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Abstract

Large language models such as GPT-3 (Brown001
et al., 2020) can perform certain tasks with-002
out undergoing fine-tuning after seeing only a003
few labeled examples. An arbitrary task can004
be reformulated as a natural language prompt,005
and a language model can be asked to generate006
the completion, indirectly performing the task007
in a paradigm known as prompt-based learn-008
ing. To date, emergent prompt-based learn-009
ing capabilities have mainly been demonstrated010
for unidirectional language models. Bidirec-011
tional language models pre-trained on denois-012
ing objectives such as masked language mod-013
eling produce stronger learned representations.014
Prompting bidirectional models has long been015
desired, but their pre-training objectives have016
made them incompatible with the prompting017
paradigm. We present SAP (Sequential Autore-018
gressive Prompting), a technique that enables019
the prompting of bidirectional models. Utiliz-020
ing the machine translation task as a case study,021
we prompt the bidirectional mT5 (Xue et al.,022
2021) model with SAP and demonstrate its few-023
shot and zero-shot translations outperform the024
few-shot translations of unidirectional models025
like GPT-3 and XGLM (Lin et al., 2021) with026
approximately 50% fewer parameters. We fur-027
ther show SAP extends its effectiveness to the028
tasks of question answering and summariza-029
tion. For the first time, our results demonstrate030
prompt-based learning is an emergent property031
of a broader class of language models, rather032
than a property of only unidirectional models.033

1 Introduction034

Recent work on GPT-2 (Radford et al., 2019) and035

GPT-3 (Brown et al., 2020) have shown that large036

language models possess few-shot learning capabil-037

ities and zero-shot performance, despite only being038

pre-trained with a self-supervised causal language039

modeling objective (which is to predict the next040

token).041

Figure 1: A visualization of our SAP technique extract-
ing high-quality translations from mT5. In the zero-shot
setting, the examples used in the prompt are synthetic
examples retrieved in a fully unsupervised manner.

An arbitrary task can be converted into a natural 042

language task specification, often called a prompt. 043

Prompting a task in this way makes its format sim- 044

ilar to the language modeling objective used to 045

pre-train large language models. In the zero-shot 046

setting, this prompt contains just the task, whereas 047

in the few-shot setting, the prompt contains both the 048

task and several example demonstrations. When a 049

language model is tasked to generate text to com- 050

plete this prompt, it can perform the task in the 051

process. The paradigm of reframing all tasks as 052

text generation is known as prompt-based learning. 053

In the few-shot setting, the learning that occurs 054

from examples provided in a given prompt (the 055

context) is known as in-context learning (Liu et al., 056

2021). 057

Emergent prompt-based learning capabilities 058

have mainly been demonstrated for unidirectional 059

language models. Bidirectional language models 060

have stronger learned representations (Devlin et al., 061

2019; Conneau et al., 2020; Raffel et al., 2020); 062
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however, they have not been able to broadly demon-063

strate the same few-shot learning capabilities or064

zero-shot performance due to the incompatibility065

bidirectional denoising pre-training objectives have066

with the prompting paradigm and instead typically067

require fine-tuning or prompt-tuning (Lester et al.,068

2021). Bidirectional models are not able to gener-069

ate long, fluent completions to prompts since they070

are usually only trained to output short spans of071

text, mask in-fills, during pre-training. We discuss072

this more in-depth in Section 2.1.073

Today, language model architects are faced with074

a difficult choice between unidirectional or bidirec-075

tional models. The authors of GPT-3 lay out this076

design dilemma in Brown et al. (2020):077

“GPT-3 has several structural and algorithmic lim-078
itations ... as a result our experiments do not079
include any bidirectional architectures or other080
training objectives such as denoising ... our design081
decision comes at the cost of potentially worse082
performance on tasks which empirically benefit083
from bidirectionality ... making a bidirectional084
model at the scale of GPT-3, and/or trying to make085
bidirectional models work with few- or zero-shot086
learning, is a promising direction for future re-087
search, and could help achieve the ‘best of both088
worlds’.”089

In this paper, we directly address this dilemma.090

We contribute a new technique, SAP (Sequential091

Autoregressive Prompting), that enables bidirec-092

tional language models to take advantage of093

prompting and allows them to perform at the level094

of unidirectional models in few- or zero-shot learn-095

ing without fine-tuning. SAP iteratively prompts096

bidirectional models, concatenating previous gen-097

erations back into the prompt, to produce longer098

generations from models that were only pre-trained099

to output short, mask-infill spans.100

Using the machine translation task as an in-depth101

case study, we empirically demonstrate mT5 (Xue102

et al., 2021), a bidirectional language model, used103

with SAP outperforms its unidirectional counter-104

parts, GPT-3 and XGLM (Brown et al., 2020; Lin105

et al., 2021), while utilizing approximately 50%106

fewer parameters. We find both the few-shot and107

zero-shot translations produced by SAP with mT5108

can outperform the few-shot translations produced109

by GPT-3 and XGLM. We then examine SAP’s110

effectiveness on other tasks such as question an-111

swering and summarization, demonstrating that112

bidirectional models can be prompted for tasks be-113

yond machine translation.114

Our work hints at the possibility of more effi-115

cient and performant few-shot learners through pre-116

trained language models that incorporate bidirec- 117

tionality. We discuss this impact and outline future 118

research directions to this end in Section 6. In 119

summary, our key contributions are: 120

1. We introduce SAP, a technique that enables 121

bidirectional language models to work with 122

few-shot and zero-shot in-context learning at 123

a level that exceeds unidirectional models, 124

addressing a long-standing challenge in lan- 125

guage model design. Our results demonstrate 126

prompt-based learning is an emergent prop- 127

erty of a broader class of language models, 128

rather than only unidirectional models. 129

2. We perform an in-depth study of the effective- 130

ness of a bidirectional language model, mT5, 131

with SAP on the machine translation task. We 132

find, despite using approximately 50% fewer 133

parameters than GPT-3 and XGLM, SAP with 134

mT5 exceeds in average performance over 14 135

language pairs and achieves significant im- 136

proved zero-shot translation performance on 137

many low-resource language pairs. 138

3. We propose a range of improvements— 139

filtering, prompt ensembling, and English- 140

centric bootstrapping—to the unsupervised 141

machine translation procedure outlined by 142

Han et al. (2021) to better adapt the bootstrap- 143

ping process for unsupervised low-resource 144

machine translation. 145

4. We assess SAP’s performance on the tasks of 146

question answering and summarization, and 147

find the technique enables the few-shot learn- 148

ing capabilities of bidirectional models be- 149

yond machine translation. 150

2 Related Work 151

2.1 Unidirectional and Bidirectional 152

Language Models 153

Transformer-based language models (Vaswani 154

et al., 2017) can be broadly categorized into bidi- 155

rectional and unidirectional models. Bidirectional 156

models are models that use a denoising pre-training 157

objective (such as masked language modeling), al- 158

lowing them to utilize bidirectional context when 159

learning language representations. Unidirectional 160

language models are models with a causal—or a 161

left-to-right—language modeling objective (such 162

as next token prediction), restricting them to be 163
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unidirectional when learning representations (Liu164

et al., 2021).165

The T5 family of models, such as T5 v1.1 and166

mT5, are bidirectional, while GPT-style models,167

such as GPT-2, GPT-3, and XGLM are unidirec-168

tional. BERT-style models are bidirectional, but169

they cannot be easily utilized for prompting since170

they are encoder-only (Wang and Cho, 2019). Usu-171

ally, but not always, bidirectional models are paired172

with an encoder-decoder architecture, while unidi-173

rectional models are paired with a decoder-only174

architecture (Devlin et al., 2019; Raffel et al., 2020;175

Xue et al., 2021; Radford et al., 2019; Brown et al.,176

2020; Lin et al., 2021; Wang et al., 2022).177

Devlin et al. (2019) and Raffel et al. (2020)178

have both shown that after transfer learning, bidi-179

rectional denoising pre-training objectives such as180

BERT’s masked language modeling and T5’s ran-181

dom span corruption outperform causal language182

modeling on downstream tasks. Brown et al. (2020)183

concedes this to be a potential source of weakness184

for the GPT-3 model on certain tasks where bidi-185

rectionality is important.186

Despite the advantages of denoising objectives,187

prompting ability has been shown to be weaker on188

bidirectional language models, disqualifying them189

when few-shot in-context learning and zero-shot190

prompting is desired. Lester et al. (2021) explains191

this may be because:192

“...a T5 model pre-trained exclusively on span193
corruption, such as T5.1.1, has never seen truly194
natural input text (free of sentinel tokens), nor has195
it ever been asked to predict truly natural targets”196

In other words: when pre-trained on their denois-197

ing objectives, language models like T5 that utilize198

bidirectionality are only conditioned to output a sin-199

gle token or short spans of tokens (the in-fill of the200

mask) rather than full and complete sentences; this201

inhibits their ability to generate arbitrary-length202

natural responses to a variety of prompts.203

Despite the stronger learned representations of204

bidirectional models, their shortcomings in prompt-205

based learning motivate Brown et al. (2020) and206

Lin et al. (2021) to explicitly choose unidirectional207

models over bidirectional models for GPT-3 and208

XGLM.209

2.2 Prompting Bidirectional Language210

Models211

Unlike prior approaches to backfill prompt-based212

learning capabilities into bidirectional models,213

our technique, SAP, neither requires fine-tuning,214

weight updates, nor supervised instruction-tuning 215

datasets. It demonstrates for the first time that bidi- 216

rectional language models have innate few-shot 217

learning capabilities. 218

Cloze-style prompts Schick and Schütze 219

(2021a) and Schick and Schütze (2021b) find 220

that bidirectional models such as RoBERTa and 221

ALBERT (Liu et al., 2019; Lan et al., 2019) 222

can be prompted with cloze-style phrases. They 223

propose a few-shot training paradigm called 224

PET where the model’s predicted mask in-fill, 225

called a “verbalizer,” is used to label fine-tuning 226

examples for the model. These verbalizers are 227

only a single word or a few words, e.g. “yes”, 228

“no”, “amazing”, “worse”. These works primarily 229

demonstrate effectiveness on classification tasks 230

such as sentiment classification, rather than more 231

challenging generation tasks such as machine 232

translation or question answering. While their 233

paradigm has success in bringing few-shot learning 234

to bidirectional models, it requires fine-tuning, a 235

major limitation contrasted with the in-context 236

learning ability of undirectional models such as 237

GPT-3. 238

LM-adaptation Lester et al. (2021) finds some 239

success with prompting the T5 v1.1 models after 240

continued pre-training on the unidirectional prefix- 241

LM objective described in Raffel et al. (2020). The 242

resulting model, T5 v1.1 LM-adapted (T5+LM), 243

is described as a late-stage adaptation to a unidi- 244

rectional objective. Adaptation requires perform- 245

ing weight updates and given that representations 246

learned by the original denoising objective have 247

been shown to be superior (Raffel et al., 2020), we 248

hypothesize that such an adaptation could degrade 249

the quality of the learned representations. 250

Prompt-tuning Lester et al. (2021) and Li and 251

Liang (2021) find by fine-tuning only a portion of 252

the parameters in an otherwise frozen pre-trained 253

bidirectional language model, a “soft prompt” can 254

be discovered through backpropagation. Soft 255

prompts are prompts discovered in the embedding 256

space of the model and are not grounded in natural 257

language. The prompt-tuning approach requires 258

training the learned prompt embeddings and ben- 259

efits from initialization from LM-adaptation. The 260

nature of soft prompts lacking grounding in natural 261

language makes their use and flexibility limited, a 262

stark difference from the prompting capabilities of 263

unidirectional models. (Liu et al., 2021) 264
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Instruction-tuning Language models can be265

fine-tuned on a supervised dataset consisting of266

natural language prompts and their respective tar-267

get completions (Wei et al., 2021; Sanh et al.,268

2022; Ouyang et al., 2022; Min et al., 2021). This269

“instruction-tuning” technique allows these models270

to improve performance on instruction following271

and therefore exhibit few-shot and zero-shot capa-272

bilities through prompting. The T0 model in partic-273

ular is an instruction-tuned version of the T5+LM274

model (Lester et al., 2021) and is able to augment275

the bidirectional T5 v1.1 model with prompting276

capabilities. While instruction-tuning likely bol-277

sters the instruction following performance of a278

model, we hypothesize that by instruction-tuning,279

the T0 model is to some degree surfacing the in-280

nate prompting ability that the bidirectional model281

already has. We provide evidence towards this hy-282

pothesis by demonstrating that bidirectional models283

can be prompted without instruction-tuning.284

2.3 Unsupervised Machine Translation285

through Prompting286

GPT-2 (Radford et al., 2019) and GPT-3 (Brown287

et al., 2020) have shown it is possible to perform288

few-shot machine translation and unsupervised289

zero-shot machine translation using large language290

models, prompting, and in-context learning. The291

XGLM model (Lin et al., 2021) trains a similar292

architecture to GPT-3 on a diverse multilingual293

corpus, resulting in XGLM performing better on294

few-shot, low-resource machine translation. Han295

et al. (2021) introduce a bootstrapping technique296

to further improve the unsupervised zero-shot per-297

formance on machine translation.298

3 Few-shot Machine Translation299

To motivate our method for enabling few-shot in-300

context learning in bidirectional language models,301

we first focus on applying mT53.7B (mT5-XL) (Xue302

et al., 2021) to the machine translation task as an303

in-depth case study since the task benefits greatly304

from bidirectionality (Conneau et al., 2020; Lin305

et al., 2021). mT5 is a bidirectional model trained306

on random span corruption, a variant of masked307

language modeling. We demonstrate that with SAP,308

mT5 can perform few-shot machine translation us-309

ing prompting and in-context examples with no310

fine-tuning. We formulate a prompt format that uti-311

lizes its random span masking scheme to complete312

the translation task:313

Translate Spanish to English. 314
Spanish: El clima es soleado.</s> 315
English: The weather is sunny.</s> 316
Spanish: Mi perro es un cachorro.</s> 317
English: My dog is a puppy.</s> 318
Spanish: Los árboles son importantes.</s> 319
English: <X> 320

3.1 Sequential Autoregressive Prompting 321

(SAP) Technique 322

By requiring mT5 to in-fill <X>, we are effectively 323

asking it to translate the requested source language 324

sentence. However, due to the limitations of the 325

denoising pre-training objective on prompting (de- 326

scribed in Section 2.1), we observe mT5 often out- 327

puts a partial translation of the beginning of the 328

source sentence, rather than the full translation. 329

To overcome this, we prompt mT5 T times until 330

the model generates a stop token </s>, resulting 331

in a longer translation. At each time step of it- 332

eration, we keep the first word generated (using 333

the space character as delimiter) and concatenate 334

it into the last line of the prompt to use in the next 335

time step. This iterative prompting enables us to 336

extract longer generations. Formally, we denote 337

the generation at each time step t as Gt. We de- 338

note the first word generated at each time step as 339

Ft where Ft = SPLIT(Gt," ")[0]. We update 340

the prompt at each time step Pt to include the cu- 341

mulative generation from all previous time steps 342

concatenated in the last line of the prompt. The 343

prompt used at each time step Pt is as follows: 344

Translate Spanish to English. 345
Spanish: El clima es soleado.</s> 346
English: The weather is sunny.</s> 347
Spanish: Mi perro es un cachorro.</s> 348
English: My dog is a puppy.</s> 349
Spanish: Los árboles son importantes.</s> 350
English: CONCAT(F0, . . . , Ft−1) <X> 351

In Table 1, we also consider concatenating the 352

entire generation Gt instead of just the first word 353

of the generation Ft, but find that it produces sig- 354

nificantly inferior results as low-quality tokens are 355

generated after the first word. By conditioning the 356

model to generate the next word in the translation 357

based on previous words generated, this technique 358

resembles autoregression. mT5 is already autore- 359

gressive, but it is autoregressive only at the decoder 360

level. Adding previously generated words back into 361

the prompt allows them to pass through the encoder 362

layers as well. For this reason, we call this tech- 363

nique SAP (Sequential Autoregressive Prompting). 364

To provide a signal to stop generation, we add 365

a custom stop token at the end of each example 366
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English-Russian Russian-English
Prompting (mT53.7B)
Using the full generation from the first time step only – G0 1.9 5.6
Sequential Prompting (mT53.7B + SP)
Concatenating the full generation at each time step – CONCAT(G0, . . . , Gt) 9.3 17.9
Sequential Autoregressive Prompting (mT53.7B + SAP)
Concatenating the first word of the generation at each time step – CONCAT(F0, . . . , Ft) 20.1 26.9

Table 1: Few-shot (2-shot) machine translation results on FLORES-101 devtest (spBLEU) using mT53.7B as
described in Section 3. In this experiment, we ablate simply prompting the model once and taking the full generation
G0 with concatenating the full generation Gt or just the first word of the generation Ft at each time step to the
prompt in the next time step over two language pairs, English-Russian and Russian-English.

in the prompt. We stop prompting after the model367

generates a stop token1. We also implement a basic368

post-processing step to automatically detect and369

remove repetitive generations or cycles.370

The overall process is graphically depicted, with371

stop tokens omitted, in Figure 1.372

3.2 Results373

Following Lin et al. (2021), we evaluate our tech-374

nique on 14 languages from the FLORES-101375

dataset (Goyal et al., 2021) that span high-resource376

and low-resource languages2. We evaluate Senten-377

cePiece BLEU (spBLEU) (Goyal et al., 2021) in378

every direction leading to an evaluation over 182379

language pairs in total. Abbreviated results can be380

found in Table 2, and the matrix of full results can381

be found in Appendix A. Examples generations can382

be found in Appendix G.383

On an average spBLEU score over all 182 pairs,384

we find that our model matches the performance385

of the unidirectional XGLM and GPT-3 models386

(+0.1 spBLEU)—with approximately 50% fewer387

parameters and 16x fewer examples. Notably, our388

technique significantly improves performance on389

language pairs with at least one low-resource lan-390

guage, but trails slightly on high-resource pairs.391

4 Unsupervised Zero-shot Machine392

Translation393

We now perform fully unsupervised zero-shot ma-394

chine translation with SAP and mT5 to extend our395

in-depth case study on the machine translation task.396

We ultimately will replace the examples in the397

few-shot prompt with synthetic parallel examples.398

1We repurpose the 100th sentinel token from the mT5
vocabulary as our stop token.

2High-resource Languages: en, de, fr, ca, fi, ru, bg, zh
___ Low-resource Languages: ko, ar, sw, hi, my, ta

These synthetic parallel examples are bootstrapped 399

in a completely unsupervised fashion using a zero- 400

shot translation prompt with no examples. The 401

zero-shot prompt format looks like: 402

Translate Spanish to English. 403
Spanish: Los árboles son importantes.</s> 404
English: <X> 405

We adapt the bootstrap process of Han et al. 406

(2021) to retrieve these synthetic parallel exam- 407

ples. The process, as depicted in Figure 2, consists 408

of three steps: 409

Step 1 (sampling): Generate synthetic par- 410

allel examples using a zero-shot translation 411

prompt (with no examples) to translate sen- 412

tences from a monolingual source language 413

corpus. 414

Step 2 (filtering): Filter out low-quality syn- 415

thetic examples to keep only high-quality syn- 416

thetic examples using an unsupervised scoring 417

technique (discussed in Section 4.1). 418

Step 3 (self-amplification): Translate any 419

source language sentence desired using these 420

synthetic parallel examples in the few-shot 421

prompt. 422

We iteratively run multiple rounds of this boot- 423

strap by repeating step 2 and step 3 to form a bet- 424

ter few-shot prompt. The few-shot prompt after 425

self-amplification is used to translate more source 426

language sentences. These are then filtered using 427

the scoring technique used in step 2 and so on. We 428

run four bootstrapping rounds in our experiments 429

and sample 100 source language sentences from 430

the training dataset in each round of the bootstrap. 431

Note that the target language parallel sentences 432
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Figure 2: A visualization of the bootstrapping process described in Section 4.

from the training dataset are not used in this zero-433

shot setting; following Han et al. (2021), only the434

source language sentences are used.435

4.1 Filtering Down to High-quality436

Translations437

The filtering step of the bootstrap requires an unsu-438

pervised scoring method for assessing the quality of439

translations. We first utilize langdetect3, a lan-440

guage identifier we use as a simple rule-based filter,441

to ensure the generated text is in the desired target442

language. We then score the remaining generated443

translations against their corresponding original444

sentence in the source language. For this unsuper-445

vised multilingual similarity metric, we utilize the446

BERTScore (Zhang et al., 2019) algorithm with447

mT5300M (mT5-small)4, dubbing it “mT5Score”.448

We ablate the use of mT5Score as a filter in Ap-449

pendix C.450

We take the top two synthetic parallel examples451

with the highest mT5Score in the filtering step and452

use those as synthetic few-shot examples in the453

prompt in the self-amplification step.454

4.2 Translating with an Ensemble of Prompts455

Because the two examples used in the prompt can456

greatly affect the quality of the generated trans-457

lations, some prompts containing low-quality syn-458

thetic examples may cause poor translations for cer-459

tain sentences. To combat this and reduce variation460

in performance, we keep the top N synthetic ex-461

amples instead of two synthetic examples. We use462

these to form N
2 different few-shot prompts with463

two synthetic parallel examples each. Each sen-464

3https://pypi.org/project/langdetect/
4The BERTScore Python library provided by Zhang et al.

(2019) directly supports using mT5 instead of BERT.

tence in the test set is then translated with these N
2 465

different prompts to produce N
2 translations. The 466

best translation of the N
2 translations is chosen in 467

a fully unsupervised manner with mT5Score, as 468

done in the filtering step of the bootstrap. 469

We find this ensembling technique helps make 470

unsupervised zero-shot performance competitive 471

with few-shot performance. Ablation experiments 472

can be found in Appendix D. Unless otherwise 473

stated, we use a 4 prompt ensemble in this pa- 474

per: N
2 = 4. In sum, we sample and zero-shot 475

translate 100 sentences from a monolingual cor- 476

pus, keep the top eight synthetic parallel examples 477

scored by mT5Score, and use them to form four 478

few-shot prompts with two synthetic examples in 479

each prompt. 480

4.3 English-centric Bootstrapping 481

While Han et al. (2021) only performed a boot- 482

strap on English-French and French-English pairs, 483

we perform bootstrapping on some language pairs 484

which may contain at least one low-resource lan- 485

guage or non-English language. 486

It has been found that multilingual language 487

models perform best in English due to the imbal- 488

ance of languages in the pre-training corpus (Lin 489

et al., 2021). Therefore, when running the bootstrap 490

on various language pairs, we modify the bootstrap 491

to favor generating English, or pivot through En- 492

glish when neither the source nor target language 493

is English. Ablation experiments can be found in 494

Appendix E. 495

We outline examples of our modified English- 496

centric bootstrapping process for various language 497

pairs below: 498

• Example 1 (Russian-English): No change. 499
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HR → HR LR → HR HR → LR LR → LR All
Number of Language Pairs 56 48 48 30 182
Supervised 25.5 15.4 12.6 8.2 16.6
GPT-36.7B (32-shot) 14.0 2.1 0.4 0.1 5.0
XGLM7.5B (32-shot) 20.5 11.6 7.9 4.4 12.2
mT53.7B + SAP (2-shot) 18.2 12.2 9.2 6.4 12.3
mT53.7B + SAP (zero-shot) 19.3 13.1 10.0 7.3 13.2

Table 2: Abbreviated few-shot and unsupervised zero-shot machine translation results on FLORES-101 devtest
(spBLEU). The matrix of full results can be found in Appendix A. Results are average spBLEU scores over subsets
of the 182 language pairs (src → tgt) where “LR” is a low-resource language and “HR” is a high-resource
language. “All” represents the average spBLEU score over the full set of 182 language pairs. Bold denotes best of
GPT-3, XGLM, and mT5. spBLEU computed using the implementation from Goyal et al. (2021).

• Example 2 (English-Russian): In step 1, gen-500

erate Russian-English synthetic examples us-501

ing a Russian monolingual corpus. Then, re-502

verse the examples to get English-Russian syn-503

thetic examples.504

• Example 3 (Russian-Chinese): In step 1,505

for the first three rounds of the bootstrap,506

generate Russian-English synthetic examples507

and Chinese-English synthetic examples us-508

ing Russian and Chinese monolingual cor-509

pora. On the fourth and final round, use an510

English monolingual corpus along with the511

reversed previous synthetic examples to pro-512

duce English-Russian and English-Chinese513

synthetic examples. Since the same English514

sentences are used to produce both sets, we515

can align these to form synthetic Russian-516

Chinese examples. In step 2, we use the har-517

monic mean of the two mT5Scores to filter518

examples.519

4.4 Results520

We report results using the few-shot evaluation521

method described in Section 3.2. Abbreviated re-522

sults can be found in Table 2 and the matrix of full523

results can be found in Appendix A.524

In this unsupervised setting, we find our zero-525

shot results exceed our 2-shot results; further-526

more, they significantly exceed the performance527

of XGLM and GPT-3 on an average spBLEU score528

over all 182 pairs (+1.0 spBLEU). Again, we note529

strong performance on language pairs that contain530

one or more low-resource languages.531

Intuitively, we can explain the zero-shot per-532

formance surpassing the few-shot performance533

through our use of prompt ensembling in the zero-534

shot setting. As prompt ensembling utilizes four535

prompts with two synthetic parallel examples each,536

it essentially uses eight synthetic examples, instead537

of just two real examples in the few-shot setting. 538

Our synthetic examples are nearly as high-quality 539

as real examples (similar to the findings of Han 540

et al. (2021)) as demonstrated by the ablation in 541

Appendix D. Prompt ensembling not only reduces 542

performance variation if low-quality synthetic ex- 543

amples are selected during the bootstrap, but it also 544

boosts performance beyond the few-shot setting 545

as demonstrated by Table 1 and the Appendix D 546

ablation (Russian-English 26.9 → 27.9 spBLEU). 547

We also compare our WMT14 (Bojar et al., 548

2014) results to those of GPT-3175B from Han 549

et al. (2021) in Appendix B. Our performance 550

nearly matches (<0.5 BLEU) the performance of 551

the largest GPT-3 model on high-resource language 552

pairs. This is in spite of our approach using only 553

2% of the number of the parameters of GPT-3175B. 554

5 Other Tasks 555

We next demonstrate that bidirectional models have 556

a generalized ability, beyond machine translation, 557

to be prompted for arbitrary tasks. We evaluate 558

their performance on question answering and sum- 559

marization tasks. Example generations can be 560

found in Appendix G. 561

5.1 Question Answering 562

We compare the zero-shot question answering per- 563

formance of mT5 against XGLM on the XQuAD 564

dataset (Artetxe et al., 2020), a multilingual ques- 565

tion answering dataset, in Table 3. We find 566

mT5 with SAP outperforms XGLM significantly 567

(+1.7/+12.3 EM/F1). 568

In Table 4, we also compare against 569

T5+LM (Lester et al., 2021) described in 570

Section 2.2. As T5+LM is English-only, we 571

compare using the English-only SQuAD v1.1 572

dataset (Rajpurkar et al., 2016). We still utilize the 573

multilingual mT5 with SAP due to observations 574

7
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XGLM7.5B (zero-shot) 19.5/31.9 12.9/29.6 12.2/25.3 7.2/28.2 12.5/24.0 11.0/14.0 10.9/27.8 16.8/26.4 13.6/26.8 12.5/21.2 13.2/20.3 12.9/25.0

mT53.7B + SAP (zero-shot) 25.0/48.8 17.4/39.4 19.4/43.0 9.7/41.0 15.0/42.1 6.6/32.1 16.1/39.0 2.8/17.4 15.8/37.0 18.2/41.9 15.0/29.0 14.6/37.3

Table 3: Zero-shot multilingual question answering results (EM/F1) on the XQuAD test set (Artetxe et al., 2020).

EM F1
Zero-shot
T5+LM3B (zero-shot) 23.5 48.4
mT53.7B + SAP (zero-shot) 30.2 54.0
Few-shot
mT53.7B (16-shot) 23.0 54.5
mT53.7B + SAP (16-shot) 35.4 60.0

Table 4: Zero-shot and few-shot question answering
results on the SQuAD v1.1 dev set (Rajpurkar et al.,

2016).

that the English-only T5 v1.1 model does not575

perform as well as mT5 in prompt-based learning5.576

SAP achieves +6.7/+5.6 EM/F1 over T5+LM.577

SAP, as an iterative technique, is useful for pro-578

ducing long generations from a bidirectional model579

for tasks such as machine translation. We find, how-580

ever, it still has utility on tasks like question answer-581

ing where answer generations are shorter spans of582

text. We ablate utilizing SAP with mT5 against583

the simple approach of prompting mT5 once and584

using the mask in-fill generated on SQuAD v1.1.585

In the few-shot (16-shot) setting, we find that uti-586

lizing SAP still markedly improves performance587

(+12.5/+5.5 EM/F1) even on short-form generation588

tasks like question answering.589

5.2 Summarization590

We next perform summarization on the CNN/Daily591

Mail v3.0.0 dataset (Nallapati et al., 2016; See et al.,592

2017; Hermann et al., 2015) as another long-form593

text generation task. In the few-shot setting, we594

compare mT5 with T5+LM and ablate the usage595

of SAP once again in Table 5. Again, we find a596

significant lead against T5+LM with +7.1 ROUGE-597

L. Of that +7.1 ROUGE-L boost, an ablation of598

our usage of SAP finds the SAP technique itself599

is responsible for a large component of the boost,600

+5.3 ROUGE-L.601

6 Conclusion and Future Directions602

In this paper, we introduce Sequential Autore-603

gressive Prompting (SAP), a novel technique to604

prompt bidirectional models without fine-tuning.605

5We discuss this observation in more detail in Appendix F.

ROUGE-1 ROUGE-2 ROUGE-L
T5+LM3B (2-shot) 14.1 4.4 13.2
mT53.7B (2-shot) 15.9 4.5 15.0
mT53.7B + SAP (2-shot) 22.0 6.8 20.3

Table 5: Few-shot summarization results on the CNN /
Daily Mail v3.0.0 test set evaluated with ROUGE

(Nallapati et al., 2016; See et al., 2017; Hermann et al.,
2015; Lin, 2004).

We demonstrate SAP with the bidirectional mT5 606

model enables few- and zero-shot machine transla- 607

tion and zero-shot multilingual question answering 608

that outperforms unidirectional models, despite us- 609

ing far fewer parameters and examples. 610

Our results suggest that the bidirectionality of 611

models such as mT5 contributes to their improved 612

performances in machine translation and multilin- 613

gual question answering, even with fewer parame- 614

ters. The representional power of bidirectionality is 615

something both the authors of GPT-3 and XGLM 616

have explicitly stated as desiderata, but did not 617

experiment with, lacking a method to prompt bidi- 618

rectional models (Brown et al., 2020; Lin et al., 619

2021). Still, we concede that our results do not 620

conclusively prove bidirectionality explains the dif- 621

ference in performance. Beyond bidirectionality 622

and pre-training objectives, mT5, XGLM, and GPT- 623

3 further differ in architecture, pre-training corpus, 624

and hyperparameters. A complete ablation exper- 625

iment here would be computationally expensive, 626

and we leave it as future work. 627

Importantly, these results demonstrate bidirec- 628

tional models possess few-shot and zero-shot learn- 629

ing capabilities innately, without the previously 630

required post-hoc modifications discussed in Sec- 631

tion 2.2. We show that prompt-based learning and 632

few-shot learning is an emergent property of bidi- 633

rectional models and they can outperform unidi- 634

rectional models on tasks that benefit from bidirec- 635

tionality. Our results contribute strong evidence 636

towards the strength and efficiency of bidirectional 637

pre-training objectives and motivate further re- 638

search into bidirectional architectures, pre-training 639

objectives, and language models designed and opti- 640

mized for prompting and few-shot learning. 641
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7 Limitations642

The main limitation of this work lies in the effi-643

ciency of our technique. SAP requires T total for-644

ward passes to produce a generation instead of a645

single forward pass, where T equals the number646

of words in the generation before reaching a stop647

token. For example, to produce a translation that648

has 14 words, SAP requires 14 inferences of the649

bidirectional model. For tasks with shorter genera-650

tions with only a few words, such as multilingual651

question answering, SAP is more practical, espe-652

cially since it uses fewer parameters. While these653

inferences must be performed sequentially due to654

the autoregressive nature of the technique, utilizing655

batching over a test set can still ensure maximum656

GPU utilization, which is how our experiments657

were performed. Nevertheless, SAP uncovers an658

important result: prompting is an emergent prop-659

erty of bidirectional models. We hypothesize that660

further research into pre-training objectives and lan-661

guage model design following Wang et al. (2022)662

could yield a bidirectional pre-training objective663

better optimized for few-shot prompting, lifting the664

requirement to perform multiple forward passes665

sequentially to generate longer completions.666

8 Ethical Considerations and Broader667

Impacts668

Energy and efficiency The technique we de-669

scribe in this paper does not require fine-tuning in670

order to perform machine translation which is com-671

putationally expensive. By avoiding fine-tuning672

and utilizing prompting, a single large language673

model can be used for many downstream tasks, a674

significantly more efficient approach than using a675

different model per downstream task.676

Diversity and inclusion While our work con-677

tributes to the greater body of research enabling ma-678

chine translation of low-resource languages where679

machine translation has typically underperformed680

compared to high-resource languages, our work681

does rely on English-centric techniques to improve682

performance on low-resource languages.683
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en de fr ca fi ru bg zh ko ar sw hi my ta avg

en

Supervised – 32.6 42.0 31.2 24.2 27.1 37.4 19.3 18.5 17.9 26.9 28.1 3.5 3.4 24.0
GPT-36.7B (32-shot) – 25.9 36.1 23.8 10.2 11.2 5.9 12.5 1.2 1.1 0.5 0.3 0.1 0.0 9.9
XGLM7.5B (32-shot) – 27.6 36.0 34.0 23.3 24.2 33.1 15.6 12.0 11.5 18.0 19.9 11.0 8.5 21.1
mT53.7B + SAP (2-shot) – 23.2 34.2 26.2 15.8 20.1 27.9 9.5 10.4 11.4 17.3 14.0 11.0 11.2 17.9
mT53.7B + SAP (zero-shot) – 26.0 33.2 28.4 15.7 21.2 27.1 11.3 10.5 12.7 19.1 16.1 13.2 13.1 19.0

de

Supervised 35.8 – 35.5 25.8 22.6 24.6 31.5 17.2 16.6 14.8 21.0 23.4 2.3 2.3 21.0
GPT-36.7B (32-shot) 40.4 – 26.2 17.2 8.1 9.3 4.8 9.0 1.0 0.9 0.5 0.3 0.1 0.1 9.1
XGLM7.5B (32-shot) 38.8 – 27.9 19.1 20.5 19.7 25.8 12.3 3.4 6.6 11.7 14.3 9.9 4.8 16.5
mT53.7B + SAP (2-shot) 33.0 – 24.4 17.8 14.1 15.7 20.2 8.2 9.1 7.7 11.0 10.0 9.8 9.6 14.7
mT53.7B + SAP (zero-shot) 35.9 – 25.9 22.5 14.3 17.4 21.0 8.2 8.4 8.7 13.4 10.4 9.0 10.8 15.8

fr

Supervised 37.2 28.5 – 28.7 21.9 24.5 32.2 17.6 16.7 15.4 17.2 22.9 2.1 0.8 20.4
GPT-36.7B (32-shot) 42.8 20.9 – 23.7 8.0 9.7 4.6 9.1 1.0 1.0 0.4 0.3 0.1 0.0 9.4
XGLM7.5B (32-shot) 40.4 20.4 – 32.1 19.4 19.8 26.3 10.6 2.4 5.9 14.5 13.7 9.7 6.6 17.1
mT53.7B + SAP (2-shot) 38.0 19.2 – 26.7 13.7 18.3 23.5 8.6 9.2 9.9 15.0 12.1 10.8 9.7 16.5
mT53.7B + SAP (zero-shot) 38.1 21.1 – 30.1 12.9 18.1 22.3 8.7 9.2 11.1 15.7 11.0 9.6 11.1 16.8

ca

Supervised 33.4 24.8 35.1 – 19.0 21.1 28.6 15.1 13.9 13.4 18.7 20.5 2.1 2.6 19.1
GPT-36.7B (32-shot) 40.2 18.6 31.4 – 7.0 9.3 4.3 8.0 0.9 0.9 0.3 0.4 0.1 0.1 9.3
XGLM7.5B (32-shot) 41.1 18.9 33.8 – 11.3 3.3 23.9 10.8 1.3 0.8 13.8 6.1 7.9 3.1 13.6
mT53.7B + SAP (2-shot) 33.4 14.9 29.5 – 10.7 14.0 15.6 6.5 7.0 5.6 12.4 7.3 8.7 6.7 13.3
mT53.7B + SAP (zero-shot) 37.1 19.3 32.4 – 12.4 16.7 19.1 7.9 7.4 8.5 14.5 9.4 8.3 9.8 15.6

fi

Supervised 27.2 23.0 29.3 21.6 – 20.6 26.4 16.0 14.8 12.4 14.2 19.8 1.7 0.9 17.5
GPT-36.7B (32-shot) 25.3 13.5 17.1 10.0 – 6.4 2.8 5.7 0.7 0.7 0.3 0.3 0.1 0.0 6.4
XGLM7.5B (32-shot) 29.2 17.4 22.2 17.0 – 16.5 17.5 12.4 7.5 7.6 8.0 10.1 6.2 2.0 13.4
mT53.7B + SAP (2-shot) 24.1 16.1 19.8 14.9 – 14.2 17.0 7.0 5.8 7.1 8.3 5.6 8.5 3.9 11.7
mT53.7B + SAP (zero-shot) 23.2 16.1 20.5 16.3 – 14.5 16.3 8.0 5.9 6.3 10.0 7.5 5.9 8.2 12.2

ru

Supervised 27.5 23.5 30.1 22.0 19.4 – 31.0 16.5 15.3 13.5 18.1 20.9 2.2 2.3 18.6
GPT-36.7B (32-shot) 28.1 14.8 20.4 13.1 5.4 – 7.4 1.2 0.2 0.2 0.1 0.2 0.1 0.1 7.0
XGLM7.5B (32-shot) 30.4 17.9 24.0 14.6 8.0 – 26.3 11.6 5.5 7.4 7.1 9.1 7.3 3.1 13.2
mT53.7B + SAP (2-shot) 26.9 16.6 22.4 14.5 11.2 – 25.2 6.1 8.0 6.4 11.3 9.1 9.8 8.4 13.5
mT53.7B + SAP (zero-shot) 27.9 17.1 22.5 19.4 13.1 – 25.4 8.3 8.7 9.1 12.0 9.0 9.0 10.3 14.8

bg

Supervised 33.0 26.1 33.7 24.9 20.8 26.5 – 17.5 16.4 14.5 20.9 23.1 2.3 2.4 20.2
GPT-36.7B (32-shot) 21.6 11.4 16.0 9.7 4.3 6.5 – 1.2 0.2 0.2 0.1 0.2 0.1 0.1 5.5
XGLM7.5B (32-shot) 35.5 19.2 26.3 12.9 14.2 22.9 – 11.9 6.8 9.2 9.4 7.5 3.2 1.0 13.9
mT53.7B + SAP (2-shot) 31.0 17.0 23.8 18.3 10.9 22.9 – 7.2 8.3 8.1 11.7 7.4 9.5 6.6 14.1
mT53.7B + SAP (zero-shot) 32.5 17.3 24.5 21.7 10.6 23.2 – 8.7 7.5 9.0 13.0 8.6 7.9 10.1 15.0

zh

Supervised 20.9 17.6 24.3 17.4 16.0 17.2 22.1 – 15.9 11.6 15.5 18.5 1.9 2.5 15.5
GPT-36.7B (32-shot) 21.1 9.5 14.3 8.2 4.3 3.6 1.3 – 1.1 0.4 0.2 0.2 0.1 0.0 4.9
XGLM7.5B (32-shot) 20.7 8.3 8.5 10.5 4.4 4.8 14.8 – 9.3 4.2 5.6 12.0 8.6 6.2 9.1
mT53.7B + SAP (2-shot) 19.0 10.9 14.9 11.9 8.0 10.6 11.9 – 8.9 6.0 9.1 8.0 10.0 7.6 10.5
mT53.7B + SAP (zero-shot) 18.5 10.9 14.8 12.8 8.8 10.7 11.8 – 9.2 6.5 9.0 8.9 8.2 8.9 10.7

ko

Supervised 20.9 16.7 22.1 16.5 14.9 15.5 21.1 15.7 – 10.6 15.1 18.7 1.9 4.0 14.9
GPT-36.7B (32-shot) 8.3 4.6 6.4 4.4 2.1 1.7 0.8 2.5 – 0.2 0.1 0.1 0.1 0.1 2.4
XGLM7.5B (32-shot) 19.9 10.3 13.7 5.3 1.4 1.2 10.9 11.9 – 2.7 3.2 1.0 2.2 1.4 6.5
mT53.7B + SAP (2-shot) 18.3 10.1 13.7 11.3 7.9 10.1 12.6 7.8 – 6.3 7.2 6.6 2.6 4.7 9.2
mT53.7B + SAP (zero-shot) 18.1 10.1 13.8 12.8 7.8 9.9 11.4 7.6 – 5.5 8.0 6.7 8.1 8.2 9.8

ar

Supervised 25.5 18.7 25.7 18.9 15.6 17.8 23.8 13.1 13.3 – 15.4 19.4 1.8 0.9 16.1
GPT-36.7B (32-shot) 10.5 5.3 9.6 6.0 2.2 2.2 0.9 0.9 0.1 – 0.1 0.1 0.2 0.0 2.9
XGLM7.5B (32-shot) 27.7 12.2 17.9 8.8 8.5 9.1 18.4 8.9 0.8 – 7.7 7.8 3.4 3.7 10.4
mT53.7B + SAP (2-shot) 23.7 10.8 17.5 11.0 8.0 12.2 13.8 5.9 7.1 – 10.3 8.0 8.0 8.0 11.1
mT53.7B + SAP (zero-shot) 26.9 11.5 19.8 15.9 7.8 14.5 13.6 6.3 7.6 – 11.0 8.0 8.8 9.3 12.4

sw

Supervised 30.4 19.4 26.7 20.1 15.6 17.6 23.8 13.2 12.2 12.0 – 19.2 2.1 4.0 16.6
GPT-36.7B (32-shot) 5.0 2.9 3.9 2.8 1.7 1.8 1.3 1.3 0.5 0.5 – 0.4 0.1 0.1 1.7
XGLM7.5B (32-shot) 31.6 13.4 21.8 15.4 10.2 13.1 15.2 9.5 6.0 8.9 – 7.6 3.4 1.0 12.1
mT53.7B + SAP (2-shot) 27.0 12.6 19.0 15.1 9.2 12.2 15.8 5.9 6.0 8.3 – 6.5 5.4 6.0 11.5
mT53.7B + SAP (zero-shot) 30.0 13.5 20.0 18.0 9.5 14.5 15.8 6.9 5.7 7.7 – 6.5 2.7 7.0 12.1

hi

Supervised 27.9 19.4 25.9 18.9 15.7 16.9 23.9 13.5 13.9 12.2 16.8 – 2.5 3.8 16.2
GPT-36.7B (32-shot) 1.2 0.9 1.4 0.8 0.4 0.4 0.3 0.2 0.1 0.1 0.1 – 0.1 0.2 0.5
XGLM7.5B (32-shot) 25.2 12.3 15.4 8.8 9.8 11.5 11.3 10.8 8.5 6.1 4.7 – 1.5 1.9 9.8
mT53.7B + SAP (2-shot) 25.7 12.4 17.0 13.0 8.0 12.2 15.4 7.2 4.4 7.4 8.9 – 9.6 9.0 11.6
mT53.7B + SAP (zero-shot) 27.1 12.6 17.3 14.3 9.0 12.4 14.5 8.0 6.7 8.1 8.9 – 10.2 12.8 12.5

my

Supervised 10.0 6.9 10.4 8.5 6.0 6.7 9.5 5.7 6.1 4.6 7.2 9.1 – 2.5 7.2
GPT-36.7B (32-shot) 0.5 0.3 0.4 0.4 0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.2 – 0.1 0.2
XGLM7.5B (32-shot) 14.1 7.6 10.1 3.8 5.7 7.1 8.9 7.1 6.9 3.6 3.5 8.9 – 2.6 6.9
mT53.7B + SAP (2-shot) 16.8 8.5 12.9 11.0 6.7 6.1 9.2 5.2 2.9 5.0 8.0 7.0 – 5.7 8.1
mT53.7B + SAP (zero-shot) 16.4 9.0 11.9 11.6 6.9 8.3 10.4 5.5 3.6 4.8 6.4 7.1 – 6.2 8.3

ta

Supervised 8.3 4.9 6.8 5.8 5.0 4.7 7.0 2.5 2.3 1.1 5.2 6.9 1.2 – 4.8
GPT-36.7B (32-shot) 1.0 0.5 0.8 0.5 0.2 0.3 0.3 0.1 0.2 0.1 0.1 0.2 0.0 – 0.3
XGLM7.5B (32-shot) 16.3 8.4 10.3 5.1 5.2 8.1 7.6 8.1 6.2 5.4 2.8 7.2 0.9 – 7.1
mT53.7B + SAP (2-shot) 18.7 10.4 13.7 10.9 6.3 9.8 11.6 5.2 0.7 6.5 6.0 9.3 1.8 – 8.5
mT53.7B + SAP (zero-shot) 20.4 10.5 14.7 12.9 8.1 10.6 13.2 7.0 6.8 6.6 8.3 10.1 2.6 – 10.1

avg

Supervised 26.0 20.2 26.7 20.0 16.7 18.5 24.5 14.1 13.5 11.8 16.3 19.3 2.1 2.5 16.6
GPT-36.7B (32-shot) 18.9 9.9 14.2 9.3 4.2 4.8 2.7 4.0 0.6 0.5 0.2 0.3 0.1 0.1 5.0
XGLM7.5B (32-shot) 28.5 14.9 20.6 14.4 10.9 12.4 18.5 10.9 5.9 6.1 8.5 9.7 5.8 3.5 12.2
mT53.7B + SAP (2-shot) 25.8 14.1 20.2 15.6 10.0 13.7 16.9 6.9 6.8 7.4 10.5 8.5 8.1 7.5 12.3
mT53.7B + SAP (zero-shot) 27.1 15.0 20.9 18.2 10.5 14.8 17.1 7.9 7.5 8.0 11.5 9.2 8.0 9.7 13.2

Table 6: Few-shot and unsupervised zero-shot machine translation results on FLORES-101 devtest (spBLEU).
Source language in rows, target language in columns. GPT-36.7B and XGLM7.5B use 32 examples from the dev
set for few-shot learning. mT53.7B uses 2 examples from the dev set for few-shot learning. Supervised results
correspond to the M2M-124 615M model from Goyal et al. (2021). XGLM7.5B results correspond to the model
from Lin et al. (2021). Underline denotes better than supervised, bold denotes best of GPT-3, XGLM, and mT5.
spBLEU computed using the implementation from Goyal et al. (2021).
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B WMT14 Unsupervised Zero-shot Machine Translation Results 898

English-French French-English
GPT-3175B (self-amplified) 30.0 31.8
mT53.7B + SAP (self-amplified) 29.8 31.4

Table 7: Unsupervised zero-shot machine translation results on WMT14 English-French test set (SacreBLEU)
(Bojar et al., 2014; Post, 2018). GPT-3175B (self-amplified) results correspond to the unsupervised zero-shot “GPT-3
(self-amplified)” results from Han et al. (2021) prior to performing distillation, initial backtranslation, and iterative
backtranslation which involved unsupervised weight updates. mT53.7B (self-amplified) is our fully unsupervised
zero-shot approach outlined in Section 4 with a 16 prompt ensemble. The SacreBLEU signature used also follows
Han et al. (2021):
BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20)

C Random Selection vs. mT5Score Filtering and Selection Ablation 899

English-Russian Russian-English
Random Selection 0.0 25.5
mT5Score Filtering and Selection 20.0 26.3

Table 8: Unsupervised zero-shot machine translation results on FLORES-101 devtest (spBLEU) using mT53.7B
as described in Section 4. In this experiment, we ablate utilizing mT5Score to filter and select the high-quality
synthetic examples during bootstrapping over two language pairs, English-Russian and Russian-English. When
using random selection, the synthetic parallel examples choosen may be extremely low-quality or non-sensical
leading to a 0.0 spBLEU score after self-amplification as shown for the English-Russian language pair.

D Single Prompt vs. Prompt Ensemble Ablation 900

English-Russian Russian-English
Single Prompt 20.0 26.3
4 Prompt Ensemble 20.9 27.9
8 Prompt Ensemble 20.7 28.6
16 Prompt Ensemble 20.9 28.6

Table 9: Unsupervised zero-shot machine translation results on FLORES-101 devtest (spBLEU) using mT53.7B
as described in Section 4. In this experiment, we ablate utilizing a single few-shot prompt with two synthetic
parallel examples to perform the final translation with utilizing an ensemble of 4, 8, and 16 distinct few-shot
prompts each with two synthetic parallel examples that generate 4, 8, and 16 translations respectively from which
the best translation (by mT5Score) is selected as the final translation over two language pairs, English-Russian and
Russian-English.

E Standard Bootstrap vs. English-centric Bootstrap Ablation 901

English-Russian Russian-Chinese
Standard bootstrap 20.9 5.8
English-centric bootstrap 21.2 8.3

Table 10: Unsupervised zero-shot machine translation results on FLORES-101 devtest (spBLEU) using mT53.7B
as described in Section 4. In this experiment, we ablate performing the standard bootstrap generally described in
Section 4 with the English-centric bootstrap described in Section 4.3 over two language pairs, English-Russian and
Russian-Chinese.
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F Prompting T5 v1.1 with SAP902

Ideally, our experiments on question answering on the SQuAD v1.1 dataset and summarization on the903

CNN / Daily Mail v3.0.0 dataset would utilize the English-only T5 v1.1 model instead of mT5, since the904

datasets are English-only and there is no need for multilinguality. We choose to utilize mT5 for all results905

in this paper due to the observation that T5 v1.1 cannot be prompted as easily as mT5 and underperforms906

for that reason.907

The inputs seen by T5 v1.1 and mT5 during pre-training are of sequence length 512 tokens where908

multiple spans in the sequence are dropped (Raffel et al., 2020). Therefore, the prompt template we909

describe in Section 3, would be out-of-distribution from the pre-training inputs since it may have a910

sequence length shorter or longer than 512 tokens and only contains a single mask instead of multiple911

masks.912

We find that the mT5 model has generalized to sequences shorter and longer than 512 tokens and to913

sequences that only contain a single mask, while the T5 v1.1 model has not. It is still possible to prompt914

the T5 v1.1 model with SAP, but requires formulating a prompt that is in-distribution with the pre-training915

inputs which constrains the length of the prompt.916

Due to this complication, we forgo prompting T5 v1.1 altogether in this paper. Since mT5 and T5 v1.1917

were trained identically, apart from mT5 being pre-trained on the multilingual mC4 dataset instead of the918

primarily English C4 dataset, we hypothesize that this difference between T5 v1.1 and mT5 may be an919

artifact of which checkpoint is selected after pre-training or the length of pre-training (Xue et al., 2021;920

Raffel et al., 2020).921
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G Selected Example Generations 922

Task: Few-shot Machine Translation (Example #1) 923

924

Dataset: FLORES-101 (Arabic → English) 925

926

Prompt Template: 927

928

Translate Arabic to English. 929

{{examples}} 930

Arabic: {{source_text}} 931

English: 932

933

Ground Truth: 934

935

The 802.11n standard operates on both the 2.4Ghz and 5.0Ghz frequencies. 936

937

Generation (mT53.7B + SAP): 938

939

The wireless standard 802.11n operates at the frequency of 2.4 GHz and 5 GHz. 940

941

Generation (mT53.7B): 942

943

The 802.11n wireless standard operates at 2.4 and 5.0 944

945

Commentary: 946

947

SAP generates a lengthier and more fluent translation and correctly translates the units of the 948

frequencies. Both generations add the word “wireless” which is used correctly and is likely to appear next 949

to the words “802.11n” and “standard” but does not exist in the ground truth translation. 950
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Task: Few-shot Machine Translation (Example #2)951

952

Dataset: FLORES-101 (Russian → English)953

954

Prompt Template:955

956

Translate Russian to English.957

{{examples}}958

Russian: {{source_text}}959

English:960

961

Ground Truth:962

963

In 1956 Słania moved to Sweden, where three years later he began work for the964

Swedish Post Office and became their chief engraver.965

966

Generation (mT53.7B + SAP):967

968

In 1956, Slania moved to Sweden, where he worked for three years for the Swedish969

Post Office and became its chief engraved worker.970

971

Generation (mT53.7B):972

973

In 1956, Slanya moved to Sweden and became...974

975

Commentary:976

977

SAP generates a full length translation and more correctly translates “Słania” to “Slania” in-978

stead of “Slanya”. While the translation without SAP only generates a partial translation, the word979

“became” indicates the direction of translation would be less close to the ground truth translation than the980

direction of translation taken by SAP. Notably, SAP produces a relatively high-quality translation, but a981

common failure mode is displayed in this example. SAP translates “chief engraver” to “chief engraved982

worker” which is an imperfect paraphrase likely due to an imperfect multilingual alignment of the word983

“engraver” in the embedding space of the model.984
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Task: Few-shot Question Answering (Example #1) 985

986

Dataset: SQuAD v1.1 987

988

Prompt Template: 989

990

Answer the question based on the following passage. 991

992

{{examples}} 993

994

Passage: {{passage}} 995

Question: {{question}} 996

Answer: 997

998

Passage: 999

1000

In 1874, Tesla evaded being drafted into the Austro-Hungarian Army in Smiljan 1001

by running away to Tomingaj, near Gračac. There, he explored the mountains in 1002

hunter’s garb. Tesla said that this contact with nature made him stronger, both 1003

physically and mentally. He read many books while in Tomingaj, and later said that 1004

Mark Twain’s works had helped him to miraculously recover from his earlier illness. 1005

1006

Question: 1007

1008

Why did Tesla avoid by fleeing Smiljan? 1009

1010

Ground Truth: 1011

1012

being drafted into the Austro-Hungarian Army 1013

1014

Generation (mT53.7B + SAP): 1015

1016

because he was ill and wanted to avoid being drafted into the Austro-Hungarian Army 1017

1018

Generation (mT53.7B): 1019

1020

because he was ill and could not leave the country 1021

1022

Commentary: 1023

1024

In this example, the grammaticality of the question itself (“Why did Tesla avoid by fleeing Smiljan?” vs. 1025

“What did Tesla avoid by fleeing Smiljan?”) has issues. This seems to cause both generations to attempt to 1026

answer a “why” style question with “because” instead of a “what” style question. Notably, the answer 1027

generated by SAP does eventually reach correct answer where as the the answer generated without SAP 1028

hallucinates a fact: “he [Tesla] . . . could not leave the country”. 1029
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Task: Few-shot Question Answering (Example #2)1030

1031

Dataset: SQuAD v1.11032

1033

Prompt Template:1034

1035

Answer the question based on the following passage.1036

1037

{{examples}}1038

1039

Passage: {{passage}}1040

Question: {{question}}1041

Answer:1042

1043

Passage:1044

1045

The Broncos took an early lead in Super Bowl 50 and never trailed. Newton was1046

limited by Denver’s defense, which sacked him seven times and forced him into1047

three turnovers, including a fumble which they recovered for a touchdown. Denver1048

linebacker Von Miller was named Super Bowl MVP, recording five solo tackles, 2½1049

sacks, and two forced fumbles.1050

1051

Question:1052

1053

Who won the MVP for the Super Bowl?1054

1055

Ground Truth:1056

1057

Von Miller1058

1059

Generation (mT53.7B + SAP):1060

1061

Von Miller1062

1063

Generation (mT53.7B):1064

1065

Von Miller, Denver, NFL, NFLPA1066

1067

Commentary:1068

1069

Without using SAP, the answer generated is correct, but contains hallucinated tokens towards1070

the end of the generation.1071
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Task: Few-shot Summarization (Example #1) 1072

1073

Dataset: CNN / Daily Mail v3.0.0 1074

1075

Prompt Template: 1076

1077

Summarize the article. 1078

1079

{{examples}} 1080

1081

Article: {{article}} 1082

Summary: 1083

1084

Article: 1085

1086

London (CNN)The Hatton Garden heist, as it will surely come to be known, was every 1087

safe deposit box holder’s nightmare, every movie director’s dream. Thieves using 1088

heavy cutting equipment and rappelling gear broke into the vault of an esteemed 1089

60-year-old safe deposit company in the heart of London over the past holiday 1090

weekend, possibly taking advantage of as many as four days to rifle through an 1091

uncounted number of safe deposit boxes. And they reportedly got away with hundreds 1092

of thousands of pounds worth of gems and cash - even, in the educated guess of one 1093

former police official, as much as 200 million pounds, or...[truncated] 1094

1095

Summary: 1096

1097

Robbers may have taken advantage of a four-day holiday weekend. Estimates of the 1098

value of the items taken rage from hundreds of thousands of pounds to 200 million 1099

pounds. The heist took place in a historic heart of London’s jewelry business. 1100

1101

Generation (mT53.7B + SAP): 1102

1103

The Hatton Garden heist was a nightmare for jewelers and their customers. They 1104

were ’treated like criminals’, while officers said they would double bail for anyone 1105

who was arrested before. They were arrested while on the sidewalk . 1106

1107

Generation (mT53.7B): 1108

1109

The latest jewel heist in London took place over the weekend. 1110

1111

Commentary: 1112

1113

SAP generates a lengthier generation with multiple sentences summarizing the article. Some of 1114

the facts presented in the generation, however, are not coherent with the article. 1115
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Task: Few-shot Summarization (Example #2)1116

1117

Dataset: CNN / Daily Mail v3.0.01118

1119

Prompt Template:1120

1121

Summarize the article.1122

1123

{{examples}}1124

1125

Article: {{article}}1126

Summary:1127

1128

Article:1129

1130

Sanaa, Yemen (CNN)Al Qaeda fighters attacked a prison in the coastal Yemeni city1131

of Al Mukallah early Thursday, freeing at least 270 prisoners, a third of whom have1132

al Qaeda links, a senior Defense Ministry official has told CNN. Khaled Batarfi, a1133

senior al Qaeda figure, was among the escapees, officials said. Dozens of attackers1134

took control of government buildings, including the city’s Central Prison, Central1135

Bank and radio station during the assault early Thursday, according to officials.1136

Government troops arrived early Thursday and clashed with the al Qaeda fighters, and1137

most of the militants fled,...[truncated]1138

1139

Summary:1140

1141

Al Qaeda fighters attack a prison and other government buildings, freeing many1142

prisoners. Government troops clash with the fighters, most of whom flee. Yemen1143

is descending into chaos as a Shia-Sunni conflict draws in regional rivals Saudi1144

Arabia and Iran.1145

1146

Generation (mT53.7B + SAP):1147

1148

Yemen’s al Qaeda fighters escape from prison after clash with government forces.1149

1150

Generation (mT53.7B):1151

1152

Yemen’s prisoners escape from al Qaeda fighting in Yemen1153

1154

Commentary:1155

1156

SAP correctly characterizes the major theme of the article in its summary. Without SAP, the1157

generation devolves in to an incoherent fact (“prisoners escape from al Qaeda fighting”) and only a partial1158

summary is generated. The ground truth summary, however, is notably longer and contains multiple1159

sentences, while the summary generated by SAP in this instance is only a single sentence.1160
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H Resources 1161

We provide links and citations to resources used in this paper which provide license information, docu- 1162

mentation, and their intended use. Our usage follows the intended usage of all resources. 1163

1164

1165

We utilize the following models: 1166

• mT5 (Xue et al., 2021): 1167

https://github.com/google-research/multilingual-t5/ 1168

• T5 v1.1 (Raffel et al., 2020; Lester et al., 2021): 1169

https://github.com/google-research/text-to-text-transfer-transformer/ 1170

• T5+LM (Raffel et al., 2020; Lester et al., 2021): 1171

https://github.com/google-research/text-to-text-transfer-transformer/ 1172

1173

We utilize the following datasets: 1174

• FLORES-101 (Goyal et al., 2021): 1175

https://ai.facebook.com/research/publications/the-flores-101-evaluation-benchm 1176

ark-for-low-resource-and-multilingual-machine-translation 1177

• WMT14 (Bojar et al., 2014): 1178

https://www.statmt.org/wmt14/translation-task.html 1179

• XQuAD (Artetxe et al., 2020): 1180

https://github.com/deepmind/xquad 1181

• SQuAD v1.1 (Rajpurkar et al., 2016): 1182

https://rajpurkar.github.io/SQuAD-explorer/ 1183

• CNN / Daily Mail v3.0.0 (Nallapati et al., 2016; See et al., 2017; Hermann et al., 2015): 1184

https://huggingface.co/datasets/ccdv/cnn_dailymail 1185

1186

We utilize the following software: 1187

• Transformers (Wolf et al., 2019): 1188

https://github.com/huggingface/transformers 1189

• Datasets (Lhoest et al., 2021): 1190

https://github.com/huggingface/datasets 1191

• SacreBLEU (Post, 2018; Goyal et al., 2021): 1192

https://github.com/ngoyal2707/sacrebleu 1193

• ROUGE (Lin, 2004): 1194

https://github.com/pltrdy/rouge 1195

• BERTScore (Zhang et al., 2019): 1196

https://github.com/Tiiiger/bert_score/tree/master/bert_score 1197

• langdetect: 1198

https://pypi.org/project/langdetect/ 1199

1200

We estimate the total compute budget and detail computing infrastructure used to run the computational 1201

experiments found in this paper below: 1202

• 1x NVIDIA RTX A6000 / 87GB RAM / 4x CPU – 686 hours 1203
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