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Abstract

“Research code” is a common, often self-effacing,
term used to refer to the type of code that is com-
monly released alongside research papers. Re-
search code is notorious for being fragile, poorly
documented, and difficult for others to run or ex-
tend. In this position paper, we argue that, while
research code seems to meet the short-term needs
of research projects, in fact the practice hurts re-
searchers by limiting the impact of their work and
causing fewer people to build on their research.
We explore the structural incentives and dynamics
of the field that drive these behaviors. We argue
that extensibility matters far more than strict repro-
ducibility for research impact, and propose both
pragmatic approaches for individual researchers
and institutional reforms to encourage the devel-
opment of more usable and maintainable research
software.

1. Introduction

Modern ML research is highly oriented towards developing
on software artifacts: new algorithms, models, benchmarks,
tools, etc. However, the norms and practices surrounding
software development in research contexts often prioritize
expedience over enduring functionality. The result is a
proliferation of what is colloquially referred to as “research
code”: scripts and codebases written for the purpose of
generating publishable results, but seldom designed with
reuse or extensibility in mind. Such code is frequently
undocumented, brittle, and narrowly tailored to a specific
experimental configuration.

If a core output of machine learning research is writing
code, we should write it with others in mind. While repro-
ducibility is often cited as the reason to release code, most
researchers are not interested in re-running someone else’s
experiment—they want to build on it. For this purpose, ex-
tensibility matters far more than strict reproducibility. Code
that can be adapted, modified, and extended enables broader
adoption and amplifies research impact.

This paper advocates for a cultural shift in ML research to
emphasize usable and extensible software development. We

argue that this shift is essential for improving the efficiency
of the field, increasing the propagation of ideas and adoption
of new methods. We explore the dynamics of the field that
drive these behaviors and distill learnings from over 150
papers, building on seven major research papers to identify
best practices in research code that can encourage adoption
and wider use.

2. What do we want to see in codebases?
2.1. Different Artifacts, Same Bottleneck

The intended impact of a work may differ depending on the
type of work. For example, works introducing benchmarks
or evaluations are considered highly impactful if they are fre-
quently used in benchmarking new models or inspire the de-
velopment of a new evaluation. Algorithms are considered
highly impactful if future work utilizes these algorithms,
develops extensions of them, or is otherwise inspired by the
original method. Pre-trained models achieve impact when
practitioners can drop them into existing systems without
extensive engineering effort.

Despite these differences in how impact manifests, a sin-
gle bottleneck dominates: extensibility. Easily configur-
ing an evaluation to run on a new model, importing an
algorithm from a well-documented repository, or loading
a model through a familiar API all dramatically increase
the likelihood that a contribution will be adopted and ex-
tended. The subsections below examine how this principle
plays out for benchmarks and evaluations, algorithms, and
model-inference pipelines in turn.

Benchmarks and Evaluations. The scientific value of
a benchmark is not measured by its citation count alone,
but by how often it is used. Making a benchmark easy for
people to run on their models, therefore, is essential. Classic
examples include GLUE in NLP (Wang et al., 2019) and
Atari (Bellemare et al., 2013) in RL, both of which owe
their ubiquity to straightforward, well-supported reference
implementations.

BIG-Bench (Srivastava et al., 2023) and BIG-Bench Hard
(Suzgun et al., 2022) illustrates how implementation choices
affect practical adoption. Despite BIG-Bench representing
an impressive collaborative effort by over 400 researchers,
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its coupling to Google’s internal infrastructure made it diffi-
cult for most researchers to use. BIG-Bench Hard, a curated
subset of 23 challenging tasks, has seen broader adoption,
but tellingly, researchers consistently bypass the official
codebase entirely'. Instead, they either re-implement the
evaluation logic from scratch or integrate the tasks into ex-
isting frameworks like the Eval Harness (Gao et al., 2024).
When code isn’t designed for extensibility, even valuable
contributions require duplicated engineering effort across
the field.

Algorithms. Algorithmic papers achieve long-term im-
pact when later work reimplements, extends, or mathemati-
cally analyses the method. In practice, adoption is gated by
the first public implementation that researchers can easily
import or hack rather than re-code.

Models and Inference Pipelines. When a new pretrained
model comes out, people often want to be able to experiment
with it right away. When there is a unified set of expectations
for the model API and inference frameworks are flexible
enough, new models can be drop-in replacements for old
models. However, when inference codebases are overfit to
specific model details or the field lacks a set of expectations
for model behavior, there is a substantial pain period while
people work to figure out how to get a new model to run in
existing pipelines.

At it’s core, the most important question for adoption is:
“how many engineering hours stand between a curious reader
and a working extension?” The more we can smooth the
user experience and create systems that empower people to
do research, the more impactful our research will be.

2.2. Research Infrastructure

Research infrastructure can alleviate burdens associated
with utilizing research code and facilitate the usage of re-
search artifacts. For cases such as benchmarks, evaluations,
and certain algorithms, reimplementing even the most well-
documented code can require many engineering hours, po-
tentially hindering future usage. As the friction to extend an
existing work increases, the likelihood the work achieves
the researchers’ desired impact decreases.

Many types of work face similar issues to adoption. Con-

ITo reach this conclusion, we surveyed 50 papers that cite BBH
chosen uniformly at random. Twenty-five of those papers evaluate
on BBH, and we could not confirm any examples that use the
official codebase. Of those 25 papers, 4 use Im-eval, 8 explicitly
use a custom implementation, and 13 do not specify. In every case,
the papers that do not specify use an inference methodology or
model architecture that is incompatible with the official codebase,
though we cannot rule out that they modified the official code to
accomplish this. We tried to survey BigBench, but zero out of the
first twenty papers we looked at evaluated on BigBench.

figuring evaluations to run on a variety of models without
proper tooling creates barriers, as does repeatedly duplicat-
ing an algorithm’s implementation to be utilized. Shared
infrastructure can help alleviate these challenges. For ex-
ample, the transformers library from Hugging Face (Wolf
et al., 2020) facilitates easy access to datasets and mod-
els with minimal reconfiguration for environmental differ-
ences, EleutherAI’s Language Model Eval Harness (Gao
et al., 2024) supports running evaluations on numerous open-
source and proprietary models through a unified API, and
PyTorch (Paszke et al., 2019) facilitates development of
architectures, algorithms, and models based on tensors.

Shared infrastructure not only eases adoption but improves
the quality and comparability of research outputs across
the field. Having a shared implementation utilized across
various works not only reduces research time, as common
baselines do not need to be reimplemented for each project,
but reduces the introduction of unnecessary variables and
variance between implementations of previous work that
make scientific comparison challenging and can undermine
the reliability of scientific findings. Integrating research
artifacts into established research infrastructure—for exam-
ple, incorporating a newly developed evaluation into the
Eval Harness—can facilitate broader adoption and usage of
the evaluation or other artifacts added to existing libraries
(Biderman et al., 2024).

2.3. Between Research Code and Research
Infrastructure

Although research infrastructure greatly benefits researchers
who contribute to it and the research community, not all
work can or should strive to produce new research infras-
tructure. Well-documented, well-designed, stand-alone code
bases are more than sufficient to meet the needs we articu-
late above for many researchers. In such cases, we find that
hackability and flexibility are often key to enabling future
researchers to build on previous work.

Another option for bridging the gap between ad-hoc re-
search code and full-fledged infrastructure is to contribute
new functionality back to existing ecosystems rather than
publishing an isolated repository. Adding a task to the LM
Evaluation Harness (Gao et al., 2024), registering a new
optimizer in Stable-Baselines3 (Raffin et al., 2021), or up-
streaming a data-loader to torchvision (Paszke et al., 2019)
immediately places the contribution behind a stable API,
inherits continuous integration and community maintenance,
and eliminates redundant boilerplate. In practical terms, this
means a graduate student looking to replicate or extend the
work can do so with a single import statement instead of
cloning yet another bespoke repo. Such in-framework exten-
sions retain the hackability of stand-alone code—one can
still experiment locally—while gaining the discoverability,
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versioning discipline, and longevity that characterize mature
research infrastructure.

3. Why are we struggling to do this

Most research code falls very far short of the goals outlined
in the previous section. Researchers routinely reimplement
algorithms, models, and methodologies from scratch rather
than building on existing code. This section examines the
structural barriers that perpetuate these practices.

3.1. Fundamental Barriers to Code Quality

Incentives and the publication race The primary cur-
rency of academics is publication in peer-reviewed confer-
ences and journals, and the citations they accumulate. While
the most successful and widely adopted infrastructure can
eventually garner significant citations (the Eval Harness has
over 1,000 and Stable-Baselines3 has over 3,000), this rep-
resents a substantial, multi-year effort. Research code is
often described as meeting the bare minimum for viability,
a reflection on the fact that released code often is held to
the standard of not completely embarrassing the authors and
little more. Consequently, the system generally prioritizes
research outputs that can demonstrate results quickly. This
typically means code optimized for reproducing the specific
findings of a paper rather than being engineered for broader
extensibility and long-term use by others.

Code as means, not output Despite some positive move-
ments towards valuing code as a meaningful research con-
tribution, including this amazing workshop, the quality of
research code is rarely considered in high-impact, peer-
reviewed venues. While many venues encourage review-
ers to look at released code, we are unaware of any major
machine learning venue that expects reviewers to judge re-
search in part on the quality of the released code. This
disconnect manifests in review processes that prioritize al-
gorithmic novelty and empirical results while systematically
ignoring code quality, usability, and potential for commu-
nity impact. When a paper’s impact is measured exclusively
in citations rather than GitHub stars or downstream usage,
investing in code quality appears irrational.

3.2. Academic Challenges

Some challenges are unique to or more pronounced in aca-
demic research contexts.

Lack of training Academic training compounds this prob-
lem by treating programming as a research tool rather than
a software discipline. With curricula rarely integrating
software engineering practices and advisors seldom enforc-
ing code standards, researchers lack the foundational skills
needed for writing maintainable, extensible code.

Turnover The high turnover rate in academic settings
(e.g., students graduating, postdocs moving on) makes
maintaining research infrastructure particularly challeng-
ing. Maintaining extensible tools and updating them in
response to changes in the field is a long-term commitment
which is difficult to sustain when key personnel and their
specific knowledge depart. The deep, often tacit, knowledge
associated with a codebase can be lost when key developers
depart, leaving projects vulnerable to stagnation or abandon-
ment, regardless of their initial quality or potential utility as
extensible infrastructure.

3.3. Industry Challenges

Industry faces different but equally significant barriers.

Internal code bases Code developed within companies is
often deeply coupled to proprietary infrastructure, making
extraction and generalization prohibitively expensive. Even
well-intentioned releases can fail when internal assumptions
pervade the codebase. BigBench (Srivastava et al., 2023),
a massive collaborative benchmark created by over 400
researchers, illustrates this perfectly: despite being designed
for the entire community, its implementation was so tied to
Google’s internal infrastructure that it could not run most
models from HuggingFace (the de facto standard) without
substantial community effort to rebuild it.”> Consequently,
the published paper does not evaluate BigBench on any
publicly accessible language model.

Moreover, internal incentive misalignment creates friction.
Research teams are evaluated on product impact and novel
capabilities, not on enabling external extensibility that could
benefit competitors. The engineering effort required to de-
couple code from internal systems rarely aligns with quar-
terly objectives or promotion criteria.

4. How we can do better: Insights and
Recommendations

Addressing challenges with developing extensible research
code and research infrastructure requires both individual
researcher action and systematic change. In this section,
we outline pragmatic approaches researchers can adopt to
develop research infrastructure and code that prioritizes
usability in Section 4.1, as well as institutional changes the
ML community should adopt to encourage and prioritize the
development of research infrastructure over research code
in Section 4.2.

2See GitHub issue #551 and pull request #830
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4.1. Pragmatic Approaches for Researchers

While writing this paper, we surveyed at least twenty papers
building on or using each of the projects we have discussed
so far: PyTorch, Im-eval, transformers, BigBench, GLUE,
Stable-Baselines3, and torchvision. In this section, we distill
learnings about the commonalities that drive the adoption
of widely successful research infrastructure.

Modularization Our studies demonstrate that research im-
pact correlates strongly with code extensibility. Researchers
should consider potential adaptations during initial develop-
ment and prioritize modular design at obvious points of di-
vergence. This approach yields immediate returns: modular,
well-structured code accelerates your own experimentation,
particularly when addressing reviewer feedback or pursuing
follow-up work.

Consider Integration Paths While standalone implemen-
tations serve an important exploratory function, particularly
for theoretical contributions, negative results, or highly spe-
cialized analyses, researchers should evaluate whether their
contributions align with existing community infrastructure.
Integration decisions can be guided by assessing whether
established frameworks address the majority of required
functionality, thereby reducing implementation overhead
while increasing adoption potential. For instance, evalua-
tion benchmarks integrated into frameworks like the Eval
Harness demonstrate significantly higher utilization rates
than standalone implementations (Biderman et al., 2024).

Documentation Effective documentation should priori-
tize design rationale and extensibility interfaces over pro-
cedural installation instructions. This approach reduces
barriers to community adoption while decreasing mainte-
nance burden and improved code comprehension during
future development. Stable-Baselines3 (Raffin et al., 2021)
exemplifies this approach: by documenting architectural
decisions and modification protocols, the authors enabled
both community contributions and their own continued de-
velopment efficiency.

4.2. Institutional Reforms

Recognize Code Contributions in Evaluation Metrics
Current assessment focuses on publications and citations
while ignoring code impact. Institutions should value well-
documented, extensible code releases alongside traditional
outputs. When a clean PyTorch implementation enables
dozens of follow-up papers, that contribution merits recog-
nition. Venues should assess code quality as part of the
review process, not merely require code availability.

Sustainable Maintenance Models Creating widely used
infrastructure can become a burden when maintenance falls

entirely on creators. We need funding models that acknowl-
edge this reality: dedicated infrastructure postdocs, com-
munity maintenance grants, or transition pathways where
creators can hand off maintenance while retaining credit.
Programs such as NSF’s POSE? and the Linux Founda-
tion’s stewardship model* provide a template, but coverage
remains sparse relative to need.

5. Conclusion

Extensible, well-documented software is now a prerequisite
for durable impact in machine-learning research. Our sur-
vey of more than 150 downstream papers demonstrates a
consistent pattern: contributions purposely engineered for
hackability are reused, extended, and cited far more often
than equally novel ideas released as self-contained scripts.
This finding underscores that code quality is not ancillary to
scientific merit; it is part of the result itself.

We therefore advocate three concrete changes. First, authors
should treat extensibility as a design requirement, providing
modular APIs and narrative documentation that explain why
architectural decisions were made. Second, reviewers and
program committees should incorporate explicit software-
quality criteria into their rubrics, recognizing that repro-
ducibility is a baseline but that true impact depends on ease
of adaptation. Third, research organizations must invest in
the long-term maintenance of community infrastructure be-
cause unmaintained code rapidly accrues technical debt. By
embedding these norms, the field can ensure that new ideas
travel farther and accelerate collective progress, turning
individual repositories into shared platforms for discovery.
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