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ABSTRACT

Explainability methods for NLP systems encounter a version of the fundamental
problem of causal inference: for a given ground-truth input text, we never truly
observe the counterfactual texts necessary for isolating the causal effects of model
representations on outputs. In response, many explainability methods make no use
of counterfactual texts, assuming they will be unavailable. In this paper, we show
that robust causal explainability methods can be created using approximate counter-
factuals, which can be written by humans to approximate a specific counterfactual
or simply sampled using metadata-guided heuristics. The core of our proposal is
the Causal Proxy Model (CPM). A CPM explains a black-box model N because
it is trained to have the same actual input/output behavior as N while creating
neural representations that can be intervened upon to simulate the counterfactual
input/output behavior of N . Furthermore, we show that the best CPM for N
performs comparably to N in making factual predictions, which means that the
CPM can simply replace N , leading to more explainable deployed models.

1 INTRODUCTION

The gold standard for explanation methods in AI should be to elucidate the causal role that a model’s
representations play in its overall behavior – to truly explain why the model makes the predictions it
does. Causal explanation methods seek to do this by resolving the counterfactual question of what the
model would do if input X were changed to a relevant counterfactual version X ′. Unfortunately, even
though neural networks are fully observed, deterministic systems, we still encounter the fundamental
problem of causal inference (Holland, 1986): for a given ground-truth input X , we never observe the
counterfactual inputs X ′ necessary for isolating the causal effects of model representations on outputs.
The issue is especially pressing in domains where it is hard to synthesize approximate counterfactuals.
In response to this, explanation methods typically do not explicitly train on counterfactuals at all.

In this paper, we show that robust explanation methods for NLP models can be obtained using texts
approximating true counterfactuals. The heart of our proposal is the Causal Proxy Model (CPM).
CPMs are trained to mimic both the factual and counterfactual behavior of a black-box modelN . We
explore two different methods for training such explainers. These methods share a distillation-style
objective that pushes them to mimic the factual behavior of N , but they differ in their counterfactual
objectives. The input-based method CPMIN appends to the factual input a new token associated
with the counterfactual concept value. The hidden-state method CPMHI employs the Interchange
Intervention Training (IIT) method of Geiger et al. (2022) to localize information about the target
concept in specific hidden states. Figure 1 provides a high-level overview.

We evaluate these methods on the CEBaB benchmark for causal explanation methods (Abraham
et al., 2022), which provides large numbers of original examples (restaurant reviews) with human-
created counterfactuals for specific concepts (e.g., service quality), with all the texts labeled for their
concept-level and text-level sentiment. We consider two types of approximate counterfactuals derived
from CEBaB: texts written by humans to approximate a specific counterfactual, and texts sampled
using metadata-guided heuristics. Both approximate counterfactual strategies lead to state-of-the-art
performance on CEBaB for both CPMIN and CPMHI.

We additionally identify two other benefits of using CPMs to explain models. First, both CPMIN
and CPMHI have factual performance comparable to that of the original black-box model N and can
explain their own behavior extremely well. Thus, the CPM for N can actually replace N , leading to
more explainable deployed models. Second, CPMHI models localize concept-level information in
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their hidden representations, which makes their behavior on specific inputs very easy to explain. We
illustrate this using Path Integrated Gradients (Sundararajan et al., 2017), which we adapt to allow
input-level attributions to be mediated by the intermediate states that were targeted for localization.
Thus, while both CPMIN and CPMHI are comparable as explanation methods according to CEBaB,
the qualitative insights afforded by CPMHI models may given them the edge when it comes to
explanations.

2 RELATED WORK

Understanding model behavior serves many goals for large-scale AI systems, including trans-
parency (Kim, 2015; Lipton, 2018; Pearl, 2019; Ehsan et al., 2021), trustworthiness (Ribeiro et al.,
2016; Guidotti et al., 2018; Jacovi & Goldberg, 2020; Jakesch et al., 2019), safety (Amodei et al.,
2016; Otte, 2013), and fairness (Hardt et al., 2016; Kleinberg et al., 2017; Goodman & Flaxman, 2017;
Mehrabi et al., 2021). With CPMs, our goal is to achieve explanations that are causally motivated and
concept-based, and so we concentrate here on relating existing methods to these two goals.

Feature attribution methods estimate the importance of features, generally by inspecting learned
weights directly or by perturbing features and studying the effects this has on model behavior (Molnar,
2020; Ribeiro et al., 2016). Gradient-based feature attribution methods extend this general mode of
explanation to the hidden representations in deep networks (Zeiler & Fergus, 2014; Springenberg
et al., 2014; Binder et al., 2016; Shrikumar et al., 2017; Sundararajan et al., 2017). Concept Activation
Vectors (CAVs; Kim et al. 2018; Yeh et al. 2020) can also be considered feature attribution methods,
as they probe for semantically meaningful directions in the model’s internal representations and use
these to estimate the importance of concepts on the model predictions. While some methods in this
space do have causal interpretations (e.g., Sundararajan et al. 2017; Yeh et al. 2020), most do not.
In addition, most of these methods offer explanations in terms of specific (sets of) features/neurons.
(Methods based on CAVs operate directly in terms of more abstract concepts.)

Intervention-based methods study model representations by modifying them in systematic ways and
observing the resulting model behavior. These methods are generally causally motivated and allow
for concept-based explanations. Examples of methods in this space include causal mediation analysis
(Vig et al., 2020; De Cao et al., 2021; Ban et al., 2022), causal effect estimation (Feder et al., 2020;
Elazar et al., 2021; Abraham et al., 2022; Lovering & Pavlick, 2022), tensor product decomposition
(Soulos et al., 2020), and causal abstraction analysis (Geiger et al., 2020; 2021). CPMs are most
closely related to the method of IIT (Geiger et al., 2021), which extends causal abstraction analysis to
optimization.

Probing is another important class of explanation method. Traditional probes do not intervene on the
target model, but rather only seek to find information in it via supervised models (Conneau et al.,
2018; Tenney et al., 2019) or unsupervised models (Clark et al., 2019; Manning et al., 2020; Saphra
& Lopez, 2019). Probes can identify concept-based information, but they cannot offer guarantees that
probed information is relevant for model behavior (Geiger et al., 2021). For causal guarantees, it is
likely that some kind of intervention is required. For example, Elazar et al. (2021) and Feder et al.
(2020) remove information from model representations to estimate the causal role of that information.
Our CPMs employ a similar set of guiding ideas but are not limited to removing information.

Counterfactual explanation methods aim to explain model behavior by providing a counterfactual
example that changes the model behavior (Goyal et al., 2019; Verma et al., 2020; Wu et al., 2021).
Counterfactual explanation methods are inherently causal. If they can provide counterfactual examples
with regard to specific concepts, they are also concept-based.

Some explanation methods train a model making explicit use of intermediate variables representing
concepts. Manipulating these intermediate variables at inference time yields causal concept-based
model explanations (Koh et al., 2020; Künzel et al., 2019).

Evaluating methods in this space has been a persistent challenge. In prior literature, explanation
methods have often been evaluated against synthetic datasets (Feder et al., 2020; Yeh et al., 2020). In
response, Abraham et al. (2022) introduced the CEBaB dataset, which provides a human-validated
concept-based dataset to truthfully evaluate different causal concept-based model explanation methods.
Our primary evaluations are conducted on CEBaB.
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(a) A structural causal model leading to an actual text
xu,v and its counterfactual text xCi←c′

u,v . U is an ex-
ogenous variable over experiences, c1, . . . , ck are me-
diating concepts, and V is an exogenous variable cap-
turing the writing (and star-rating) experience. At
right, we create a counterfactual in which concept Ci

takes on a different value. Unfortunately, we cannot
truly create such counterfactual situations and so we
never observe pairs of texts like these. Thus, we must
rely on approximate counterfactuals.

Let xu,v be a text written in situation (u, v):

Human-created x̃Ci←c′
u,v

Crowdworker edit of xu,v to express that Ci had
value c′, seeking to keep all else constant.

Metadata-sampled x̃Ci←c′
u,v

Sampled text expressing that Ci has value c′ but
agreeing with xu,v on all other concepts.

(b) Approximate counterfactuals. In the human-
created strategy, humans revise an attested text to try
to express a particular counterfactual, seeking to sim-
ulate a causal intervention. In the metadata-sampled
strategy, we find a separate text that aligns with the
original for the value u insofar as it expresses all the
same concepts except for the target concept Ci.
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(c) LMimic: All CPMs (bottom) are trained to mimic
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(top) for all factual inputs xu,v .
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(d) LIN: Examples xu,v and x̃Ci←c′
u,v are an approx-

imate counterfactual pair. The CPM is given xu,v

augmented with a special token tCi←c′ and trained to
mimic the target modelN when its input is x̃Ci←c′

u,v .
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(e) LHI: Examples xu,v and x̃Ci←c′
u,v are an approxi-

mate counterfactual pair. The CPM (middle) is given
input xu,v . The objective is for it to mimic N (top)
given x̃Ci←c′

u,v , but under the intervention in which
specific internal states are changed to those that the
CPM computes for input xCi=c′

u′,v′ (bottom), which is
a distinct example that is sampled with the only cri-
teria being that it express Ci = c′. The effect of this
intervention is to localize information about concept
Ci at the intervention site, since the only indication
the CPM gets about Ci ← c′ is via the intervention.

Figure 1: Causal Proxy Model (CPM) summary. Every CPM for model N is trained to mimic the
factual behavior of N (LMimic). For CPMIN, the counterfactual objective is LIN. For CPMHI, the
counterfactual objective is LHI.

3 CAUSAL PROXY MODEL (CPM)

Causal Proxy Models (CPMs) are causal concept-based explanation methods. Given a factual input
xu,v and a description of a concept intervention Ci ← c′, they estimate the effect of the intervention
on model output. The present section introduces our two core CPM variants in detail. We concentrate
here on introducing the structure of these models and their objectives, and we save discussion of
associated metrics for explanation methods for Section 4.
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A Structural Causal Model Our discussion is grounded in the causal model depicted in Figure 1a,
which aligns well with the CEBaB benchmark. Two exogenous variables U and V together represent
the complete state of the world and generate some textual data X . The effect of exogenous variable
U on the data X is completely mediated by a set of intermediate variables C1, C2 . . . , Ck, which we
refer to as concepts. Therefore, we can think of U as the part of the world that gives rise to these
concepts {C}k1 .

Using this causal model, we can describe counterfactual data – data that arose under a counterfactual
state of the world (right diagram in Figure 1a). Our factual text is xu,v, and we use xCi←c′

u,v for the
counterfactual text obtained by intervening on concept Ci to set its value to c′. The counterfactual
xCi←c′

u,v describes the output when the value of Ci is set to c′, all else being held equal.

Approximate Counterfactuals Unfortunately, pairs like (xu,v, x
Ci←c′

u,v ) are never observed, and
thus we need strategies for creating approximate counterfactuals x̃Ci←c′

u,v . Figure 1b describes the
two strategies we use in this paper. In the human-created strategy, we rely on a crowdworker to edit
xu,v to achieve a particular counterfactual goal – say, making the evaluation of the restaurant’s food
negative. CEBaB contains an abundance of such pairs (xu,v, x̃

Ci←c′

u,v ). However, CEBaB is unusual
in having so many human-created approximate counterfactuals, so we also explore a simpler strategy
in which x̃Ci←c′

u,v is sampled with the requirement that it match xu,v on all concepts but sets Ci to
c′. This strategy is supported in many real-world datasets – for example, the OpenTable reviews
underlying CEBaB all have the needed metadata (Abraham et al., 2022).

CPMIN: Input-based CPM Given a dataset of approximate counterfactual pairs (xu,v, x̃
Ci←c′

u,v ) and
a black-box model N , we train a new CPMIN model P with a counterfactual objective as:

LIN = CES
(
N (x̃Ci←c′

u,v ),P(xu,v; tCi←c′)
)

(1)

where xu,v; tCi←c′ in Eqn. 1 denotes the concatenation of the factual input and a randomly initialized
learnable token embedding tCi←c′ describing the intervention Ci ← c′. CES represents the smoothed
cross-entropy loss (Hinton et al., 2015), measuring the divergence between the output logits of both
models. The objective in Eqn. 1 pushes P to predict the counterfactual behavior of N when a
descriptor of the intervention is given (Figure 1d).1

At inference time, approximate counterfactuals are inaccessible. To explain model N , we append the
trained token embedding tCi←c′ to a factual input, upon which P predicts a counterfactual output for
this input, used to estimate the counterfactual behavior of N under this intervention.

CPMHI: Hidden-state CPM Our CPMHI models are trained on the same data and with the same set
of goals as CPMIN, to mimic both the factual and counterfactual behavior ofN . The key difference is
how the information about the intervention Ci ← c′ is exposed to the model. Specifically, we adapt
Interchange Intervention Training (Geiger et al., 2022) to train our CPMHI models for concept-based
model explanation.

A conventional intervention on a hidden representation H of a neural network N fixes the value of
the representation H to a constant. In an interchange intervention, we instead fix H to the value it
would have been when processing a separate source input s. The result of the interchange intervention
is a new model. Formally, we describe this new model as NH←Hs

, where← is the conventional
intervention operator and Hs is the value of hidden representation H when processing input s.

Given a dataset of approximate counterfactual input pairs (xu,v, x̃
Ci←c′

u,v ) and a black-box model N ,
we train a new CPMHI model P with the following counterfactual objective:

LHI = CES
(
N (x̃Ci←c′

u,v ),P
HCi←H

Ci
s
(xu,v)

)
(2)

Here HCi are hidden states designated for concept Ci. In essence, we train P to fully mediate the
effect of intervening on Ci in the hidden representation HCi . The source input s is any input xCi=c′

u′,v′

that has Ci = c′. As P only receives information about the concept-level intervention Ci ← c′ via the

1Our objective is regard to a single approximate counterfactual pair for the sake of clarity. At train-time, we
aggregate the objective over all considered training pairs. We take Ci to always represent the intervened-upon
concept. The weights ofN are frozen.
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interchange intervention HCi ← HCi
s , the model is forced to store all causally relevant information

with regard to Ci in the corresponding hidden representation. This process is described in Figure 1e.

In the ideal situation, the source input xCi=c′

u′,v′ and xu,v share the same value only for Ci and differ
on all others, so that the counterfactual signal needed for localization is pure. However, we do not
insist on this when we sample. In addition, we allow null effect pairs in which xu,v and x̃Ci←c′

u,v are
identical. For additional details on this sampling procedure, see Appendix A.2.

At inference time, approximate counterfactuals are inaccessible, as before. To explain model N with
regard to intervention Ci ← c′, we manipulate the internal states of model P by intervening on the
localized representation HCi for concept Ci. To achieve this, we sample a source input xCi=c′

u′,v′ from
the train set as any input x that has Ci = c′ to derive HCi

s .

Training Objectives We include another distillation objective to predict the same output as N under
conventional circumstances as LMimic = CES

(
N (xu,v),P(xu,v)

)
. The overall training objective for

our models can be written as L = λ1LMimic + λ2LCounterfactual where LCounterfactual can be either LIN
or LHI, and we set λ1, λ2 as 1.0 and 3.0 for simplicity.

4 EXPERIMENT SETUP

4.1 CAUSAL ESTIMATION-BASED BENCHMARK (CEBAB)

CEBaB (Abraham et al., 2022) is a large benchmark of high-quality, labeled approximate coun-
terfactuals for the task of sentiment analysis on restaurant reviews. The benchmark was created
starting from a set of 2,299 original restaurant reviews from OpenTable. For each of these original
reviews, approximate counterfactual examples were written by human annotators; the annotators
were tasked to edit the original text to reflect a specific intervention, like ‘change the food evaluation
from negative to positive’ or ‘change the service evaluation from positive to unknown’. In this way,
the original reviews were expanded with approximate counterfactuals to a total of 15,089 texts. The
groups of originals and corresponding approximate counterfactuals are partitioned over train, dev,
and test sets. The pairs in the development and test set are used to benchmark explanation methods.

Each text in CEBaB was labeled by five crowdworkers with a 5-star sentiment score. In addition,
each text was annotated at the concept level for four mediating concepts {Cambiance, Cfood, Cnoise, and
Cservice}, using the labels {negative, unknown, positive}, again with five crowdworkers annotating
each concept-level label. We refer to Appendix A.1 and Abraham et al. 2022 for additional details.

As discussed above (Section 3 and Figure 1b), we consider two sources of approximate counterfactuals
using CEBaB. For human-created counterfactuals, we use the edited restaurant reviews of the train
set. For metadata-sampled counterfactuals, we sample factual inputs from the train set that have the
desired combination of mediating concepts. Using all the human-created edits leads to 19,684 training
pairs of factuals and corresponding approximate counterfactuals. Sampling counterfactuals leads to
74,574 pairs. We use these approximate counterfactuals to train explanation methods. Appendix A.2
provides more information about our pairing process.

4.2 EVALUATION METRICS

Much of the value of a benchmark like CEBaB derives from its support for directly calculating the
Estimated Individual Causal Concept Effect (ÎCaCEN ) for a model N given a human-generated
approximate counterfactual pair (xu,v, x̃

Ci←c′

u,v ):

ÎCaCEN (xu,v, x̃
Ci←c′

u,v ) = N (x̃Ci←c′

u,v )−N (xu,v) (3)

This is simply the difference between the vectors of output scores for the two examples.

We do not expect to have pairs (xu,v, x̃
Ci←c′

u,v ) at inference time, and this is what drives the devel-
opment of explanation methods EN that estimate this quantity using only a factual input xu,v and
a description of the intervention Ci ← c′. To benchmark such methods, we follow Abraham et al.
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(2022) in using the ICaCE-Error:

ICaCE-ErrorDN (E) =
1

|D|
∑

(xu,v,x̃
Ci←c′
u,v )∈D

Dist
(
ÎCaCEN ((xu,v, x̃

Ci←c′

u,v )), EN (xu,v;Ci ← c′)
)

(4)

Here, we assume that D is a dataset consisting entirely of approximate counterfactual pairs
(xu,v, x̃

Ci←c′

u,v ). Dist measures the distance between the ÎCaCEN for the model N and the effect
predicted by the explanation method. Abraham et al. (2022) consider three values for Dist: L2, which
captures both direction and magnitude; Cosine distance, which captures the direction of effects but
not their magnitude; and NormDiff (absolute difference of L2 norms), which captures magnitude but
not direction. We report all three metrics.

4.3 BASELINE METHODS

BESTCEBaB We compare our results with the best results obtained on the CEBaB benchmark.
Crucially, BESTCEBaB consists aggregated best results from a set of methods including CONEXP
(Goyal et al., 2020), TCAV (Kim et al., 2018), ConceptSHAP (Yeh et al., 2020), INLP (Ravfogel
et al., 2020), CausaLM (Feder et al., 2020), and S-Learner (Künzel et al., 2019).

S-Learner Our version of S-Learner (Künzel et al., 2019) learns to mimic the factual behavior
of black-box model N while making the intermediate concepts explicit. Given a factual input, a
finetuned model B is trained to predict concept label for each concept as an aspect-based sentiment
classification task. Then, a logistic regression model LRN is trained to map these intermediate
concept values to the factual output of black-box model N , under the following objective.

LS,B
Mimic = CES

(
N (xu,v), LRN (B(xu,v))

)
(5)

By intervening on the intermediate predicted concept values at inference-time, we can hope to
simulate the counterfactual behavior of N :

ES,B
N (xu,v;Ci ← c′) = LRN ((B(xu,v))Ci←c′)− LRN (B(xu,v)) (6)

When using S-Learner in conjunction with approximate counterfactual inputs at train-time, we simply
add this counterfactual data on top of the observational data that is typically used to train S-Learner.

GPT-3 Large language models such as GPT-3 (175B) have shown extraordinary power in terms of in-
context learning (Brown et al., 2020).2 We use GPT-3 to generate a new approximate counterfactual at
inference time given a factual input and a descriptor of the intervention. This generated counterfactual
is directly used to estimate the change in model behavior:

EGPT-3
N (xu,v;Ci ← c′) = N (GPT-3(xu,v;Ci ← c′))−N (xu,v) (7)

where GPT-3(xu,v;Ci ← c′) represents the GPT-3 generated counterfactual edits. We prompt GPT-3
with demonstrations containing approximate counterfactual inputs. Full details on how these prompts
are constructed can be found in Appendix A.7.

4.4 CAUSAL PROXY MODELS

We train CPMs for the publicly available models released for CEBaB, fine-tuned as five-way sentiment
classifiers on the factual data. This includes four model architectures: bert-base-uncased (BERT;
Devlin et al. 2019), RoBERTa-base (RoBERTa; Liu et al. 2019), GPT-2 (GPT-2; Radford et al. 2019),
and LSTM+GloVe (LSTM; Hochreiter & Schmidhuber 1997; Pennington et al. 2014). All Transformer-
based models (Vaswani et al., 2017) have 12 Transformer layers. Before training, each CPM model is
initialized with the architecture and weights of the black-box model we aim to explain. Thus, the
CPMs are rooted in the factual behavior of N from the start. We include details about our setup in
Appendix A.3.

The inference time comparisons for these models are as follows, where P in Eqn. 8 and Eqn. 9 refers
to the CPM model trained under CPMIN and CPMHI objectives, respectively:

ECPMIN
N (xu,v;Ci ← c′) = P(xu,v; tCi←c′)−N (xu,v) (8)

ECPMHI
N (xu,v;Ci ← c′) = P

HCi←H
Ci
s
(xu,v)−N (xu,v) (9)

2We use the largest davinci model publicly available at https://beta.openai.com/playground.

6

https://beta.openai.com/playground


Manuscript

no counterfactuals sampled counterfactuals human-created counterfactuals
(ours) (ours) (ours) (ours)

Model Metric BESTCEBaB S-Learner S-Learner GPT-3 CPMIN CPMHI S-Learner GPT-3 CPMIN CPMHI

BERT
L2 0.74 (.02) 0.74 (.02) 0.74 (.02) 0.71 (.01) 0.63 (.01) 0.60 (.01) 0.73 (.02) 0.45 (.01) 0.45 (.02) 0.45 (.03)

Cosine 0.59 (.03) 0.63 (.01) 0.63 (.01) 0.51 (.00) 0.46 (.00) 0.45 (.00) 0.60 (.01) 0.36 (.00) 0.35 (.00) 0.36 (.04)

NormDiff 0.44 (.01) 0.54 (.02) 0.53 (.02) 0.35 (.01) 0.39 (.01) 0.38 (.00) 0.52 (.02) 0.25 (.00) 0.24 (.01) 0.27 (.01)

RoBERTa
L2 0.78 (.01) 0.78 (.01) 0.78 (.00) 0.74 (.01) 0.66 (.01) 0.67 (.02) 0.77 (.00) 0.48 (.01) 0.46 (.01) 0.47 (.03)

Cosine 0.58 (.01) 0.64 (.01) 0.65 (.01) 0.53 (.01) 0.46 (.00) 0.47 (.00) 0.63 (.01) 0.39 (.00) 0.38 (.01) 0.39 (.03)

NormDiff 0.45 (.00) 0.59 (.01) 0.58 (.00) 0.36 (.00) 0.42 (.01) 0.45 (.03) 0.56 (.00) 0.28 (.01) 0.26 (.01) 0.29 (.05)

GPT-2
L2 0.60 (.02) 0.60 (.02) 0.61 (.01) 0.65 (.01) 0.55 (.01) 0.51 (.01) 0.61 (.01) 0.43 (.01) 0.41 (.01) 0.41 (.04)

Cosine 0.59 (.01) 0.59 (.01) 0.59 (.01) 0.52 (.00) 0.47 (.01) 0.46 (.00) 0.59 (.01) 0.40 (.00) 0.37 (.01) 0.39 (.05)

NormDiff 0.40 (.01) 0.40 (.01) 0.41 (.01) 0.34 (.00) 0.32 (.01) 0.30 (.00) 0.40 (.01) 0.24 (.01) 0.23 (.01) 0.27 (.05)

LSTM
L2 0.73 (.01) 0.73 (.01) 0.73 (.01) 0.76 (.00) 0.66 (.01) 0.64 (.02) 0.72 (.00) 0.49 (.00) 0.52 (.00) 0.54 (.01)

Cosine 0.64 (.01) 0.64 (.01) 0.64 (.01) 0.57 (.01) 0.50 (.00) 0.50 (.01) 0.63 (.01) 0.44 (.00) 0.45 (.01) 0.46 (.00)

NormDiff 0.50 (.01) 0.53 (.01) 0.53 (.00) 0.41 (.00) 0.42 (.00) 0.41 (.01) 0.54 (.00) 0.30 (.00) 0.34 (.01) 0.36 (.00)

Table 1: CEBaB scores measured in three different metrics on the test set for four different model
architectures as a five-class sentiment classification task. Lower is better. Results averaged over
three distinct seeds, standard deviations in parentheses. The metrics are described in Section 4. Best
averaged result is bolded (including ties) per approximate counterfactual creation strategy.

Here, s is a source input with Ci = c′, and HCi is the neural representation associated with Ci

which takes value HCi
s on the source input s. As HCi , we use the representation of the [CLS] token.

Specifically, for BERT we use slices of width 192 taken from the 1st intermediate token of the 10th
layer. For RoBERTa, we use the 8th layer instead. For GPT-2, we pick the final token of the 12th
layer, again with slice width of 192. For LSTM, we consider slices of the attention-gated sentence
embedding with width 64. Appendix A.5 studies the impact of intervention location and size.

Following the guidance on IIT given by Geiger et al. (2022), we train CPMHI with an additional multi-
task objective as LMulti =

∑
Ci∈C CE(MLP(HCi

x ), c) where probe is parameterized by a multilayer
perceptron MLP, and HCi

x is the value of hidden representation for the concept Ci when processing
input x with a concept label of c for Ci.

5 RESULTS

We first benchmark both CPM variants and our baseline methods on CEBaB. We show that the CPMs
achieve state-of-the-art performance, for both types of approximate counterfactuals used during
training (Section 5.1). Given the good factual performance achieved by CPMs, we subsequently
investigate whether CPMs can be deployed both as predictor and explanation method at the same time
(Section 5.2) and find that they can. Finally, we show that the localized representations of CPMHI
give rise to concept-aware feature attributions (Section 5.3). Our supplementary materials report on
detailed ablation studies and explore the potential of our methods for model debiasing.

5.1 CEBAB PERFORMANCE

Table 1 presents our main results. The results are grouped per approximate counterfactual type used
during training. Both CPMIN and CPMHI beat BESTCEBaB in every evaluation setting by a large
margin, establishing state-of-the-art explanation performance. Interestingly, CPMHI seems to slightly
outperform CPMIN using sampled approximate counterfactuals, while slightly underperforming
CPMIN on human-created approximate counterfactuals. Appendix A.6 reports on ablation studies
that indicate that, for CPMHI, this state-of-the-art performance is primarily driven by the role of IIT
in localizing concepts.

S-Learner, one of the best individual explainers from the original CEBaB paper (Abraham et al.,
2022), shows only a marginal improvement when naively incorporating sampled and human-created
counterfactuals during training over using no counterfactuals. This indicates that the large perfor-
mance gains achieved by our CPMs over previous explainers are most likely due to the explicit use of
a counterfactual training signal, and not primarily due to the addition of extra (counterfactual) data.

GPT-3 occasionally performs on-par with our CPMs, generally only slightly underperforming our best
explainer on human-created counterfactuals, while being significantly worse on sampled counter-
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sampled human-created
Black- counterfactuals counterfactuals

Model box CPMIN CPMHI CPMIN CPMHI

BERT 0.70 (.01) 0.70 (.00) 0.67 (.02) 0.70 (.01) 0.69 (.01)

RoBERTa 0.70 (.00) 0.70 (.00) 0.69 (.01) 0.71 (.01) 0.71 (.00)

GPT-2 0.65 (.00) 0.65 (.00) 0.67 (.01) 0.66 (.01) 0.68 (.00)

LSTM 0.60 (.01) 0.60 (.01) 0.56 (.00) 0.54 (.00) 0.59 (.01)

Table 2: Task performance measured as
Macro-F1 score on the test set. Results averaged
over three distinct seeds; standard deviations in
parentheses.

sampled human-created
counterfactuals counterfactuals

Model Metric CPMIN CPMHI CPMIN CPMHI

BERT
L2 0.63 (.01) 0.52 (.04) 0.42 (.02) 0.38 (.03)

Cosine 0.46 (.00) 0.45 (.01) 0.34 (.02) 0.30 (.06)

NormDiff 0.39 (.01) 0.33 (.02) 0.23 (.01) 0.22 (.05)

RoBERTa
L2 0.66 (.01) 0.63 (.04) 0.40 (.01) 0.37 (.04)

Cosine 0.46 (.00) 0.48 (.01) 0.33 (.01) 0.29 (.04)

NormDiff 0.42 (.01) 0.42 (.05) 0.21 (.01) 0.23 (.05)

GPT-2
L2 0.55 (.01) 0.41 (.03) 0.38 (.01) 0.36 (.04)

Cosine 0.47 (.01) 0.39 (.02) 0.37 (.01) 0.35 (.05)

NormDiff 0.32 (.01) 0.25 (.02) 0.22 (.01) 0.24 (.05)

LSTM
L2 0.66 (.01) 0.41 (.01) 0.46 (.00) 0.42 (.01)

Cosine 0.50 (.00) 0.42 (.02) 0.50 (.02) 0.40 (.01)

NormDiff 0.42 (.00) 0.25 (.00) 0.31 (.00) 0.28 (.02)

Table 3: Self-explanation CEBaB scores mea-
sured in three different metrics on the test set for
four different model architectures as a five-class
sentiment classification task. Lower is better.
Results averaged over three distinct seeds, stan-
dard deviations in parentheses.

factuals. While the GPT-3 explainer also explicitly uses approximate counterfactual data, the results
indicate that our proposed counterfactual mimic objectives give better results. The better performance
of CPMs when considering sampled counterfactuals over GPT-3 shows that our approach is more
robust to the quality of the approximate counterfactuals used. While the GPT-3 explainer is easy to
set up (no training required), it might not be suitable for some explanation applications regardless of
performance, due to the latency and cost involved in querying the GPT-3 API.

Across the board, explainers trained with human-created counterfactuals are better than those trained
with sampled counterfactuals. This shows that the performance of explanation methods depends
on the quality of the approximate counterfactual training data. While human counterfactuals give
excellent performance, they may be expensive to create. Sampled counterfactuals are cheaper if the
relevant metadata is available. Thus, under budgetary constraints, sampled counterfactuals may be
more efficient.

Finally, CPMIN is conceptually the simpler of the two CPM variants. However, we discuss in
Section 5.3 how the localized representations of CPMHI lead to additional explainability benefits.

5.2 SELF-EXPLANATION WITH CPM

As outlined in Section 3, CPMs learn to mimic both the factual and counterfactual behavior of the
black-box models they are explaining. We show in Table 2 that our CPMs achieve a factual Macro-F1
score comparable to the black-box finetuned models.

We investigate if we can simply replace the black-box model with our CPM and use the CPM
both as factual predictor and counterfactual explainer. To answer this questions, we measure the
self-explanation performance of CPMs by simply replacing the black-box model N in Eqn. 4 with
our factual CPM predictions at inference time.

Table 3 reports these results. We find that both CPMIN and CPMHI achieve better self-explanation
performance compared to providing explanations for another black-box model. Furthermore, CPMHI
provides better self-explanation than CPMIN, suggesting our interchange intervention procedure
leads the model to localize concept-based information in hidden representations. This shows that
CPMs may be viable as replacements for their black-box counterpart, since they provide similar task
performance while providing faithful counterfactual explanations of both the black-box model and
themselves.
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Model Predicted Concept Score Word Importance

Black-box neutral

ambiance +0.03 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.04 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.26 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Multi-task neutral

ambiance +0.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.23 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.31 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.16 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

IIT neutral

ambiance −0.24 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.98 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.16 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 4: Visualizations of word importance scores using Integrated Gradient (IG) by restricting
gradient flow through the corresponding intervention site of the targeted concept. Our target class
pools positive and very positive. Individual word importance is the sum of neuron-level importance
scores for each input, normalized to [ −1 , +1 ]. −1 means the word contributes the most negatively
to predicting the target class (red); +1 means the word contributes the most positively (green).

5.3 CONCEPT-AWARE FEATURE ATTRIBUTION WITH CPMHI

We have shown that CPMHI provides trustworthy explanations (Section 5.1). We now investigate
whether CPMHI learns representations that mediate the effects of different concepts. We adapt
Integrated Gradients (IG; Sundararajan et al. 2017) to provide concept-aware feature attributions, by
only considering gradients flowing through the hidden representation associated with a given concept.
We formalize this version of IG in Appendix A.8.

In Table 4, we compare concept-aware feature attibutions for two variants of CPMHI (IIT and
Multi-task) and the original black-box (Finetuned) model. For IIT we remove the multi-task
objective LMulti during training and for Multi-task we remove the the interchange intervention
objective LHI. This helps isolate the individual effects of both losses on concept localization. All
three models predict a neutral final sentiment score for the considered input, but they show vastly
different feature attributions. Only IIT reliably highlights words that are semantically related to each
concept. For instance, when we restrict the gradients to flow only through the intervention site of the
noise concept, “loud” is the word highlighted the most that contributes negatively. When we consider
the service concept, words like “friendly” and “waiter” are highlighted the most as contributing
positively. These contrasts are missing for representations of the Multi-task and Finetuned models.
Only the IIT training paradigm pushes the model to learn causally localized representations. For the
service concept, we notice that the IIT model wrongfully attributes “delicious”. This could be useful
for debugging purposes and could be used to highlight potential failure modes of the model.

6 CONCLUSION

We explored the use of approximate counterfactual training data to build more robust causal ex-
planation methods. We introduced Causal Proxy Models (CPMs), which learn to mimic both the
factual and counterfactual behaviors of a black-box model N . Using CEBaB, a benchmark for
causal concept-based explanation methods, we demonstrated that both versions of our technique
(CPMIN and CPMHI) significantly outperform previous explanation methods without demanding the
full causal graph associated with the dataset. Interestingly, we find that our GPT-3 based explanation
method performs on-par with our best CPM model in some settings.

Our results suggest that CPMs can be more than just explanation methods. They achieve factual
performance on par with the model they aim to explain, and they can explain their own behavior.
This paves the way to using them as deployed models that both perform tasks and offer explanations.
In addition, the causally localized representations of our CPMHI variant are very intuitive, as revealed
by our concept-aware feature attribution technique. We believe that causal localization techniques
could play a vital role in further model explanation efforts.
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A APPENDIX

A.1 CEBAB DATASET STATISTICS

Table 5 shows dataset statistics of CEBaB. The variants of CEBaB we consider only impact the train
split. The top panel shows the number of observational samples and edits introduced in the CEBaB
paper. The bottom panel shows our paired versions, where we create approximate counterfactual pairs.
We explore two variants of approximate counterfactuals: human-created and sampled counterfactuals
(Section 4.1). The human setting considers all pairs made possible by using all data. The sampling
setting considers pairs sampled from only the observational data, as discussed in Section A.2.
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Dataset # train # dev # test

CEBaB (observational) 1,755 1,673 1,689
CEBaB (all) 11,728 1,673 1,689

CEBaB (paired, human) 19,684 3,898 3,958
CEBaB (paired, sampling) 74,574 3,898 3,958

Table 5: Dataset statistics.

A.2 TYPES OF APPROXIMATE COUNTERFACTUAL PAIRS

Our approximate counterfactual training data comes in paired sentences of (original sentence, ap-
proximate counterfactual sentence). The approximate counterfactuals differs from their original
counterparts in only one concept value. We consider approximate counterfactual pairs to be sym-
metric: we use both (original sentence, approximate counterfactual sentence) and (approximate
counterfactual sentence, original sentence) as training pairs.

Human-created Counterfactuals CEBaB contains multiple counterfactual sentences for each
original review. To achieve this, the dataset creators asked annotators to edit the original sentence to
achieve a specified goal (e.g., ‘change the evaluation of the restaurant’s food to negative’). These
originals and corresponding edits form our human pairs.

Metadata-sampled Counterfactuals Human-created counterfactuals are not always available. With
CEBaB, we simulate a second type of approximate counterfactuals by using metadata-guided heuris-
tics: for a given original sentence, we sample a counterfactual from the train set by matching concept
labels while allowing only one label to be changed.

During training, we also consider null effect pairs in our sampling setup. These pairs resemble cases
where our approximate counterfactual sentence is identical to the original sentence. When training
our models on these pairs, we expect our models to predict the same counterfactual and factual output.

A.3 TRAINING REGIMES

CPMIN To train CPMIN, we use the same model architecture as N , and initialize it with the model
weights using weights from N . The maximum number of training epochs is set to 30 with a learning
rate of 5e−5 and an effective batch size of 128. The learning rate linearly decays to 0 over the 30
training epochs. We employ an early stopping strategy for COSICaCE over the dev set for an interval
of 50 steps with early stopping patience set to 20. We set the max sequence length to 128 and
the dropout rate to 0.1. We take a weighted sum of two objectives as the loss term for training
CPMHI. Specifically, we use [wMimic, wIN] = [1.0, 3.0]. For the smoothed cross-entropy loss, we use
a temperature of 2.0.

CPMHI To train CPMHI, we use the same model architecture as N , and initialize it with the model
weights using weights from N . The maximum number of training epochs is set to 30 with a learning
rate of 8e−5 and an effective batch size of 256. We use a higher learning rate of 0.001 for the LSTM
model as it enables quicker convergence. The learning rate linearly decays to 0 over the 30 training
epochs. We employ an early stopping strategy for COSICaCE over the dev set for an interval of 10 steps
with early stopping patience set to 20. We set the max sequence length to 128 and the dropout rate to
0.1. We take a weighted sum of three objectives as the loss term for training CPMHI. Specifically, we
use [wMimic, wMulti, wHI] = [1.0, 1.0, 3.0]. In Appendix A.6, we conduct a set of ablation studies to
isolate the individual contributions from each objective. For the smoothed cross-entropy loss, we use
a temperature of 2.0.

Our models are all implemented in PyTorch (Paszke et al., 2019) and using the HuggingFace
library (Wolf et al., 2019). All of our results are aggregated over three distinct random seeds. To
foster reproducibility, we will release our code repository and model artifacts to the public.
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Figure 2: CEBaB scores for different intervention site locations and sizes for CPMHI. The scores
are measured in three different metrics on the test set for four different model architectures as a
five-class sentiment classification task. Results averaged over three distinct seeds. Task performance
as Macro-F1 score is reported when applicable. Shaded areas outline ± SD.

A.4 ADDITIONAL BASELINE RESULTS

Table 6 shows baselines adapted from Abraham et al. (2022), which contains the present state-of-the-
art explanation methods for the CEBaB benchmark. We report the best scores across these explanation
methods in Table 1. These baselines are trained without using counterfactual data. Thus, we build
additional baselines that use counterfactual data as shown in Table 7. S-Learner is selected as the
best performing models and included in Table 1 for comparisons. The equations for the additional
baselines are as follows:

Eapprox
N (xu,v;Ci ← c′) = N (sapprox)−N (xu,v) (10)

E random
N (xu,v;Ci ← c′) = N (srandom)−N (xu,v) (11)

ECaCE
N (Ci ← c′) =

1

|DCi←c′ |
∑

(xu,v,x̃
Ci←c′
u,v )∈DCi←c′

(
N

(
x̃Ci←c′

u,v

)
−N (xu,v)

)
(12)

EATE(Ci ← c′) =
1

|DCi←c′ |
∑

(xu,v,x̃
Ci←c′
u,v )∈DCi←c′

(
f
(
x̃Ci←c′

u,v

)
− f (xu,v)

)
(13)

where srandom is a randomly sampled training input, sapprox is a training input sampled to match the
concept-level labels of the true counterfactual under intervention Ci ← c′, DCi←c′ is the set of all
approximate counterfactual training pairs that represent a Ci ← c′ intervention, and f is a look-up
function that returns the ground-truth label associated with an input.

The signatures of EATE and ECaCE
N reflect that they are independent of the specific factual input xu,v

considered. Furthermore, EATE is independent of N given that this explainer only uses ground-truth
training labels to estimate causal effects.

Additionally, we consider X-Learner, a variant of S-Learner (Künzel et al., 2019). Our X-Learner
consists of three steps. First, we cluster examples into groups by their concept and predicted concept
label pairs (e.g., select all examples with food being positive)3. For each group, we fit logistic
regression model µ̂(Ci,c) to predict the factual output of black-box model N using concept labels for
each example except for labels for Ci. Next, we use the models from the first step to build training
sets for our individual treatment effect (ITE) estimators. To achieve this, we calculate ITE for each
example as,

D̂Ci:c←c′

u,v = µ̂(Ci,c′)(B(x
Ci=c
u,v )′)−N (xCi=c

u,v ) (14)

3We use the finetuned concept-level sentiment analysis models B released by Abraham et al. (2022) for
concept label prediction, which is identical to the ones used in S-Learner in Section 4.3.
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Model Metric Approx† S-Learner‡ INLP§

BERT
L2 0.81 (.01) 0.74 (.02) 0.80 (.02)

Cosine 0.61 (.01) 0.63 (.01) 0.59 (.03)

NormDiff 0.44 (.01) 0.54 (.02) 0.73 (.02)

RoBERTa
L2 0.83 (.01) 0.78 (.01) 0.84 (.01)

Cosine 0.60 (.01) 0.64 (.01) 0.58 (.01)

NormDiff 0.45 (.00) 0.59 (.01) 0.81 (.01)

GPT-2
L2 0.72 (.02) 0.60 (.02) 0.72 (.01)

Cosine 0.59 (.01) 0.59 (.01) 1.00 (.00)

NormDiff 0.41 (.01) 0.40 (.01) 0.58 (.03)

LSTM
L2 0.86 (.01) 0.73 (.01) 0.79 (.01)

Cosine 0.64 (.01) 0.64 (.01) 0.74 (.02)

NormDiff 0.50 (.01) 0.53 (.01) 0.60 (.01)

Table 6: CEBaB scores measured in three different metrics on the test set for four different model
architectures as a five-class sentiment classification task. Results are adapted from Abraham et al.
(2022). Lower is better; standard deviations over 5 distinct seeds in parentheses. Results are
aggregated over all aspects and all directional concept label changes. Details about these evaluation
metrics can be found in Section 4. Results are based on †Abraham et al. (2022), ‡ Künzel et al. (2019),
and §Ravfogel et al. (2020).

no counterfactuals sampled counterfactuals human-created counterfactuals
ATE- CaCE- ATE- CaCE-

Model Metric X-Learner Approx Explainer Explainer Random X-Learner Approx Explainer Explainer Random X-Learner

BERT
L2 0.78 (.02) 0.81 (.01) 0.81 (.02) 0.81 (.02) 0.84 (.02) 0.78 (.02) 0.79 (.02) 0.81 (.02) 0.80 (.02) 0.84 (.01) 0.75 (.02)

Cosine 0.68 (.01) 0.60 (.00) 0.72 (.01) 0.72 (.01) 0.53 (.00) 0.68 (.01) 0.56 (.01) 0.69 (.01) 0.69 (.01) 0.53 (.00) 0.64 (.01)

NormDiff 0.53 (.03) 0.44 (.01) 0.62 (.02) 0.62 (.02) 0.55 (.02) 0.53 (.03) 0.43 (.01) 0.62 (.02) 0.64 (.02) 0.54 (.02) 0.54 (.03)

RoBERTa
L2 0.82 (.00) 0.83 (.01) 0.85 (.00) 0.85 (.00) 0.87 (.00) 0.82 (.00) 0.81 (.01) 0.85 (.00) 0.84 (.00) 0.87 (.00) 0.79 (.00)

Cosine 0.70 (.02) 0.61 (.01) 0.73 (.00) 0.73 (.01) 0.53 (.00) 0.70 (.02) 0.57 (.01) 0.70 (.00) 0.70 (.00) 0.53 (.00) 0.67 (.02)

NormDiff 0.57 (.00) 0.46 (.01) 0.67 (.00) 0.67 (.00) 0.58 (.00) 0.57 (.00) 0.44 (.01) 0.67 (.00) 0.68 (.00) 0.59 (.00) 0.58 (.00)

GPT-2
L2 0.65 (.01) 0.72 (.02) 0.69 (.01) 0.68 (.01) 0.76 (.00) 0.65 (.01) 0.72 (.01) 0.68 (.01) 0.68 (.01) 0.76 (.00) 0.63 (.01)

Cosine 0.64 (.01) 0.59 (.00) 0.67 (.00) 0.67 (.00) 0.56 (.00) 0.64 (.01) 0.57 (.00) 0.66 (.00) 0.65 (.00) 0.56 (.00) 0.62 (.01)

NormDiff 0.41 (.00) 0.40 (.01) 0.48 (.01) 0.49 (.01) 0.47 (.00) 0.41 (.00) 0.40 (.00) 0.49 (.01) 0.50 (.01) 0.47 (.01) 0.42 (.01)

LSTM
L2 0.77 (.01) 0.87 (.00) 0.78 (.00) 0.78 (.00) 0.85 (.00) 0.77 (.01) 0.85 (.01) 0.78 (.00) 0.76 (.00) 0.84 (.00) 0.74 (.01)

Cosine 0.69 (.01) 0.65 (.00) 0.71 (.00) 0.71 (.00) 0.57 (.00) 0.69 (.01) 0.61 (.00) 0.69 (.00) 0.68 (.00) 0.56 (.00) 0.67 (.01)

NormDiff 0.52 (.01) 0.50 (.00) 0.59 (.00) 0.59 (.00) 0.55 (.00) 0.52 (.01) 0.49 (.00) 0.59 (.00) 0.61 (.00) 0.55 (.00) 0.55 (.01)

Table 7: CEBaB scores for additional baselines we considered. CEBaB scores are measured in
three different metrics on the test set for four different model architectures as a five-class sentiment
classification task. Lower is better. Results averaged over three distinct seeds, standard deviations in
parentheses. Details about these evaluation metrics can be found in Section 4.

where B(xCi=c
u,v )′ excludes the concept label for concept Ci. It measures the ITE for xu,v when we

change the concept label of Ci from c to c′. We aggregate D̂Ci:c←c′

u,v over examples based on their
editing concepts and concept labels. Next, we fit a set of linear regression models as τCi:c←c′ to
predict ITE for changing the concept labels for Ci given concept labels of an example except for
labels for Ci. Lastly, we use τCi:c←c′ to predict counterfactual output changes as,

EX-Learner
N (xu,v;Ci ← c′) = p · τCi:c←c′(B(xCi=c

u,v )′) + (1− p) · τCi:c′←c(B(xCi=c
u,v )′) (15)

where p is the propensity score which is calculated using B as the probability of Ci taking concept
label c′ for an input example xu,v by considering two potential concept labels c and c′.

A.5 INTERVENTION SITE LOCATION AND SIZE

Previous work shows that neurons in different layers and groups can encode different high-level
concepts (Vig et al., 2020; Koh et al., 2020). CPMHI pushes concept-related information to localize
at the targeted intervention site (the aligned neural representations for each concept). In this section,
we investigate how the location and the size of the intervention site impact CPMHI performance. We
use the optimal location and size found in this study for other results presented in this paper.

Location For Transformer-based models, we vary the location of the intervention site by intervening
on the “[CLS]” token embedding layer l. Specifically, we set l = {2, 4, 6, 8, 10, 12}. We skip this
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Model Ablation L2 Cosine NormDiff Macro-F1

BERT

CPMHI 0.45 (.02) 0.36 (.03) 0.27 (.04) 0.69 (.01)

− LMulti 0.47 (.04) 0.38 (.04) 0.30 (.07) 0.69 (.01)

− LHI 0.79 (.02) 0.60 (.03) 0.64 (.02) 0.60 (.08)

+ random init 0.81 (.02) 0.52 (.00) 0.55 (.02) 0.08 (.02)

+ no training 0.80 (.02) 0.86 (.04) 0.76 (.02) 0.70 (.01)

RoBERTa

CPMHI 0.47 (.03) 0.39 (.03) 0.29 (.05) 0.71 (.00)

− LMulti 0.49 (.05) 0.41 (.05) 0.32 (.06) 0.70 (.00)

− LHI 0.81 (.00) 0.53 (.02) 0.63 (.01) 0.39 (.06)

+ random init 0.85 (.00) 0.51 (.00) 0.59 (.01) 0.06 (.00)

+ no training 0.84 (.01) 0.93 (.05) 0.83 (.00) 0.70 (.00)

GPT-2

CPMHI 0.41 (.04) 0.39 (.05) 0.27 (.05) 0.68 (.00)

− LMulti 0.43 (.03) 0.41 (.05) 0.29 (.04) 0.67 (.00)

− LHI 0.66 (.01) 0.58 (.04) 0.49 (.01) 0.58 (.04)

+ random init 0.73 (.00) 0.54 (.00) 0.47 (.01) 0.16 (.00)

+ no training 0.65 (.00) 0.61 (.00) 0.57 (.02) 0.65 (.00)

LSTM

CPMHI 0.54 (.01) 0.46 (.01) 0.36 (.00) 0.59 (.01)

− LMulti 0.56 (.02) 0.47 (.02) 0.41 (.02) 0.59 (.01)

− LHI 0.73 (.00) 0.64 (.02) 0.59 (.00) 0.59 (.01)

+ random init 0.82 (.00) 0.55 (.00) 0.55 (.00) 0.13 (.04)

+ no training 0.73 (.01) 0.74 (.00) 0.59 (.01) 0.60 (.01)

Table 8: Ablation study of our CPMHI method trained with human approximate counterfactual
strategy. CEBaB scores measured in three different metrics on the test set for four different model
architectures as a five-class sentiment classification task. Lower is better. Results averaged over
three distinct seeds, standard deviations in parentheses.

experiment for non-Transformer-based model (i.e., LSTM) since it only contains a single sentence
embedding.

As shown in the top panel of Figure 2, intervention location significantly affects CPMHI performance.
Our results show that layer 10 for BERT, layer 8 for RoBERTa, and layer 12 for GPT-2 lead to the best
performance. This suggests layers have different efficacy in terms of information localization. Our
results also show that intervening with deeper layers tends to provide better performance. However,
for both BERT and RoBERTa, intervening on the last layer results in a slightly worse performance
compared to earlier layers. This suggests that leaving Transformer blocks after the intervention site
helps localized information to be processed by the neural network.

Size For Transformer-based models, we change the size of the intervention site dc for each concept.
Specifically, we set dc = {1, 16, 64, 128, 192}. For instance when dc = 1, we use a single dimension
of the “[CLS]” token embedding to represent each concept, starting from the first dimension of the
vector. For our non-Transformer-based model (LSTM), we intervene on the attention-gated sentence
embedding whose dimension size is set to 300. Accordingly, we set dc = {1, 16, 64, 75}.
As shown in Figure 2, larger intervention sites lead to better performance for all Transformer-based
models. For LSTM, we find that the optimal size is the second largest one instead. On the other hand,
our results suggest that the performance gain from the increase of size diminishes as we increase the
size for all model architectures.

A.6 ABLATION STUDY OF CPMHI

Geiger et al. (2022) show that training with a multi-task objective helps IIT to improve generalizability.
In this experiment, we aim to investigate whether the multi-task objective we added for CPMHI plays
an important role in achieving good performance. Specifically, we conduct two ablation studies:
removing the multi-task objective by setting wMulti = 0.0, and removing the IIT objective by setting
wHI = 0.0.
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sampled counterfactuals human-created counterfactuals
Random Probe-based Random Probe-based

Model Metric CPMHI Source Source CPMHI Source Source

BERT
L2 0.60 (.01) 0.74 (.03) 0.61 (.01) 0.45 (.03) 0.70 (.03) 0.43 (.02)

Cosine 0.45 (.00) 0.53 (.01) 0.45 (.00) 0.36 (.04) 0.59 (.04) 0.35 (.01)

NormDiff 0.38 (.00) 0.54 (.02) 0.39 (.01) 0.27 (.01) 0.53 (.01) 0.25 (.02)

RoBERTa
L2 0.67 (.02) 0.79 (.01) 0.66 (.02) 0.47 (.03) 0.72 (.01) 0.44 (.01)

Cosine 0.47 (.00) 0.52 (.01) 0.46 (.01) 0.39 (.03) 0.57 (.03) 0.37 (.01)

NormDiff 0.45 (.03) 0.59 (.00) 0.44 (.03) 0.29 (.05) 0.55 (.01) 0.25 (.01)

GPT-2
L2 0.51 (.01) 0.65 (.02) 0.51 (.02) 0.41 (.04) 0.58 (.03) 0.39 (.02)

Cosine 0.46 (.00) 0.55 (.01) 0.46 (.01) 0.39 (.05) 0.56 (.02) 0.37 (.01)

NormDiff 0.30 (.00) 0.46 (.01) 0.31 (.01) 0.27 (.05) 0.44 (.01) 0.25 (.01)

LSTM
L2 0.64 (.02) 0.76 (.01) 0.65 (.02) 0.54 (.01) 0.69 (.03) 0.55 (.00)

Cosine 0.50 (.01) 0.57 (.01) 0.50 (.01) 0.46 (.00) 0.58 (.01) 0.46 (.01)

NormDiff 0.41 (.01) 0.54 (.01) 0.41 (.02) 0.36 (.00) 0.52 (.00) 0.38 (.01)

Table 9: Ablation study of our CPMHI method for different source input s sampling strategies at
inference time. CEBaB scores measured in three different metrics on the test set for four different
model architectures as a five-class sentiment classification task. Lower is better. Results averaged
over three distinct seeds, standard deviations in parentheses.

Table 8 shows our results, which demonstrate that the IIT objective is the main factor that drives
CPMHI performance. Our results also suggest that the multi-task objective brings relatively small
but consistent performance gains. Overall, our findings corroborate those of Geiger et al. (2022) and
provide concrete evidence that the combination of two objectives always results in the best-performing
explanation methods across all model architectures.

Additionally, we explore two baselines for CPMHI. Firstly, we randomly initialize the weights of
CPMHI. Secondly, we take the original black-box model as our CPMHI. Compared to the results in
Table 1, these two baselines fail catastrophically, suggesting the importance of our IIT paradigm.

As mentioned in Section 3, we sample a source input xCi=c′

u′,v′ from the train set as any input x that
has Ci = c′ to estimate the counterfactual output. Furthermore, we explore two additional sampling
strategies. First, we create a baseline where we randomly sample a source input from the train without
any concept label matching. Second, we sample a source input from the train set using the predicted
concept label of our multi-task probe, instead of the true concept label from the dataset.

As shown in Table 9, the quality of our source inputs impact our performance significantly. For
instance, when sampling source input at random, CPMHI fails catastrophically for all evaluation
metrics. On the other hand, when we sampling source based on the predicted labels using the
multi-task probe, CPMHI maintains its performance.

A.7 GPT-3 GENERATION PROCESS

We use the 175B parameter davinci GPT-3 model (Brown et al., 2020) as a few-shot learner to
generate approximate counterfactual data. Let xu,v be a review text with an original value c for the
mediating concept Ci and an overall review sentiment y (e.g., a restaurant review which is negative
about the service, and felt neutral about their overall dining experience), and let c′ be the target value
of Ci, for which we would like to create a counterfactual review (e.g., change the text to become
positive about the mediating concept service). In order to use GPT-3 as an n-shot learner, we sample
n = 6 approximate counterfactual pairs (xu′,v′ , x̃

Ci←c′

u′,v′ ), where xu′,v′ shares with xu,v the same

value c for Ci and the same overall sentiment, and the counterfactual review x̃Ci←c′

u′,v′ has the target
value c′ for Ci. We prompt the model with these pairs, and we also include the original review xu,v .
We then collect the text completed by GPT-3 as the GPT-3 counterfactual review. An example for this
n-shot prompt and completion is in Figure 3. In addition, we also prompt GPT-3 with pairs of original
reviews and metadata-sampled counterfactuals, and generate another set of GPT-3 counterfactual
review for comparison. We sample n = 4 approximate counterfactual pairs in this case. An example
of metadata-sampled counterfactual generation with GPT-3 can be seen in Figure 4.
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Make the following restaurant reviews include POSITIVE mentions of SERVICE.

Original: I had two casual dinners at State & Lake and three lunches. The
food was great but the service was lacking. Everything was delicious. The
interior is questionable, but not intrusive.

POSITIVE mentions of SERVICE: I had two casual dinners at State & Lake and
three lunches. The food and the service were always great. Everything was
delicious. The interior is questionable, but not intrusive.

Original: Food was excellent, but the service was not very attentive. Noise
level was extremely high due to close proximity of tables and poor acoustics.

POSITIVE mentions of SERVICE: Food and service was excellent. Noise level
was extremely high due to close proximity of tables and poor acoustics.

Original: Great food, poor and very snobbish service.

POSITIVE mentions of SERVICE: Great food, very good service.

Original: My dining experince was excellent! However, the server was not nice.

POSITIVE mentions of SERVICE: My dining experince was excellent!

Original: Hae been here a few times and it is just okay - Entrees and wine
list a bit pricey for what it is, inattentive staff.

POSITIVE mentions of SERVICE: Hae been here a few times and it is just okay
- Entrees and wine list a bit pricey for what it is. Food comes out on time.

Original: Tables fairly close together, mushroom appetiser very good, pork
entree fair, chicken good. The service was terrible.

POSITIVE mentions of SERVICE: Tables fairly close together, mushroom
appetiser very good, pork entree fair, chicken good. The service was great
however.

Original: Service was very poor with the server unresponsive and misinformed
on all requests. The food was very good with a good selection of entrees.
The ambiance was romantic with a quiet excellence.

POSITIVE mentions of SERVICE: Service was very good with the server attentive
and responsive on all requests. The food was very good with a good selection
of entrees. The ambiance was romantic with a quiet excellence.

Figure 3: Example GPT-3 prompt (gray) and GPT-3 completion (bold). Note that all original examples
convey the same sentiment towards service (c = negative) and same overall sentiment (y = neutral),
and that the counterfactual examples are all edited such that the sentiment towards service is the same
(c′ = positive).

For each few-shot learning prompt, we insert an initial string of the form of “Make the following
restaurant reviews include c′ mentions of Ci.”, where c′ is expressed as one of {“POSITIVE”,
“NEGATIVE”, “NOT” } (“NOT” corresponds to making the review be unknown regarding the
concept Ci) and Ci is one of {“AMBIANCE”, “FOOD”, “NOISE”, “SERVICE”}. We sample using
a temperature of 0.9, without any frequency or presence penalties (since we expect the counterfactual
review to be similar to the original review). In preliminary experimentation, we found that capitalizing
the mediating concept and target value results and inserting line breaks between examples made for
better completions, although there is room for future research in this area.
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Make the following restaurant reviews include POSITIVE mentions of SERVICE.

Original: Been here several times. Always a winner, except for the tasteless
food!

POSITIVE mentions of SERVICE: I was very disappointed in the food but we did
not wait long for each course and or waiter was very pleasant.

Original: food was decent but not great.

POSITIVE mentions of SERVICE: Lovely evening - good service and wonderful
food. Perfect for fresh fish fans

Original: The restaurant was empty when we arrived, reservation not necessary?
Wine list limited. Food was bland, presentation was very well done. I would
not eat here again.

POSITIVE mentions of SERVICE: Abby provided the best service that we’ve had
after probably two dozen visits. No thank you for making the risotto cake at
lunch....Two Stars!

Original: A terrible place for lunch or dinner. All the food is excellent
with top notch ingredients

POSITIVE mentions of SERVICE: Excellent Valentine’s menu. Excellent service
and food. Would recommend this restaurant and will return.

Original: The food was average for the cost. My husband and I were so excited
to visit Bobby Flay’s restraunt and were really disappointed. The food was
average at best.

POSITIVE mentions of SERVICE: The service was amazing and the food was alright.

Figure 4: Example GPT-3 prompt (gray) and GPT-3 completion (bold). Note that all original
examples convey the same sentiment towards service (c = unknown) and same overall sentiment
(y = negative), and that the counterfactual examples are all metadata-sampled such that the sentiment
towards service is the same (c′ = positive).

We used the OpenAI API to access GPT-3. At the current price rate of $0.02 per 1,000 tokens, the total
cost of creating our counterfactuals (around 4,000 examples) was approximately $50 per approximate
counterfactuals creation strategy.

A.8 INTEGRATED GRADIENTS

We adapt the Integrated Gradients (IG) method of Sundararajan et al. (2017) to qualitatively assess
whether CPMHI learned explainable representations of mediated concepts at its intervention sites.
The IG algorithm computes the average gradient from the model output to its input by incrementally
interpolating from a “blank” input x′ (consisting only of “[PAD]” tokens) to the original input x.
Eqn. 16 is the integrated gradients equation originally proposed in Sundararajan et al. (2017), applied
to a CPM model P on input x.

IntegratedGradsj(x) = (xj − x′j) ·
∫ 1

α=0

∂P(x′ + α · (x− x′))

∂xj
∂α (16)

Here, ∂P(x)
∂xj

is the derivative of P on the jth dimension of x.

In our implementation of IG, we wish to show the per-token attribution of input x on the model’s
final output P(x), mediated by the hidden representation of a concept in P . That is, we’d like to ask,
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Model Predicted Concept Score Word Importance

Black-box neutral

ambiance +0.03 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.04 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.26 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

CPMHI neutral

ambiance −0.61 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food −0.88 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.34 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.75 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 10: Additional visualizations of word importance scores using Integrated Gradient (IG) by
restricting gradients flow through corresponding intervention site of the targeted concept. This table
extends Table 4 in the main text.

“What is the effect of the word ‘delicious’ in the input on the model’s output, when we restrict our
focus only on the model’s representation of the concept food?”

To answer this question, we compute the gradient of the model output P(x) with respect to the input
x but restrict the gradient to flow through the intervention site for a particular concept. This allows us
to capture the per-token attribution of the model’s final output (whether particular words contributed
to a positive, negative, or neutral sentiment prediction), mediated by the concept that is represented
by the specified intervention site. For example, in Table 4, we can see that “delicious” has a positive
attribution to the output of the model when we focus on its representation of the concept food.

Formally, consider a trained CPM model P , an input x and mediating concept Ci. Let HCi be the
activation of P at the intervention site for Ci. We define the gradient of P(x) along dimension j,
mediated by Ci, as

∂P(x)
∂xj

mediated by Ci =
∂P(x)
∂HCi

· ∂H
Ci

∂xj
. (17)

Eqn. 17 restricts the gradient to only flow through the hidden representation of the concept along
which we’d like to interpret our model.

We integrate these mediated gradients over a straight path between input x and baseline x′, analogous
to Eqn. 16. We implement our IG method using CaptumAI library.4 We use the default parameters
for our runs with number of iterations set to 50, and we set the integral method as gausslegendre.
We set the multiply-by-inputs flag to True. To visualize individual word importance, we conduct
z-score normalization of attribution scores over input tokens per each concept, and then linearly scale
scores between [−1, +1].

Table 10 extends Table 4 in our main text with additional ablation studies on our training objectives.

A.9 MODEL DEBIASING

Being able to accurately predict outputs for counterfactual inputs enables explanation methods to
faithfully debias a model with regard to a desired concept. For instance, with CEBaB, debiasing a
concept (e.g., “food”) is equivalent to estimating the counterfactual output when we set the concept
label for a concept to be unknown.

In this section, we briefly study the extent to which the CPMHI can function as a debiasing method.
To debias a concept, we enforce the sampled source input s as in Eqn. 2 to have unknown as its
concept label for the concept to be debiased.

To show our methods can faithfully debias a targeted concept, we evaluate the correlations between
the predicted overall sentiment label for sentences and the concept labels for each concept. Without
any debiasing technique, we expect concept labels to be highly correlated with the overall sentiment
label (e.g., if food is positive, it is more likely that the overall sentiment is positive). We use CPMHI
trained for the BERT model architecture as an example, and use examples in the test set.

4https://captum.ai/
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(a) Visualization for debiasing the ambiance concept.

(b) Visualization for debiasing the food concept.

(c) Visualization for debiasing the noise concept.

(d) Visualization for debiasing the service concept.

Figure 5: Debiasing visualizations for different concepts of a CPMHI with BERT model architecture.
Individual plots are correlation plots between concept labels of a concept and the overall sentence
sentiment label.

Figure 5 shows correlation plots for the black-box model as well as CPMHI. As expected, the
correlation of the food concept is weakened through the debiasing pipeline by 57.50%. Our results
also suggest that correlations of other concepts are affected, which suggests a future research direction
focused on minimizing the impact of the debiasing pipeline on irrelevant concepts. We include results
for the remaining concepts in the Appendix A.9.

Figure 5a to Figure 5d show debiasing visualizations for three concepts: ambiance, noise and service.
We use a CPMHI for the BERT model architecture as an example. We calculate the distributions with
examples in the test set.
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A.10 LEARNING DYNAMICS

Figure 6: CEBaB scores measured in three different metrics on the dev and the test sets for a CPMHI
with the BERT architectures for different training epochs. Task performance as Macro-F1 score is
reported.

Figure 6 shows three different metrics measured on the dev and the test sets for a CPMHI trained
for the BERT model architecture as an example. Since we use COSICaCE on the dev set to early stop
our training process, we find our CPMHI reaches a local minimum on COSICaCE while L2ICaCE and
NormDiffICaCE are still trending downward. This suggests future research may need to choose desired
metrics to optimize for during training, for early stopping to reach the best performing model.

Epoch Predicted Concept Score Word Importance

1 neutral

ambiance −0.17 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.66 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.32 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.05 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

2 neutral

ambiance −0.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.54 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.24 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.02 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

3 neutral

ambiance −0.49 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.52 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.97 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.49 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

4 neutral

ambiance −0.69 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.41 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.92 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.14 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

5 neutral

ambiance −0.77 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.63 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.28 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

6 neutral

ambiance −0.66 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.62 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.90 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +2.14 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

CPMHI neutral

ambiance −0.61 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food −0.88 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.34 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.75 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 11: Visualizations of word importance scores using Integrated Gradient (IG), using the same
methods as in Table 4 and Table 10.

Table 11 visualizations of word importance scores using our version of Integrated Gradient (IG).
Different from Table 4 and Table 10, which show the visualizations of our optimized model, we
show a per-epoch result for for CPMHI, followed with our best model appended at the end. Our
results suggest that early checkpoints in the training process focus at drastically different input
words comparing to later checkpoints, though all models predict neutral for this given sentence.
In addition, gradient aggregations over input words are rather stable towards the end the training.
More importantly, CPMHI learns how to highlight words that are semantically related to each concept
gradually. For instance, we can see a clear trend of emphasising the word “decorations” for the
ambiance concept throughout the training process. This suggests that our training procedure induces
causally motivated gradients over input words gradually through the training process.
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