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Abstract

Large language models, initially pre-trained001
with a limited context length, can better handle002
longer texts by continuing training on a corpus003
with extended contexts. However, obtaining ef-004
fective long-context data is challenging due to005
the scarcity and uneven distribution of long doc-006
uments across different domains. To address007
this issue, we propose a Query-centric data008
synthesis method, abbreviated as Quest. Quest009
is an interpretable method based on the observa-010
tion that documents retrieved by similar queries011
are relevant but low-redundant, thus well-suited012
for synthesizing long-context data. The method013
is also scalable and capable of constructing014
large amounts of long-context data. Using015
Quest, we synthesize a long-context dataset016
up to 128k context length, significantly outper-017
forming other data synthesis methods on mul-018
tiple long-context benchmark datasets. In ad-019
dition, we further verify that the Quest method020
is predictable through scaling law experiments,021
making it a reliable solution for advancing long-022
context models.023

1 Introduction024

Large Language Models (LLMs) are pre-trained025

with pre-defined context lengths, and recent ad-026

vancements have highlighted the importance of ex-027

tending the context lengths. The LLaMA mod-028

els, for instance, have increased their context029

lengths from 2k (LLaMA) to 4k (LLaMA2) and 8k030

(LLaMA3) (Touvron et al., 2023a,b; Meta, 2024).031

LLMs with longer context lengths excel in han-032

dling complex tasks (Caciularu et al., 2023; Bairi033

et al., 2023; Mazumder and Liu, 2022). When fac-034

ing demands for very long contexts, such as 128k,035

a widely adopted method is to continue training036

LLMs with long-context data(Roziere et al., 2023;037

Xiong et al., 2023; Fu et al., 2024).038

To obtain long-context data, (Xiong et al., 2023;039

Fu et al., 2024) have filtered out long documents040

meeting the target context length, though these041

Figure 1: (Left) Distribution of long documents up to
128k in Pile. (Right) Distribution of 128k long-context
data synthesized by Quest.

documents often derive from a few specific do- 042

mains. As shown in Figure 1 (left), our analysis of 043

the widely used Pile corpus (Gao et al., 2020) re- 044

veals that long documents are mainly concentrated 045

in the Books3 dataset, leading to a skewed dis- 046

tribution that worsens with longer target contexts. 047

Previous studies (Guu et al., 2020; Levine et al., 048

2021; Shi et al., 2023) have suggested synthesiz- 049

ing long-context data by aggregating semantically 050

similar documents, such as concatenating a docu- 051

ment with its top k retrieved documents. However, 052

these methods often result in redundancy due to 053

similar sentences, especially in large-scale corpora, 054

reducing token prediction difficulty and context di- 055

versity, thereby weakening long-context modeling 056

effectiveness (see Section 6.2 for analysis). Thus, 057

there’s a pressing need for a method to effectively 058

aggregate relevant but low-redundant documents 059

for long-context data synthesis. Additionally, this 060

method must be highly scalable to construct large 061

datasets for continued training. 062

This paper proposes Quest, a Query-centric 063
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Figure 2: (1) Overview of Query-centric Data Synthesis (Quest) method. (2) Unlike the standard pre-training
strategy that randomly shuffled documents in the input context, Quest places relevant documents in the same context.

data synthesis approach, to construct scalable064

long-context data. We draw our inspiration from065

the fact that similar queries can aggregate rele-066

vant but non-redundant documents via search en-067

gines(Mallia et al., 2021; Babenko and Lempitsky,068

2014; Kaushik et al., 2004). However, although069

large amounts of queries can be crawled on the070

Internet, ensuring the diversity and quality of these071

queries remains challenging. Thus, we predict po-072

tential queries for each document through a genera-073

tive model. By controlling the generative sampling074

process, we balance diversity and quality. Specif-075

ically, Quest starts by using a lightweight query-076

prediction model (Raffel et al., 2020; Nogueira077

et al., 2019; Wu et al., 2022), to predict varied po-078

tential queries for each document. Documents shar-079

ing the same query are grouped as relevant, mimick-080

ing an inverse search process. Quest then clusters081

similar queries into coarse-grained keywords, akin082

to topics. Thus documents associated with similar083

queries are further indexed by the same keywords.084

Finally, Quest randomly samples from documents085

indexed by the same keywords and concatenates086

the selected documents to build long-context data.087

The scaling law has been extensively studied in088

pre-training (Kaplan et al., 2020; Henighan et al.,089

2020; Hoffmann et al., 2022; Alabdulmohsin et al.,090

2022; OpenAI, 2023; Bi et al., 2024; Su et al.,091

2024). However, the scaling law for synthesized092

long-context data remains unexplored, despite its093

importance for long-context modeling. Therefore,094

we further investigate the scaling laws of synthe-095

sized long-context data across various model scales096

using our Quest method. Through accurately mod-097

eling and curve-fitting training processes in smaller 098

settings, we expect to predict the training processes 099

on larger datasets. 100

Through extensive experiments, we show that 101

Quest significantly outperforms other data synthe- 102

sis methods on multiple long-context benchmarks 103

with context lengths ranging from 32k to 128k. 104

Applying the Quest method to state-of-the-art pre- 105

trained model LLaMA3 achieves impressive per- 106

formance on the widely used Needle-in-a-Haystack 107

task. Furthermore, scaling law experiments con- 108

firm the predictability of the Quest method, mak- 109

ing it a reliable solution for advancing long-context 110

models. 111

Our contributions are summarized as follows: 112

1. We propose a query-centric data synthesis 113

method to alleviate long-context data scarcity 114

and uneven domain distribution. 115

2. Extensive experiments on 32k and 128k con- 116

text lengths show that our method outperforms 117

existing approaches. 118

3. We investigate the scaling law of synthesized 119

long-context data and confirm the predictabil- 120

ity of our method. 121

2 Related Work 122

Long-Context Language Models The suc- 123

cess of LLMs has sparked interest in enabling these 124

models to process longer texts. Some works adapt 125

models for longer texts without additional training 126

by modifying position encoding. For example, Han 127

(Han et al., 2023) and Xiao (Xiao et al., 2023) ad- 128

just the attention matrix to generate long contexts, 129
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while Jin (Jin et al., 2024) compresses position130

encoding into the pre-trained range. Other works131

involve continued training for better performance.132

Xiong (Xiong et al., 2023) demonstrates that long-133

context capabilities can be acquired by continu-134

ally pre-training from short-context models. Chen135

(Chen et al., 2023b) uses position interpolation to136

change the distribution of position encoding, and137

Yen (Yen et al., 2024) proposes context expansion138

with parallel encoding. Advances have also been139

made using RoPE (Su et al., 2021), enabling LLMs140

to handle longer positions. PoSE (Zhu et al., 2023)141

employs skip-wise position indices, allowing posi-142

tion encoding to adapt to different lengths. How-143

ever, these approaches often overlook the scarcity144

and uneven distribution of long text data during145

continued training, relying on filtering long docu-146

ments from existing corpora (Xiong et al., 2023; Fu147

et al., 2024) or randomly splicing short documents148

to achieve a fixed length (Roziere et al., 2023; Chen149

et al., 2023c; Tworkowski et al., 2024; Chen et al.,150

2023a; Li et al., 2023).151

Data Synthesis and Augmentation for Long-152

Context Acquiring effective long-context data153

for training is challenging. Some previous retrieval-154

augmented pre-training works (Guu et al., 2020;155

Levine et al., 2021) can synthesize long-context156

data. Guu (Guu et al., 2020) clusters semantically157

similar texts within the same context window, while158

Levine (Levine et al., 2021) shows that incorporat-159

ing semantically related but non-adjacent sentences160

within the same pre-training example enhances sen-161

tence representations. Shi (Shi et al., 2023) uses a162

traveling salesman algorithm to address document163

redundancy in the kNN method. However, previ-164

ous data synthesis efforts were limited to context165

lengths of 8k or less, and the benefits of synthe-166

sizing longer data were unclear. This work uses167

various methods to synthesize texts up to 128k,168

demonstrating the effectiveness of Quest in synthe-169

sizing long-context data.170

Scaling Laws For a broad spectrum of factors171

x, scaling laws (Kaplan et al., 2020; Henighan et al.,172

2020; Hoffmann et al., 2022) indicate that their im-173

pact on the loss L of a pre-trained model follows174

a power law relationship. Here, x may represent175

model sizes, quantities of training data, or training176

steps, with parameters to be determined. Previ-177

ous research (Alabdulmohsin et al., 2022; OpenAI,178

2023; Bi et al., 2024; Su et al., 2024; Xiong et al.,179

2024) highlights the impressive predictive power180

of scaling laws. Notably, fitting this relationship to 181

a set of smaller models, training datasets, or com- 182

putational resources enables precise extrapolation 183

to predict the test loss for much larger cases across 184

several orders of magnitude. This capability allows 185

practitioners to estimate the performance of a pre- 186

trained large language model without incurring the 187

substantial cost of completing extensive training 188

runs. 189

3 Method 190

Algorithm 1 Query-centric Data Synthesis (Quest)
Method
Require: Dataset D = {di}, Context length L,

Split ratio r
Ensure: Training texts with context length L

1: Initialize lists Q and K
2: for each di ∈ D do
3: Q← Q ∪ doc2query(di)
4: end for
5: for each qi ∈ Q do
6: Ki ← {k ∈ Rake(qi) ∧ score(k) ≥ 3.0}
7: K ← K ∪ {random(Ki)}
8: end for
9: I ← {(ki, di) | di ∈ D}

10: Sort I by size and split: Is = {i ∈ I |
rank(i) ≤ r × |I|}, Il = I \ Is

11: for each training step do
12: Sample Ik ∈ Is ∪ Il (oversample Is)
13: T ← concat(sample(Ik)), |T | ≥ L
14: Train with T
15: end for

This section details our proposed Query-centric 191

Data Synthesis (Quest) method. Given a dataset 192

with diverse documents D = {di}, our goal is to 193

effectively aggregate relevant but low-redundant 194

documents for synthesizing training texts with a 195

context length of L. An overview of our approach 196

can refer to Figure 2. Quest mainly includes five 197

steps. First, a query {qi} is predicted for each doc- 198

ument {di} in the corpus. Next, a topic keyword 199

{ki} is extracted from each query. Thirdly, docu- 200

ments with the same keyword are grouped or in- 201

dexed together. Then, we split the keyword-based 202

inverted indexes according to the number of docu- 203

ments. During training, at each step, we perform 204

sampling without replacement for the documents 205

{ki} within a sampled index. The details of each 206

stage are provided below. 207
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1. Query Prediction: We utilize the open-208

source doc2query model(Nogueira et al.,209

2019) to predict queries {qi} for each doc-210

ument {di}. For texts that exceed the context211

length limit of the doc2query model, we seg-212

ment them into parts and generate a query for213

each segment. Consequently, for a document214

{di}, a list of queries Qi = {q1i , . . . , qni } is215

predicted.216

2. Keyword Extraction: We extract keywords217

from each query {qi} with an efficient tool,218

Rake1. For texts with multiple queries, Rake219

generates several lists of keywords Ki =220

{k1i , . . . , kni }. To ensure the quality of ex-221

tracted keywords, we adopt two filtering strate-222

gies. First, we filter out keywords with a Rake223

score below 3.0. Second, we remove frequent224

but non-informative keywords such as "fol-225

lowing sentence" or "best way" (see Appendix226

B.2 for details). Then, we randomly select one227

of the remaining keywords to serve as the rep-228

resentative keyword for the document.229

3. Building a Keyword-based Inverted Index:230

We can build a keyword-based inverted index231

I after we map each document to its represen-232

tative keyword. Documents with an identical233

representative keyword are indexed together.234

4. Indexes Split: We rank the keyword-based235

inverted indexes in ascending order based on236

the number of documents within each index237

and divide the sorted indexes into two sets.238

The top-ranked split_ratio% of the keyword-239

based inverted indexes are assigned to the240

short-index set Is, while the remainder is as-241

signed to the long-index set Il.242

5. Training Process: We perform sampling243

without replacement from the documents244

within a sampled index and concatenate the245

selected documents up to the model’s context246

length L for training. We oversample the short247

indexes to ensure that the number of tokens248

participating in training is evenly distributed249

between the short and long indexes.250

4 Experiments251

In this section, we first introduce the experimental252

settings (Section 4.1). Then we provide a detailed253

1https://pypi.org/project/rake-nltk

description of our baseline methods (Section 4.2) 254

and the experimental results (Section 4.3 and Sec- 255

tion 4.4). 256

4.1 Experimental Setup 257

We conduct continued training on Pythia(Biderman 258

et al., 2023) models of different scales, specifically 259

1.4B, 6.9B, and 12B. Pythia is a series of models 260

trained on the Pile(Gao et al., 2020) dataset, explic- 261

itly designed for research. Experiments conducted 262

with Pythia offer good reproducibility. 263

We apply the Quest method on Pythia’s pre- 264

training data, i.e., the Pile dataset, which does not 265

lead to domain transfer issues. Specifically, we 266

extract 30B tokens of keyword-indexed documents 267

from the 300B tokens of the original Pile dataset. 268

During training, we use the open-source frame- 269

work GPT-NeoX2 with a batch size of 4M tokens 270

for all settings. The AdamW optimizer(Loshchilov 271

and Hutter, 2017) with β1 = 0.9 and β2 = 0.95 pa- 272

rameters and a cosine learning rate schedule is em- 273

ployed. We also use Flash Attention2(Dao, 2023) 274

and ZeRO(Rajbhandari et al., 2020) to optimize 275

memory and performance. The learning rates are 276

5e−5 for the 1.4B model, 4e−5 for the 6.9B model, 277

and 2e−5 for the 12B model. For more details, see 278

Appendix B.1. 279

4.2 Baselines Methods 280

We compare the proposed Quest method with the 281

previous data synthesis methods: 282

1. Standard Method shuffles and concatenates 283

documents randomly in the input context and 284

has been the standard practice in pre-training 285

(Ouyang et al., 2022; Le Scao et al., 2023; 286

Touvron et al., 2023a). 287

2. kNN (Retrieval-augmented Language 288

Model Pre-training) (Guu et al., 2020; 289

Levine et al., 2021) places each document 290

along with the top k retrieved documents in 291

the same input context. 292

3. ICML(Shi et al., 2023) Method is a recently 293

proposed method that utilizes a traveling sales- 294

man algorithm to alleviate the document re- 295

dundancy problem in the kNN method by 296

ranking similarities and determining the opti- 297

mal training path. 298

2https://github.com/EleutherAI/gpt-neox
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Train&Test Model size Method Avg. Sgl. Multi. Sum. Few. Syn. Code.

32k 1.4B

Standard 20.94 19.24 17.46 20.65 26.75 2.04 36.41
KNN 19.97 17.26 13.01 22.97 24.16 2.33 39.22
ICLM 19.82 20.01 14.71 21.95 23.09 1.94 35.31
Quest 22.06 17.97 17.98 21.91 28.06 2.33 42.25

32k 6.9B

Standard 22.48 18.07 16.83 22.33 30.23 3.86 40.91
KNN 21.65 18.5 13.64 22.56 28.18 3.76 41.88
ICLM 20.86 17.82 15.34 22.35 25.86 1.21 41.15
Quest 23.23 19.21 14.13 22.45 30.14 2.96 50.55

32k 12B

Standard 24.85 22.18 21.94 22.30 32.05 3.78 43.73
KNN 22.95 20.55 20.48 23.51 29.19 2.47 37.44
ICLM 24.07 22.67 23.29 23.41 30.99 1.5 37.09
Quest 25.24 22.34 21.08 23.74 31.91 3.22 46.8

Table 1: Experimental results of models with 32k context length. For detailed results, please refer to Appendix C.

For implementing kNN, we utilize a product299

quantized inverted file (IVFPQ) FAISS index with300

a code size of 32 and 32,768 corresponding inverted301

lists. For ICLM, we follow the GitHub repository3302

to synthesize long-context data.303

4.3 Evaluation304

We evaluate four methods, including Quest and305

three baseline methods, with evaluation lengths306

ranging from 32k to 128k. To comprehensively307

compare Quest with baseline methods, the datasets308

from different evaluation tasks are divided into309

two categories: long-text benchmark and short-text310

benchmark.311

1. Long-text Benchmark: For 32k context312

length, we adopt the widely-used Long-313

bench(Bai et al., 2023) Benchmark, test-314

ing six task types: Single-document QA,315

Multi-document QA, Summarization, Few-316

shot learning, Synthetic, and Code comple-317

tion, totaling 17 datasets. For 128k con-318

text length, we focus on the widely-used319

Longbook QA task(Zhang et al., 2024), on320

which the pre-trained models perform reason-321

ably well without instruction tuning(Fu et al.,322

2024).323

2. Short-text Benchmark: To assess long-324

text models on short-text tasks, we select325

seven widely-used short-text datasets: Wino-326

Grande(Sakaguchi et al., 2021), PIQA(Bisk327

et al., 2020), Logiqa(Liu et al., 2020), Lam-328

bada (OpenAI)(Paperno et al., 2016), Hel-329

laSwag(Zellers et al., 2019), ARC-Easy, and330

ARC-Challenge(Clark et al., 2018).331

3https://github.com/swj0419/
in-context-pre-training

Train&Test Model size Method Longbook QA

128k 1.4B

Standard 9.94
KNN 10.36
ICLM 10.70
Quest 11.30

128k 6.9B

Standard 14.47
KNN 13.38
ICLM 14.92
Quest 17.95

128k 12B

Standard 17.81
KNN 16.42
ICLM 18.44
Quest 18.92

Table 2: Experimental results of models with 128k con-
text length.

Quest achieves the best performance under the 332

32k context length. Table 1 presents the compar- 333

ison results on the Longbench, showing that Quest 334

outperforms other methods across various model 335

sizes. The results indicate that KNN and ICLM 336

underperform the Standard method, likely due to 337

grouping textually similar documents, which leads 338

to redundancy in the context. To further analyze 339

the behavior of these methods with a 32k context 340

length, we use TSNE for visualization. Figure 3 341

(left) demonstrates that the Standard method results 342

in the most dispersed document clusters due to ran- 343

dom aggregation. In contrast, KNN and ICLM 344

methods show tightly clustered documents, while 345

Quest exhibits moderate aggregation. This sug- 346

gests that Quest minimizes document redundancy 347

within the extended context, aligning with its supe- 348

rior performance in the Longbench results. 349

Quest achieves the best performance under the 350

128k context length. To further assess the effi- 351

cacy of the Quest method in extended long-context 352

settings, we extend the context length to 128k and 353

evaluate the trained models on the Longbook QA 354

task. Table 2 shows that Quest consistently outper- 355

forms other methods across various model sizes. 356
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Figure 3: TSNE visualization of aggregated documents from different methods. See Appendix D for more examples.

Figure 3 (right) illustrates the distribution character-357

istics of documents aggregated by different meth-358

ods under the 128k context length. Quest continues359

to aggregate relevant but low-redundant documents360

within the 128k context. Additionally, ICLM iden-361

tifies a document-similarity-based pathway that,362

while not as effective as Quest, also reduces docu-363

ment redundancy and improves model performance364

compared to KNN. The standard method, which365

uses randomly sampled documents with no seman-366

tic relevance, performs poorly, with this weakness367

becoming more pronounced at 128k. Overall, the368

impressive performance of the Quest method under369

both 32k and 128k context lengths, along with the370

visualization results, demonstrates Quest’s supe-371

riority and scalability in synthesizing better long-372

context data.373

Quest retains good performance on short text.374

To verify how well Quest maintains model per-375

formance on short text tasks, we evaluate it on376

seven commonly reported tasks, as shown in Table377

3. Compared with the base model, the performance378

on short text evaluation remains after continued379

training with long context data derived from the380

Quest method. In contrast, other long-text synthe-381

sis methods result in varying degrees of degradation382

in short-text evaluation.383

4.4 Performance on the SOTA Model.384

To further verify the effectiveness of Quest, we con-385

tinue to experiment with the current state-of-the-art386

(SOTA) open-source model LLaMA3(Meta, 2024).387

We evaluate the LLaMA3-8B post-trained with388

the Quest method on the widely used Needle-in-a-389

Haystack task 4. As shown in Figure 4, our Quest-390

LLaMA3-8B achieves an accuracy of 97%, signif-391

icantly exceeding the highest accuracy (88% (Fu392

4https://github.com/gkamradt/LLMTest_NeedleInAHaystack

Figure 4: Performance on Needle-in-a-Haystack task.
The x-axis depicts the document’s length, termed the
"haystack," whereas the y-axis illustrates the position
of the "needle" (a brief sentence) within the document,
spanning from 1K to 128K tokens.

et al., 2024)) among the previous non-instruction- 393

tuned models on this task. In addition, we present 394

the results of our model on the Longbook QA task. 395

Table 4 shows that Quest-LLaMA achieves the 396

highest score among open-source models, further 397

narrowing the gap with GPT-4 Turbo under 128K 398

length setting. 399

5 Scaling Law of Synthesized 400

Long-context Data 401

To explore the scaling law of synthesized long- 402

context data, we vary the amount of training data 403

for different model sizes (1.4B, 6.9B, and 12B) 404
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Model Avg Win PIQA LogiQA LAMBADA Hella ARC-E ARC-C
Pythia 0.4830 0.5746 0.7095 0.2120 0.6163 0.4042 0.6048 0.2594
+ Standard 0.4802 0.5675 0.6975 0.2227 0.6507 0.3943 0.5821 0.2466
+ KNN 0.4769 0.5651 0.7089 0.2028 0.6480 0.3946 0.5737 0.2449
+ ICLM 0.4816 0.5785 0.7024 0.2120 0.6546 0.3941 0.5753 0.2543
+ Quest 0.4831 0.5691 0.7024 0.2304 0.6472 0.3961 0.5770 0.2594

Table 3: Short text performance comparison of different models on various tasks.

Method / Train Len Model size Longbook QA
LLaMA-3-8B 8k(Meta, 2024)♣ 8B 13.87
LongLoRA 100k(Chen et al., 2023c)♢ 7B 24.30
LongLoRA 64k(Chen et al., 2023c)♢ 13B 24.60
YaRN Mistral 128k(Peng et al., 2023)♢ 7B 26.30
Yi-9B-200K(AI et al., 2024)♣ 9B 30.35
LLaMA-2-7B-80K(Fu et al., 2024)♢ 7B 27.40
LLaMA-2-13B-64K(Fu et al., 2024)♢ 13B 31.10
GPT-4-Turbo-128k♢ - 37.40
Quest-LLaMA-3-8B-128k(ours) 8B 32.39

Table 4: Comparisons with the state-of-the-art long-
context pre-trained models on the Longbook QA task.
♢: results from (Fu et al., 2024);♣ results are evaluated
by ourselves.

under the 32k context length setting. Formally, we405

formulate the scaling law of the validation loss by406

studying different model sizes N and dataset sizes407

D:408

L(D) = α exp(−βD) + γ409

This formula applies to each model size, where410

{α, β, γ} are variables to be learned. In our experi-411

ments, each model is trained separately on datasets412

of different sizes: 250 million, 500 million, 1 bil-413

lion, 2 billion, and 4 billion tokens. Then, we fit a414

curve for each model size, showing the relationship415

between the data scaling and the validation loss at416

the end of each training, as shown in Figure 5.417

Furthermore, we verify the correctness of the418

learned scaling law formula under the data size419

of 8 billion. For each model size, we compare420

the relative error between the validation loss at the421

end of training with 8 billion data and its predicted422

counterpart via the learned scaling law. The relative423

error of the 1.4B model is 0.5%, the relative error424

of the 6.9B model is -0.5%, and the relative error425

of the 12B model is 0.4%. These negligible errors426

are a strong demonstration of the scalability and427

predictability of Quest’s data synthesis approach.428

6 Analysis429

This section provides an in-depth analysis of the430

Quest method. Considering the high computational431

cost of LLM experiments, our ablation experiments432

are performed under a 32k context length, 1.4B433

model size setting unless otherwise stated.434

Figure 5: Scaling law of synthesized long-context data
under different model sizes.

Figure 6: Performance trends during the training
progress using data synthesis methods.

6.1 Quest’s Advantage Gradually Expands 435

with Training Progress 436

This section studies the performance trends of the 437

training progress using data synthesized by the 438

Quest method. As shown in Figure 6, on the Long- 439

bench benchmark, the Quest method consistently 440

outperforms other data synthesis methods from 441

start to finish and exhibits superior evaluation per- 442

formance. Additionally, the training progress us- 443

ing the Quest method saturates significantly later. 444

In contrast, other methods generally reach perfor- 445

mance saturation within the first 40% of the train- 446

ing progress. These two distinct advantages further 447

demonstrate that the Quest method is a superior 448

long-context data synthesis approach compared to 449

the previous methods. 450
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Method Avg. Sgl. Multi. Sum. Few. Syn. Code.
Long document 21.11 19.77 15.15 22.11 24.81 2.46 41.84
Quest 22.06 17.97 17.98 21.91 28.06 2.33 42.25

Table 5: Performance comparison of using long document and Quest synthesized long-context data.

6.2 Quest Balances Document Similarity for451

Superior Performance452

To investigate the impact of document similarity453

within the same context on performance, we ran-454

domly sample contexts derived from different meth-455

ods and calculate the similarity between documents456

aggregated into the same context. As shown in457

Figure 7, we find that under different model size458

and context length settings, the performance of459

models shows a trend of first improving and then460

declining as similarity increases. This indicates461

that both irrelevant and highly similar document462

aggregations can lead to performance degradation463

in long-context modeling.464

6.3 Quest-Synthesized Long-context465

Outperforms Long Document466

Some long documents have already reached the467

target context length in the pre-training corpus.468

We compare the performance of using Quest-469

synthesized long-context data with using only long470

documents for training. Table 5 shows that us-471

ing Quest-synthesized long-context data achieves472

better results on Longbench than using only long473

documents. Long documents perform worse be-474

cause they only exist in a few domains, resulting475

in a skewed data distribution. The Quest method,476

on the other hand, can cover every domain, result-477

ing in more diverse synthesized long-context data478

and better performance in evaluation tasks. We479

also attempt further comparisons with a context480

length of 128k. However, long documents exceed-481

ing 128k in the Pile are rare and inadequate to482

support a fair comparison experiment. As the tar-483

get context length increases, the scarcity problem484

becomes more pronounced, highlighting the impor-485

tance of effective long-context synthesis methods.486

6.4 Impact of Split Ratio487

This section studies the impact of split_ratio, which488

controls the proportion of oversampled keyword-489

based inverted indexes. Figure 8 shows the per-490

formance changing trend with split_ratio increase.491

Experimental results indicate that overall perfor-492

mance follows a trend of initially growing and then493

declining with the increase in split_ratio. The pro-494

Figure 7: The trend of long-context performance as
the similarity of aggregated documents increases. All
results are normalized within the similarity range.

Figure 8: The performance changing trend with
split_ratio increase. For detailed results, please refer to
Appendix C.

portion of oversampled indexes between 10% and 495

30% yields the best results in average. This shows 496

that appropriate oversampling of the indexes with 497

fewer documents is beneficial to long-context mod- 498

eling, again illustrating the importance of balanced 499

data distribution for long-context capabilities. 500

7 Conclusion 501

In this paper, we introduce Quest, a novel 502

method for synthesizing scalable long-context 503

data by grouping and concatenating relevant but 504

low-redundant documents associated with similar 505

queries. This approach alleviates data scarcity and 506

uneven distribution in long-context data for improv- 507

ing the long-context modeling ability of pre-trained 508

models. Extensive experiments demonstrate that 509

Quest outperforms existing approaches across vari- 510

ous long-context benchmarks, proving it to be an 511

effective and reliable solution for advancing long- 512

context models. 513

8



8 Limitations514

While employing GPT-4(Achiam et al., 2023) for515

keyword generation could potentially enhance per-516

formance due to its proficiency in handling com-517

plex tasks, the computational requirements to pro-518

cess large datasets make this option impractical519

for our purposes. Consequently, we have opted520

for a more resource-efficient doc2query(Nogueira521

et al., 2019) model for query prediction and the522

Rake algorithm for keyword extraction. However,523

these methods introduce biases that may affect the524

diversity and quality of the outputs.525
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A Long-Context Data Distribution 783

Sources 784

The distribution of native long-context data is 785

uneven. As detailed in Section 1, the distribution 786

of long text sources is highly uneven. To address 787

this imbalance, we employed Quest to synthesize 788

long text data. Figure 9 illustrates the distribu- 789

tion of text sources before and after the applica- 790

tion of Quest. The implementation of Quest has 791

markedly increased the volume of data in domains 792

such as ArXiv, FreeLaw, OpenWebText2, Pile-CC, 793

and PhilPapers, where native data was previously 794

minimal or nonexistent. 795

B Implementation Details of Quest 796

B.1 Model Configuration 797

We present the model configuration in Table 6. 798

For the other baselines, we only altered the train- 799

ing dataset, keeping the model configuration un- 800

changed. 801

B.2 Filtering of Keywords 802

We used Rake for keyword extraction and found 803

many high-frequency but meaningless keywords. 804

Therefore, we maintained a list of stop words and 805

performed a keyword extraction on the generated 806

query to avoid selecting these stop words. Some of 807

the stop words are listed in Table 7. Moreover, to 808

enhance the quality of keyword extraction, we ap- 809

plied a post-processing step to clean the keywords 810

generated by the Rake algorithm. This involves re- 811

moving punctuation and filtering out keywords that 812

are either less than four characters in length or have 813

a score below three. This cleaning process ensures 814

that the extracted keywords are both meaningful 815

and relevant. 816

C 32K Longbench Results 817

We report the performance of Longbench on 17 En- 818

glish subtasks. Table 8 and Table 9 are the detailed 819

results of Table 1. Table 10 and Table 11 are the 820

detailed results of Figure 8. 821

D Examples of similarity visualizations. 822

We present more visualization results. Figure 823

10 shows the t-SNE visualization of documents 824

within a 32k context, while Figure 11 illustrates 825

documents within a 128k context. The Standard 826

method’s random concatenation of documents re- 827

sults in an overly dispersed distribution, disrupting 828
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32K 128K
model size 1.4B 6.9B 12B 1.4B 6.9B 12B
rotary-pct 0.25
rotary-emb-base 100000 5000000
β1 0.9
β2 0.95
eps 1e−8

lr 5e−5 4e−5 2e−5 5e−5 4e−5 2e−5

precision bfloat16
Zero_stage 1
gradient-clipping 1.0
weight-decay 0.1
lr-decay-style cosine
train-iters 1000
warmup-iters 200
seq-length 32768 131072
GPU-type H800
GPU-numbers 16 32 32 32 32 32
training-time 6.3h 14h 20.6h 9.5h 30h 39h

Table 6: Model Training Configuration

Figure 9: Comparison of the distribution of 128k documents before and after using Quest.

Column 1 Column 2 Column 3
best way get rid bad idea
good way main differences valid way

following sentence two sentences better way
mean passage mean following data

good idea best ways correct way
sentence mean next word following passage

part 1 current state following equation

Table 7: Stop Keywords

document relationships and leading to poorer per-829

formance. In a 32k context, ICLM causes excessive830

clustering due to shorter similarity-path lengths,831

mirroring a KNN-like distribution and impairing832

performance on the Longbench benchmark. How-833

ever, the 128k context allows ICLM to form longer834

similarity paths, dispersing document distribution835

and enhancing performance on the LongbookQA836

benchmark.837

Notably, Quest maintains an evenly dispersed838

document distribution in both contexts, underscor- 839

ing its superior performance on both benchmarks. 840

These findings indicate that overly dispersed or 841

concentrated document semantics can harm model 842

performance, while Quest improves performance 843

by clustering query-related documents, ensuring 844

relevance and avoiding redundancy. 845
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Figure 10: Visualizing Documents Comprising a 32k Context.

Figure 11: Visualizing Documents Comprising a 128k Context.
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Model Size Method Few-shot Learning Synthetic Tasks Code Completion
trec triviaqa samsum nq passage_count passage_retrieval_en lcc repobench-p

1.4B

Standard 32.29 19.99 24.75 29.95 2.47 1.62 33.66 39.16
KNN 33.50 17.13 21.88 24.13 1.09 3.58 37.69 40.75
ICLM 31.75 17.91 16.08 26.60 1.00 2.88 34.56 36.07
Quest 40.75 18.68 19.17 33.65 0.96 3.71 40.89 43.60

6.9B

Standard 38.75 22.38 23.06 36.72 2.97 4.75 41.17 40.66
KNN 35.83 24.29 16.54 36.07 2.69 4.83 42.86 40.89
ICLM 38.08 18.90 15.47 30.97 2.15 0.27 43.37 38.93
Quest 38.50 21.59 24.22 36.26 2.41 3.50 49.95 51.16

12B

Standard 39.25 26.87 26.97 35.12 3.12 4.44 42.03 45.43
KNN 39.42 21.64 20.22 35.46 2.11 2.83 36.62 38.25
ICLM 41.08 23.05 22.24 37.60 1.75 1.25 34.65 39.52
Quest 38.21 26.60 21.81 41.03 2.86 3.58 46.91 46.69

Table 8: Performance of different methods across various Longbench subtasks.

Model Size Method Single-Doc QA Multi-Doc QA Summarization
narrativeqa qasper multifieldqa_en hotpotqa 2wikimqa musique gov_report qmsum multi_news

1.4B

Standard 13.55 14.8 29.38 21.71 22.96 7.7 23.28 14.53 24.13
KNN 13.29 12.24 26.24 16.72 16.33 5.98 26.29 15.31 27.32
ICLM 14.66 15.79 29.59 16.56 20.13 7.44 25.28 14.33 26.25
Quest 12 12.77 29.14 21.63 24.7 7.62 25.53 14.35 25.86

6.9B

Standard 13.83 10.78 29.61 21.66 21.52 7.31 24.08 16.66 26.25
KNN 16.10 10.41 29.00 19.66 17.30 3.97 26.70 17.06 23.91
ICLM 14.62 10.65 28.19 19.48 20.44 6.11 26.08 16.41 24.56
Quest 17.77 8.63 31.23 19.46 17.60 5.33 26.69 16.11 24.56

12B

Standard 20.32 13.85 32.36 28.79 22.09 14.94 24.57 18.56 23.78
KNN 17.91 12.23 31.50 24.79 23.63 13.01 28.43 18.05 24.04
ICLM 20.33 16.84 30.84 31.92 23.83 14.11 28.01 18.97 23.24
Quest 19.12 14.17 33.72 27.53 21.76 13.94 28.22 19.33 23.68

Table 9: Performance of different methods across various Longbench subtasks.

Split Ratio (%) Few-shot Learning Synthetic Tasks Code Completion
trec triviaqa samsum nq passage_count passage_retrieval_en lcc repobench-p

0 33.46 21.94 22.50 29.30 1.48 2.50 32.29 37.06
10 39.21 23.39 21.47 30.44 1.07 3.77 33.96 39.11
30 36.75 18.06 27.06 27.85 0.89 3.50 33.74 38.32
50 36.17 22.02 24.29 31.60 1.64 4.69 32.28 37.00
70 33.83 19.17 25.58 27.13 1.81 3.67 29.78 35.66
90 32.33 21.23 26.34 23.98 2.41 2.60 30.81 34.52

100 33.46 21.94 22.50 29.30 1.48 2.50 32.29 37.06

Table 10: Performance Change with Split_Ratio across various Longbench subtasks.

Split Ratio (%) Single-Doc QA Multi-Doc QA Summarization
narrativeqa qasper multifieldqa_en hotpotqa 2wikimqa musique gov_report qmsum multi_news

0 12.41 13.13 27.87 20.05 16.65 8.05 24.57 15.50 22.64
10 13.79 16.22 27.15 18.38 18.74 9.11 26.72 15.01 22.69
30 14.04 17.19 27.77 20.39 20.70 7.87 26.20 14.94 23.99
50 13.31 13.92 27.80 18.69 21.84 7.14 24.70 15.12 23.18
70 11.32 14.34 28.37 17.85 22.21 9.20 25.18 14.89 24.35
90 13.18 18.30 29.68 19.71 21.14 7.14 24.06 15.09 23.51

100 12.41 13.13 27.87 20.05 16.65 8.05 24.57 15.50 22.64

Table 11: Performance Change with Split_Ratio across various Longbench subtasks.
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