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ABSTRACT

By employing rotation, outliers in activations can be effectively mitigated without
altering the output, thereby facilitating the quantization of large language mod-
els (LLMs). However, existing rotation-based methods only consider global ac-
tivation distributions, leaving the finer-grained distributions underexplored. Ad-
ditionally, these methods predominantly rely on the Walsh–Hadamard transform
(WHT) to accelerate online rotation operations, while not fully considering per-
formance between matrix multiplication (Matmul) and WHT in actual runtime.
These limitations hinder the rotation’s ability to effectively reduce quantization
errors and decrease inference speed. Therefore, improvements are needed in their
performance regarding both accuracy and speed. In this paper, we propose a dual
rotation method for rotation matrices, dubbed DuaRot, based on reparameteriza-
tion. During training, DuaRot sequentially refines global and local features to
achieve effective outlier mitigation. During inference, global and local rotations
can be merged, which maintains rotational invariance without introducing addi-
tional computational overhead. Meanwhile, we propose a hardware-aware ma-
trix configuration strategy, which determines whether the online Hadamard ma-
trix should be expanded into a trainable parameter space by taking the runtime
of the WHT and Matmul into account. This approach further enhances the re-
duction of quantization errors in online rotation operations without compromising
inference speed. Extensive experiments demonstrate that DuaRot outperforms
existing methods across various models and quantization configurations. For in-
stance, when applied to LLaMA3-8B, DuaRot achieves WikiText-2 perplexities of
7.49 and 7.41 under W4A4KV4 and W4A4KV16 configurations with Round-to-
Nearest (RTN), improving by 0.51 and 0.41 over the state-of-the-art, respectively.
The code will be publicly available soon.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Floridi & Chiriatti, 2020; Jiang et al., 2023;
AI@Meta, 2024; Yang et al., 2024) have rapidly emerged, demonstrating remarkable effectiveness
across various fields (Zellers et al., 2019; Hendrycks et al., 2020; Zhang et al., 2023; Wu et al.,
2023; Mo et al., 2024). Nevertheless, the performance of LLMs heavily relies on a large number
of parameters, which always leads to significant memory, computational overhead and high energy
consumption during deployment. To reduce overhead while retaining performance for LLMs, it
is vital to study the network compression. Among many compression methods (Yao et al., 2022;
Frantar & Alistarh, 2023; Lin et al., 2024a), model quantization has garnered significant attention
from both industry and academia. The goal of model quantization is to convert high-precision
weights/activations to low-precision and replace high-precision operations with low-precision ones,
thereby reducing the memory footprint and computational resources needed deploying these models.

However, the presence of outliers in activations often leads to a significant accuracy drop when di-
rectly quantizing LLMs. Although LLM.int8() (Dettmers et al., 2022) separates outliers and uses
mixed-precision matrix multiplication to minimize quantization errors, this fine-grained approach
often decreases the model’s inference speed. As one of the most representative works in LLM quan-
tization, SmoothQuant (Xiao et al., 2023) handles outliers through scale invariance. It shifts the
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Figure 1: Comparison between Matmul and WHT. Unlike Matmul, which obtains results through
Multiply-Add (4 = 1 × 1 + 1 × 1 + 1 × 2 + 1 × 0), WHT uses reduction to perform Add and
Sub (4 = 3 + 1 = (1 + 2) + (1 + 0)) to get the results. Green and red represent +1 and -1,
respectively. Best viewd in colors.

quantization challenge from activations to weights, thereby reducing quantization errors for acti-
vations and enhancing network performance. Subsequent research has further improved the effec-
tiveness of scaling-based methods by employing layer-wise search (Wei et al., 2023) or introducing
trainable parameters (Shao et al., 2023). Although these methods achieve improvement for 6-bit and
8-bit activation quantization, all of them fail when activations are quantized to 4-bit.

Recently, the rotation-based method QuaRot (Liu et al., 2024) has attracted significant attention
from the community. By leveraging rotational invariance (Ashkboos et al., 2024a), QuaRot effec-
tively disperses outliers across channels, reducing the activation outliers and enhancing quantization
performance. Building on this, SpinQuant (Liu et al., 2024) further optimizes the rotation matrices
using Cayley optimization (Li et al., 2020) to enhance rotation quality. While QuaRot and SpinQuant
enhance 4-bit activation quantization performance, they neglect fine-grained feature distribution and
need to be further improved. Additionally, they depend on the Walsh–Hadamard transform (WHT)
to simplify matrix multiplication (Matmul) and accelerate online operations. This approach fails to
take into account the superior matrix operation capabilities of GPUs. Naively applying WHT not
only reduces inference speed but may also compromise effectiveness of rotation matrix. For exam-
ple, SpinQuant’s peak performance relies on GPTQ (Frantar et al., 2022), yet it often underperforms
when using Round-to-Nearest (RTN). Meanwhile, both QuaRot and SpinQuant slow down inference
speed for decoding stage.

Global Rotate Local Rotate Output

Smoother

Inference

WeightFeature Quantization OperationRotate Matrix

Figure 2: The framework of DuaRot. During training, DuaRot achieves a smoother distribution by
sequentially applying global and local rotations to the activations. During inference, the properties
of the rotation matrices enable merging the two matrices according to Eq 9 and Eq 10, thereby
maintaining rotational invariance without introducing any additional computational overhead.

In this paper, our goal is to further refine the activation distribution and enhance the quantization ac-
curacy of LLMs without sacrificing inference speed. We propose a reparameterization strategy for
rotation matrix, termed Dual Rotation (DuaRot). Specifically, as shown in Figure 2, we utilize global
rotation matrix to capture broader patterns, while local rotation matrix target specific anomalies. In-
corporating both global and local rotation matrix improves their capacity to detect and mitigate out-
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liers. During inference, these two rotation matrices can be merged, maintaining rotational invariance
and introducing no additional computational burdens. Additionally, we develop a hardware-aware
matrix configuration strategy. By comparing the runtime between WHT and Matmul for matrices of
various sizes in prefill, low-pressure decoding, and high-pressure decoding scenarios, we determine
whether to extend the online Hadamard matrix into trainable space. This approach enhances their
ability to mitigate outliers for online operations, and improves model accuracy without compromis-
ing inference speed. Benefit from these, DuaRot exhibits significant improvements over previous
methods across various quantization techniques, particularly under RTN.

Our contributions are summarized as follows:

• We introduce a novel reparameterization strategy for rotation matrices called DuaRot, which incor-
porates both global and local rotations to enhance adaptability during training. This dual-layered
approach enhances the ability of rotation matrices to detect and eliminate outliers, thereby im-
proving model accuracy. After training, these rotation matrices can be efficiently merged into a
single matrix without introducing additional overhead during inference.

• We propose a hardware-aware matrix configuration strategy that determines the trainability of
online rotation operations based on runtime comparisons between WHT and Matmul, rather than
relying solely on offline computational feasibility. This approach further reduces quantization
errors of activations without sacrificing inference speed.

• DuaRot demonstrates superior accuracy and computational efficiency compared to existing ap-
proaches, especially in the context of RTN quantization. Compared to SpinQuant, our ap-
proach improves perplexity (PPL) on the WikiText-2 dataset by 0.32, 0.24, 0.51, and 0.12 for
the W4A4KV4 configuration, and by 0.31, 0.21, 0.41, and 0.15 for the W4A4KV16 configuration
for LLaMA2-7B, LLaMA2-13B, LLaMA3-8B, and Mistral-7B, respectively.

2 RELATED WORK

Eliminating outliers is crucial for reducing quantization errors and improving accuracy for LLM
quantization. Currently, outlier elimination methods can be primarily categorized into two types:
scaling-based methods and rotation-based methods.

2.1 ELIMINATING OUTLIERS THROUGH SCALING

SmoothQuant (Xiao et al., 2023) is one of the most representative methods in LLM quantization,
being the first to propose using scale invariance to transfer outliers from activation to weights. This
approach reduces quantization error and enhances the network’s performance in W8A8. Outlier
Suppression+ (Wei et al., 2023) identifies that outliers tend to cluster in specific channels and exhibit
asymmetry across different channels. It proposes channel-wise shifting and scaling to address this
issue, migrating these operations into subsequent modules to maintain equivalence. Furthermore,
OmniQuant (Shao et al., 2023) introduces learnable weight clipping and equivalent transformations,
operating within a differentiable framework through block-wise error minimization. QQQ (Zhang
et al., 2024) proposes adaptive smoothing, which achieves higher-quality activation quantization
and improved accuracy. However, scaling-based methods merely transfer the quantization challenge
from activations to weights, failing to fundamentally address the overall outlier problem. These
methods can complicate the quantization of weights, particularly when outliers in activation are
exceptionally large (Sun et al., 2024). Thus, how to effectively and efficiently address the outlier
problem in LLM quantization still remains a significant challenge.

2.2 ELIMINATING OUTLIERS THROUGH ROTATION

Recent research has shown that employing rotation matrices can effectively mitigate outliers in
LLMs. A pioneering work in this field is QuIP (Chee et al., 2024), which suggests that incoherence
processing serves as a technique for mitigating outliers in both the weight and activation spaces.
QuIP enhances the incoherence of weight and Hessian matrices by multiplying them with a ran-
dom orthogonal matrix generated using the Kronecker product. Subsequently, QuIP# (Tseng et al.,
2024) employs a randomized Hadamard transform, which is faster and demonstrates better theoret-
ical properties than previous QuIP. Building on prior research, QuaRot (Ashkboos et al., 2024b) is
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RoPE

RoPE

Softmax

RMSNorm

(a) Orthogonal transformations for Multi-Head Attention (MHA)

RMSNorm

Swish

(b) Orthogonal transformations for Feed-Forward Network (FFN)

Figure 3: An illustration for rotational invariance. Inserting a rotation matrix and its transpose
between the activation values and weights, results in invariance in the computation results and effec-
tively eliminates outliers in the activation values. Inserting a rotation matrix R1 before the residual
connections of the MHA and FFN results in consistent rotation for the inputs of the following layer:
XR1+Y R1 = (X+Y )R1. (R1, RT

1 , R2, RT
2 , RT

4 ) can be absorbed into the weight offline and
(R3, R4) should be online computed.

the first to connect the properties of rotation matrices for outlier mitigation with invariance trans-
formation. By applying rotation matrices to LLaMA (Touvron et al., 2023), QuaRot significantly
improves the quantization performance of post-training quantization (PTQ). Additionally, it finds
that the randomized Hadamard transform offers a significant improvement over the random orthog-
onal transform. SpinQuant Liu et al. (2024) extends the rotation matrices into the trainable parameter
space and employs Cayley optimization (Li et al., 2020) to optimize these matrices, further enhanc-
ing their performance. QServe (Lin et al., 2024b) is the first study to integrate both scaling and
rotation techniques. It eliminates outliers in the inputs to the MHA and FFN blocks through ran-
domized Hadamard transforms, while also employing scaling techniques to remove outliers within
the blocks, thus improving performance on W4A8KV4.

3 METHOD

3.1 ROTATIONAL INVARIANCE IN LLMS

In this section, we introduce rotational invariance (Ashkboos et al., 2024a) in LLMs. Without loss
of generality, as shown in Figure 3, we use the structure of LLaMA as an example. We fuse the
scaling factor α of RMSNorm into the weights through constant folding, and omit the α from our
subsequent discussions in this paper for simplicity.

Each LLaMA decoder layer consists of a Multi-Head Attention (MHA) and a Feed-Forward Net-
work (FFN) and both of which utilize pre-norm (Xiong et al., 2020). Benefit from the commutation
property that RMSNorm(XR1) = RMSNorm(X)R1 (Ashkboos et al., 2024a), where we assume
here that R1R

T
1 = I and RMSNorm is applied to each row of the activations X as xi ← xi/∥xi∥,

if we have consistently Y R1 = F (X)R1 and wish to get function F
′

where Y R1 = F
′
(XR1), it

is equivalent to transform the (Wq , Wk, Wv , Wo) to (RT
1 Wq , RT

1 Wk, RT
1 Wv , WoR1) in MHA

and transform the (Wgate, Wup, Wdown) to (RT
1 Wgate, RT

1 Wup, WdownR1) in FFN:

MHA(X|Wq,Wk,Wv,Wo)R1 = MHA(XR1|RT
1 Wq,R

T
1 Wk,R

T
1 Wv,WoR1) (1)

FFN(X|Wgate,Wup,Wdown)R1 = FFN(XR1|RT
1 Wgate,R

T
1 Wup,WdownR1). (2)

According to the distributive law of matrix multiplication, we can infer that the output of the residual
connection will also multiply by R1:

XR1 + MHA(XR1|RT
1 Wq,R

T
1 Wk,R

T
1 Wv,WoR1) = XR1 + Y R1 = (X + Y )R1 (3)

XR1 + FFN(XR1|RT
1 Wgate,R

T
1 Wup,WdownR1) = XR1 + Y R1 = (X + Y )R1 (4)

On the other hand, from the perspective of the inner workings of MHA and FFN, by inserting
the head-wise rotation matrices R2 and RT

2 between Wv and Wo, as well as inserting a pair of R3

between Q and K after RoPE, and R4 and RT
4 before Wdown, we can achieve rotational invariance:

AV R2R
T
2 Wo = AV Wo,QR3(KR3)

T = QKT ,XgateR4R
T
4 Wdown = XgateWdown, (5)
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where A is attention matrix.

Based on this, transforming (Wembedding,Wlm head) to (WembeddingR1,R
T
1 Wlm head) allows

that the input will change from XWembedding to XWembeddingR1 and the final output of the
network remains unchanged:

LLaMA(XWembedding)Wlm head = Y Wlm head

= (Y R1)R
T
1 Wlm head = LLaMA(XWembeddingR1)R

T
1 Wlm head

(6)

In other words, we have applied a rotational invariance transformation to the network.

3.2 DUAL ROTATION

In recent years, reparameterization (Ding et al., 2021) has been proven to be an effective technique
and has been widely applied in various fields of computer vision, achieving significant performance
improvements. During training, reparameterization introduces multiple branches to capture diverse
features and enhance representational capacity. During inference, these branches are mathematically
merged into a single equivalent layer, simplifying the model to achieve VGG-like efficiency while
retaining the learned performance.

Inspired by reparameterization techniques, we propose Dual Rotation (DuaRot), a novel reparame-
terization method for rotation which aims at enhancing both the accuracy and efficiency of models.
DuaRot involves a global rotation matrix RG ∈ Rd×d and a local rotation matrix RL ∈ Rd×d,which
contains n groups. RL is a block diagonal matrix:

RL = BlockDiag(RL),where RL ∈ Rn× d
n× d

n and (RL)i(RL)
T
i = I,∀i (7)

During training, we utilize both RG and RL to capture diverse activation distribution. Specifically,
as shown in Figure 2, RG encompasses a global rotation that applies a comprehensive rotation across
the entire dimensional space. This enables the model to learn broad and holistic transformations
effectively. Meanwhile, RL operates on a finer granular level, allowing for local rotations within
smaller subspaces of the original dimensional space:

XRGRL =
[
(X1RG):,: dn

(RL)1; (X
1RG):, dn : 2dn

(RL)2; ...; (X
1RG):, (n−1)d

n :d
(RL)n

]
(8)

This bifocal approach helps reduce quantization errors and eliminate outliers by applying fine-tuned
adjustments where necessary, thereby enhancing the accuracy of the model.

For the inference, as XRGRL = X(RGRL), matrix can be mathematically combined and repre-
sented as R = RGRL. Furthermore, from Eq 7, we can know RL is an orthogonal matrix:

RLR
T
L =


(RL)1(RL)

T
1 0 · · · 0

0 (RL)2(RL)
T
2 · · · 0

...
...

. . .
...

0 0 · · · (RL)n(RL)
T
n

 =


I 0 · · · 0
0 I 0
...

...
. . .

...
0 0 · · · I

 (9)

Therefore, R is also orthogonal:

RRT = (RGRL)(RGRL)
T = RGRLR

T
LR

T
G = RGR

T
G = I (10)

By merging RG and RL, we can maintain the rotational invariance of the LLM without introducing
any additional computational burden to the network.

3.3 HARDWARE-AWARE MATRIX CONFIGURATION STRATEGY

Previous works (Tseng et al., 2024; Ashkboos et al., 2024b; Liu et al., 2024) have demonstrated
that Hadamard matrices can achieve faster and more accurate experimental results with superior
theoretical properties. However, although Hadamard matrices of size 2n use WHT to compute the
vector-matrix product xH inO(d log2(d)), this method only considers the computational complex-
ity and does not take into account the runtime efficiency.

5
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Figure 4: The runtime comparison of the WHT and Matmul for the computation of XH on an
NVIDIA A100-SXM4-80GB under the different settings of X and H ∈ Rd×d. We performed
computations for XH using torch.float16 and measured the average time over 1000 runs using
torch.utils.benchmark.

Compared to WHT, modern GPUs are highly optimized for Matmul and can further accelerate it
through techniques such as blocking or packing. These methods enable Matmul to be more effi-
cient than WHT in some cases, despite its higher computational complexity. Motivated by this, we
measure the performance of the WHT and Matmul for the computation of XH on an NVIDIA
A100-SXM4-80GB for X ∈ RL×d, where L ∈ {20, 28, 212} to simulate the low-pressure decod-
ing, high-pressure decoding, and prefill stages and d ∈ {26, ..., 214}. As seen in Figure 4, when the
dimension is less than 512, the performance of Matmul is significantly higher than that of the WHT.
However, when the dimension exceeds 512, the advantage of the WHT in reducing computational
complexity begins to manifest as the computation scales.

In this paper, we propose a hardware-aware configuration strategy for rotation matrices that deter-
mines whether a rotation matrix is trainable based on its size and hardware runtime, rather than
merely considering whether it can be computed offline:

Rd×d =


Trainable, R is offline,
Trainable, R is online and d ≤ 512,

Hadamard matrix, R is online and d > 512.

(11)

By employing this method, we can further reduce the quantization error associated with Hadamard
transformations, thereby enhancing the model’s accuracy without sacrificing inference speed.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conduct extensive experiments on the LLaMA models (2-7B/13B (Touvron et al., 2023) and
3-8B (AI@Meta, 2024)) and the Mistral-7B (Jiang et al., 2023) for DuaRot. We evaluate PPL
on WikiText-2 for Language Generation Tasks. Meanwhile, we report the accuracy on eight
zero-shot common sense reasoning tasks, including PIQA (Bisk et al., 2020), WinoGrande (Sak-
aguchi et al., 2021), HellaSwag (Zellers et al., 2019), ARC-challenge and ARC-easy (Clark et al.,
2018), OBQA (Mihaylov et al., 2018), BoolQ (Clark et al., 2019) and SIQA (Sap et al., 2019).
lm eval==0.4.3 (Gao et al., 2024) are adopted with default parameters.

We employ Cayley SGD (Li et al., 2020) to optimize R1, R2, R3 and R4 while keep their orthogo-
nality. All the weights in the networks are kept as constants. R1 ∈ RDtoken×Dtoken is seen as global
rotational matrix RG and we employ a local rotational matrix RL ∈ R

Dtoken
d ×d×d, where d is set

to 64 to enhance accuracy of models. To inherit the excellent initialization properties of R1, we
initialize Ri

L as I . During inference, RL can be fused into R1 (RG) as mentioned above and with-
out introducing additional inference burden. R2 ∈ RN×Dhead×Dhead and R3 ∈ RN×Dhead×Dhead

are head-wise rotational matrix to eliminate outliers in Value and Query-Key, respectively. Both
of them are initialized as randomized Hadamard matrix and separately learned for each head. For
R4 ∈ Rm×m, where m is intermediate size, we separate it into two Hadamard matrices via Kro-
necker product R4 = R1

4 ⊗R2
4 and determine whether to extend them to trainable space via Eq 11.

6
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Table 1: Comparison of the WikiText-2 perplexity (↓) results for LLaMA and Mistral. The 4-4-
4, 4-4-16 and 4-8-4 represent W4A4KV4, W4A4KV16 and W4A8KV4, respectively. We show
the failed GPTQ experiments using NaN and the perplexity results>100 by Inf. Results for RTN,
GPTQ and QuaRot (Ashkboos et al., 2024b) are obtained using QuaRot publicly released codebase.
Results for SpinQuant (Liu et al., 2024) are obtained using their publicly released codebase. More
quantization results, including W4A4KV8, W4A8KV8, W4A8KV16 are in the Appendix.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

Baseline 5.47 4.88 6.13 5.25

4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4

RTN NaN NaN 7.92 Inf Inf 5.79 Inf Inf 19.38 Inf Inf 12.70
+QuaRot 9.04 8.69 6.89 6.31 6.23 5.51 11.06 10.47 7.81 6.26 6.19 5.70
+SpinQuant 6.20 6.17 5.56 5.51 5.40 4.97 8.00 7.82 6.79 5.60 5.58 5.28
+DuaRot 5.88 5.86 5.51 5.27 5.19 4.94 7.49 7.41 6.76 5.48 5.43 5.24

GPTQ NaN Inf 7.13 Inf Inf 5.40 Inf Inf Inf Inf Inf 6.17
+QuaRot 6.27 6.20 5.66 5.51 5.47 5.04 8.20 8.02 6.62 5.75 5.71 5.37
+SpinQuant 5.94 5.91 5.65 5.25 5.21 5.04 7.34 7.25 6.63 5.62 5.57 5.37
+DuaRot 5.79 5.74 5.65 5.13 5.12 5.03 7.22 7.13 6.62 5.55 5.50 5.37

Table 2: Average zero-shot accuracy (↑) of LLaMA and Mistral with RTN and GPTQ on PIQA,
WinoGrande, HellaSwag, ARC-challenge, ARC-easy, OBQA, BoolQ and SIQA. Full results and
more quantization results, including W4A4KV8, W4A8KV8, W4A8KV16 are in the Appendix.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

Baseline 64.06 66.41 67.17 68.33

4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4

RTN 35.47 34.77 56.72 34.84 35.10 62.97 36.15 35.79 47.62 35.06 35.56 62.54
+QuaRot 53.89 53.95 59.09 60.58 60.93 63.79 55.87 56.55 63.09 63.32 63.58 66.16
+SpinQuant 58.96 58.21 61.08 62.92 63.98 65.72 61.41 62.30 64.28 65.36 65.48 67.08
+DuaRot 59.79 59.52 61.32 62.94 63.09 64.84 63.51 63.57 65.76 65.53 66.11 67.28

GPTQ 35.63 35.88 59.68 34.77 33.97 63.53 36.13 35.71 39.95 36.44 36.14 64.79
+QuaRot 59.96 60.46 62.94 63.49 63.53 65.38 60.46 61.05 65.96 65.11 65.03 67.35
+SpinQuant 60.67 60.11 63.14 64.41 64.57 65.54 63.46 63.68 66.19 65.99 66.39 67.46
+DuaRot 61.15 61.20 62.79 64.63 64.35 66.09 64.15 64.21 65.43 66.01 66.81 67.80

Following SpinQuant Liu et al. (2024), we also utilize 800 samples from WikiText-2 to optimize
rotation matrices for 100 iterations and decay learning rate from 1.5 to 0 via cosine scheduler. We
apply per-channel symmetric quantization to weight and set quantization ranges via a linear search
to minimize the mean-squared error between quantized and full-precision weights. The activation
and key-value cache (KV Cache) are applied with asymmetric min-max dynamic quantization with
per-token activation quantization and group size 128, which is the same to Dhead for the key-value
quantization. We use 128 samples from the WikiText-2 (Merity et al., 2016) training set as the
calibration dataset for GPTQ quantization and the sequence length is set to 2048. In the clipping
settings, we set the activation clip ratio and KV Cache clipping ratio to (0.75, 0.95) for RTN quanti-
zation and (0.98, 0.96) for GPTQ quantization respectively.

4.2 ACCURACY RESULTS

Language Generation Tasks. We first evaluate the accuracy of DuaRot on the language gen-
eration task. We conduct experiments in challenging W4A4KV4 and W4A4KV16 and popular
W4A8KV4 quantization settings. Table 1 shows the PPL for WikiText-2 on the LLaMA and the
Mistral-7B models. We compare DuaRot with rotation-based methods, including QuaRot and Spin-
Quant and quantize weights through RTN and GPTQ, respectively. As seen, benefiting from more ef-
fective outlier mitigation compared to SpinQuant, DuaRot achieved consistent improvements across
different models and various quantization configurations, especially for 4-bit activation quantiza-
tion. In the most challenging W4A4KV4 quantization, DuaRot achieved significant improvements
over SpinQuant. For example, on the LLaMA3-8B model, which is well-known for its quantization
challenges, DuaRot achieved 0.51 and 0.12 PPL improvement over SpinQuant when using RTN
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Table 3: Ablation studies for hardware-aware matrix configuration strategy and dual rotation. All
models are quantized using RTN. We reported PPL results for WikiText-2. Dual: Dual Rotation.

Dual Hardware LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4 4-4-4 4-4-16 4-8-4

✗ ✗ 6.20 6.17 5.56 5.51 5.40 4.97 8.00 7.82 6.79 5.60 5.58 5.28
✓ ✗ 6.01 5.99 5.54 5.40 5.30 4.96 7.70 7.60 6.78 5.54 5.44 5.26
✗ ✓ 5.92 5.87 5.54 5.30 5.22 4.96 7.56 7.44 6.79 5.50 5.47 5.28
✓ ✓ 5.88 5.86 5.51 5.27 5.19 4.94 7.49 7.41 6.76 5.48 5.43 5.24

and GPTQ. Meanwhile, from Table 1, we can find that both training rotational matrices and GPTQ
can significantly enhances the performance of Rotated LLM in 4-bit activation quantization, with
all models achieving SOTA PPL performance by combining both. In contrast, for 8-bit activation
quantization with GPTQ, the activation quantization is relatively easy to quantize, GPTQ+QuaRot
has achieved superior performance. Using trained rotation matrices to further eliminate outliers does
not produce noticeable effects.

Zero-shot Common Sense Reasoning Tasks. Next, we evaluate DuaRot on eight zero-shot com-
mon sense reasoning tasks. As shown in Table 2, DuaRot also achieves comparable average score on
the above tasks. For example, on the LLaMA3-8B model, compared to SpinQuant, DuaRot achieved
accuracy improvements of 2.10, 1.27, and 1.48 in the W4A4KV4, W4A4KV16, and W4A8KV4
RTN quantization, respectively. However, we also noticed that further mitigation of outliers might
lead to a degradation in the model’s zero-shot capabilities. For instance, on the LLaMA2-13B model,
although DuaRot achieves PPL improvements of 0.21 and 0.09 on WikiText-2 in the W4A4KV16
RTN and GPTQ quantization compared to SpinQuant respectively, the zero-shot accuracy actually
decreased by 0.89 and 0.22. This could be due to the further suppression of outliers on the target
dataset, causing the rotation matrix to overfit the data under the quantization configuration. How to
optimize the rotation matrices while retaining or enhancing the model’s zero-shot capabilities is an
interesting topic and will be our future direction.

Compare with Scaling-based Methods. It is worth mentioning that in this paper, we do not com-
pare our method with scaling-based approaches such as SmoothQuant (Xiao et al., 2023) and Om-
niQuant (Shao et al., 2023). This is because we find that when the activation values are quantized to
4 bits, including W4A4KV4 and W4A4KV16, scaling-based methods almost invariably fail to per-
form, while rotation-based methods can still perform effectively. For example, OmniQuant achieved
a PPL of 14.3 on WikiText2 with the LLaMA2-7B model under the W4A4KV16 configuration,
which lagged significantly behind QuaRot, achieving 8.69 with RTN and 6.20 with GPTQ.

4.3 ABLATION STUDIES

Hardware-aware matrix configuration strategy and dual rotation. In Table 3, we conduct ex-
tensive experiments on RTN quantization and WikiText-2 to investigate the effectiveness of different
components in DuaRot, named hardware-aware matrix configuration strategy and dual rotation. The
baseline is reproduced using SpinQuant publicly released codebase.

With our training strategies, we find that extending R3 and R4 into the trainable space can further
suppress outliers compared to Hadamard matrix and enhance the model’s performance. For example,
under the W4A4KV4 and W4A4KV16 quantization configuration, extending R4 into the trainable
space can achieve a major improvement 0.44 and 0.38 respectively, in PPL on the LLaMA3-8B
model. Furthermore, in the W4A4KV4 configuration, setting R3 as trainable parameters can further
reduce the quantization loss of Query and Key, improving the quantization performance of the atten-
tion. It is worth noting that although extending R3 and R4 into the trainable space prevents the use
of WHT for acceleration, the powerful computational capabilities of GPUs enable efficient Matmul
and the model’s speed will not decrease. In fact, this approach can help improve the model’s speed
during the decoding phase as shown in Figure 4(a).

Dual Rotation also provides gains in improving the model’s performance. During our experiments,
we find that the ability of R1 to suppress outliers is also crucial for enhancing the quantization
performance of Rotated LLMs. By applying dual rotation, we can achieve better outlier suppression
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through both global and local rotations. further improving the model’s quantization performance.
It can be observed combining DuaRot and hardware-aware matrix configuration achieves the best
results among the all models and settings.

32 64 128 256 512 1024
RL Size
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Figure 5: Ablation study on local rota-
tion matrix size for W4A4KV4 LLaMA3-8B
with RTN.

Reparameterization matrix size. We conduct ab-
lation studies involving local rotation matrix size d
on LLaMA3-8B with W4A4KV4 quantization. We
select six different settings of d, which vary from 32
to 1024 and present the PPL results in Figure 5. A in-
tuition is that a smaller d focuses on eliminating out-
liers within fine-grained, but this might lead to out-
liers being concentrated within the group, failed to
be dispersed to other groups through rotation. On the
other hand, although a larger d can disperse outliers
to a greater extent, dual rotations might introduce in-
stability during the training, potentially leading to a
decline in the quantized model’s performance after
rotation. As seen, LLaMA3-8B achieves best re-
sults, 7.49 PPL on WikiText-2 with d = 64. Both
d = 1024 and d = 32 result in a decline in the
model’s performance compared to d = 64. Based on this, we set d to 64 by default in this pa-
per. Although this is not optimal, our method still achieves a considerable improvement in accuracy
across various LLM models and quantization settings and methods.

Table 4: PPL results of LLaMA and Misral models with RTN and W4A4KV4 on WikiText-2 and
C4 dataset. For each model, we conducted training on the WikiText-2 and C4 datasets respectively.

Model LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

Train Wiki C4 Wiki C4 Wiki C4 Wiki C4

Test Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4

PPL 5.88 8.17 6.36 7.99 5.27 7.33 5.60 7.21 7.49 11.42 7.92 11.19 5.48 8.50 5.77 8.35

Table 5: Zero-shot accuracy of LLaMA and Misral models with RTN and W4A4KV4 on PIQA,
WinoGrande (WG), HellaSwag (HS), ARC-challenge (ARC-c), ARC-easy (ARC-e), OBQA, BoolQ
and SIQA. For each model, we conducted training on the WikiText-2 and C4 datasets respectively.

Model Train PIQA WG HS ARC-c ARC-e OBQA BoolQ SIQA Avg.

LLaMA2-7B WikiText-2 74.97 65.67 71.43 41.30 69.87 39.60 72.54 42.94 59.79
C4 76.28 65.19 71.82 39.76 66.41 40.60 70.76 42.43 59.16

LLaMA2-13B WikiText-2 78.13 69.06 76.55 46.33 73.99 41.80 72.08 45.60 62.94
C4 78.35 69.85 76.17 45.22 73.74 44.00 78.38 45.55 63.91

LLaMA3-8B WikiText-2 78.40 66.54 76.36 48.55 74.45 43.00 75.38 45.39 63.51
C4 78.94 68.19 74.87 46.08 71.89 42.00 76.94 44.88 62.97

Mistral-7B WikiText-2 81.56 70.48 78.56 50.51 78.07 41.00 80.76 43.30 65.53
C4 80.03 72.30 78.64 49.40 76.52 44.80 82.60 45.24 66.19

Discussion to the calibration set. We further discuss the impact of the calibration dataset dis-
tribution on model performance. We select C4 dataset and alternately use C4 and WikiText-2 as
the training and test sets to evaluate corresponding PPL. As seen in Table 4, DuaRot performance
on PPL depends on specific calibration set. Training and testing on different calibration datasets
can lead to a significant decrease in the quantized model’s PPL on the target dataset. For exam-
ple, for LLaMA3-8B with W4A4KV4 quantization, the PPL when trained and tested on WikiText-2
improves by 0.43 compared to when trained on C4. We believe this is because, although training
the rotation matrix keeps rotational invariance, e.g. full-precision output will not change, the ro-
tation matrix will fit the quantization distribution of the specific calibration data to achieve better
performance on the target dataset.
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Additionally, we compare the performance on zero-shot common sense reasoning tasks. As seen in
Table 5, the impact of the training dataset on average zero-shot performance is much smaller than
the PPL on the target dataset. From this perspective, the reasonableness of evaluating the quantized
model only based on PPL is questionable. Meanwhile, there are still some interesting phenomena
for some specific models and data. For Arc-challenge, all models trained on C4 have slightly lower
accuracy than WikiText-2. For BoolQ, all models except LLaMA2-7B achieve better results when
trained based on C4, and in particular LLaMA2-13B improves the accuracy by 6.2%. Considering
the importance that the dataset quality will have on the effectiveness of the model during Supervised
fine-tuning (SFT) (Zhou et al., 2024), we believe that choosing the appropriate calibration dataset
for a specific scenario is equally crucial to the performance of the quantized model. How to further
improve the generalization capability of the trained model from the perspective of calibration dataset
is a direction worth exploring in the future.

5 CONCLUSION

In this paper, we propose a Dual Rotation method, DuaRot, to achieve more advanced elimination
for activation outliers while retaining the efficiency of quantized models. DuaRot follows a repa-
rameterization method for rotational matrices. During the training process, both global and local
rotational matrices are trained separately, with the former refine broader activation distributions and
the latter focusing on finer-grained details. During inference, these matrices can be merged without
introducing any computational overhead, while still maintaining the rotational invariance. More-
over, DuaRot employs a hardware-aware matrix configuration strategy. By comparing the runtime
performance of WHT and Matmul across different matrix sizes, DuaRot extends the matrices requir-
ing online computation into a trainable space. This approach achieves better accuracy performance
without sacrificing inference speed. Extensive experiments have demonstrated the effectiveness of
DuaRot across various models, quantization configurations, and weight quantization techniques. For
example, DuaRot achieves 7.49 and 7.41 PPL to LLaMA3-8B under W4A4KV4 RTN quantizations,
improving by 0.51 and 0.41 over the state-of-the-art respectively.

6 LIMITATIONS

In this study, we introduce a dual rotation and hardware-aware matrix configuration strategy. This
method achieved significant improvements in the target dataset by fine-tuning the rotation matrix
on the calibration set. However, this method still has many issues expect calibration dataset as
mentioned in Section 4.3:

Training Cost. Since each MHA and FFN is affected by R1, we can’t optimize R1 using a layer-
by-layer or block-by-block approach. Optimizing R1 directly via gradient is a straightforward
method. Although the optimizer needn’t to store weight state and the memory overhead required
for training is significantly reduced compared to QAT methods, both SpinQuant and DuaRot still
require loading the entire model into the GPU and updating R1 using gradient methods. Compared
to GPTQ, training-based methods are still expensive. For example, training LLaMA2-70B requires
at least four NVIDIA A100 80GB GPUs. In the future, reducing the training cost remains a direction
worth exploring. For instance, calibrating R1 in a cheap and efficient way, and then using a block-
by-block approach to train R2, R3, and R4. This approach can bring the cost of LLaMA2-70B
down to the same level as GPTQ.

Optimize Efficiency. Although Cayley optimization can retain the orthogonality of the matrix
during training, it is achieved through a fixed-point iteration method. This iterative approach in-
evitably increases the training overhead. Additionally, during training, we find that the rotational
matrix R1 after training is only optimized around the randomized Hadamard matrix, which denotes
that the gradients obtained using Cayley optimization are essentially close to the identity matrix I .
It will make the rotational matrix highly dependent on initialization and cannot optimize efficiently
over the entire orthogonal group SO(n), reducing the optimization efficiency of the model. In the
future, studying how to learn the rotational matrix more efficiently over the entire orthogonal group
will further help reduce training overhead.
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A FULL RESULTS

Table 6: Comparison of the WikiText-2 perplexity (↓) results for LLaMA and Mistral. The 4-4-4,
4-4-8, 4-4-16, 4-8-4, 4-8-8, 4-8-16 represent W4A4KV4, W4A4KV8, W4A4KV16, W4A4KV4,
W4A4KV8 and W4A4KV16, respectively. We show the failed GPTQ experiments using NaN and
the perplexity results>100 by Inf. Results for RTN, GPTQ and QuaRot (Ashkboos et al., 2024b)
are obtained using QuaRot publicly released codebase. Results for SpinQuant (Liu et al., 2024) are
obtained using their publicly released codebase.

Method LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-7B

Baseline 5.47 4.88 6.13 5.25

4-4-4 4-4-8 4-4-16 4-4-4 4-4-8 4-4-16 4-4-4 4-4-8 4-4-16 4-4-4 4-4-8 4-4-16

RTN NaN NaN NaN Inf Inf Inf Inf Inf Inf Inf Inf Inf
+QuaRot 9.04 8.70 8.69 6.31 6.22 6.23 11.06 10.5 10.47 6.26 6.19 6.19
+SpinQuant 6.20 6.15 6.17 5.51 5.47 5.40 8.00 7.80 7.82 5.60 5.58 5.58
+DuaRot 5.88 5.85 5.86 5.27 5.25 5.19 7.49 7.40 7.41 5.48 5.42 5.43

GPTQ NaN NaN Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
+QuaRot 6.27 6.19 6.20 5.51 5.46 5.47 8.20 8.03 8.02 5.75 5.71 5.71
+SpinQuant 5.94 5.88 5.91 5.25 5.21 5.21 7.34 7.24 7.25 5.62 5.58 5.57
+DuaRot 5.79 5.75 5.74 5.13 5.11 5.12 7.22 7.17 7.13 5.55 5.50 5.50

4-8-4 4-8-8 4-8-16 4-8-4 4-8-8 4-8-16 4-8-4 4-8-8 4-8-16 4-8-4 4-8-8 4-8-16

RTN 7.92 7.37 7.37 5.79 5.47 5.47 19.38 10.89 10.88 12.70 11.21 10.65
+QuaRot 6.89 6.75 6.75 5.51 5.46 5.46 7.81 7.64 7.64 5.70 5.65 5.65
+SpinQuant 5.56 5.51 5.52 4.97 4.94 4.93 6.79 6.71 6.70 5.28 5.24 5.25
+DuaRot 5.51 5.49 5.48 4.94 4.91 4.91 6.76 6.67 6.67 5.24 5.22 5.24

GPTQ 7.13 6.55 6.60 5.40 5.21 5.21 Inf Inf Inf 6.17 6.01 6.01
+QuaRot 5.66 5.61 5.61 5.04 5.00 5.01 6.62 6.52 6.51 5.37 5.34 5.34
+SpinQuant 5.65 5.61 5.62 5.04 5.00 5.00 6.63 6.54 6.55 5.37 5.34 5.34
+DuaRot 5.65 5.61 5.61 5.03 5.00 5.00 6.62 6.53 6.51 5.37 5.34 5.34
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Table 7: Zero-shot accuracy of LLaMA2-7B with RTN and GPTQ on PIQA, WinoGrande (WG),
HellaSwag (HS), ARC-challenge (ARC-c), ARC-easy (ARC-e), OBQA, BoolQ and SIQA.

W-A-KV Method PIQA WG HS ARC-c ARC-e OBQA BoolQ SIQA Avg.

16-16-16 Baseline 79.11 69.22 76.00 46.33 74.54 44.20 76.97 46.11 64.06

4-4-4

RTN 50.60 51.14 26.08 26.96 27.02 25.80 42.20 33.93 35.47
+QuaRot 70.29 60.77 63.87 36.86 59.55 33.40 66.33 40.02 53.89
+SpinQuant 75.52 63.85 70.91 39.76 65.07 40.60 72.08 43.91 58.96
+DuaRot 74.97 65.67 71.43 41.30 69.87 39.60 72.54 42.94 59.79

4-4-8

RTN 50.65 50.51 25.84 24.66 26.81 25.00 42.11 34.08 34.96
+QuaRot 69.97 61.09 65.30 35.67 60.61 35.60 69.72 40.58 54.82
+SpinQuant 75.79 63.30 70.92 38.57 61.74 39.40 71.68 41.66 57.88
+DuaRot 76.50 65.27 72.36 41.47 66.84 39.80 71.04 42.63 59.49

4-4-16

RTN 50.22 48.46 25.79 24.74 25.67 27.40 41.87 34.03 34.77
+QuaRot 70.02 60.06 64.80 35.92 59.22 33.00 68.50 40.07 53.95
+SpinQuant 75.84 63.06 70.90 39.85 64.39 39.60 70.98 41.04 58.21
+DuaRot 75.79 65.35 71.55 41.38 66.79 37.60 74.34 43.35 59.52

4-8-4

RTN 74.59 60.93 67.87 39.33 66.67 35.60 66.21 42.58 56.72
+QuaRot 76.01 64.96 70.77 40.70 67.38 37.20 73.33 42.37 59.09
+SpinQuant 77.31 65.98 74.25 42.32 70.45 42.20 73.61 42.53 61.08
+DuaRot 76.71 66.54 74.29 42.83 70.83 42.60 73.09 43.65 61.32

4-8-8

RTN 75.57 65.27 70.72 43.09 67.93 40.60 67.92 43.14 59.28
+QuaRot 75.79 65.90 71.34 41.04 68.48 37.80 73.39 42.22 59.50
+SpinQuant 77.53 66.61 74.11 42.66 70.08 42.60 74.13 42.53 61.28
+DuaRot 77.91 66.77 74.05 44.71 72.35 43.00 74.10 42.17 61.88

4-8-16

RTN 75.95 64.72 70.58 42.75 68.31 42.00 67.52 42.68 59.31
+QuaRot 76.33 65.51 71.34 40.70 68.39 37.60 73.46 42.32 59.46
+SpinQuant 77.58 67.25 74.44 43.00 69.49 41.60 74.89 42.32 61.32
+DuaRot 77.86 67.01 74.75 45.22 72.22 42.80 74.71 44.58 62.39

4-4-4

GPTQ 49.08 48.30 25.77 25.77 27.95 25.40 49.48 33.32 35.63
+QuaRot 77.15 65.82 72.76 41.47 69.44 37.80 71.87 43.35 59.96
+SpinQuant 76.66 65.98 72.78 42.06 70.92 38.40 73.82 44.73 60.67
+DuaRot 76.50 67.09 72.69 42.15 71.51 42.00 72.60 44.68 61.15

4-4-8

GPTQ 50.71 49.25 26.75 26.54 27.57 28.00 47.22 33.88 36.24
+QuaRot 76.39 65.67 72.88 41.81 69.61 39.60 73.18 43.55 60.34
+SpinQuant 77.09 67.48 73.39 43.00 69.87 40.40 75.20 43.81 61.28
+DuaRot 76.22 65.11 72.90 43.60 71.09 41.80 75.08 44.47 61.28

4-4-16

GPTQ 50.27 48.15 26.26 26.96 27.23 25.60 47.68 34.90 35.88
+QuaRot 77.31 65.43 72.95 41.55 70.03 39.00 73.46 43.91 60.46
+SpinQuant 75.24 66.14 72.82 40.44 68.77 39.20 74.53 43.76 60.11
+DuaRot 76.82 66.30 72.77 42.66 72.39 41.20 72.17 45.29 61.20

4-8-4

GPTQ 76.82 63.61 71.54 40.53 68.14 43.00 70.80 42.99 59.68
+QuaRot 78.56 68.67 75.08 43.77 73.11 43.20 75.87 45.29 62.94
+SpinQuant 78.07 69.22 74.66 45.65 73.57 43.80 75.02 45.14 63.14
+DuaRot 78.78 68.51 74.69 43.09 72.77 43.20 76.02 45.29 62.79

4-8-8

GPTQ 77.91 66.06 73.40 42.15 70.66 42.20 72.51 43.71 61.08
+QuaRot 78.94 69.46 75.09 43.52 73.53 43.00 76.21 45.14 63.11
+SpinQuant 77.31 67.32 74.92 42.92 72.35 43.00 74.62 44.83 62.16
+DuaRot 78.18 68.75 74.50 44.11 73.23 43.00 76.64 45.80 63.03

4-8-16

GPTQ 77.20 66.85 73.33 42.32 69.95 42.40 73.43 43.76 61.15
+QuaRot 78.84 68.98 75.12 43.94 73.53 42.80 76.18 45.19 63.07
+SpinQuant 77.86 68.03 74.85 43.43 72.81 43.20 74.16 44.78 62.39
+DuaRot 77.97 68.51 74.68 43.94 73.15 43.20 74.22 45.04 62.59
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Table 8: Zero-shot accuracy of LLaMA2-13B with RTN and GPTQ on PIQA, WinoGrande (WG),
HellaSwag (HS), ARC-challenge (ARC-c), ARC-easy (ARC-e), OBQA, BoolQ and SIQA.

W-A-KV Method PIQA WG HS ARC-c ARC-e OBQA BoolQ SIQA Avg.

16-16-16 Baseline 80.52 72.22 79.38 48.98 77.53 45.20 80.09 47.34 66.41

4-4-4

RTN 47.99 50.36 26.55 27.99 26.35 25.00 39.33 35.11 34.84
+QuaRot 76.66 66.30 72.19 43.77 70.08 39.60 73.70 42.32 60.58
+SpinQuant 77.97 65.82 75.39 45.82 74.41 42.80 75.78 45.39 62.92
+DuaRot 78.13 69.06 76.55 46.33 73.99 41.80 72.08 45.60 62.94

4-4-8

RTN 49.13 51.22 26.35 25.68 26.39 25.20 38.35 35.36 34.71
+QuaRot 77.75 65.67 72.71 44.37 71.25 39.60 74.77 41.45 60.95
+SpinQuant 78.18 67.32 75.41 46.08 74.33 42.80 77.77 47.49 63.67
+DuaRot 78.56 68.90 76.82 45.82 72.85 43.80 78.01 45.60 63.80

4-4-16

RTN 50.92 49.88 26.01 29.01 26.05 25.40 38.90 34.60 35.10
+QuaRot 76.55 66.22 72.86 44.37 70.33 40.60 74.62 41.91 60.93
+SpinQuant 78.13 69.14 76.08 46.33 75.08 43.40 77.65 46.06 63.98
+DuaRot 78.35 67.72 76.52 45.56 73.53 43.20 75.14 44.68 63.09

4-8-4

RTN 77.86 67.01 75.64 45.90 74.20 40.80 76.64 45.75 62.97
+QuaRot 79.11 69.53 75.84 46.50 74.28 42.20 78.35 44.47 63.79
+SpinQuant 79.98 70.88 77.95 48.72 76.77 45.40 79.30 46.78 65.72
+DuaRot 79.27 70.96 78.50 47.01 75.08 45.20 78.04 44.63 64.84

4-8-8

RTN 78.67 71.35 77.24 48.55 75.76 43.60 79.20 46.72 65.14
+QuaRot 78.89 68.75 75.99 47.27 74.92 43.40 79.36 44.63 64.15
+SpinQuant 80.20 70.80 78.37 49.57 77.02 44.80 79.11 46.32 65.77
+DuaRot 80.03 71.03 78.71 47.78 76.52 44.40 77.49 44.78 65.09

4-8-16

RTN 79.00 71.03 77.37 48.21 75.29 43.60 79.05 46.62 65.02
+QuaRot 78.89 68.90 76.00 46.84 74.92 43.40 78.87 44.68 64.06
+SpinQuant 80.03 69.06 78.45 49.32 77.23 44.60 79.05 46.52 65.53
+DuaRot 79.11 69.61 78.93 47.61 76.05 43.00 78.26 45.04 64.70

4-4-4

GPTQ 49.95 49.72 25.86 27.39 26.81 23.40 40.06 34.95 34.77
+QuaRot 77.75 69.93 75.82 45.65 73.65 43.20 76.73 45.19 63.49
+SpinQuant 78.78 70.24 76.63 47.35 75.93 44.40 75.81 46.11 64.41
+DuaRot 79.22 70.96 77.35 46.08 76.01 43.40 78.29 45.70 64.63

4-4-8

GPTQ 48.37 51.30 25.85 26.79 26.85 23.60 39.85 34.54 34.64
+QuaRot 77.53 69.61 76.13 46.59 74.62 44.60 76.91 45.60 63.95
+SpinQuant 78.73 69.69 77.48 48.04 76.52 45.60 77.61 45.96 64.95
+DuaRot 79.43 69.77 77.40 47.01 75.13 42.60 77.95 45.75 64.38

4-4-16

GPTQ 47.39 47.99 26.08 25.68 26.94 24.40 39.39 33.88 33.97
+QuaRot 78.51 69.77 75.55 45.65 74.49 42.00 77.09 45.19 63.53
+SpinQuant 78.45 68.59 77.26 47.44 75.38 44.40 77.77 47.29 64.57
+DuaRot 80.03 68.27 76.67 47.70 75.08 42.20 78.01 46.83 64.35

4-8-4

GPTQ 77.09 70.32 75.63 45.82 73.65 42.60 77.09 46.06 63.53
+QuaRot 79.11 71.74 78.34 46.76 76.77 44.80 79.20 46.32 65.38
+SpinQuant 80.09 70.96 78.15 47.35 76.94 44.60 79.60 46.62 65.54
+DuaRot 79.76 71.51 78.14 50.17 77.65 45.00 79.51 46.98 66.09

4-8-8

GPTQ 79.11 70.24 76.71 46.33 75.38 43.80 76.97 45.70 64.28
+QuaRot 79.82 71.43 78.42 47.87 76.81 44.40 79.17 46.72 65.58
+SpinQuant 80.03 71.35 78.33 48.46 76.39 43.40 79.08 46.37 65.43
+DuaRot 79.71 73.01 78.28 49.74 77.44 46.00 79.60 46.93 66.34

4-8-16

GPTQ 79.16 70.48 76.60 46.93 75.63 43.20 76.67 45.75 64.30
+QuaRot 79.87 71.35 78.44 47.95 76.81 44.20 79.20 46.52 65.54
+SpinQuant 80.36 71.51 78.51 49.15 77.40 44.20 79.54 46.72 65.92
+DuaRot 79.65 70.96 78.49 49.23 76.26 44.20 78.69 47.34 65.60
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Table 9: Zero-shot accuracy of LLaMA3-8B with RTN and GPTQ on PIQA, WinoGrande (WG),
HellaSwag (HS), ARC-challenge (ARC-c), ARC-easy (ARC-e), OBQA, BoolQ and SIQA.

W-A-KV Method PIQA WG HS ARC-c ARC-e OBQA BoolQ SIQA Avg.

16-16-16 Baseline 80.79 72.53 79.15 53.41 77.74 45.00 81.62 47.08 67.17

4-4-4

RTN 50.71 48.86 27.06 24.66 28.45 27.60 47.22 34.60 36.15
+QuaRot 70.24 63.69 68.70 38.05 60.65 35.20 69.14 41.30 55.87
+SpinQuant 75.90 66.30 74.16 44.54 70.58 42.40 72.60 44.78 61.41
+DuaRot 78.40 66.54 76.36 48.55 74.45 43.00 75.38 45.39 63.51

4-4-8

RTN 52.23 51.46 27.79 24.83 27.48 25.60 47.16 33.06 36.20
+QuaRot 71.60 63.85 69.38 36.69 59.55 37.60 68.96 42.43 56.26
+SpinQuant 77.04 68.98 75.00 44.03 70.12 39.60 75.11 43.96 61.73
+DuaRot 78.84 70.09 76.70 48.98 77.06 42.40 77.46 46.57 64.76

4-4-16

RTN 51.90 48.78 28.06 22.70 28.79 23.80 48.20 34.08 35.79
+QuaRot 72.96 63.22 69.36 37.20 60.86 35.40 71.10 42.32 56.55
+SpinQuant 77.75 68.59 74.92 43.86 72.05 41.20 74.92 45.09 62.30
+DuaRot 77.69 67.72 75.85 47.78 73.99 42.60 77.34 45.60 63.57

4-8-4

RTN 60.39 55.72 52.24 30.38 48.27 31.00 62.29 40.63 47.62
+QuaRot 77.53 71.11 75.67 43.77 72.22 40.60 79.33 44.47 63.09
+SpinQuant 78.78 73.01 77.79 49.83 72.52 41.60 75.84 44.83 64.28
+DuaRot 79.49 71.74 77.87 51.71 78.07 44.00 78.23 44.98 65.76

4-8-8

RTN 74.97 71.19 72.45 42.58 67.34 40.40 74.37 43.86 60.90
+QuaRot 77.97 72.06 76.16 45.48 72.31 41.40 79.82 45.34 63.82
+SpinQuant 79.54 71.59 78.10 48.55 72.98 42.80 75.66 45.39 64.33
+DuaRot 79.49 73.48 78.24 50.26 78.87 44.60 80.03 46.21 66.40

4-8-16

RTN 75.35 70.17 72.30 42.41 68.06 41.00 74.83 43.76 60.99
+QuaRot 77.91 71.74 76.13 45.56 72.47 41.80 79.51 45.04 63.77
+SpinQuant 79.82 72.93 78.01 49.49 75.46 42.40 78.78 46.01 65.36
+DuaRot 79.60 73.01 77.89 51.62 75.42 43.20 76.94 46.42 65.51

4-4-4

GPTQ 52.34 48.62 25.73 22.87 27.40 30.20 48.44 33.42 36.13
+QuaRot 74.65 68.11 72.82 42.24 68.48 40.80 72.17 44.37 60.46
+SpinQuant 77.58 68.43 75.23 47.78 75.21 42.40 76.24 44.78 63.46
+DuaRot 78.13 69.77 76.38 47.78 75.17 43.20 78.13 44.63 64.15

4-4-8

GPTQ 50.76 48.54 26.75 25.85 24.62 26.80 48.47 33.32 35.64
+QuaRot 75.90 65.75 73.39 44.88 70.29 40.20 71.53 43.09 60.63
+SpinQuant 78.35 69.77 76.06 47.44 75.46 43.00 77.92 44.73 64.09
+DuaRot 78.29 68.98 75.55 49.06 76.18 43.40 78.17 45.34 64.37

4-4-16

GPTQ 49.08 50.51 26.68 26.88 26.14 26.40 46.79 33.21 35.71
+QuaRot 76.22 69.14 73.84 43.86 70.58 40.40 71.62 42.73 61.05
+SpinQuant 78.94 68.43 74.95 47.53 75.13 41.80 77.58 45.04 63.68
+DuaRot 78.18 69.22 76.34 47.61 75.84 42.40 78.01 46.06 64.21

4-8-4

GPTQ 54.35 52.01 38.32 24.06 36.11 27.20 53.03 34.49 39.95
+QuaRot 78.94 73.72 77.22 50.85 77.48 43.80 79.08 46.57 65.96
+SpinQuant 79.82 73.64 77.38 51.11 77.65 43.80 80.31 45.80 66.19
+DuaRot 80.58 71.90 77.38 50.60 75.08 44.00 78.32 45.55 65.43

4-8-8

GPTQ 53.97 55.72 45.51 21.42 31.82 32.20 57.31 32.19 41.27
+QuaRot 79.49 73.56 77.54 50.68 77.44 44.40 79.69 45.96 66.10
+SpinQuant 79.98 73.48 78.01 51.62 77.78 45.40 80.18 47.19 66.71
+DuaRot 80.36 72.77 78.09 50.60 75.76 44.20 80.43 46.06 66.03

4-8-16

GPTQ 55.50 56.12 47.11 21.59 31.86 33.20 56.91 33.83 42.02
+QuaRot 79.60 73.64 77.73 50.77 77.57 44.60 79.88 46.21 66.25
+SpinQuant 79.38 73.32 77.81 52.13 78.32 44.00 80.64 47.34 66.62
+DuaRot 79.60 73.48 78.18 52.30 78.20 43.80 81.65 47.08 66.79
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Table 10: Zero-shot accuracy of Misral-7B with RTN and GPTQ on PIQA, WinoGrande (WG),
HellaSwag (HS), ARC-challenge (ARC-c), ARC-easy (ARC-e), OBQA, BoolQ and SIQA.

W-A-KV Method PIQA WG HS ARC-c ARC-e OBQA BoolQ SIQA Avg.

16-16-16 Baseline 81.88 73.95 80.98 54.95 80.18 44.40 83.49 46.83 68.33

4-4-4

RTN 53.21 49.88 26.96 25.51 26.89 23.60 39.88 34.54 35.06
+QuaRot 79.33 67.96 75.79 46.76 74.12 40.60 78.26 43.76 63.32
+SpinQuant 79.87 70.48 78.48 48.81 76.52 42.00 82.35 44.37 65.36
+DuaRot 81.56 70.48 78.56 50.51 78.07 41.00 80.76 43.30 65.53

4-4-8

RTN 49.67 48.62 27.47 27.22 27.48 25.60 39.76 33.32 34.89
+QuaRot 77.69 68.82 75.87 46.67 75.46 39.80 78.35 43.65 63.29
+SpinQuant 81.23 70.88 78.43 50.00 77.69 40.60 79.88 45.14 65.48
+DuaRot 81.12 72.30 79.01 52.39 79.67 45.20 81.41 44.98 67.01

4-4-16

RTN 52.45 50.59 27.57 28.07 27.86 24.20 39.42 34.34 35.56
+QuaRot 79.00 68.11 75.82 46.76 73.95 42.40 78.53 44.06 63.58
+SpinQuant 80.41 69.14 77.74 48.04 77.10 41.40 81.90 44.98 65.09
+DuaRot 82.15 71.67 79.35 49.15 76.43 43.20 82.48 44.47 66.11

4-8-4

RTN 78.89 66.61 76.60 48.63 73.86 40.40 70.43 44.88 62.54
+QuaRot 81.12 70.96 78.77 50.94 77.78 43.40 81.25 45.09 66.16
+SpinQuant 81.28 72.61 79.92 52.30 79.08 43.00 82.42 46.01 67.08
+DuaRot 81.18 72.06 79.80 54.27 79.76 44.00 81.96 45.24 67.28

4-8-8

RTN 79.92 68.90 77.36 48.63 75.21 43.80 72.02 44.68 63.82
+QuaRot 81.28 72.14 78.92 50.77 78.37 44.80 81.87 44.88 66.63
+SpinQuant 82.10 72.61 80.10 52.22 79.21 44.00 82.66 45.60 67.31
+DuaRot 81.72 72.85 79.83 54.18 80.05 44.80 82.42 45.34 67.65

4-8-16

RTN 80.09 69.14 77.56 48.89 74.75 42.00 71.62 45.45 63.69
+QuaRot 81.28 72.14 78.99 51.11 78.37 44.60 82.11 44.83 66.68
+SpinQuant 81.66 72.30 79.80 52.05 78.58 44.40 82.42 46.42 67.20
+DuaRot 81.94 73.01 80.20 51.71 79.12 43.40 81.68 45.50 67.07

4-4-4

GPTQ 53.32 48.78 27.38 26.45 31.06 27.60 42.78 34.14 36.44
+QuaRot 79.92 68.59 78.13 50.43 76.35 41.20 80.37 45.91 65.11
+SpinQuant 79.60 70.40 78.55 50.68 77.61 43.00 81.62 46.47 65.99
+DuaRot 79.98 71.43 78.95 50.26 78.41 43.00 80.67 45.39 66.01

4-4-8

GPTQ 53.32 48.38 27.45 25.51 30.60 26.60 44.13 36.28 36.53
+QuaRot 79.05 70.24 78.07 50.09 76.52 41.40 80.21 44.17 64.97
+SpinQuant 79.71 71.51 78.67 51.37 78.41 43.00 81.31 44.98 66.12
+DuaRot 80.58 72.85 78.69 51.45 78.03 43.80 81.28 46.11 66.60

4-4-16

GPTQ 53.97 48.54 27.55 24.74 31.73 23.40 45.47 33.73 36.14
+QuaRot 79.82 69.38 78.13 49.15 76.56 41.80 80.64 44.78 65.03
+SpinQuant 79.87 71.67 78.83 51.19 79.00 44.60 79.97 45.96 66.39
+DuaRot 80.30 73.16 79.02 51.28 78.87 44.00 81.96 45.85 66.81

4-8-4

GPTQ 80.20 69.46 78.42 50.09 76.26 40.40 77.49 45.96 64.79
+QuaRot 81.23 73.40 79.93 53.41 79.71 42.40 82.78 45.96 67.35
+SpinQuant 81.61 72.93 80.14 51.79 79.76 44.20 83.06 46.16 67.46
+DuaRot 81.72 74.35 80.15 53.50 80.18 43.20 82.87 46.42 67.80

4-8-8

GPTQ 80.63 72.69 79.15 50.60 78.03 42.20 78.17 46.32 65.97
+QuaRot 81.45 73.95 80.05 52.82 80.22 42.60 83.03 46.37 67.56
+SpinQuant 81.72 73.64 80.51 53.16 80.35 45.20 82.72 46.16 67.93
+DuaRot 80.96 74.43 80.10 52.73 80.26 43.80 82.57 45.60 67.56

4-8-16

GPTQ 80.63 71.27 79.34 51.02 77.74 41.80 78.23 46.37 65.80
+QuaRot 81.45 73.64 80.01 52.82 80.09 43.00 83.21 46.26 67.56
+SpinQuant 81.72 73.32 80.42 53.24 79.84 44.60 82.84 45.91 67.74
+DuaRot 81.23 72.85 80.22 52.99 79.76 44.60 83.73 46.47 67.73
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B QUANTIZATION ERROR VISUALIZATION

We compare the token-wise quantization errors under different transformations for LLaMA2-7B and
LLaMA3-8B. The results are shown below. It can be found that Hadamard, SpinQuant and DuaRot
all effectively reduce the quantization errors for tokens, which demonstrates the reason why the
rotational invariance of LLM can achieve such a huge improvement compared to the model without
rotation. In addition, we can find that, thanks to the dual rotation (global + local), our DuaRot still
slightly outperforms SpinQuant in reducing the quantization error.
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Figure 6: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant and
DuaRot. Tokens are from LLaMA2-7B model.layers.5.post attention layernorm.
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Figure 7: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant and
DuaRot. Tokens are from LLaMA2-7B model.layers.10.input layernorm.
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Figure 8: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant and
DuaRot. Tokens are from LLaMA2-7B model.layers.31.post attention layernorm.

C PERFORMANCE ANALYSIS

To compare DuaRot with QuaRot and Baseline models, we measure both memory and speed (in-
cluding Prefill, Decode, and Prefill+Decode) using QuaRot’s code 1 on an NVIDIA A100 GPU.
From Table 11 and Table 12, we find that addition trainable parameters does not bring significant
peak memory usage for LLaMA2-7B. We think this is because LLaMA2-7B has 128 head dim, 32
attention head, 11008 (172×64) Ashkboos et al. (2024b) FFN dim, and 32 LlamaDecoderLayer, so
the additional parameters brought by our method are:

(128 ∗ 128 ∗ 32 + 64 ∗ 64 + 172 ∗ 172) ∗ 32 = 1785497 ≈ 0.02B, (12)

1https://github.com/spcl/QuaRot

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000 2500
E(Without Rotation)

0

500

1000

1500

2000

2500

E(
Ha

da
m

ar
d)

0 50 100 150 200 250
E(Hadamard)

0

50

100

150

200

250

E(
Sp

in
Qu

an
t)

0 50 100 150 200 250
E(SpinQuant)

0

50

100

150

200

250

E(
Du

aR
ot

)

Figure 9: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant and
DuaRot. Tokens are from LLaMA3-8B model.layers.5.post attention layernorm.
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Figure 10: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant
and DuaRot. Tokens are from LLaMA3-8B model.layers.10.input layernorm.
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Figure 11: Comparison of token-wise quantization errors without rotation, Hadamard, SpinQuant
and DuaRot. Tokens are from LLaMA3-8B model.layers.31.post attention layernorm.

Therefore, compared to the LLaMA2-7B model size, it is almost negligible and cannot show a
significant difference in peak memory usage.

Meanwhile, as shown in Table 13 and Table 14, although QuaRot always accelerates prefill stage, we
can see that Hadamard’s WHT always slow down speedup in decode and E2E. This is because, de-
spite the lower computational complexity of WHT, GEMM always has better computational density
than WHT on GPUs, and thus tends to correspond to lower latency.

Table 11: Peak Memory usage (in GB) for LLaMA2-7B model with W4A4KV4 quantization strat-
egy on NVIDIA A100. We use 2048 sequence length with different batch sizes. Baseline is FP16
model.

Model Batch
Size

Sequence
Length

Baseline
(GB)

QuaRot
(GB)

Saving
Factor

DuaRot
(GB)

Saving
Factor

LLaMA2-7B

1 2048 13.663 3.898 3.505× 3.898 3.505×
2 2048 14.703 4.170 3.526× 4.170 3.526×
4 2048 16.785 4.716 3.559× 4.716 3.559×
8 2048 20.947 5.805 3.608× 5.804 3.609×
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Table 12: Peak Memory usage (in GB) for LLaMA2-7B model with W4A4KV4 quantization strat-
egy on NVIDIA A100. We use 8 batch sizes with different sequence lengths. Baseline is FP16
model.

Model W-A-KV Batch
Size

Sequence
Length

Baseline
(GB)

QuaRot
(GB)

Saving
Factor

DuaRot
(GB)

Saving
Factor

LLaMA2-7B 4-4-4

8 256 13.837 3.945 3.507 3.945 3.507
8 512 14.854 4.211 3.527× 4.210 3.528×
8 1024 16.885 4.742 3.561× 4.742 3.561×
8 2048 20.947 5.805 3.608× 5.804 3.609×

Table 13: Prefill, Decode, E2E (End to End) speedup for LLaMA2-7B model with W4A4KV4
quantization strategy on NVIDIA A100. We use 50 decode steps with different batch sizes. Baseline
is FP16 model.

Model Stage Batch
Size

Sequence
Length

Baseline
(ms)

QuaRot
(ms)

Saving
Factor

DuaRot
(ms)

Saving
Factor

LLaMA2-7B

Prefill

1 2048 258.863 220.881 1.172× 206.721 1.252×
2 2048 442.280 359.857 1.229× 331.118 1.336×
4 2048 811.353 636.410 1.270× 580.698 1.397×
8 2048 1619.521 1206.740 1.342× 1089.524 1.486×

Decode

1 2048 2210.416 4331.462 0.510× 3699.385 0.598×
2 2048 2192.06 4114.290 0.533× 3733.629 0.587×
4 2048 2370.041 3973.193 0.597× 3910.789 0.606×
8 2048 2176.178 4290.053 0.507× 3697.386 0.589×

E2E

1 2048 2459.444 4591.451 0.536× 3911.855 0.629×
2 2048 2646.515 4546.958 0.582× 5120.496 0.517×
4 2048 3136.915 5539.373 0.566× 4541.015 0.691×
8 2048 3725.070 6271.752 0.594× 4687.619 0.795×

Table 14: Prefill, Decode, E2E (End to End) speedup for LLaMA2-7B model with W4A4KV4
quantization strategy on NVIDIA A100. We use 50 decode steps with different sequence lengths.
Baseline is FP16 model.

Model Stage Batch
Size

Sequence
Length

Baseline
(ms)

QuaRot
(ms)

Saving
Factor

DuaRot
(ms)

Saving
Factor

LLaMA2-7B

Prefill

8 256 202.077 170.688 1.184× 153.829 1.314×
8 512 388.771 304.328 1.277× 281.208 1.383×
8 1024 766.327 595.146 1.288× 538.952 1.422×
8 2048 1619.521 1206.740 1.342× 1089.524 1.486×

Decode

8 256 2255.684 4256.577 0.530× 3861.612 0.584×
8 512 2275.644 4445.924 0.512× 3727.549 0.610×
8 1024 2421.642 4197.295 0.577× 3808.481 0.636×
8 2048 2176.178 4290.053 0.507× 3697.386 0.589×

E2E

8 256 2509.750 4293.868 0.584× 4005.369 0.627×
8 512 2659.415 4514.093 0.589× 4117.514 0.646×
8 1024 3151.384 4777.762 0.660× 4308.760 0.731×
8 2048 3725.070 6271.752 0.594× 4687.619 0.795×
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D ADDITION HARDWARE SPEED

Further, we measure the speed on NVIDIA RTX 4090, RTX A6000 and H100-SXM4-80G. As
shown in Figure 12, Figure 13 and Figure 14, we can see that Matmul is also faster than WHT when
the sequence length is shorter, suggesting that replacing WHT with Matmul can further improve the
speed of model inference when the computational density is low.
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Figure 12: The runtime comparison of the WHT and Matmul for the computation of XH on
an NVIDIA RTX 4090 under the different settings of X and H ∈ Rd×d. We performed
computations for XH using torch.float16 and measured the average time over 1000 runs using
torch.utils.benchmark.
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Figure 13: The runtime comparison of the WHT and Matmul for the computation of XH on
an NVIDIA RTX A6000 under the different settings of X and H ∈ Rd×d. We performed
computations for XH using torch.float16 and measured the average time over 1000 runs using
torch.utils.benchmark.
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Figure 14: The runtime comparison of the WHT and Matmul for the computation of XH on an
NVIDIA H100-SXM4-80GB under the different settings of X and H ∈ Rd×d. We performed
computations for XH using torch.float16 and measured the average time over 1000 runs using
torch.utils.benchmark.
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Table 15: Comparision between DuaRot (QuaRot, SpinQuant) and DuQuant.

Method Rotational Invariance Deployment Latency Accuracy

DuaRot (QuaRot, SpinQuant) Yes ✓✓ ✓✓ ✓
DuQuant No ✓ ✓ ✓✓

RoPE

RoPE

Softmax

RMSNorm

(a) DuaRot (QuaRot, SpinQuant) for Multi-Head Attention (MHA)

RoPE

RoPE

Softmax

RMSNorm

(b) DuQuant for Multi-Head Attention (MHA)

Figure 15: Comparison between DuaRot (QuaRot, SpinQuant) and DuQuant for Multi-Head Atten-
tion (MHA).

RMSNorm

Swish

(a) DuaRot (QuaRot, SpinQuant) for Feed-Forward Network (FFN)

RMSNorm

Swish

(b) DuQuant for Feed-Forward Network (FFN)

Figure 16: Comparison between DuaRot (QuaRot, SpinQuant) and DuQuant for Feed-Forward Net-
work (FFN).

E DUAROT V.S. DUQUANT

We further discuss the essential difference between DuaRot (QuaRot, SpinQuant) and DuQuant in
eliminating outliers and massive activation, as a way of explaining why we do not compare DuaRot
with DuQuant.

As shown in Figure 15 and Figure 16, DuaRot (QuaRot, SpinQuant) is based on rotational invari-
ance, while DuQuant is not. By applying an equivalent transformation to the network, rotational
invariance does not change to the computational graph. which denotes that rotational invariance
does not introduce any additional computational cost. However, in Figure 15(b) and Figure 16(b),
we can see that DuQuant is not based on rotational invariance. DuQuant inserts R1R

T
1 in the middle

of XW and we can get XR1R
T
1 W = XR1(R

T
1 W ), although RT

1 can be folded into W , R1 must
be computed online and will inevitably introduce additional computational cost.

On the other hand, in terms of optimization difficulty, since rotational invariance employs the same
R1 throughout the network (including each MHA and FFN), i.e. optimizing R1 will lead to changes
in the quantization results of each block, which will lead to the optimization of R1 to be very
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difficult. On the contrary, DuQuant uses different R1 for each MHA and FFN, which greatly reduces
the optimization difficulty of R1, since the optimization of R1 can be optimized in a Block by Block
manner.

As shown in Table 15, from the perspective of ease of deployment, rotational invariance can be
seamlessly integrated into existing inference frameworks. However, DuQuant requires modifications
to the inference framework and introduces mixed-precision rotation matrix multiplications (XR1).
Correspondingly, DuQuant usually can achieve better accuracy. Since the quantization error can be
optimized in a block-by-block manner, the quantized model can be effectively improved.

F ADDITION ABLATION STUDY
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Figure 17: Ablation study on global rotation matrix and
local rotation matrix size for W4A4KV4 LLaMA3-8B
with RTN.

Global Rotation Matrix v.s. Local Rota-
tion Matrix. We conduct ablation stud-
ies involving global rotation matrix and lo-
cal rotation matrix size d on LLaMA3-8B
with W4A4KV4 quantization. The hid-
den size of LLaMA3-8B is 4096. We se-
lect four different settings of d, which vary
from 512 to 4096 and present the PPL re-
sults in Figure 17. As seen, if we only use
the local matrix, the model’s performance
has show a clear positive correlation to the
local rotation matrix size. This is because
a larger local rotation matrix scatters the
outliers over more dimensions, which can
achieve better outlier and massive activa-
tion elimination.
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