
Overcoming Class Imbalance: Unified GNN Learning
with Structural and Semantic Connectivity

Representations

Abdullah Alchihabi1 Hao Yan1 Yuhong Guo1,2
1Carleton University, Ottawa, Canada

2Canada CIFAR AI Chair, Amii, Canada
{abdullahalchihabi@cmail., haoyan6@cmail., yuhong.guo@}carleton.ca

Abstract

Class imbalance is pervasive in real-world graph datasets, where the majority of
annotated nodes belong to a small set of classes (majority classes), leaving many
other classes (minority classes) with only a handful of labeled nodes. Graph Neural
Networks (GNNs) suffer from significant performance degradation in the presence
of class imbalance, exhibiting bias towards majority classes and struggling to
generalize effectively on minority classes. This limitation stems, in part, from the
message passing process, leading GNNs to overfit to the limited neighborhood
of annotated nodes from minority classes and impeding the propagation of dis-
criminative information throughout the entire graph. In this paper, we introduce a
novel Unified Graph Neural Network Learning (Uni-GNN) framework to tackle
class-imbalanced node classification. The proposed framework seamlessly inte-
grates both structural and semantic connectivity representations through semantic
and structural node encoders. By combining these connectivity types, Uni-GNN
extends the propagation of node embeddings beyond immediate neighbors, encom-
passing non-adjacent structural nodes and semantically similar nodes, enabling
efficient diffusion of discriminative information throughout the graph. Moreover,
to harness the potential of unlabeled nodes within the graph, we employ a balanced
pseudo-label generation mechanism that augments the pool of available labeled
nodes from minority classes in the training set. Experimental results underscore
the superior performance of our proposed Uni-GNN framework compared to state-
of-the-art class-imbalanced graph learning baselines across multiple benchmark
datasets.

1 Introduction

Graph Neural Networks (GNNs) have exhibited significant success in addressing the node classifi-
cation task [Kipf and Welling, 2017, Hamilton et al., 2017, Veličković et al., 2018] across diverse
application domains from molecular biology [Hao et al., 2020] to fraud detection [Zhang et al., 2021].
The efficacy of GNNs has been particularly notable when applied to balanced annotated datasets,
where all classes have a similar number of labeled training instances. The performance of GNNs
experiences a notable degradation when confronted with an increasingly imbalanced class distribution
in the available training instances [Yun et al., 2022]. This decline in performance materializes as a
bias towards the majority classes, which possess a considerable number of labeled instances, resulting
in a challenge to generalize effectively over minority classes that have fewer labeled instances [Park
et al., 2021, Yan et al., 2023]. The root of this issue lies in GNNs’ reliance on message passing
to disseminate information across the graph. Specifically, when the number of labeled nodes for a
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particular class is limited, GNNs struggle to propagate discriminative information related to that class
throughout the entire graph. This tendency leads to GNNs’ overfitting to the confined neighborhood
of labeled nodes belonging to minority classes [Tang et al., 2020, Yun et al., 2022, Li et al., 2023].
This is commonly denoted as the ‘under-reaching problem’ [Sun et al., 2022] or ‘neighborhood
memorization’ [Park et al., 2021].

In this study, we present a novel Unified Graph Neural Network Learning (Uni-GNN) framework
designed to tackle the challenges posed by class-imbalanced node classification tasks. Our proposed
framework leverages both structural and semantic connectivity representations, specifically addressing
the under-reaching and neighborhood memorization issues. To achieve this, we construct a structural
connectivity based on the input graph structure, complemented by a semantic connectivity derived
from the similarity between node embeddings. The Uni-GNN framework’s unique utilization of
both structural and semantic connectivity empowers it to effectively extend the propagation of node
embeddings beyond the standard neighborhood. Moreover, to harness the potential of unlabeled nodes
in the graph, we introduce a balanced pseudo-label generation method. This method strategically
samples unlabeled nodes with confident predictions in a class-balanced manner, effectively increasing
the number of labeled instances for minority classes. Our experimental evaluations on multiple
benchmark datasets underscore the superior performance of the proposed Uni-GNN framework
compared to state-of-the-art Graph Neural Network methods designed to address class imbalance.

2 Method

In the context of semi-supervised node classification with class imbalance, we consider a graph
G = (V,E), where V represents the set of N = |V | nodes, and E denotes the set of edges within
the graph. E is commonly represented by an adjacency matrix A of size N × N . This matrix is
assumed to be symmetric (i.e. for undirected graphs), and it may contain either weighted or binary
values. Each node in the graph is associated with a feature vector of size D, while the feature vectors
for all the N nodes are organized into an input feature matrix X ∈ RN×D. The set of nodes V is
partitioned into two distinct subsets: Vl, comprising labeled nodes, and Vu, encompassing unlabeled
nodes. The labeled nodes in Vl are paired with class labels, and this information is encapsulated in
a label indicator matrix Y l ∈ {0, 1}Nl×C . Here, C signifies the number of classes, and Nl is the
number of labeled nodes. Further, Vl can be subdivided into C non-overlapping subsets, denoted as
{V 1

l , · · · , V C
l }, where each subset V i

l corresponds to the labeled nodes belonging to class i. It is
noteworthy that Vl exhibits class imbalance, characterized by an imbalance ratio ρ. This ratio, defined
as ρ =

mini(|V i
l |)

maxi(|V i
l |)

, is considerably less than 1. Such class imbalance problem introduces challenges
and necessitates specialized techniques in the development of effective node classification models.

2.1 Unified GNN Learning Framework

The Unified GNN Learning (Uni-GNN) framework comprises three crucial components: the structural
node encoder, the semantic node encoder and the balanced node classifier. The overall framework of
Uni-GNN is illustrated in Figure 1.

2.1.1 Structural Node Encoder

The objective of the structural encoder is to learn an embedding of the nodes based on structural
connectivity. Instead of directly using the input adjacency matrix A, we construct a new structural
connectivity-based graph adjacency matrix Astruct that extends connections beyond the immediate
neighbors in the input graph. This matrix is determined by the distances between pairs of nodes,
measured in terms of the number of edges along the shortest path connecting the respective nodes,
such that

Astruct[i, j] =

{
1

SPD(i,j) SPD(i, j) ≤ α

0 otherwise
(1)

where SPD(., .) is the shortest path distance function that measures the distance between pairs of
input nodes in terms of the number of edges along the shortest path in the input graph G. The
hyper-parameter α ≥ 1 governs the maximum length of the shortest path distance to be considered. In
Astruct, edges connecting node pairs are assigned weights that are inversely proportional to the length
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Loss Term

Figure 1: Overview of the proposed Unified GNN Learning framework. The structural (fstruct) and
semantic (fsem) node encoders leverage their respective connectivity matrices—structural (Astruct) and
semantic ({Aℓ

sem}Lℓ=1). The encoders share concatenated node embeddings—structural (Hℓ−1
struct) and

semantic (Hℓ−1
sem )—at each message passing layer (ℓ). The balanced node classifier (ϕ) utilizes the

final unified node embeddings (HL
struct||HL

sem) for both node classification and balanced pseudo-label
generation.

of the shortest path between them. This design ensures that the propagated messages carry importance
weights, scaling the messages based on the corresponding edge weights between connected nodes.

The structural node encoder, denoted as fstruct, consists of L message propagation layers. In each
layer ℓ of the structural node encoder, denoted as f ℓ

struct, the node input features comprise the learned
node embeddings, Hℓ−1

struct and Hℓ−1
sem , from the previous layer of both the structural encoder and the

semantic encoder, respectively. As a consequence, the propagated messages encode both semantic
and structural information facilitating the learning of more discriminative node embeddings. The
constructed structural connectivity matrix Astruct is employed as the adjacency matrix for message
propagation within each layer. We employ the conventional Graph Convolution Network (GCN)
[Kipf and Welling, 2017] as our message-passing layer, given its simplicity, efficiency and ability to
handle weighted graph structures, in the following manner:

Hℓ
struct = f ℓ

struct(H
ℓ−1
struct||Hℓ−1

sem , Astruct)

= σ
(
D̂

− 1
2

structÂstructD̂
− 1

2
struct(H

ℓ−1
struct||Hℓ−1

sem )W ℓ
struct

) (2)

Here, σ represents the non-linear activation function, “||” denotes the feature concatenation operation,
W ℓ

struct is the matrix of learnable parameters for f ℓ
struct, Âstruct = Astruct + I is the adjusted adjacency

matrix with self-connections, and D̂struct is the diagonal node degree matrix of Âstruct such that
D̂struct[i, i] =

∑
j Âstruct[i, j]. In the case of the first layer of fstruct, the node input features are solely

represented by the input feature matrix X .

2.1.2 Semantic Node Encoder

The objective of the semantic node encoder is to learn node embeddings based on the semantic
connectivity. The semantic node encoder, denoted as fsem, comprises L message passing layers. In
each layer ℓ of the semantic node encoder, represented by f ℓ

sem, a semantic-based graph adjacency
matrix Aℓ

sem is constructed based on the similarity between the embeddings of nodes from the previous
layer of the semantic and structural node encoders, measured in terms of clustering assignments. For
each layer ℓ, the following fine-grained node clustering is performed:

Sℓ = g(Hℓ−1
struct||Hℓ−1

sem ,K) (3)

which clusters all the graph nodes into K (K ≫ C) clusters. Here, Sℓ ∈ RN×K is the fine-grained
clustering assignment matrix obtained from the clustering function g. The row Sℓ[i] indicates
the cluster to which node i is assigned. The fine-grained clustering function g takes as input the
concatenation of the structural and semantic node embeddings from layer ℓ − 1, along with the
number of clusters K, and outputs the cluster assignments Sℓ. The clustering function g is realized
by performing K-means clustering to minimize the following least squares clustering loss:

Lclust =
∑
i∈V

K∑
k=1

Sℓ[i, k]
∥∥(Hℓ−1

struct[i]||Hℓ−1
sem [i])− µk

∥∥2 (4)
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where µk represents the mean vector for the cluster k, and Sℓ[i, k] has a binary value (0 or 1) that
indicates whether node i is assigned to cluster k. Based on the fine-grained clustering assignment
matrix Sℓ, the construction of the semantic connectivity-based graph adjacency matrix Aℓ

sem is
detailed as follows:

Aℓ
sem[i, j] =

{
1 if Sℓ[i] = Sℓ[j]

0 otherwise.
(5)

In the construction of Aℓ
sem, nodes assigned to the same cluster are connected, establishing edges

between them, while nodes assigned to different clusters are not connected, resulting in an adjacency
matrix that encapsulates the semantic connectivity encoded within the fine-grained clusters. This
process enables message propagation among nodes that share semantic similarities in the graph,
irrespective of their structural separation. This is instrumental in addressing the issue of under-
reaching of minority nodes.

Each layer ℓ of the semantic node encoder, f ℓ
sem, takes the concatenation of node embeddings,

Hℓ−1
struct∥Hℓ−1

sem , from the previous layer ℓ− 1 of both the structural encoder and the semantic encoder
as input, aiming to gather richer information from both aspects, but propagates messages with the
constructed semantic adjacency matrix Aℓ

sem. For the first layer of fsem, the input node features are
simply the input features matrix X . We opt for the conventional Graph Convolution Network (GCN)
[Kipf and Welling, 2017] as our message-passing layer again, which is employed in the following
manner:

Hℓ
sem = f ℓ

sem(H
ℓ−1
struct||Hℓ−1

sem , Aℓ
sem)

= σ
(
D̂

− 1
2

sem Âℓ
semD̂

− 1
2

sem (Hℓ−1
struct||Hℓ−1

sem )W ℓ
sem

) (6)

Here, σ again represents the non-linear activation function; W ℓ
sem is the matrix of learnable parameters

for f ℓ
sem; Âℓ

sem = Aℓ
sem + I is the adjusted adjacency matrix with self-connections; and the diagonal

node degree matrix D̂sem is computed as D̂sem[i, i] =
∑

j Â
ℓ
sem[i, j].

2.1.3 Balanced Node Classifier

We define a balanced node classification function ϕ, which classifies the nodes in the graph based on
their structural and semantic embeddings learned by the Structural Encoder and Semantic Encoder
respectively. In particular, the balanced node classification function takes as input the output of the
L-th layers of the structural and semantic node encoders, denoted as HL

struct and HL
sem, respectively:

P = ϕ(HL
struct||HL

sem) (7)

where P ∈ RN×C is the predicted class probability matrix of all the nodes in the graph. Given the
class imbalance in the set of labeled nodes Vl, the node classification function is trained to minimize
the following weighted node classification loss on the labeled nodes:

L =
∑

i∈Vl

ωciℓce(Pi, Y
l
i ). (8)

Here, ℓce denotes the standard cross-entropy loss function. For a given node i, Pi represents its
predicted class probability vector, and Y l

i is the true label indicator vector if i is a labeled node. The
weight ωci associated with each node i is introduced to balance the contribution of data from different
classes in the supervised training loss. It gives different weights to nodes from different classes. In
particular, the class balance weight ωci is calculated as follows:

ωci =
1

|V ci
l |

(9)

where ci denotes the class index of node i, such that Y l[i, ci] = 1; and |V ci
l | is the size of class ci

in the labeled nodes— i.e., the number of labeled nodes V ci
l from class ci. Since ωci is inversely

proportional to the corresponding class size, it enforces that larger weights are assigned to nodes
from minority classes with fewer labeled instances in the supervised node classification loss, while
smaller weights are assigned to nodes from majority classes with abundant labeled nodes. Specifically,
through the incorporation of this class weighting mechanism, each class contributes equally to the
supervised loss function, irrespective of the quantity of labeled nodes associated with it within the
training set, thereby promoting balanced learning across different classes.
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2.2 Balanced Pseudo-Label Generation

To leverage the unlabeled nodes in the graph, a balanced pseudo-label generation mechanism is
proposed. The objective is to increase the number of available labeled nodes in the graph while
considering the class imbalance in the set of labeled nodes. The goal is to generate more pseudo-labels
from minority classes and fewer pseudo-labels from majority classes, thus balancing the class label
distribution of the training data. In particular, for each class c, the number of nodes to pseudo-label,
denoted as N̂c, is set as the difference between the largest labeled class size and the size of class c,
aiming to balance the class label distribution over the union of labeled nodes and pseudo-labeled
nodes:

N̂c = maxi∈{1,...,C}(|V i
l |)− |V c

l | (10)
The set of unlabeled nodes that can be confidently pseudo-labeled to class c can be determined as:

V̂ c
u = {i | max(Pi) > ϵ, argmax(Pi) = c, i ∈ Vu} (11)

where ϵ is a hyperparameter determining the confidence prediction threshold. Balanced sampling
is then performed on each set V̂ c

u by selecting the top N̂c nodes, denoted as TopN̂c
(V̂ c

u ), with the
most confident pseudo-labels based on the predicted probability Pi[c]. This results in a total set of
pseudo-labeled nodes, denoted as V̂u, from all classes:

V̂u = {TopN̂1
(V̂ 1

u ), · · · ,TopN̂C
(V̂ C

u )}. (12)

The Unified GNN Learning framework is trained to minimize the following node classification loss
over this set of pseudo-labeled nodes V̂u:

Lps =
1

|V̂u|

∑
i∈V̂u

ℓce(Pi,1argmax(Pi)) (13)

where ℓce again is the standard cross-entropy loss function, Pi is the predicted class probability vector
with classifier ϕ, and 1argmax(Pi) is a one-hot pseudo-label vector with a single 1 at the predicted
class entry argmax(Pi). This pseudo-labeling mechanism aims to augment the labeled node set,
particularly focusing on addressing class imbalances by generating more pseudo-labels for minority
classes.

Training Loss The unified GNN Learning framework is trained on the labeled set Vl and the
selected pseudo-labeled set V̂u in an end-to-end fashion to minimize the following integrated total
loss:

Ltotal = L+ λLps (14)

where λ is a hyper-parameter controlling the contribution of V̂u to the overall loss Ltotal.

3 Experiments

3.1 Experimental Setup

We conduct experiments on three datasets (Cora, CiteSeer and PubMed) [Sen et al., 2008]. To ensure
a fair comparison, we adhere to the evaluation protocol used in previous studies [Zhao et al., 2021,
Yun et al., 2022]. The datasets undergo manual pre-processing to achieve the desired imbalance
ratio (ρ). We consider two imbalance ratios (ρ = 10%, 5%), and two different numbers of minority
classes: 3 and 5 on Cora and CiteSeer datasets , and 1 and 2 on PubMed dataset. Additionally, for
Cora and CiteSeer datasets, we also adopt a long-tail class label distribution setup similar to [Yun
et al., 2022]. Graph Convolution Network (GCN) [Kipf and Welling, 2017] implements the message
passing layers in our framework and all the comparison baselines. We compare our Uni-GNN with
the GCN baseline, SMOTE [Chawla et al., 2002] and LTE4G [Yun et al., 2022].

3.2 Comparison Results

We evaluate the performance of Uni-GNN framework on the semi-supervised node classification
task under class imbalance. Across the three datasets, we explore four distinct evaluation setups by
manipulating the number of minority classes and the imbalance ratio (ρ). Additionally, we explore
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Table 1: The overall performance on Cora, CiteSeer and PubMed datasets .

# Min. Class 3 5
ρ 10% 5% 10% 5%

bAcc. Macro-F1 G-Means bAcc. Macro-F1 G-Means bAcc. Macro-F1 G-Means bAcc. Macro-F1 G-Means
C

or
a

GCN 68.8(4.0) 68.8(4.0) 80.8(2.6) 60.0(0.4) 56.6(0.7) 74.8(0.3) 64.9(6.2) 64.7(5.7) 78.1(4.2) 55.1(2.6) 51.4(2.4) 71.4(1.8)
SMOTE 65.1(4.0) 62.3(5.1) 78.3(2.7) 59.0(2.2) 53.9(2.6) 74.2(1.5) 60.3(7.6) 58.7(8.9) 74.9(5.3) 49.1(4.1) 45.6(5.4) 67.0(3.1)
LTE4G 73.2(5.4) 72.1(6.1) 83.6(3.5) 70.9(2.5) 69.6(2.8) 82.1(1.6) 75.4(5.6) 75.4(5.4) 85.0(3.6) 70.2(4.5) 68.8(4.7) 81.7(3.0)
Uni-GNN 76.5(0.5) 76.4(0.7) 85.8(0.3) 71.5(1.2) 70.7(1.5) 82.5(0.8) 75.4(3.7) 75.4(3.7) 85.0(2.4) 70.5(3.7) 68.7(2.6) 81.8(2.5)

C
ite

Se
er GCN 49.5(2.1) 43.1(2.3) 66.7(1.5) 48.2(0.9) 39.3(0.4) 65.7(0.7) 48.9(1.4) 45.3(1.3) 66.2(1.1) 42.4(6.5) 39.1(7.3) 61.1(5.1)

SMOTE 48.7(2.5) 40.1(1.8) 66.1(1.9) 47.8(0.8) 38.9(1.9) 65.4(0.6) 44.9(4.4) 41.9(4.1) 63.2(3.4) 40.1(2.0) 34.2(1.5) 59.4(1.6)
LTE4G 54.2(4.5) 51.8(4.1) 70.2(3.3) 52.7(2.1) 48.3(3.7) 69.1(1.5) 52.1(3.7) 47.2(3.6) 68.6(2.7) 47.3(1.1) 41.2(2.1) 65.0(0.9)
Uni-GNN 59.1(3.6) 54.6(3.3) 73.6(2.5) 54.1(3.1) 48.5(4.1) 70.1(2.3) 58.3(2.5) 55.0(1.3) 73.1(1.8) 54.0(2.2) 51.4(2.2) 70.0(1.6)

# Min. Class 1 2
ρ 10% 5% 10% 5%

Pu
bM

ed GCN 60.4(6.5) 55.9(9.5) 69.6(5.2) 58.6(3.0) 51.9(6.2) 68.1(2.4) 49.1(10.9) 44.0(14.5) 60.3(8.9) 41.0(5.6) 32.2(8.4) 53.7(4.7)
SMOTE 55.8(3.0) 48.2(3.3) 65.9(2.4) 55.2(2.8) 46.8(2.2) 65.4(2.2) 41.8(4.0) 32.6(6.6) 54.4(3.3) 36.6(2.1) 23.8(4.8) 50.0(1.8)
LTE4G 62.6(3.0) 59.2(6.7) 71.4(2.4) 60.0(5.4) 55.3(8.2) 69.3(4.3) 52.1(7.0) 50.2(8.3) 62.9(5.7) 48.5(9.9) 44.3(12.2) 48.5(9.9)
Uni-GNN 73.9(2.3) 73.8(2.5) 80.2(1.8) 67.1(4.2) 65.2(5.3) 74.8(3.3) 66.9(4.3) 66.0(4.1) 74.7(3.3) 63.4(6.4) 62.3(8.6) 72.0(5.0)

Table 2: The overall performance on Cora-LT and CiteSeer-LT datasets .
Cora-LT CiteSeer-LT
bAcc. Macro-F1 G-Means bAcc. Macro-F1 G-Means

GCN 66.8(1.1) 65.0(1.0) 79.5(0.7) 50.4(1.4) 45.7(0.8) 67.4(1.1)
SMOTE 66.8(0.4) 66.4(0.6) 79.4(0.2) 51.2(1.9) 46.6(1.8) 68.0(1.4)
LTE4G 72.2(3.1) 72.0(2.9) 83.0(2.0) 56.4(2.1) 52.5(2.2) 71.7(1.5)
Uni-GNN 75.2(1.3) 74.8(1.3) 84.9(0.8) 63.3(1.7) 61.6(2.5) 76.6(1.2)

the long-tail class label distribution setting for Cora and CiteSeer with an imbalance ratio of ρ = 1%.
We assess the performance of Uni-GNN using balanced Accuracy (bAcc), Macro-F1, and Geometric
Means (G-Means), reporting the mean and standard deviation of each metric over 3 runs. Table 1
summarizes the results for different numbers of minority classes and imbalance ratios on all three
datasets, while Table 2 showcases the results under long-tail class label distribution on Cora and
CiteSeer.

Table 1 illustrates that the performance of all methods diminishes with decreasing imbalance ratio (ρ)
and increasing numbers of minority classes. Our proposed framework consistently outperforms the
underlying GCN baseline and all other methods across all three datasets and various evaluation setups.
The performance gains over the GCN baseline are substantial, exceeding 10% in most cases for
Cora and CiteSeer datasets and 13% for most instances of the PubMed dataset. Moreover, Uni-GNN
consistently demonstrates superior performance compared to all other comparison methods, achieving
notable improvements over the second-best method (LTE4G) by around 3%, 5%, and 11% on Cora,
CiteSeer with 3 minority classes and ρ = 10%, and PubMed with 1 minority class and ρ = 10%,
respectively. Similarly, Table 2 highlights that Uni-GNN consistently enhances the performance of
the underlying GCN baseline, achieving performance gains exceeding 8% and 12% on Cora-LT and
CiteSeer-LT datasets, respectively. Furthermore, Uni-GNN demonstrates remarkable performance
gains over all other class imbalance methods, surpassing 4% on CiteSeer-LT. These results underscore
the superior performance of our framework over existing state-of-the-art class-imbalanced GNN
methods across numerous challenging class imbalance scenarios.

4 Conclusion

In this paper, we introduced a novel Uni-GNN framework for class-imbalanced node classification.
The proposed framework harnesses the combined strength of structural and semantic connectivity
through dedicated structural and semantic node encoders, enabling the learning of a unified node
representation. By utilizing these encoders, the structural and semantic connectivity ensures effective
propagation of messages beyond the structural immediate neighbors of nodes, thereby addressing
the under-reaching and neighborhood memorization problems. Moreover, we proposed a balanced
pseudo-label generation mechanism to incorporate confident pseudo-label predictions from minority
unlabeled nodes into the training set. Our experimental evaluations on three benchmark datasets
for node classification affirm the efficacy of our proposed framework. The results demonstrate that
Uni-GNN adeptly mitigates class imbalance bias, surpassing existing state-of-the-art methods in
class-imbalanced graph learning.
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A Implementation Details

The semantic and structural encoders consist of 2 message passing layers each, followed by a Rectified
Linear Unit (ReLU) activation function. The node classifier is composed of a single GCN layer,
followed by ReLU activation, and then a single fully connected linear layer. Uni-GNN undergoes
training using an Adam optimizer with a learning rate of 1e−2 and weight decay of 5e−4 over
10,000 epochs. The hyperparameter λ is assigned the value 1. For the hyperparameters K, α, ϵ, and
β, we explore the following ranges: {3C, 4C, 10C, 20C, 30C}, {1, 2}, {0.5, 0.7}, and {50, 100},
respectively. Each experiment is repeated three times, and the reported performance metrics represent
the mean and standard deviation across all three runs.

B Computational Complexity Analysis

The computational complexity of the standard GCN message passing layer is O(N ·D2 + |E| ·D)
[You et al., 2020]. Our proposed Uni-GNN framework incorporates two GCN-based node encoders:
a semantic node encoder and a structural node encoder. For each encoder, we construct dedicated
adjacency matrices. The construction of the structural connectivity-based adjacency matrix Astruct has
a general computational complexity of O(N · dαavg), where davg represents the average node degree
in G. As for the construction of the semantic connectivity-based adjacency matrices, it requires
performing K-means clustering that has a computational complexity of O(T ·N ·K ·D), where T
denotes the number of iterations in K-means [Christopher et al., 2008].

C Compute Resources

The experiments are conducted on GPU servers, where each instance includes 8-Cores Intel CPUs,
32GB of RAM, and a RTX 3060 GPU with 12GB of VRAM.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. Experimental results provided in the paper support the claims made
in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitation lies in the extra computational complexity, which has been
addressed in Section B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are shown in Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The datasets we evaluate our method on are publicly available, while we
provide the implementation details required to reproduce our experiments in Section A.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed experimental settings are included in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results are reported with standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute Resources are described in Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper advances the research of GNN learning, with positive application
potentials.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release new assets, therefore the paper poses no risks of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the used datasets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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