
2023 IEEE International Conference on Bioinformatics and Biomedicine

979-8-3503-3748-8/23/$31.00 ©2023 IEEE

1132

MLLCD: A Meta Learning-based Method for Lung
Cancer Diagnosis Using Histopathology Images

1st Xiangjun Hu
Hainan University
Haikou, China

huxiangjun@hainanu.edu.cn

2nd Suixue Wang
Hainan University
Haikou, China

wangsuixue@hainanu.edu.cn
The co-first author

3rd Hang Li
Shenyang Normal University

Shenyang, China
lihang@synu.edu.cn

4th Qingchen Zhang
Hainan University
Haikou, China

Shenyang Normal University
Shenyang, China

zhangqingchen@hainanu.edu.cn
The corresponding author

Abstract—Lung cancer is a leading cause of death. An accurate
early lung cancer diagnosis can improve a patient’s survival
chances. Histopathological images are essential for cancer diag-
nosis. With the development of deep learning in the past decade,
many scholars have used deep learning to learn the features of
histopathological images and achieve lung cancer classification.
However, deep learning requires a large quantity of annotated
data to train the model to achieve a good classification effect, and
collecting many annotated pathological images is time-consuming
and expensive. Faced with the scarcity of pathological data, we
present a meta-learning method for lung cancer diagnosis (called
MLLCD). In detail, the MLLCD works in three steps. First, we
preprocess all data using the bilinear interpolation method and
then design the base learner which units a convolutional neural
network(CNN) and transformer to distill local features and global
features of pathology images with different resolutions. Finally,
we train and update the base learner with a model-agnostic meta-
learning (MAML) algorithm. Clinical Proteomic Tumor Analysis
Consortium (CPTAC) cancer patient data demonstrate that our
proposed model achieves the receiver operating characteristic
(ROC) values of 0.94 for lung cancer diagnosis.

Index Terms—MAML, CNN, transformer, lung cancer

I. INTRODUCTION

According to data from the World Health Organization
(WHO) [1] in 2020, approximately one-sixth of all deaths
worldwide are caused by cancer. Among all cancers, lung
cancer has the second highest number of new cases, accounting
for 11.4%, second only to breast cancer (11.7%). Moreover,
the largest number of people die from lung cancer (18%).
Cancer cells can undergo unrestricted proliferation and growth
and invade and infiltrate surrounding tissues, making treatment
challenging. Because lung cancer does not usually spread in
the early stages, early diagnosis can increase the chance of
cure, improve patient survival rate, reduce treatment time and
cost, and reduce the burden on medical resources. Thus, an
accurate early lung cancer diagnosis plays a crucial role.

Microscopic examination of histopathological slides is one
of the methods used to diagnose cancer [2]. Digitized patho-
logical images typically have high resolution. Doctors can ob-
serve and analyze subtle cytological features such as cell mor-
phology, karyotype, and intercellular relationships from high-
resolution pathological images that display the microstructure

of cells and tissues. However, the interpretation and analysis
of pathological images require doctors to have rich experience
and professional knowledge and consume considerable time
and manpower.

With the deepening development of deep learning in the
medical field, automated processing of pathological images
can predict whether patients have cancer, assisting doctors in
making faster and more accurate diagnoses. CNNs have be-
come one of the mainstream methods to realize intelligent di-
agnosis of lung cancer. As an important computing intelligence
technology, CNN focuses on local features of objects extracted
by several convolution layers and fully connected layers [3].
Moreover, pathological images are generally cut into smaller
patches for training because the size of pathological images is
millions of pixels. The segmented pathological image faces the
possibility of losing some cancer features. We are considering
using a transformer for learning the relationships between
words in the natural language processing field [4] to con-
nect all patches. In addition, it requires a large quantity of
training data to train a robust deep learning model. However,
insufficient pathological images and ultrahigh resolution can
easily lead to overfitting phenomenon in deep learning models,
affecting cancer diagnosis accuracy.

In this work, to increase the accuracy of diagnosing carci-
noma of the lungs, we propose a meta-learning method for
lung cancer dianosis (called MLLCD), which designs a new
base learners and applies MAML to obtain initial parameters
with strong generalization ability. Through this work, we make
the following contributions:

• We resize all pathology image data to the same size for
easy model training and testing and explore the base
learner of MAML.

• Our method demonstrates the ability of the meta-learning
algorithm MAML to accurately diagnose lung cancer in
a few-shots scenario.

• This work is the first to combine meta-learning and
transformers to apply tissue pathology slice data for
cancer diagnosis.

The remainder of the paper is organized as follows. The
related work about pathology image classification is retrospec-
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tively reviewed in Section 2. Section 3 describes the proposed
method. In Section 4, we describe the experiments. Finally,
we conclude with a discussion in Section 5.

II. RELATED WORK

Various cancer diagnosis methods for cancer pathological
images have been proposed over the years. Common methods
include CNNs and transformers, etc. For example, Chen et
al. [6] proposed a Dropconnect-based gastric histopathology
image detection model that used position-coded transformers
for high global detection performance. Chen et al. [8] intro-
duced a hierarchical image pyramid transformer method that
achieved differeft resolution image representations by two self-
supervised learning methods based on student-teacher knowl-
edge distillation. Wang et al. [9] diagnosed lung cancer sub-
types using multiple-omics data and pathological images. They
first constructed attention-based encoders for each modality to
extract important diagnostic features, then used a generative
adversarial network(GAN) to discover information of missing
modal samples, and finally utilized all features for lung cancer
diagnosis. Wang et al. [10] designed a deep learning ensemble
to classify four subtypes of gastric cancer by pathological
images.

In addition, many works study few-shot learning to improve
the generalization ability of models. Koohbanani et al. [5]
proposed a self-supervised CNN. When the available labelled
data are insufficient, their method utilized the contextual,
multi-resolution and semantic features of pathological images
for training, thereby improving the classification performance
of pathological images. Yang et al. [7] train a CNN to classify
multinomial patterns of lung cancer using pathological images.
Nair et al. [11] proposed a transfer learning model based on
Inception V3 to study the impact of resolution differences
on lung cancer prediction results. Chou et al. [12] compared
meta-learning, matching network and prototypical network.
The result showed that the preformence of meta learning is
better than other methods on cancer genomics data.

The above methods have made some progress in solving
the overfitting problem of model. However, only a few works
apply meta-learning to histopathological images. We apply
meta-learning and design the base learner to achieve the
diagnosis of lung cancer.

III. METHOD

We advance an MLLCD method for lung cancer diagnosis
via a transformer-based meta-learning framework (see Fig. 1).
This method contains three steps. First, we preprocess all
pathological images used for training and testing. Second, we
design the baseline network of MAML to extract features of
images. At last, we update the initial parameter by MAML.

A. Dataset Collection and Pre-processing

Our experiments focus on six CPTAC datasets: clear cell
renal cell carcinoma (CCRCC) [14], cutaneous melanoma
(CM) [15], lung squamous cell carcinoma (LSCC) [16], pan-
creatic ductal adenocarcinoma (PDA) [17], sarcomas (SAR),

and uterine corpus endometrial carcinoma(UCEC) [18]. We
download a total of 1200 pathology representing six distinct
types of cancer from https://www.cancerimagingarchive.net.
Each dataset contains two classes: malignant tumors and
nonmalignant tumors. Each cancer dataset is treated as a task.

Our preprocessing has four steps: pathology tiling, back-
ground removal and image resizing. (1) The pathology images
are acquired in many downsampling factors, namely 1.0×,
4.0×, 8.0× and so on. We crop all images into nonoverlapping
patches of the same size (1024× 1024) at the downsampling
factor of 1.0×. (2) Since many patches are the background,
which makes it difficult to extract useful features and increases
the model parameters, we set a pixel threshold to screen
out the background. The sum of the pixels of each patch is
calculated. if the sum is less than the threshold, the patch is
removed. Finally, we concatenate the remaining patches as a
new image. (3) The number of remaining patches varies for
each pathological image. The new images are resized by the
bilinear interpolation method.

B. Baseline Network

A baseline network is established as the base learner to
extract features of pathological images and classify malignant
tumors and normal tissues. First, we crop the input images into
patches of the same size (Wp×Hp×Cp, where Wp, Hp and Cp

are the width, height and channels of the patches, respectively).
Each input image can be cut into N patches. For extracting
patch features, we design a multilayer convolution neural
network (multi-CNN) including convolution layers, pooling
layers, activation function and full connected layers. Second,
similar to the vision transformer [13], we add a position
embedding for each patch embedding to record the location
information of the patch in the image. Then, we use several
transformer encoders(see Fig. 2) to extract global features
among patches, composed of multihead self-attention (MSA)
mechanism and feed-forward networks. Finally, the multilayer
perception (MLP) module is employed for classification.

C. Model Architecture

To improve the generalization ability of the baseline
network, we learn a learner by MAML. Assume T =
{T1, T2, . . . , Tn} is a set of tasks, Xi = [x1, x2, . . . , xm] is the
pathology image data of task Ti and Yi = [y1, y2, . . . , ym] ∈
{0 | 1}m is the label of X , where m is the number of images,
and yj = 0 denotes that image xj is abnormal and diagnosed
as cancer, yj = 1 is normal relative to abnormal, and Xi

and Yi are divided into a support set and a query set. The
MAML algorithm consists of meta-training stage and meta-
testing stage. Some tasks (CCRCC, CM, PDA, SAR, UCEC)
are used for meta-training, and the task on LSCC is for meta-
testing. In meta-training, there are three steps. Consider a
function fW parameterized by W . Our baseline network is
trained by a support set of a task Ti and the initial parameter
W are updated to Wi according to stochastic gradient descent
(SGD), as follows,
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Fig. 1: The flowchart of the base learner of MAML. It contains preprocessing and a baseline network. For the baseline network,
we firstly cut the input image and extract features of patchs by CNN. And secondly, global feaures of embedded patchs are
extracted by transformer.

Fig. 2: The framework of a transformer encoder.

Wi = W − λ∇WLTi
(fW ) i = 1, 2, 3, 4, 5 (1)

where λ is a learning rate for tasks, and L is a cross loss
function. The loss function L is designed as:

LTi
(fW ) =

∑
(xj ,yj)∈Ti

(yj log fW (xj)

+ (1− yj) log(1− fW (xj)))

(2)

Afterwards, we calculate the gradient of the model using
samples in a query of Ti for meta-updating. After training all
tasks, the initial parameter W is updated as follows,

W = W − η∇W

∑
Ti∈T

LTi(fWi)

= W − η
∂(LT1

(fW1
) + LT2

(fW2
) + · · ·+ LT5

(fW5
))

∂W

= W − η(
∂LT1(fW1)

∂W
+

∂LT2(fW2)

∂W
+ · · ·+ ∂LT5(fW5)

∂W
)

= W − η(
∂LT1

(fW1
)

∂W1
· ∂W1

∂W
+

∂LT2
(fW2

)

∂W2
· ∂W2

∂W

+ · · ·+ ∂LT5
(fW5

)

∂W5
· ∂W5

∂W
)

(3)
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where η is a hyperparameter for meta-updating. According to

(1),
∂Wi

∂W
is calculated as fallows,

∂Wi

∂W
= 1− λ ≈ 1 (4)

So, equation (3) is as fallows,

W = W − η(
∂LT1

(fW1
)

∂W1
+

∂LT2
(fW2

)

∂W2
+ · · ·+ ∂LT5

(fW5
)

∂W5
)

(5)
Equation (5) denotes that the gradient of all training tasks
can update the initial parameter W . After meta-training, our
method is validated on the LSCC task. We fine-tune our model
with a small number of lung cancer pathological images to
update the parameters so that the baseline network can rapidly
address the feature distribution of lung cancer data, thereby
improving lung cancer diagnostic accuracy.

Algorithm 1 Lung Cancer Diagnosis Algorithm

Require: T: A task set.
Require: λ, η: Two hyperparameters.
Require: EPOCHmeta: The number of meta updates,

EPOCHtask: The number of iterations updates for per
task.

1: Initialize Parameter W randomly.
2: for in EPOCHmeta do
3: Sample task Ti ∈ T.
4: for all Ti do
5: for in EPOCHtask do
6: Sample dataset Di to train the baseline network

and update W by (1) and (2).
7: Sample dataset D′

i to calculate gradient.
8: end for
9: end for

10: Meta update W by (5)
11: end for
12: Return a trained model.

IV. EXPERIMENTS

A. Experimental Setting
We implemented our method in PyTorch, version 2.0.0, and

Python 3.8 running it on a high-performance server with a
Compute Unified Device Architecture (CUDA) of 11.8. The
patch size was set to 256× 256. The hyperparameter λ in the
meta-training stage was set to 1e− 4, and the hyperparameter
η was set to 1e− 2. The batch size was 5, and EPOCHmeta

and EPOCHtask were 20 and 30, respectively. The setting
of the baseline network had 4 convolution layers, 3 fully
connected layers and activation function Gaussian error linear
unit (GELU) in the CNN module, 6 transformer encoders,
and 4 heads of MSA. We utilized three evaluation indicators:
Accuracy, Precision, Specificity and Sensitivity, calcu-
lated by true positive (TP), true negative (TN), false positive
(FP), false negative (FN).

B. Experimental Results
The MLLCD model was built based on a CNN and trans-

former encoders. To verify the impact of different K values
in few-shot learning on model performance, we conducted
independent testing on the dataset LSCC. First, we prepared
datasets with K values of 5, 10, and 20 for training. Then, we
evaluated the impact of different training sample quantities
K on model performance by drawing Receiver ROCs curves
(Fig. 3(a), 3(b) and 3(c), respectively). The corresponding
ROC values for diagnosing LSCC, both cancerous (also called
abnormal) and normal, were 0.94, 0.94 (see Fig. 3(a)). We also
observed that the performance of the 2-ways-10-shots and 2-
ways-20-shots setting were slightly better than 2-ways-5-shots
setting.

TABLE I: Performance On the Dataset

2-ways Evaluation indicators
K-shots Accuracy Precision Specificity Sensitivity
5-shots 85.00% 81.82% 90.00% 80.00%
10-shots 89.00% 89.00% 89.00% 89.00%
20-shots 90.50% 85.84% 97.00% 84.00%

In Table I and Fig. 3, the results indicated that our model can
effectively diagnose pathological images. They aslo showed
that the more image data used for training, the better the
diagnostic accuracy of the model. For lung cancer diagnosis,
the lower the missed rate of the model, the better; that is, of all
the samples diagnosed as normal, the more samples that were
truly normal, the better. If our model diagnosed cancer patients
as normal, the patients might miss the optimal treatment time.
As shown in Table I, the accuracy of our model was above
85.0%, and the sensitivity was above 80.0%. Therefore, our
method performed well.

In addition to analyzing the relationship between K-shots
and model performance, we also explored the impact of two
hyperparameters (λ, η) on model accuracy.

As Fig. 4 shows, the x-axis displayed the meta-update steps
of model parameters from 0 to 17, and the y-axis displayed
accuracy. In Fig. 4(a), for 5-shots, the model accuracy re-
mained at baseally 50.0%, indicating that the model had not
learned any useful information. For 10-shots and 20-shots, the
accuracy slightly improved after the seventh meta-update of
the parameters. For 50-shots, the accuracy began to improve
after the third parameter meta-update. We speculated that the
model could not capture effective feature information during
each task training due to the limited number of pathological
images used for training and the hyperparameters being too
small. In Fig. 4(b), for 5-shots, 10-shots and 20-shots, the
accuracy significantly improved after the first meta-update of
the parameters and gradually converged after the sixth meta-
update. The difference was that the model learned effective
meta-knowledge after the zero-parameters meta-updating. In
Fig. 5, we investigated the performance differences between
meta-learning and deep learning. The two models used the
same dataset LSCC, with 50 positive and 50 negative samples
each. For a meta-trained model, the new task required almost
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(a) ROC curves of 2-ways and 5-shots scenario.

(b) ROC curves of 2-ways and 10-shots scenario.

(c) ROC curves of 2-ways and 20-shots scenario.

Fig. 3: ROC curves of our model under different setting of
number of training samples on dataset LSCC.

(a) λ = 0.0001, η = 0.01

(b) λ = 0.01, η = 0.0001

Fig. 4: For different hyperparameter settings, the accuracy
curve changed with the meta update of model parameters.

no training to achieve good accuracy, while the deep learning
model improved its accuracy after the 17th parameters update.

Fig. 5: The accuracy curves of the meta learning model and
deep learning model for the same number of training times.

V. DISCUSSION AND CONCLUSION

In this work, we demonstrated that the proposed model can
effectively diagnose lung squamous cell carcinoma with good
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diagnostic performance (ROC=0.94) by using meta-learning-
based ensemble models for image analysis of histopathological
slides. Our method solved the problem that it is difficult
for models to learn features caused by insufficient medical
samples. In addition, we designed a base learner for MAML to
capture local and global features of ultrahigh-resolution tissue
pathology images.

To demonstrate the superiority of MAML over the baseline
network, we extracted lung cancer patient data from the
CPTAC database and conducted experiments under 2-ways
and 50-shots settings to evaluate accuracy. We demonstrated
that MAML outperforms the baseline networks and that meta
trained models achieve optimal results within several fine-
tuning steps.

However, our model also had some issues: we did not
account for the specificity of the cancerous areas in the
pathological images, increasing the training cost of the model
and affecting the learning of cancerous features. Another
drawback of our model is that the computational cost of model
training is high, and we did not compared it to other available
model architectures.

Overall, MLLCD is a promising framework based on meta-
learning. The promising results indicate that MLLCD can
effectively solve the problem of insufficient training data that
may occur in real-world clinical practice.
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