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COMD: Training-free Camera Motion Transfer With
Camera-Object Motion Disentanglement

Anonymous Authors

(a) Prompt: A beautiful butterfly on the flowers.

(b) Prompt: A peaceful garden with ponds and flowers.

(c) Prompt: A cute rabbit sits in the forest.

Zoom In

Zoom In+Pan Right

Dolly Zoom
Zoom In+Object Still

Optical Flow

Optical Flow

Optical Flow

Figure 1: Flexible and diverse camera motion control of our training-free COMD. COMD can control (a) one camera motion or (b)
combine several cameramotions in one video. Moreover, COMD enables control of different cameramotions in different regions,
which can achieve professional Dolly Zoom with zooming motions in the background and fixed motion in the foreground (c).

ABSTRACT
The emergence of diffusionmodels has greatly propelled the progress
in image and video generation. Recently, some efforts have been
made in controllable video generation, including text-to-video,
image-to-video generation, video editing, and video motion control,
among which camera motion control is an important topic. How-
ever, existing camera motion control methods rely on training a
temporal camera module, and necessitate substantial computation
resources due to the large amount of parameters in video genera-
tion models. Moreover, existing methods pre-define camera motion
types during training, which limits their flexibility in camera con-
trol, preventing the realization of some specific camera controls,
such as various camera movements in films. Therefore, to reduce
training costs and achieve flexible camera control, we propose
COMD, a novel training-free video motion transfer model, which
disentangles camera motions and object motions in source videos,
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and transfers the extracted camera motions to new videos. We first
propose a one-shot camera motion disentanglement method to ex-
tract camera motion from a single source video, which separates
the moving objects from the background and estimates the camera
motion in the moving objects region based on the motion in the
background by solving a Poisson equation. Furthermore, we pro-
pose a few-shot camera motion disentanglement method to extract
the common camera motion from multiple videos with similar cam-
era motions, which employs a window-based clustering technique
to extract the common features in temporal attention maps of mul-
tiple videos. Finally, we propose a motion combination method to
combine different types of camera motions together, enabling our
model a more controllable and flexible camera control. Extensive
experiments demonstrate that our training-free approach can ef-
fectively decouple camera-object motion and apply the decoupled
camera motion to a wide range of controllable video generation
tasks, achieving flexible and diverse camera motion control.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Video Generation, Video Motion, Camera Motion, Disentanglement
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1 INTRODUCTION
In recent years, the rapid development of generative models [20, 27]
has led to significant advancements in the field of image and video
generation. Among video generation, diffusion models [3, 7, 18, 30]
have emerged as powerful tools for generating high-quality videos
with high diversity. Meanwhile, the demand for controllable video
generation has grown significantly, especially in applications such
as film production, virtual reality, and video games, where re-
searchers have devoted much effort to controllable generation tasks
including text-to-video generation [6, 7, 18, 30], image-to-video
generation [3, 18], video motion control [5, 8, 33, 44], and video
editing [1, 26]. Since video is composed of a sequence of images
with consistent and fluent motions, the control of video motion has
become an important topic in controllable video generation.

For video motion control, 1) most of the existing methods [1, 5,
8, 42] focus on modeling the object motion and use trajectory or
a source video to guide the movement of the objects, but usually
lack the ability to model the camera motion. 2) To enable the con-
trol of the camera motion, AnimateDiff [18] trains temporal LoRA
modules [22] on a collected set of videos with the same camera
motion. To control different camera motions using one model, Mo-
tionCtrl [40] labels a large number of videos with corresponding
camera pose parameters to train a camera motion control module.
In contrast, Direct-a-video [44] utilizes a self-supervised training
process by manually constructing camera motions along x, y, and
z axis, reducing the training resources to some extent. However,
all the existing camera motion control methods rely on training
a temporal camera module to control the camera motion, which
poses a significant requirement to the computational resources
due to the large number of parameters in video generation models.
Moreover, these methods can only achieve simple camera motion
control and cannot handle some complex and professional camera
motions in films, such as Dolly Zoom (zoom in or out the camera
while keeping the object still) and Variable-Speed Zoom (zoomwith
variable speed).

To achieve complex camera motion control and reduce the train-
ing costs, we propose COMD, a novel training-free camera mo-
tion transfer model, which disentangles camera motions and
object motions in source videos and then transfers the extracted
camera motions to new videos. Firstly, we observe that the temporal
attention maps in diffusion-based video generation models contain
the information of video motions, and find that the motions are
composed of two motion types, camera motions and object motions.
We then propose two methods to disentangle the camera motions
and object motions in temporal attention maps. 1) In one-shot
camera motion disentanglement, we decompose camera and
object motions from a single source video. We regard the motion
in the background as only containing camera motion, while the
motion in the foreground as containing both camera and object
motions. We employ a segmentation model to separate the mov-
ing objects and background regions, and then predict the camera
motion in foreground region from background motion by solving a
Poisson equation. 2) To further enhance the disentanglement abil-
ity, we propose a few-shot camera motion disentanglement
method to extract the common camera motion from several videos
with similar camera motions, which employs a novel window-based

clustering method to extract the common features from temporal
attention maps of multiple videos. Finally, we investigate the addi-
tivity and positional composition ability of camera motions, and
propose a camera motion combination method to achieve flexible
camera control, which can enable combining different kinds of cam-
era motions into a new motion, and apply different camera motions
in different regions.

Extensive experiments demonstrate the superior performance of
our model in both one-shot and few-shot camera motion transfer.
With the camera motion combination and the disentanglement
between the camera motion and position, our model substantially
improve the controllability and flexibility of camera motions.

The main contributions can be summarized as follows:

• We propose COMD, a training-free camera motion transfer
method based on Camera-ObjectMotion Disentanglement,
which can transfer the camera motion from source videos
to newly generated videos.

• We propose a novel one-shot camera-object motion disen-
tanglement method. By separating the moving objects and
the background regions and estimating the camera motion
in the moving objects region by solving a Poisson equation,
our model can effectively disentangle the camera motion
from object motion in a single video.

• We further propose a few-shot camera-object motion disen-
tanglement method, which employs a novel window-based
clustering method to extract the common camera motion
from several given videos with similar camera motions, ef-
fectively dealing with scenarios with overly complex and
diverse object motions.

• Wepropose a cameramotion combinationmethod to achieve
flexible camera motion control, which enables the model to
combine different camera motions into a new motion and
apply different camera motions in different regions.

2 RELATEDWORK
2.1 Text-to-Video Generation
Generative models have rapidly advanced and achieved tremen-
dous success in text-driven video generation tasks, which mostly
rely on generative adversarial networks (GANs) [29, 36, 38, 47] and
diffusion models [3, 4, 6, 7, 16, 18, 21, 30] Among these methods, dif-
fusionmodels have emerged as a powerful tool due to their ability to
generate diverse and high-quality contents. Early text-driven video
generation models [19, 21, 30] perform diffusion in pixel space,
requiring cascaded generation and significant computational re-
sources to generate high-resolution videos. Recent research papers
have implemented diffusion in the latent space [3, 4, 18, 28, 37, 49],
achieving high-quality and long-duration video generation. Addi-
tionally, researchers are exploring more controllable video gener-
ation approaches. For instance, [9, 11, 17] introduce spatial and
geometric constraints to generative models, [41] generates videos
of desired subject, and [8, 40] govern motion in generated videos.
These methods enable users to finely control various attributes of
videos, resulting in generated outcomes that better align with user
preferences and requirements.

2
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2.2 Motion Controllable Video Generation
ObjectMotion Control.Many researches [23, 24, 32, 33, 41, 43, 48]
have been conducted to control object motions to better align with
user preferences. Some methods [5, 44] enable users to control the
motion of objects by dragging bounding boxes, while some other
works [23, 40] allow control over the trajectory of the object. Video-
Composer [39] provides global motion guidance by conditioning
on pixel-wise motion vectors. Besides, some video editing methods
[1, 10, 26, 33] also enable motion editing through text-driven or
manually specified motions, which requires motion consistency be-
tween adjacent frames. In summary, all these works focus more on
controlling the object motions rather than camera motions, which
operates at a local, high semantic level.
Camera Motion Control. There have been relatively few re-
searches in camera motion control. AnimateDiff [18] employs tem-
poral LoRA modules [22] trained on a collected set of videos with
similar camera motion. Thus a single LoRA module is capable of
controlling only a specific type of camera motion. MotionCtrl [40]
constructs a video dataset annotated with camera poses to learn
camera motions, but requires substantial manual effort. Direct-a-
video [44] adds camera motion along coordinate axes to existing
videos, which can reduce annotation costs. However, all of these
works require fine-tuning pretrained video generation models, con-
suming a large amount of computation resources and limiting the
style of camera motion to the training data. In contrast, our model
enables flexible camera motion control with any target camera mo-
tions without re-training the model, which brings a much wider
application for camera control in video generation.

3 METHOD
Our COMD model aims to disentangle the camera motion and
object motion in a single or several videos, and then transfer the
disentangled camera motion to the newly generated videos. We
first observe that the temporal attention maps in diffusion-based
video generation models contain the information of videos motions,
and find that the motion are composed of two motion types, camera
motions and object motions. We then propose two methods to
decompose the temporal attention map 𝐴𝑡𝑡𝑛 into object motion
𝐴𝑡𝑡𝑛𝑜 and camera motion𝐴𝑡𝑡𝑛𝑐 , as shown in Fig. 2. By substituting
the temporal attention map with the temporal attention of the
target camera motion, we can enable the video generation models
to generate videos with the desired camera motion.

Specifically, to disentangle the camera motion from the object
motion, we propose to extract the camera motions from either a
single video or a few (5-10) videos. 1) In one-shot camera mo-
tion disentanglement, we aim to extract camera motion from a
single video (Fig. 2 top). Considering the motion in background re-
gion only contains camera motion, while motion in the foreground
region contains both camera motion and object motion, we first
separate background and foreground regions. We employ SAM [25]
to segment the moving objects, and decompose the given video
into moving object region 𝑀 and background region �̃� = 1 −𝑀 .
Then we regard the motion in the background region �̃� as only
containing camera motion. With the observation that the camera
motion is smooth and continuous, and the neighboring pixels share
similar motions [14, 15, 46, 50], we construct a Poisson equation

to estimate the camera motions in the moving objects region 𝑀
based on the given camera motions in the background region �̃� ,
achieving camera-object motion disentanglement for a single video.

2)When the object motions are too complex to disentangle from
a single video, we propose a few-shot camera motion disentan-
glement method to extract common camera motion from𝑚 (5-10)
videos with similar camera motions (Fig. 2 bottom). To extract com-
mon camera motion of𝑚 videos, we regard the common feature of
the temporal attention maps of these videos as the feature of the
common camera motion. We then propose a window-based cluster-
ing method for each pixel of the temporal attention map to extract
the common camera motion and filter out outliers. Specifically, we
regard the neighboring pixels in a 𝑘 × 𝑘 window share similar cam-
era motions and cluster the 𝑘2-neighboring pixels of each pixel in
the𝑚 temporal attention maps with DBSCAN clustering method,
where the centroid of the largest cluster can be used to represent
the common camera motion.

Finally, we investigate the additivity and positional composition
ability of camera motions. We propose a camera motion combina-
tion method to achieve flexible camera motion control, which can
combine different camera motions into a new motion and apply dif-
ferent camera motions in different regions, substantially improving
the controllability and flexibility of camera motions.

3.1 Camera Motion Extraction Based on
Temporal Attention

Preliminaries of temporal attention module. Most of the cur-
rent video generation models [3, 4, 18] are built on a pretrained
text-to-image diffusion model [27], which employs spatial atten-
tion module to model the image generation process. To extend the
image generation models to generate videos, temporal attention
module [4, 18] is proposed to enable the pretrained image gener-
ation models with the ability to model the temporal relationship
between each frame of the video. Specifically, the temporal atten-
tion mechanism is a self-attention module, which takes the feature
map 𝑓𝑖𝑛 of 𝑡 frames (𝑏 × 𝑡 × 𝑐 ×ℎ ×𝑤 ) as input, and reshapes it to a
(𝑏 × ℎ ×𝑤) × 𝑡 × 𝑐 feature map 𝑓 . Then, a self-attention module is
employed to capture the temporal relationships between 𝑡 frames,
and output a feature map with temporal relationships between each
frame, which is formulated as follows:

𝐴𝑡𝑡𝑛 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑐

), 𝑓𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑛𝑉 , (1)

where 𝑄 = 𝑊𝑄 𝑓 , 𝐾 = 𝑊𝐾 𝑓 and 𝑉 = 𝑊𝑉 𝑓 , and𝑊𝑄 ,𝑊𝐾 and𝑊𝑉
are learnable query, key and value matrices.

Extracting motion information from temporal attention
map. UniEdit [1] found that the temporal attention modules model
the inter-frame dependency and motion information1, and use
the temporal attention for video motion editing tasks, where the
global motion of video is edited guided by text. However, it lacks
a deep analysis of how the temporal attention module models the
inter-frame dependency. In this paper, we find that the attention
maps 𝐴𝑡𝑡𝑛 of the temporal attention layer are composed of two
motion types, which are camera motions and object motions.
We propose two methods to decouple motion in temporal attention

1Our experiments also validate this finding, shown in #Suppl.
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Figure 2:Main framework of our method: Our model can extract the camera motion from a single video or several videos that
share similar camera motions. 1) One-shot camera motion disentanglement: We first employ SAM [25] to segment the moving
objects in the source video and extract the temporal attention maps from the inverted latents. To disentangle the camera and
object motions, we mask out the object areas of the attention map and estimate the camera motion inside the mask by solving
a Poisson equation. 2) Few-shot camera motion disentanglement: we extract the common camera motion from the temporal
attention maps of several given videos. For each position (x, y), we employ all of its k-neighboring attention map values across
each video for clustering. Then, we use the centroid of the largest cluster to represent the camera motions in position (x, y).

map into camera and object motions (Sec. 3.2 and 3.3), where we
disentangle the temporal attention map𝐴𝑡𝑡𝑛 extracted from a video
into camera motion attention 𝐴𝑡𝑡𝑛𝑐 and object motion attention
𝐴𝑡𝑡𝑛𝑜 . After decoupling camera motion from object motion, we
can easily transfer camera motion from a source video 𝑣𝑠 to a
target video 𝑣𝑡 , by replacing the temporal attention map of 𝑣𝑡 with
the temporal attention map 𝐴𝑡𝑡𝑛𝑐𝑠 that corresponds to the camera
motion of 𝑣𝑠 :

𝑓𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑛
𝑐
𝑠𝑉 . (2)

3.2 One-shot Camera Motion Disentanglement
In this section, we propose a method to disentangle camera mo-
tions from object motions in a single source video. A video can
usually be divided into two parts: the foreground region and the
background region. Considering the motion in background region
mainly contains camera motion, while the motion in foreground
region contains both camera motion and object motion, we first
extract camera motion in background region, and then predict cam-
era motion in foreground based on the background camera motion.

Specifically, we first employ segment-anythingmodel to segment
the moving objects and the background, and then take the temporal
attention map from the background region as the camera motions.
Based on the observation that the camera motions are continuous
and the neighboring pixels have similar camera motions, we con-
struct a Poisson equation to estimate the camera motions inside the

moving object region based on the camera motions outside, thereby
achieving the camera-object motion disentanglement.

Obtaining temporal attention map of a video by DDIM
inversion. First of all, to obtain the temporal attention map of
the source video 𝑣𝑠 , we apply DDIM inversion on the source video
to invert it into a 𝑇 -step latent 𝑥𝑇 . Then, by denoising 𝑥𝑇 with
the video diffusion model, we obtain a series of attention maps
{𝐴𝑡𝑡𝑛𝑇 , 𝐴𝑡𝑡𝑛𝑡−1 · · ·𝐴𝑡𝑡𝑛1} in different timesteps. Different from
the spatial attention maps (in spatial attention modules), which
model different spatial relationships in different timesteps, the tem-
poral attention maps model the temporal motion of the video, and
we find they are similar in different timesteps. Therefore, we can
use one representative temporal attention map 𝐴𝑡𝑡𝑛 = 𝐴𝑡𝑡𝑛𝑡 at
timestep 𝑡 to model the temporal motion, which can effectively
reduce the computation resources to 1

𝑇
of using all timesteps. We

adopt a medium timestep 𝑡 , since when 𝑡 is large, there are too many
noises in the video feature; while when 𝑡 is small, the denoising has
almost been completed and the overall motion has already been
determined, thus the motion information in the temporal attention
map at small 𝑡 is not sufficient.

Extracting camera motion in background region. With the
obtained temporal attention map 𝐴𝑡𝑡𝑛 from the source video, we
employ segment anything model (𝑆𝐴𝑀) to obtain the mask of the
moving objects in each frame 𝑀𝑖 = 𝑆𝐴𝑀 (𝑣𝑖 ), 𝑖 = 1, · · · , 𝑡 , where
𝑣𝑖 denotes the 𝑖-th frame of the source video 𝑣𝑠 . Then, we merge
the masks of 𝑡 frames into one mask𝑀 = 𝑈 (𝑀1, 𝑀2 · · ·𝑀𝑡 ). Since

4
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the motion in the background region mainly comes from the cam-
era motion, we regard the masked temporal attention map in the
background region 𝐴𝑡𝑡𝑛𝑚 = 𝐴𝑡𝑡𝑛 ⊙ (1 −𝑀) as the camera motion
attention map that only controls the camera motion. Although cur-
rently the masked attention map 𝐴𝑡𝑡𝑛𝑚 has no value inside the
moving objects mask𝑀 , we can estimate the camera motion inside
the mask based on the camera motion outside. To estimate the cam-
era motion inside the mask𝑀 , we transform the motion estimation
problem into solving a Poisson equation, which is introduced below.

Predicting camera motion in foreground region. Video
processing tasks such as video compression, optical flow estima-
tion, and video interpolation, share a common assumption that
the changes between video frames are smooth and continuous [14,
15, 46, 50], and the motions of the pixels in a local neighborhood
are similar. Based on this assumption, we posit that the camera
motion is also continuous and has local coherence, i.e., the
camera motions in a local region are almost the same. Therefore,
we assume the gradient of the camera motion attention map inside
the mask region is quite small, and the values of the attention map
on both sides of the mask boundary are almost the same. Denote
the camera motion attention map inside the mask𝑀 as 𝐴𝑖𝑛 (to be
estimated), and the camera motion attention map outside the mask
as𝐴𝑜𝑢𝑡 (which we already have𝐴𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑛𝑚). And we denote the
positions of each pixel inside the mask as Ω ∈ R2, and the mask
boundary as 𝜕Ω. Then, we have ∇𝐴𝑖𝑛 ≈ 0, and 𝐴𝑖𝑛 |𝜕Ω = 𝐴𝑜𝑢𝑡 |𝜕Ω .
Since we already know 𝐴𝑜𝑢𝑡 , we can estimate 𝐴𝑖𝑛 by solving the
following optimization problem:

𝐴∗
𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝐴𝑖𝑛

∫ ∫
Ω
∥∇𝐴𝑖𝑛 ∥2 .

𝑠 .𝑡 . 𝐴𝑖𝑛 |𝜕Ω = 𝐴𝑜𝑢𝑡 |𝜕Ω .
(3)

Therefore, the camera-motion estimation problem is converted
into a Poisson blending problem. By setting the gradient inside
the mask to be 0, we can employ Successive Over Relaxation al-
gorithm [45] for Poission Blending to find the optimal solution
𝐴∗
𝑖𝑛
. Finally, we obtain the complete camera motion attention map

𝐴𝑡𝑡𝑛𝑐 = {𝐴𝑖𝑛∗, 𝐴𝑜𝑢𝑡 }, which is disentangled with the object motion.
With the disentangled 𝐴𝑡𝑡𝑛𝑐 , we can employ the camera motion
transfer method in Sec. 3.1 to transfer the camera motion from a
single source video to target videos.

3.3 Few-shot Camera Motion Disentanglement
When the object motions are overly complex to disentangle, e.g.,
moving objects may occupy nearly all the pixels, it may be difficult
to disentangle camera motion and object motion from a single
video. To improve the disentanglement performance for videos with
complex object motions, we relax the input conditions from one
shot to few shot. I.e., we aim to extract the common camera motion
from several videos {𝑣1, 𝑣2 · · · 𝑣𝑚} with similar camera motions.

Extracting common feature in temporal attention as com-
mon camera motion. In Sec. 3.2, we decompose the temporal
attention maps of a single video into camera motion and object mo-
tion. Since the given𝑚 videos {𝑣1, 𝑣2 · · · 𝑣𝑚} share similar camera
motions, we regard the common feature of the temporal attention
maps as the feature of camera motion. Therefore, we calculate
common camera motion by extracting a common feature from the

temporal attention maps of𝑚 videos. Since the motion at different
locations may be different (e.g., zoom in/out), we model the motion
at pixel level. Denote the temporal attention map of each video
as {𝐴1, 𝐴2 · · ·𝐴𝑚}, where 𝐴𝑖 ∈ R𝑊 ×𝐻×𝑡×𝑡 and 𝑡 is the number of
frames. For each pixel (𝑥,𝑦) in video 𝑣𝑖 , we denote its motion as
𝐴𝑖 (𝑥,𝑦) ∈ R𝑡×𝑡 . Next, we aim to extract the common feature for
each pixel (𝑥,𝑦) from𝑚 temporal attention maps.

Local coherence assumption for camera motion. To extract
the common feature for each pixel (𝑥,𝑦), only using the attention
values at the location (𝑥,𝑦) in𝑚 temporal attention maps may not
be adequate, especially when the object motions in the given 𝑚
video are complex and diverse. Therefore, based on the assump-
tion of local coherence, we regard that the neighboring pixels in
a window centered at pixel (𝑥,𝑦) share similar camera motion as
the center pixel. In other words, we extract the common camera
motion for the pixel (𝑥,𝑦) by considering the attention values of
neighboring pixels in a 𝑘 ×𝑘 windowN𝑘 (𝑥,𝑦) in each of the𝑚 tem-
poral attention maps (𝑚×𝑘2 pixels in total), whose attention values
form a tensor A(𝑥,𝑦) = {𝐴𝑖 (N𝑘 (𝑥,𝑦)), 𝑖 = 1 · · ·𝑚}∈ 𝑅𝑚×𝑘2×𝑡×𝑡 .

Extracting common camera motion by window-based clus-
tering. For each pixel (𝑥,𝑦), to extract the common camera motion
from the attention values A(𝑥,𝑦) in its 𝑘 × 𝑘 neighboring window,
we first reshape the attention valuesA(𝑥,𝑦) to 𝑅 (𝑚×𝑘2 )×(𝑡×𝑡 ) . We
then employ t-SNE [35] to reduce the dimension from (𝑡 × 𝑡) to
2, for better clustering in the subsequent steps. After dimension
reduction, we compute the centroid of the𝑚 × 𝑘2 pixels as the rep-
resentation of the common camera motion. Directly computing the
mean value of all the𝑚×𝑘2 pixels is a possible solution to compute
the centroid, but has inferior accuracy of the extracted motion when
the camera motions in some of the samples are severely entangled
with object motion. Therefore, we employ DBSCAN [12] to cluster
all the pixels, which can effectively distinguish the outliers. After
clustering, we have 𝑛𝑐 clusters, with each cluster containing part of
the attention values. We regard the centroid of the largest cluster as
the common camera motion, since it is the most common motion
among the𝑚 × 𝑘2 pixels. With the extracted camera motion map
𝐴𝑡𝑡𝑛𝑐 , we can transfer the camera motions to new videos.

3.4 Camera Motion Combination
Camera motion combination. In Sec. 3.2 and 3.3, we extract the
camera motion𝐴𝑡𝑡𝑛𝑐 from a single or several videos. These camera
motions can work separately by transferring one extracted camera
motion to a target video. One natural question is whether we can
combine different camera motions to enable a more complex and
flexible camera motion control. To achieve this, in this section, we
explore different ways to combine cameramotions, which enables 1)
combining different camera motions into a newmotion; 2) applying
different camera motions in different areas; and 3) preserving part
of the contents while transferring the camera motion.

Additivity of the camera motions. We first explore how to
combine different camera motions together. We are delighted to
discover that the camera motions extracted from Sec. 3.2 and 3.3 are
additive. By adding the attention maps {𝐴𝑡𝑡𝑛𝑐

𝑖
}𝑛
𝑖=1 corresponding to

different camera motions, we can obtain a new camera motion that
includes all the combined camera motions at the same time. And
by assigning different weights {𝑤𝑖 }𝑛𝑖=1 to different camera motions,
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Figure 3: The comparison on one-shot and few-shot camera motion transfer with AnimateDiff+Lora [18] and MotionCtrl [40].
AnimateDiff+Lora tends to overfit to the training data while MotionCtrl suffers from shape distortions and logical incon-
sistencies when controlling camera motion, even though it is trained on large-scale data. In contrast, our COMD generates
high-quality videos with accurate camera motions.

we can control the intensity of each camera motion by:

𝐴𝑡𝑡𝑛𝑐𝑛𝑒𝑤 =
∑︁

𝑖∈𝑆𝑢𝑏 ({1· · ·𝑛})
𝑤𝑖 ×𝐴𝑡𝑡𝑛𝑐𝑖 , (4)

where 𝑆𝑢𝑏 ({1 · · ·𝑛}) is an arbitrary subset of {1 · · ·𝑛}.
Position-specifiedmotion transfer. The camera motion trans-

fer methods in previous sections can only transfer the camera mo-
tions in a global manner, while lacking the ability to transfer the
camera motions in a local region. Therefore, to enable our model
with the ability to control the camera motions in a local manner, we
propose a segmentation-based local camera motion control method.
We segment local regions by SAM, and assign different camera mo-
tions to different local regions of the generated video, by applying
the mask𝑀𝑖 on the camera motion attention map 𝐴𝑡𝑡𝑛𝑐

𝑖
as follows:

𝐴𝑡𝑡𝑛𝑐𝑛𝑒𝑤 =
∑︁
𝑖

𝑀𝑖 ⊙ 𝐴𝑡𝑡𝑛𝑐𝑖 . (5)

Local content-preserving camera motion transfer. To better
preserve specific content within the target video, we first utilize
SAM to segment the object region 𝑀 we aim to keep unchanged
and then modify the temporal attention calculation. We find that
in diffusion-based video generation models, the appearance and
motions are well disentangled in the temporal attention modules,
where the temporal attention maps represent the temporal motions,
while the Value 𝑉 represents the appearance. Therefore, when we
need to transfer the camera motions from a source video 𝑣𝑠 to
a target video 𝑣𝑡 while keeping the appearance in region 𝑀 of
𝑣𝑡 unchanged, we modify the temporal attention calculation by
keeping the Value inside𝑀 the same as the Value 𝑉𝑡 of the target
video, and substituting the temporal attention map by the camera
motion attention map 𝐴𝑡𝑡𝑛𝑐𝑠 of the source video, which can be
formulated as follows:

𝑉 ′ = 𝑉𝑡 ⊙ 𝑀 +𝑉 ⊙ (1 −𝑀), 𝑓𝑜𝑢𝑡 = 𝐴𝑡𝑡𝑛𝑐𝑠𝑉 ′ . (6)

4 EXPERIMENTS
4.1 Implementation Details
Experiment details and hyperparameters. In our experiments,
we adopt AnimateDiff [18] as the baseline method for motion disen-
tanglement and control, which is one of the state-of-the-art text-to-
video models. The generated video size is 512×512, with each video
composed of 16 frames with 8 FPS. When generating videos, we
employ 25-step DDIM [31] for inference and choose the temporal
attention maps in the 15-th step to extract the camera motions.
Moreover, for few-shot camera motion extraction, we compute the
neighborhood size 𝑘 by 𝑘 = ⌈ 𝑠𝑖𝑧𝑒16 ⌉ × 2 + 1, where 𝑠𝑖𝑧𝑒 is the width
and height of the temporal attention maps.

Evaluation metrics. To evaluate the generation quality, di-
versity and camera motion accuracy, we employ three evaluation
metrics: 1) FVD [34]: Fréchet Video Distance measures the qual-
ity and authenticity by calculating the Fréchet distance between
real and generated videos; 2) FID-V [2]: Video-level FID uses a 3D
Resnet-50 model to extract video features for video-level FID scor-
ing, measuring the quality and diversity of the generated videos;
and 3) Optical Flow Distance [13] assesses the camera movement
accuracy by computing distance between the flow maps from the
generated and ground truth videos.

4.2 Camera Motion Transfer
Qualitative comparison with the state-of-the-arts. To validate
the effectiveness of our model, we compare our model with the
state-of-the-art camera motion control methods on four types of
basic cameramotions: 1) zoom in, 2) zoom out, 3) pan left, and 4) pan
right (in #Suppl). We compare with two motion control methods:
1) AnimateDiff [18] employs the temporal LoRA [22] module to
learn the motions from given videos with target camera motions.
We train motion LoRA modules on AnimateDiff with one-shot and
few-shot data, and compare them with our model. 2) Moreover, we
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Figure 4: Camera motion combination results: The extracted camera motions can be combined to form new camera motions.
The newly constructed camera motions in this figure contain both zoom and pan camera motions at the same time.

also compare with MotionCtrl [40]. Since the training code is not
open-sourced, we employ the officially provided model, which is
pretrained on a large scale of camera-labeled data.

The comparison results are shown in Fig. 3 (video comparison
results are provided in #Suppl). It can be seen that in one-shot con-
dition, AnimateDiff tends to overfit to the given video; while in
the few-shot condition, AnimateDiff tends to mix the features of
the training videos, which cannot generate correct videos corre-
sponding to the given prompts. MotionCtrl can generate videos
that better align with the prompts, but may cause shape distortions
and logical inconsistencies when controlling camera motion. In
contrast, our model can generate high-quality and diverse videos
with only one-shot or few-shot data, without the need for training.

Quantitative comparison.We also compare with these models
quantitatively, using FVD, FID-V, and Optical Flow distance to eval-
uate the generation quality, diversity, and camera motion accuracy.
For each method, we generate 1,000 videos for each type of camera
motion and compute FVD and FID-V with 1,000 collected high-
quality videos. We also compute the average Optical Flow Distance
between the generated videos and given videos. The results are
shown in Tab. 1, where our model achieves the best FID-V and FVD,
demonstrating superior generation quality and diversity. Since An-
imateDiff overfits to the training data, it get a lower Flow distance,
but suffers from the worst generation diversity. In summary, our
model achieves the best FVD and FID-V, while also ensuring a good
camera transfer accuracy compared to MotionCtrl.

4.3 Flexible Motion Control
Motion combination. In this section, we evaluate the additivity
of our disentangled camera motion attention maps. We employ the
extracted camera motions including zoom in, zoom out, pan left and
pan right in Sec. 4.2 and combine two of them into a new camera
motion by Eq.(4). The results are shown in Fig. 4. It can be seen that
when combining the zooming motions with the panning motions,

Table 1: Quantitative comparison results with the state-of-
the-art methods on FVD, FID-V and Optical Flow Distance.
Note that AnimateDiff+Lora [18] overfits to the training data,
thereby achieving the lowest flow distance. But FVD and FID-
V demonstrate its worst generation diversity. In contrast, our
model achieves the best FVD and FID-V, while also ensuring a
good camera transfer accuracy compared to MotionCtrl [40].

Data and Method Pan Right Zoom In
Data Scale Method FID-V ↓ FVD ↓ Flow Dis ↓ FID-V ↓ FVD ↓ Flow Dis ↓

One shot AnimateDiff 382.40 4956.42 19.76 482.58 6322.46 6.91
COMD (Ours) 54.45 921.95 37.92 61.45 863.24 12.11

Large Scale MotionCtrl 95.83 1207.52 38.18 80.58 935.08 13.12

(a) Comparison results on one-shot camera motion control.

Data and Method Pan Right Zoom In
Data Scale Method FID-V ↓ FVD ↓ Flow Dis ↓ FID-V ↓ FVD ↓ Flow Dis ↓

Few shot AnimateDiff 268.29 4629.08 14.76 251.44 3975.41 3.12
COMD (Ours) 61.38 1092.09 38.94 52.90 910.76 5.10

Large Scale MotionCtrl 98.04 1196.54 55.25 80.12 928.41 7.88

(b) Comparison results on few-shot camera motion control.

the camera zooms and pans at the same time, which demonstrates
that our model can successfully combine different kinds of camera
motions together while ensuring generation quality.

More professional camera motions. In this section, we show
more professional camera motions in the real film industry, includ-
ing variable-speed zoom and dolly zoom. For variable-speed zoom,
where the camera firstly zooms in fast and then zooms in slowly, we
crop a video clip from films with this kind of motion, and achieve
this motion control by one-shot camera motion disentanglement
(Sec. 3.2). For dolly zoom, where the camera in the background
region zooms while the camera in the foreground fixes, we em-
ploy the local content-preserving camera motion transfer method
(Sec. 3.4) to realize it. The results are shown in Fig. 5. It can be seen
that our model transfers the variable-speed zoom motion in the
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Motion 
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Figure 6: Ablation study on one-shot camera motion disen-
tanglement. The model without motion disentanglement
generated artifacts in the region of the moving rabbit.

given video well, and achieves good generation results in both dolly
zoom in and dolly zoom out motion controls.

4.4 Ablation Study
Ablation on one-shot camera motion disentanglement.We
first validate the effectiveness of our one-shot camera motion dis-
entanglement method. We compare our model with the ablated
version that directly transfers the temporal attention map from
the source video to the target video, which does not disentangle
the camera and object motions. The results are shown in Fig. 6. It

Prompt: A family of deer grazing peacefully in a meadow

COMD

COMD with
Average 
Attention

COMD w/o
Window

COMD w/o
Dimension 
Reduction

Zoom Out

Figure 7: Ablation study on few-shot camera motion disen-
tanglement. All the ablated models generate videos with un-
natural movements shown in the red boxes which are caused
by the inaccurate extracted camera motions.

can be seen that when transferring the pan right camera motion
entangled with the object motion of the moving rabbit, the model
without motion disentanglement tends to generate artifacts in the
region of the rabbit, which is clearer in the video of #Suppl.

Ablation on few-shot camera motion disentanglement.We
then validate the effectiveness of our few-shot camera motion dis-
entanglement method. We experiment on three ablated versions on
zoom-out camera motion: 1) COMD with Average Attention: the
model without DBSCAN clustering and directly averages the cam-
era motions from all the videos; 2) COMD w/o Window: the model
without the window-based clustering, which only uses the𝑚 pixels
at the same location for clustering; and 3) COMD w/o Dimension
Reduction: the model without t-SNE to reduce the dimension. The
comparison results are shown in Fig. 7. It can be seen that all the
ablated models generate unnatural movements shown in the red
boxes where certain objects abruptly appear or vanish, or suffer
from shape distortions. In contrast, our model achieves the highest
generation quality and transfers the camera motions correctly.

5 CONCLUSION
In this paper, we propose COMD, a training-free camera motion
transfer method based on camera-motion disentanglement. We find
that the temporal attention map in the video diffusion model is
composed of both camera motion and object motion. We then pro-
pose two methods to disentangle the camera motions from object
motions for a single or several videos. Moreover, with the extracted
camera motions, we further propose a camera motion combination
method to enable our model a more flexible and controllable camera
control. Extensive experiments demonstrate the superior camera
motion transfer ability of our model and show our great potential
in controllable video generation.
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