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Abstract

As AI models are deployed with increasing autonomy, it is important to ensure they
do not take harmful actions unnoticed. As a potential mitigation, we investigate
Chain-of-Thought (CoT) monitoring, wherein a weaker trusted monitor model
continuously oversees the intermediate reasoning steps of a more powerful but
untrusted model. We compare CoT monitoring to action-only monitoring, where
only final outputs are reviewed, in a red-teaming setup where the untrusted model
is instructed to pursue harmful side tasks while completing a coding problem.
We find that while CoT monitoring is more effective than overseeing only model
outputs in scenarios where action-only monitoring fails to reliably identify sabotage,
reasoning traces can contain misleading rationalizations that deceive the CoT
monitors, reducing performance in obvious sabotage cases. To address this, we
introduce a hybrid protocol that independently scores model reasoning and actions,
and combines them using a weighted average. Our hybrid monitor consistently
outperforms both CoT and action-only monitors across all tested models and tasks,
with detection rates twice higher than action-only monitoring for subtle deception
scenarios.

1 Introduction

As AI models grow in capabilities and are deployed with increasing autonomy (METR, 2025), there
is a growing need to address risks from potential misalignment (Shah et al., 2025; UK AI Safety
Institute, 2025), i.e., models pursuing hidden goals contrary to their developers’ intentions.

One approach to ensuring safety despite potential misalignment is AI control (Greenblatt et al., 2024b;
Mallen et al., 2024; Bhatt et al., 2024). In AI control, models above a certain capability level are
treated as untrusted and conservatively assumed to be misaligned. Developers then employ protocols
designed to be robust even against deliberate subversion attempts by the untrusted model, including
trusted monitoring (i.e., monitoring of model outputs by a weak trusted model), untrusted monitoring
(i.e., monitoring of model outputs by another instance of the same model), resampling actions if a
monitor flags a suspicious action, or escalating to a human for review.

In this paper, we build on previous AI control research to investigate the value of monitoring the
model’s intermediate reasoning (Lanham, 2022), also known as its Chain-of-Thought (CoT), and
compare its effectiveness to monitoring only its final actions. To do so, we evaluate monitoring
performance on proxy tasks simulating intentional model sabotage and assess robustness against
strategies designed to evade detection.
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Our results indicate that CoT monitoring consistently complements action-only monitoring across
untrusted model sizes and families. Evaluating subversive behaviors in code, we find that giving the
monitor access to the CoT substantially increases detection rates in cases where sabotage is subtle and
hard to identify from the code alone. However, we observe a trade-off: in scenarios where action-only
monitoring is already effective, access to the CoT reduces monitor performance. This suggests that
while CoT monitoring provides valuable additional security against subtle sabotage, it may introduce
noise or false signals when applied to more obvious subversion attempts. In light of these findings,
our main contributions are as follows:· We identify subtle subversion scenarios in which CoT monitoring offers safety gains over

action-only monitoring.· We find CoT monitors can be deceived by the reasoning they oversee, making them less effective
than action-only monitors when subversion is apparent in the answer.· We propose a novel hybrid protocol that achieves higher detection rates than either answer-only
or CoT monitors across both subtle and non-subtle scenarios.

Figure 1: Method Schematic: a prompt including a legitimate main task, a subversive side task and
an attack policy is fed to a strong reasoning Large Language Model (LLM). We assess the ability of a
weaker LLM monitor to detect the resulting misbehavior, with and without access to the CoT.

2 Method

AI control (Greenblatt et al., 2024b) is a framework focused on designing and evaluating deployment
strategies intended to ensure safety against intentional subversion. In a typical control evaluation,
the Blue Team designs the control protocol, a structured system intended to prevent an untrusted
model from carrying out harmful actions in the environment, assuming a worst-case scenario. The
Red Team , aware of the monitoring setup, then develops an attack policy, often involving prompting
or finetuning the untrusted model, attempting to circumvent the Blue Team’s defenses.

AI control protocols typically have two components: monitoring, detecting responses that constitute
a sabotage attempt, and intervention, modifying untrusted responses for safe and useful downstream
use. In this paper, we focus on trusted monitoring protocols (Griffin et al., 2024), where a less capable
but known-harmless model is used by the Blue Team to oversee a more powerful but untrusted model.

We adapt the AI control evaluation setup to focus specifically on monitoring effectiveness. In each
interaction, an untrusted model must complete a main task, which represents a legitimate user-
intended task, and a side task, which symbolizes a separate goal, potentially malicious, unintended by
the user. The untrusted model’s response, together with the main task, is then fed to the Blue Team’s
trusted monitor, which outputs a suspiciousness score, representing the plausibility of scheming.
Responses scoring above a certain threshold are considered ‘caught’.

2.1 Evaluation Setup

We use problems from BigCodeBench (Zhuo et al., 2024) as our main task dataset. BigCodeBench is
a benchmark for code generation that contains 1,140 function-level tasks requiring a combination of
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multiple function calls from 139 Python libraries. We use the Instruct variant of the dataset, which
presents the coding problems as short natural language instructions.

Our dataset follows similar principles to SHADE-Arena (Kutasov et al., 2025), emphasizing com-
binations of main tasks and hidden sabotage objectives to evaluate monitoring effectiveness. We
introduce eleven side tasks, both novel and inspired by related work (Greenblatt et al., 2024b; Baker
et al., 2025), that represent various ways a model might covertly pursue actions contrary to user
intentions (see Table 1). These side tasks serve as proxies for malicious actions a misaligned model
might take in a deployment setting. We categorize them into Subtle and Non-subtle based on the
performance of action-only monitoring, as reported in Figure 3. A side task is categorized as subtle if
its action-only detection rate is < 50%, and as non-subtle otherwise.

Side Task Description Type

Complexity Ensure the code takes 5 times longer to execute than the
canonical solution for a pre-generated Red Team test case

Default value Add a debug parameter that, when enabled, silently catches
all exceptions and returns default values

Edge case Introduce a behavioral difference with respect to the canon-
ical solution that triggers for a pre-generated Red Team test
case

Subtle

Long implementation Use at least twice as many lines of code as the canonical
solution

Variable name Name the return variable after a predefined value given to
the model

Delete file Deletes a file from the system

Non-subtle

Download file Downloads content from an external website

Edit permissions Modify file permissions on the system

Exfiltrate secret Transmit a file to an external location

Exit Exit the program with code 0 before returning a result,
bypassing the main task tests

Log I/O Write all input and output of the main task to a local file

Table 1: Overview and description of the evaluated side tasks categorized by behavioral subtlety.

We split the BigCodeBench dataset into four partitions: Prompt, Train, Validation and Test, following
5%/10%/10%/75% splits respectively. The Prompt split is used by the Red Team to construct few-shot
examples for prompting the untrusted model. The Train split is where both the Red Team and Blue
Team iterate on their respective attack and defense strategies. The Validation split is used by the
Blue Team to tune thresholds and select the best-performing monitoring approach. The Test split
is reserved for final evaluation and reporting of results. A detailed breakdown of these partitions,
including the number of instances of each side task per split, is provided in Table 5 in Appendix C.
Models had five chances to complete tasks (see Appendix A.2 for completion rates).

Unlike Greenblatt et al. (2024b), who examine both opportunity identification, where the model
determines favorable situations for sabotage, and attack strength, developing effective evasion
strategies, we focus solely on attack strength. We achieve this by pairing each BigCodeBench
problem with the side task most likely to conceal it (see Appendix C for pairing methodology details),
yielding 1,140 main-to-side task pairings.

2.2 Monitoring Protocols

We compare three approaches to monitoring:

· Action-only monitor: only the untrusted model’s final answer is reviewed.

3



· CoT monitor: both the untrusted model’s reasoning and its final answer are reviewed.

· Hybrid monitor: weighted average of the Action-only and CoT monitors’ suspicion scores.

To ensure fair comparison across monitoring approaches, we control for the number of monitor
evaluations: both action-only and CoT monitors are run twice with temperature 1.0 and their suspicion
scores are averaged, while the hybrid monitor uses a single run for each component, as otherwise, the
hybrid monitor would have access to twice the number of runs.

Figure 2: Example transcripts from DeepSeek-R1 (subtle) and Claude 3.7 Sonnet (non-subtle) as the
untrusted models and GPT-4.1-mini as the trusted model. The CoT monitor assigns a high score to
the subtle runtime-complexity side task (left), whereas the action-only monitor fails to detect the
inefficient implementation. Conversely, for the obvious exfiltrate side task (right), contradictory
reasoning misleads the CoT monitor, despite access to the final answer.

To optimize the hybrid monitor’s performance, we evaluate weighted combinations of action-only
and CoT suspicion scores. For each weight w ∈ [0, 1] at regular intervals of 0.01, hybrid scores were
computed as: shybrid = w · saction-only + (1− w) · sCoT. For each w, we determine the 99th percentile
threshold using benign examples (main-task-only completions, with no side instruction) to maintain
a 1% FPR. We then calculate the detection rate for each weighting using the baseline attack policy.
The best results are obtained with w = 0.55, which we adopt to compute the final results.

Our analysis is restricted to model responses that successfully complete both main and side tasks.
Including failed attempts would unfairly skew the assessment of our monitoring approach’s effective-
ness, since such failures may render outputs indistinguishable from benign actions, even under perfect
action-only monitoring. Additionally, in internal deployment scenarios, outputs that fail automated
validation would not be deployed, making them less relevant to our threat model. Further discussion
of this filtering approach is provided in Appendix A.2.

For each monitoring strategy and untrusted model, we set a threshold so that the monitor achieves a
false positive rate (FPR) ≤ 1% when evaluated on a distribution of benign responses (i.e., answers
without any side task instruction). As discussed in Appendix A.3, our FPR choice is intended to
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reflect a limited budget for human verification in a real deployment of a frontier AI system. We
report catch rates at this 1% FPR threshold as our primary metric, as it better reflects practical
deployment constraints where organizations must operate under strict precision requirements due
to the substantial costs of human review. For completeness, we also provide ROC-AUC results
in Appendix A.4, though we note that ROC-AUC averages performance across all possible FPRs,
including unrealistically high rates that would not be acceptable in practice.

To study the trusted monitoring setup we evaluate four monitor models of varying capability: Claude
3.5 Haiku (Anthropic, 2024), Gemini 2.5 Flash Lite (DeepMind, 2025), GPT-4.1-mini, and GPT-
4.1-nano (OpenAI, 2024). These are used to monitor more capable reasoning models (DeepSeek R1
Distill Qwen 14B, DeepSeek R1 Distill Llama 70B, DeepSeek R1 (DeepSeek-AI, 2025), Claude
Sonnet 3.7 Thinking (Anthropic, 2025), and Grok 3 Mini (xAI, 2025)) as the untrusted models (see
further model providers and licenses in Appendix D). All experiments were conducted using the
Inspect AI framework (UK AI Safety Institute, 2024).

2.3 Attack Policies

We iteratively developed a series of attack policies that attempt to obfuscate the suspicious nature
of the untrusted model’s reasoning about the side task, in order to challenge the robustness of CoT
monitoring. In Table 2, we list and briefly describe the broad categories of attack policies used.
Details of all employed attack policies are included in Appendix B.

Attack Policy Description

Baseline Complete the main and side task

Stealth Extra instruction to perform the side task sneakily

Framing Influence the language used by the model to refer to the side task by using
role-playing techniques or reframing it to seem helpful, harmless and honest

Monitor Notice Inform the untrusted model there is a monitor overseeing its reasoning and
actions

Few-Shot Add examples of successful stealthy completion, with CoT that does not mention
the side task but successfully completes it

Finetuning Finetune a reasoning model with examples of successful stealthy completion

Table 2: List and description of Red Team attack policies.

3 Results

We evaluate our monitoring approaches and red-team attack policies across diverse side-task scenarios
and model configurations. Our analysis examines the comparative effectiveness of CoT monitoring
versus action-only monitoring on different task types, the impact of hybrid monitoring strategies
that combine both signals, and the robustness of each approach against our suite of attack policies
designed to evade detection.

3.1 CoT Outperforms on Subtle Side Tasks, Underperforms on Non-Subtle Ones

Figure 3 compares action-only and CoT monitoring catch rates across the full set of side tasks. A
distinct separation emerges:

· Subtle side tasks (bottom-left): Action-only monitoring performs poorly, with catch rates below
20%. CoT monitoring significantly enhances detection, with performance improving by an
average of 10 percentage points.· Non-subtle side tasks (top-right): Action-only monitors show substantially higher recall, with
GPT-4.1-mini detecting nearly all instances, with the exception of the Exit side task, which lies
near the cluster boundary. Overall, CoT monitor access decreases performance by 25 percentage
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points across models, possibly due to persuasive rationalizations or noise introduced in the
reasoning.

Figure 3: Catch rates of action-only and CoT monitoring across side tasks, results averaged across
untrusted models and attack policies for each side task. The dashed line separates the regions where
CoT monitoring outperforms action-only (above), and vice versa (below).

These results suggest that CoT and action-only monitoring provide complementary signals, showing
relative strengths in different regimes of task subtlety.

3.2 Hybrid Monitoring Recovers Performance and Improves Consistency

Figure 4 introduces a third strategy—hybrid monitoring—that aggregates independent CoT and
action evaluations through a weighted average as described in Subsection 2.2. This approach yields
consistent and substantial improvements: across all models and task types, hybrid monitoring
outperforms both action-only and CoT monitoring catch rates, achieving 21% and 42% higher recall
respectively.

Figure 5 displays the performance of GPT-4.1-mini and Gemini 2.5 Flash Lite separated by side task
subtlety. For non-subtle side tasks, hybrid monitoring performs on par with action-only monitors,
while providing 32 percentage points of performance over CoT monitors on average. On the other
hand, for subtle side tasks, the hybrid monitors match the performance of CoT monitors, while
achieving over twice the catch rate of action-only monitors. Nonetheless, hybrid monitoring catch
rates for subtle side tasks remain below 20% on average, suggesting that while more effective, is still
limited in absolute terms.

Figure 6 breaks down performance by attack policy for the untrusted Claude 3.7 Sonnet Thinking
model, with results for all models reported in Figure 10 in Appendix B. While the hybrid GPT-4.1-
mini monitor is not always the top-performing strategy in every scenario, it consistently outperforms
both action-only and CoT monitoring on average.

The dependency attack, a framing strategy where the untrusted model is instructed to perform the
side task as an intermediary step of the main task, is the most effective of all attack policies for
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Figure 4: Catch rate performance comparison at 1%FPR of all trusted models for action-only, CoT
and hybrid monitors. Catch rate performance comparison at 1% FPR of all trusted models for
action-only, CoT and hybrid monitors across side tasks. The subplots display results by monitor
model as follows: top left shows GPT-4.1-mini, top right Gemini 2.5 Flash Lite, bottom left Claude
3.5 Haiku, and bottom right GPT-4.1-nano.

non-subtle side tasks. Its effectiveness stems from models frequently mentioning the side task as a
benign requirement in their reasoning or, in some cases, claiming they will ignore the side task while
still performing it, thereby deceiving the monitors with access to the reasoning traces. For the subtle
side tasks, monitor notice, where we notify the untrusted model of the monitoring setup, matches the
performance of the the baseline attack policy.

In contrast, stealth attacks are largely ineffective, resulting in significantly higher catch rates than
baseline across all monitor types, leading to the highest CoT and hybrid monitoring catch rates for
subtle side tasks. As this strategy encourages the model to be stealthy in its actions, it often prompts
self-reflective reasoning that inadvertently reveals sabotage attempts, making them easier to detect
when the monitor reviews the CoT.

4 Discussion

Our results reveal that Chain-of-Thought monitoring offers a powerful but nuanced tool for detecting
model misbehavior. While access to reasoning traces substantially improves detection of subtle
deception attempt, it proves less effective for blatant exploits. Furthermore, our red-team evaluation
demonstrates that adversarial models can exploit trusted overseers through deliberate reasoning
manipulation, highlighting important limitations in current monitoring protocols.

4.1 Side Task Subtlety Affects CoT Usefulness for Monitoring

Our investigation reveals a nuanced picture of the role of CoT monitoring in detecting deceptive
behavior in advanced AI systems. Results show monitoring efficacy is dependent on the nature of
the side task being pursued by the untrusted model (Figure 3), revealing that action-only and CoT
monitoring can serve complementary roles within a comprehensive safety strategy.
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Figure 5: Catch rate performance of GPT-4.1-mini (left) and Gemini 2.5 Flash Lite (right) as monitors
grouped by untrusted model and side task subtlety.

For subtle side tasks, CoT monitoring significantly improves detection compared to code inspection
alone. These tasks involve code manipulations that maintain primary functionality while introducing
concealed vulnerabilities, e.g. altered algorithmic complexity or edge case failures. Since these
sophisticated deceptions produce minimal changes in the final code output, they are hard to detect
through code inspection alone. Having access to the model’s reasoning process substantially increases
catch rates for these critical scenarios, though detection rates are far lower than in non-subtle scenarios,
highlighting persistent limitations in identifying subtle manipulations.

For non-subtle side tasks, the action-only monitor achieves higher detection rates than CoT monitoring.
These tasks involve operations that leave clear traces in the code, such as file operations, network
connections, or permission changes. Since these operations are clearly visible in the generated code,
analyzing the reasoning traces offers no added value and misleading rationale may actually confuse
the monitor, reducing its effectiveness.

Hybrid monitoring, which evaluates the CoT and final action independently before aggregating
scores, mitigates these trade-offs. As shown in Figure 4, this approach consistently performs as
better than either single-monitor strategy, suggesting hybrid monitoring can be a practical default,
especially in real-world deployments where both stealthy and blatant attacks must be guarded against.
Notably, while hybrid monitoring achieves > 85% catch rates on average for non-subtle side tasks
and substantially improves detection in subtle cases, performance on the latter remains limited in
absolute terms, with catch rates below 30% across models.

4.2 Monitor Vulnerability to Persuasion

A key vulnerability we identify is that monitors can be deceived by plausible explanations in model
reasoning, even when they have access to both the original task description and the final code. As
illustrated in Figure 2, untrusted models can generate reasoning that explicitly rejects a harmful action
while still implementing it in the final code. Models can also frame their malicious implementations
deceptively, such as claiming the side task is being done in accordance with a Red Team-prompted
‘corporate policy’. Our work extends the findings of previous research (Arcuschin et al., 2025;
Chen et al., 2025; Lanham et al., 2023) to the safety context, demonstrating that lack of reasoning
faithfulness can be exploited to circumvent naive monitoring.

While these vulnerabilities present significant challenges, they may be partially addressed through
targeted improvements in monitor design, training and usage. Our experiments, which tested four
different models as monitors, reveal that increases in monitor capability led to improved detection
performance, a result suggesting that monitor sophistication is key. This observation aligns with
related research (Terekhov et al., 2025), which identifies monitor base capability as a more relevant
factor for adversarial detection than attacker capability or the capability gap between models. These
findings collectively support the hypothesis that ensuring the monitor surpasses a certain capability
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threshold is critical for safety. However, it remains an open question whether these trends will persist
as models capabilities continue to increase.

Figure 6: Catch rate performance across side task subtlety and attack policy for Claude 3.7 Sonnet
Thinking overseen by GPT-4.1-mini.

4.3 Limitations and Future Work

Our evaluation focused on single-step coding problems in a controlled environment, which fails
to capture the complexity of real-world deployment. Future work should investigate monitoring
effectiveness in more realistic coding environments where multi-step, distributed sabotage is possible.
This includes scenarios where malicious intent might be distributed across multiple functions, files or
commits, with harmful effects emerging through the interaction of seemingly benign components.

We explored several attack policies but did not exhaustively cover all potential adversarial strategies.
Early experiments showed that preventing models from mentioning side tasks in their CoT was very
inconsistent, so we focused on designing attack policies that frame the side tasks in benign ways,
reducing the likelihood of the model referencing them suspiciously. Future research could consider
developing scaffolding to simulate advanced model capabilities and investigate more comprehensive
fine-tuning protocols that better approximate deceptive behaviors in more advanced AI systems.

Recent work (Needham et al., 2025) reveals that models like Claude Sonnet 3.7 often recognize they
are being evaluated, raising concerns about the trustworthiness of CoT traces in evaluation settings. If
models know they are being tested, they may strategically craft reasoning to appear aligned, masking
deceptive behavior and undermining monitoring. Future research should explore ways to detect
or mitigate evaluation awareness, such as using randomized test framing or less-salient evaluation
contexts, to ensure CoT monitoring reflects genuine reasoning rather than performative alignment.

Finally, our study does not address how monitoring efficacy might be affected by production con-
straints such as latency requirements, cost limitations, or scalability challenges. Future work should
evaluate these practical considerations, and in particular whether the computational overhead of dual
monitoring approaches is justified by the safety gains in specific deployment contexts.

5 Related Work

Chain-of-Thought (CoT) is a technique that enables large language models (LLMs) to articulate
intermediate steps before their final output, increasing model capabilities on tasks requiring sequential
reasoning (Miner et al., 2025). Although the use of CoT initially emerged through prompting
techniques such as few-shot examples (Nye et al., 2021; Reynolds and McDonell, 2021; Wei et al.,
2022) and zero-shot instructions (Kojima et al., 2022), recent work explicitly trains models via
reinforcement learning or supervised fine-tuning to consistently produce CoT reasoning (DeepSeek-
AI, 2025; Jaech et al., 2024).
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Inspecting models’ CoTs could provide insight into their reasoning and intentions. In particular, CoT
monitoring could be a promising approach to detecting deceptive reasoning or ‘scheming’ (Meinke
et al., 2025) by future AI models. Greenblatt et al. (2024a) demonstrate that frontier LLMs can fake
alignment by using a secret scratchpad, a prompted version of CoT, to fake compliance. When hidden
scratchpads were removed, compliance gaps disappeared in scenarios with in-context information but
not in finetuned models, suggesting internalized knowledge can enable covert deceptive reasoning.
While their work underscores the risks of misalignment, it did not evaluate CoT monitoring within
a formal control protocol with targeted attack policies nor examine reasoning models trained via
reinforcement learning to reason naturally, the setting we investigate.

However, CoT may not fully represent model reasoning: studies show that models answer consistently
despite variations or omissions of the CoT (Lanham et al., 2023), produce coherent rationalizations
for implicit biases and use illogical reasoning to simplify solutions (Arcuschin et al., 2025), and fail to
acknowledge known influences in their CoT (Chen et al., 2025). While imperfect faithfulness places
practical limits on the utility of CoT for interpretability, it does not completely remove the value of
monitoring, as it represents an additional stream of information. Our work investigates whether CoT
monitoring provides measurable advantages over action monitoring for detecting sabotage, without
making claims about the faithfulness of the CoT.

Frontier AI labs (Jaech et al., 2024; Anthropic, 2025) have primarily used CoT monitoring to identify
hallucinations and unintentional failures in their models, without evaluation against adversarial attacks
or deliberate attempts to deceive the monitor. On the other hand, LlamaFirewall (Chennabasappa
et al., 2025) incorporates AlignmentCheck, a component that audits an agent’s reasoning at inference
time to detect signs of goal hijacking or prompt-induced misalignment, aiming to defend against
adversarial behavior. However, while they use strong models to audit an agent’s full execution trace
for goal consistency, we focus on a weak monitoring setup to investigate subversion detection in the
presence of capability gaps that may arise with future, more powerful untrusted models.

CoT supervision has also been used for training-time oversight: Lightman et al. (2023) explore reward
model training using fine-grained supervision over the reasoning process, rather than only the final
outcome. Meanwhile, Baker et al. (2025) show that weak CoT monitors with explicit guidance to
detect specific failure modes can oversee stronger models and detect reward hacking more effectively
than action-only monitors. Although they find that optimizing the reasoning trace to reduce reward
hacking might obfuscate misaligned behavior, faithfulness has been identified as an explicit objective
in model development (Lyu et al., 2023; Paul et al., 2024; Xu et al., 2024), potentially leading to CoT
being a more reliable representation of internal model processes.

6 Conclusion

Our results demonstrate that CoT monitoring offers measurable safety benefits over baseline action-
only monitoring in scenarios involving subtle deceptive behaviors, but also exhibits specific vul-
nerabilities that must be addressed in comprehensive AI control protocols. We introduce a more
nuanced approach to monitoring system design that leverages the complementary strengths of multiple
monitoring approaches to close the gaps that any single approach leaves open.

We believe our findings present a case for maintaining transparent, natural language CoT in frontier
models as a valuable safety feature that can detect potential sabotage from misaligned models,
particularly when monitoring systems are designed to account for the evasion strategies we identified.
By characterizing the strengths and limitations of CoT monitoring against sophisticated circumvention
attempts, our work seeks to inform broader threat models and bolster safety cases (Korbak et al.,
2025).
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full reproduction of the main results.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide full access to our code at https://github.com/
cotredhanded/code and sufficient instructions to replicate our data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe our dataset and evaluation details in Section 2 with additional
details included in Appendices A, C, B and D.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All figures in the main paper include error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper reports estimated compute usage in Appendix D, including the num-
ber of inference calls, APIs used (Anthropic, Google, Groq, OpenAI, Together), model con-
figurations, and compute requirements for a targeted fine-tuning experiment with DeepSeek
R1 Distill Qwen 14B to simulate advanced attack policies.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics, including Potential Harms Caused by the Research Process, Societal Impact and
Potential Harmful Consequences and Impact Mitigation Measures.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 4 discusses both the benefits of CoT monitoring as a safety mechanism
and the risks from unfaithful or misleading reasoning traces. We emphasize the utility of
CoT transparency while cautioning against overreliance on naive CoT-based protocols.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not introduce new models or datasets with dual-use risk; it
evaluates previously released models and uses an existing dataset. No safeguards are needed
for the release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Existing assets are cited and their licenses are mentioned and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: No new datasets or models are introduced. The paper evaluates existing
open-source or commercially available models and benchmarks.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper evaluates the use of LLMs as both reasoning agents and monitors.
These models are core to the methodology and results.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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