasets is computed based on it. In particular,

KLD(Da,Db) =
1

||Da||
∑
x∈Da

log
fa(x)

fb(x)
, (13)

where ||Da|| denotes the number of samples in the dataset, and fa and fb denote the PDF of real
and reconstructed data estimated by KDE. We test the KLD every 100 epochs. Figure 12(a) shows
that the KLD between the real data X and the reconstructed distribution pθ(X|υ) steadily converges
to 0.6, which demonstrates nontrivial reconstruction performance. Figure 15 shows histograms for
examples of real and reconstructed data on a single feature, which are also significantly correlated.

To evaluate the embedding performance of SA-DAE, we performed the hidden state prediction
experiments Akkaya et al. (2019). If the embedding variables store useful information about the
distribution, for a simple neural network, the KLD prediction error between arbitrary two datasets
would be negatively correlated with the training epochs. We use another one-layer neural network
to predict the KLD of two data pairs (Xi, Xj), given their embedding variable (υi, υj). The neural
network has one 32-unit hidden layer with tanh as the activation function and links to a linear layer
to predict the KLD computed by Equation 13. The neural network is initialized and retrained for
the same epochs, every 100 iterations of SA-DAE learning. Figure 12(b) shows the mean absolute
error (MAE). The MAE has 26% improvement than the initial variable, which implies the embedding
variable is helpful to infer the relation of two distributions.

F ADDITIONAL DETAILS FOR OAPRS

F.1 MAPPING FUNCTION CONSTRUCTION

Given a specific SRS application, we can split the state space into the following parts:

• Customer-related static states: the states which are invariant to the recommended actions
and are fixed for each customer. For example, the age and gender of each driver. Since
we model the process of interaction between the platform and a customer to an MDP, the
customer is fixed in a trajectory and thus customer-related states are invariant;

• Timestep-related static states: the states which are invariant to the recommended actions
and are fixed for each time-step. For example, the weather for each day. We train and the
dynamics model with the same time period as the collected dataset and thus the timestep-
related states can be found from the dataset and fixed;
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Figure 12: Illustration of the reconstructed and embedding performance on SA-DAE. The solid
curves are the mean reward of two seeds. The dark shadow is the standard error, and the light one is
the min-max range of two seeds.

• Dynamics-related states: the states which are dependent on the given recommendation
actions and hard to hand-code by rules. For example, the completed orders and GMV of a
driver in a day given the predicted completed orders and the recommendation action;

• Rule-related states: the states which can be computed by rules given other states. For
example, we can compute the cost of a driver in a day, given the completed orders and the
recommendation action, and we can compute the averaged GMV of a driver by averaging
the predicted completed orders of recent days. Instead of learning to predict all the states,
the neural network is used to predict the "dynamics states".

After sampling an initial state s0 from the dataset at the beginning, for each timestep t, the trajectories
of the environment model can be sampled by the following steps:

1. Fix the customer-related static states: scustomert = scustomert−1 ;

2. Set the timestep-related static states stimestept with the state in dataset ;

3. Predict the dynamics states by neural network model: sdynamicst = NN(st−1, at−1), where
NN denotes the trained neural network;

4. Update the constructable states by rule:

srulet = mapping(st−1, at−1, s
timestep
t , sdynamicst )

5. Put them together: st = [scustomert , stimestept , sdynamicst , srulet ].

The framework of semi-dynamics model learning is general to other problems since it is easy for
human experts to construct some rules for some states with a well-defined relationship and any
number of rules can be embedded to reduce the complexity of learning. The more rules we have, the
less learned states are needed. We list the different type of state of our application in Table 1.

Table 1: Different type of state in the state space.
Category Dimensionality Description

scustomer 54 Personas features
stimestep 6 The weather and holiday features et al.
sdynamics 3 The probability to drive in the day, the number of com-

pleted orders and the averaged GMV per order
srule 140 The historical recommendation actions and the sdynamics

in 7 days, some statistics and other construable features.
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F.2 AUGMENTATION TECHNIQUES IN OAPRS

In SRS, there are several common choices to split the dataset: First is split by periods since the
customer often behaves differently across periods in the applications. The second is split by some
identification category features in the application since it often represents the domain classes. In our
application, we split the dataset by the month and city id.

Some general ensemble techniques like learning with different initial neural network parameters,
different hyper-parameters, different learning algorithms can also be used for dynamics model
augmentation. However, we do not implement these methods for resource limitation and find the
approach works in our application.

F.3 DYNAMICS MODEL PERFORMANCE EVALUATION

We split the dataset into a training set (80%) and a testing set (20%), the environment model is
learned in the training set and evaluated in the testing set. Multiple metrics that are concerned by the
operational staff can be used for evaluation. For example, the similarity of total completed orders of
drivers in a city between the data run by the environment model and the corresponding real-world
data. We use Pareto improvement (a new model where some metrics will gain, and no metrics will
lose) of the metrics in the testing set to define the performance improvement of the environment
model. The metrics we selected are the mean absolute percentage error (MAPE) of the following
statistics: (1) the total cost for each day; (2) the total number of driver is driving for each day (i.e.,
the number of completed order is larger than zero); (3) the total GMV for each day.

F.4 DETAILED STRUCTURE AND OPTIMIZATION TRICKS

The network structure of OapRS is shown in Figure 13. In the implementation, we use two in-
dependent network structures for the value function and policy learning. Moreover, there is a
skip-connection for the environment-aware layer to reuse the original input features. The embedding
layer and environment-aware layer are modeled with Multilayer Perceptron (MLP). The environment-
context extractor layer is modeled with a single-layer LSTM network Hochreiter & Schmidhuber
(1997). We use the same network structure and hyperparameters in the two experiments, but the
complexity of neural networks are different. Table 2 reports the detailed settings.

In the DPR environment, we model the distribution of continuous states with Multivariate Gaussian
distribution. The covariance of the Multivariate gaussian distribution should be a symmetric positive
semi-definite matrix. We construct the covariance matrix based on Cholesky decomposition Golub
& Van Loan (1996). In particular, a symmetric positive-definite matrix Σ is a decomposition of the
form:

Σ = LL>,

where L is a lower triangular matrix with real and positive diagonal entries, and L> denotes the
transpose of L. We use a neural network with the softplus activation function to output the elements
of L, where the softplus is used to output a positive value. Then, we regard the matrix LL> as the
covariance of the Multivariate Gaussian distribution. The hyperparameters of SA-DAE in the two
experiments are shown in Table 3.

In addition, we use several tricks in the training process of the environment-context extractor and
adaptive policy:

Larger entropy coefficient We set the entropy coefficient to 0.02 for the LSTM-based policy and
1e-5 for MLP-based policy in the two problems. We found that the smaller entropy coefficient leads
to performance collapse after some iterations when training with LSTM-based policy.

Multiple environments sampling We sample from all training environments uniformly for∇J(θ)
computation every iteration. The policy updates would be unstable and inefficient if just sampling
from a single environment.
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Figure 13: Illustration of the network structure for OapRS.
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Figure 14: Illustration of the mean order completion in the real-world ride-hailing application. The
number of mean order completion is computed by the mean value of the order completion in a city
per day. The result is scaled with a constant value. The legend “time period 1” and “time period 2”
denote the data collected in adjacent 22 days of the same city.
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Figure 15: Illustration of the histogram about customer features of reconstructed and real data.
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Table 2: The hyper-parameters of OapRS for policy learning.
Hyperparameter LTS DPR

Discount factor γ 0.99 0.9
Horizon H 140 30
Entropy regularization coefficient 0.02 0.001
PPO clipping parameter ε 0.2
Learning rate from 1e-4 to 1e-6
Batch size 30000 120000
Sample reuse 3
Optimizer Adam
L2 regularization weight 1e-6
Activation function of hidden layer leaky relu
Activation function of policy output tanh
Fully-connected embedding f [128, 128, 128,32] [512, 512, 256]
Unit of environment-context extractor φ 64 256
Environment-aware layer of V and π [128, 64] [512, 256]

Table 3: The hyper-parameters of OapRS for SA-DAE.
Hyperparameter LTS DPR

Learning rate: 2e-5 1e-6
Layer Normalization: False
Optimizer: Adam
L2 regularization weight 0.1 0.001
activation function of hidden layer leaky relu
Embedding layer qκ(υ|s, a) [512, 512]
Reconstructed layer pθ(ψ|υ) [512, 512]
units of latent code 5 200

Table 4: The averaged scaled daily rewards of real-world deployment in RDP environments
OapRS MOPO

before 0.9019 0.8857
after 0.9641 0.8865
improvement (%) 6.9% 0.1%
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