
Efficient Levenberg-Marquat for SLAM

Amir Belder∗
Technion and Reality Labs, Meta inc.

amirbelder@campus.technion.ac.il

Refael Vivanti
Reality Labs, Meta inc.
refaelv@meta.com

Abstract

The Levenberg-Marquardt optimization algorithm is widely used in many applica-
tions and is well-known for its use in Bundle Adjustment (BA), a common method
for solving localization and mapping problems. BA is an iterative process in which
a system of non-linear equations is solved using two optimization methods: Gauss-
Newton (GN), which requires considerable computational resources due to the
calculation of the Hessian, and Gradient Descent (GD). Both methods are weighted
by a damping factor, λ, which is heuristically chosen by the Levenberg-Marquardt
algorithm at each iteration. Each method is better suited to different parts of the
solving process. However, in the classic approach, the computationally expensive
GN is calculated in every iteration, even though it may not be necessary in all
cases. Therefore, we propose predicting in which iterations the GN calculation
can be skipped altogether by viewing the problem holistically and formulating it
as a Reinforcement Learning (RL) task, by extending a previous solution that also
predicts the value of λ. We demonstrate that our method reduces the time required
for BA convergence by an average of 12.5%.

1 Introduction

The Levenberg-Marquat (LM) optimization process (1; 2) is used in many applications, the main
being Bundle Adjustment (BA) which is a Simultaneous Localization And Mapping (SLAM) solving
method that is highly used in autonomous driving (3; 4; 5). The input consists of multiple 2D images
of a scene captured by a single camera from various viewpoints. From these images, a set of 2D
matches is derived. The objective is to determine the 3D positions of the objects and the camera’s
poses (both locations and orientations) during the capture, based on these 2D matches. See Fig.1
where the 3D locations appear in black and the camera’s poses form the trajectory in red.

BA occupies roughly 60%–80% of the execution time needed for the mapping (6). During each
iteration, the 3D locations and camera poses are initially assessed using two optimization techniques:
Gradient Descent (GD) and Gauss-Newton (GN), which are weighted according to a damping factor,
termed λ. Then, the determined locations of the objects are projected back into 2D using the assessed
poses to compute the projection error. The iterative process typically concludes (converges) when
the difference between these evaluated 2D projections and the original 2D matches falls below a
predefined threshold.

Two main factors influence the execution time: (1) the duration of a single iteration, which is mainly
affected by the Hessian’s calculation that GN entails; (2) the required number of iterations to reach
convergence, caused by inefficient choosing of λ.

In the classic approach, the Levenberg-Marquardt (LM) algorithm (2) sets the value of λ heuristically
on each iteration. λ’s value may change only by one of two specific constant factors between
consecutive iterations. This limits the the flexibility to effectively switch the optimization scheme
between GD and GN, even when it can be beneficial.

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Given a series of 2D images taken by a camera from different positions, the iterative
Bundle Adjustment (BA) process evaluates the 3D locations of the objects in the images (in black)
and the camera’s poses, as seen in the red trajectory. We propose a method to accelerate the process
by relinquishing calculating GN in iterations it is less required.

Some previous works focus on the first factor, and try to accelerate the Hessian’s calculation (4; 7),
while Belder et al. (8) address the second factor and reduce the number of required iteration by using
Reinforcement Learning (RL) to achieve a dynamic and efficient weighting between GN and GD.

Our key idea is to address both considerations by learning a dynamic value of λ whilst deciding
whether or not to use the GN on every iteration. We therefore extend Belder et al.’s (8) method to also
consider if GN should be calculated on each iteration. For completeness, we include the principals
of Belder et al’s (8) explanations of their method. As the choice of λ’s value and the use of GN on
each iteration may influence the solving for several iterations, we propose to view the process in a
holistic manner as a game similarly to (8). Thus, we employ a RL framework which determines both
λ’s value and whether or not to calculate the GN on every iteration.

RL problems are commonly represented by an agent and an environment, and are defined by actions,
states and rewards. Each time the agent preforms an action (a), the environment responds by
preforming a step according to that action and returns an observation (state s) and a reward (r). The
agent chooses its actions according to a stochastic policy π, which determines the probability to
choose each action in the action space. The state provides information about the environment, like
the estimation error in our case, while the reward encourages the agent to reach convergence. Value
functions (v) evaluate the sum of expected rewards, and are evaluated according to a specific policy,
i.e. vπ. The agent aims to maximize the sum of expected rewards, which is the key to handling
delayed and sparse rewards like the BA’s single and delayed convergence rate.

Our environment solves the BA problem and its step performs a single BA iteration. The agent’s
action is twofold, it both sets λ’s value like in (8) and determines if the GN should be used. The
reward is positive only on the iteration convergence is achieved and if it is not achieved the reward
is set as: iterationtime ∗ −1. Therefore, in every iteration convergence is not achieved the agent
gets a negative reward as a "fine". Moreover, the "fine" is higher when GN is used. As the agent
aims at maximizing the sum of the expected rewards, it is encouraged to find a valid solution (reach
convergence) within as little time as possible. This is the key of reaching an accurate solution faster.

We show that our method reduces the number of iterations required to achieve the BA convergence by
a factor of 5 on both KITTI (9) and BAL (10) benchmarks when compared to the classic approach,
thereby preserving (8)’s results. In addition, in 15% of the iterations GN was not used, leading to a
average reduction of 12.5% in the solving’s duration.

Hence our work makes the following contributions:

1. We propose a general and unified approach to improve LM’s efficiency by both reducing the
number of required iteration to reach a solution and reducing the average iteration’s duration
by relinquishing calculating GN whenever it is not required. Our approach is demonstrated
on BA solving, but may be applied to other LM applications.

2. We propose a network that utilizes this approach using Reinforcement Learning. We show
that it achieves a significant reduction in the running time. On the KITTI benchmark for

2

instance, a 1/5 of the iterations were required. Morevere, in 15% of the iterations GN was
not calculated, leading to an overall speedup of 3.

2 Related Work

Levenberg-Marquardt. This is a known optimization algorithm used in various application including
fitting transition curves, classification error reduction, SLAM and many more (8; 11; 12; 13; 14; 15;
7; 5; 6; 4; 16; 17).

Bundle Adjustment Acceleration. In recent years several works that accelerate BA were introduced
(8; 5; 6; 4; 16; 17). In (16; 17) Demmel et al. utilize fixed point approximations to accelerate the
solving. Tanaka et al. (6) try to replace the BA process entirely by splitting the solving into smaller
("local") parts, and solve each local part using a NN. Other methods focus on accelerating the time
of a single iteration. Huang et al. (7) use domain decomposition to split the solving into smaller
clusters. Both Zhou et al. (4) and Clark et al. (18) use a NN to calculate the Jacobian matrix. Unlike
these works, Belder et al. (8) focus on reducing the number of iterations of the BA solving. Our
approach extends (8)’s method and decreases the number of solving iterations while also diminishing
the average iteration’s duration by eliminating the calculation of the Hessian when it is unnecessary.

Soft Actor Critic (SAC). This is a RL framework that seeks to enhance the conventional RL goal of
maximizing rewards by incorporating a term for entropy maximization. This addition significantly
boosts exploration capabilities. In their work, Haarnoja et al. (19) show that SAC achieves fast and
stable convergence on various RL tasks.

3 Method

Levenberg-Marquat (LM) is a highly used optimization algorithm (1; 2) that is known for its use in
Bundle Adjustment (BA). Given a series of 2D images taken by a single camera, the BA iterative opti-
mization process aims at evaluating the camera’s poses and objects’ 3D locations. Two optimization
methods are used for the evaluation on each iteration: Gradient Descent (GD) and Gauss-Newton
(GN), that are weighted by a damping factor, λ.

In the classic approach, λ’s value is set by the LM algorithm and may change by one of two constant
factors between consecutive iterations. This may result in inefficient weighting of GD and GN and
consequently in a large number of iterations until convergence is achieved. Moreover, the GN is
computationally expensive and prolongs the time required for each iteration. As indicated in (8),
efficient BA solving entails efficient weighing between GD and GN, as each is better suited for
different parts of the solving. Therefore, GN might not be necessary in all iterations.

In their work Belder et al. (8) learned a dynamic value of λ, to dynamically weight the two
optimization methods in an efficient manner. Our key idea is to extend (8)’s method and to also
dynamically decide in which iterations to calculate the GN and in which not to. This is not straight-
forward as the BA’s convergence (or failure) is achieved only once at the very end of the solving
process, and since each choice of λ and GN calculation may affect the solving for several iterations.
Therefore, we are required to view the solving process as a whole. Hence, we view the BA process in
a holistic manner as a game as in (8).

Fortunately, Reinforcement Learning (RL) methods are designed to handle continuous processes, such
as the BA’s convergence, by viewing each process in holistic manner, that enables handling sparse
and delayed rewards. Hence, RL could be harnessed to learn the optimal value of λ and whether to
calculate GN on every iteration. Thus, we formulate the BA problem in RL terms by defining states,
actions and rewards. As our method is not limited by two constant factors between iterations, it
enables a dynamic and efficient weighting of GD and GN along the solving. This reduces the number
of iterations required for convergence. Moreover, not calculating GN on every iteration reduces the
average iteration’s duration time.

We use the Soft Actor Critic (SAC) RL framework, as it is stable and adjusted to continuous state
and action spaces like our problem entails (19). Our method consists of two main parts: (1) An
environment which solves a single BA iteration on each step; (2) A SAC agent that predicts the value
of λ and a binary value b that determines whether to use GN as its action; see Fig. 2(a).

3

(a) BA problem in RL terms (b) Soft-critic and Value network arch

Figure 2: RL method. (a) The SAC agent chooses λ’s value and b (a binary value for GN’s
calculation) as its action (a), and then the environment preforms a single BA iteration (step), where
GD and GN are weighted according to λ and b. The environment responds with: 1. a state (s) which
represents the estimation error of the BA’s iteration; 2. a reward (r) that represents the iteration’s
duration as a negative (in seconds), except for the iteration convergence is met, where r serves as
a positive convergence bonus. As the agent aims at maximizing the sum of expected rewards, it is
encouraged to choose λ and b in a manner that reduces the overall solving time. (b) The networks are
similar in structure: 3 Fully-Connected (FC) layers with RELU as the activation function, following
(20)’s implementation. The value network receives the state vector (dim 5X1) as input, while both
soft-critic networks networks receive the state and the action vectors (dim 5X3) as input.

Environment. Following (8), the environment solves a BA problem. On each step (BA iteration), the
environment receives λ and a binary value b that indicates whether GN should be calculated as an
action. It weighs the GD and GN according to them, estimates the 3D locations of the objects and
the camera poses, and then projects these locations into 2D according to the estimated poses. The
stopping criterion is met when the estimation error is smaller than a certain threshold.

The environment provides a reward (r) and an observation (state s) on each step (iteration). Let
zij be the ground truth pixel (match) in which key-point j appeared in image i. We model it as
a noised projection of 3D-point qj on camera ci with a w Gaussian projection noise, i.e zij =
Projection(ci, qj) + w. Let ĉi, q̂j be the current iteration’s estimated poses of the camera i and
location of 3D-point j accordingly, and let ẑij be the respective projection i.e ẑij = Proj(ĉi, q̂j).
Let ∆zij be the difference between the ground truth projection and the estimated projection, i.e.
∆zij = zij − ẑij . Let C,Q be all the estimated camera poses and all the estimated 3D locations
respectively. The estimation error is set as the sum of ∆zij , as follows:

Estimation error = ΣC
ciΣ

Q
qj ||⊀

−1/2∆zij ||2

BAobjective = argminCQ[Estimation error],
(1)

where ⊀ is the covariance matrix, and the state (s) is set as a vector of the 5 last consecutive errors, in
order to enable the agent to learn the influence of the choice of λ over a few iterations. This forms
the connection between the BA solving and the estimation error.

The reward (r) is set as the negative of the duration of each iteration (in seconds), apart from the
convergence iteration (terminal state) where the reward is set as positive. In standard RL problems
the agent is encouraged to maximize the sum of expected rewards:

Eπ =

∞∑
t=0

rt, rt = −timeBAitert [seconds], (2)

where rt is the reward at time step (iteration) t received according to policy π. In our case, the agent
is encouraged to minimize the overall processing time by reaching convergence, which indirectly
minimizes the number of iterations and the use of GN.

Soft Actor Critic (SAC). Following (8), our SAC framework consists of five networks that are
updated according to the known actor-critic iterative optimization scheme: (1) an actor policy
network that learns the actions; (2) two identical on-policy soft-critic networks, which evaluate the
value function and differ in a time-delay; (3) an off-policy value network that evaluates the value; (4)

4

Table 1: Average efficiency improvement. Our approach accelerated the solving process by
reducing number of iterations, similarly to (8), by a factor of 5. Moreover, it reduced the overall
solving’s duration in all cases by 12% − 13% more than (8). For fair comparison, all times are
reported on our hardware using the original implementation of each method.

Method dataset #Iterations Duration [sec]
Classic KITTI 75 340.0
(8) + classic KITTI 14 100.2

Ours + classic KITTI 15 88.1

Classic BAL 20 110.0
(8) + classic BAL 4 62.04

Ours + classic BAL 4 55.11

a target network that converges the values predicted by the on-policy and off-policy networks into a
single target value required for the actor-critic optimization.

As the action represents the values of λ and b, it influences the optimization process directly. Let x
be all the estimated camera’s poses and 3D locations in the BA problem, J be the Jacobin, H be the
Hessian, ∆z be a vector whose entries are ∆zij defined before, ⊀ be the covariance matrix, b be the
binary value that determines whether GN is calculated and λ be the damping factor. The optimization
step taken on each iteration to update x is defined as:

∆x = − 1

λ
J(x)T⊀−1∆z

Optimizationgradient = −(b ∗H + λI)∆x.
(3)

Following (20)’s implementation, both soft-critic, target and value networks have similar architecture,
as seen in Fig. 2(b). The value network gets only the state as input, while the two soft-critic networks
get both the state and the action. The target network gets the values (predictions) of the value network
and the chosen critic network and predicts a target (value) according to both on each iteration. The
policy network consists of four FC layers (dim 256), gets the state as input and predicts the next
action. The loss functions of all networks are set to MSE.

4 Experiments

Datasets. We utilize two common real-life large datasets for our experiments: KITTI (9) and
BAL (10), in which each scene may include tens of thousands of points.

Results. We compare our results to those of the classic BA approach with LM python implementa-
tion (2), and between Belder et al.’s (8) acceleration of the classic approach to our acceleration. The
stopping condition threshold was set to 10−6 for both datasets. All time measurements are reported
in seconds and all methods ran on the same hardware. Each of the reported times includes both the
approach’s set-up time and its BA solving time.

Table 1 compares our results on both KITTI and BAL datasets. In addition to reducing the number of
iterations required to reach convergence by factor of 5, similarly to (8)’s acceleration, our method
also reduces (8)’s solving duration by 12%− 13%. This is achieved by not calculating the Hessian
in 15% of the iterations. We note that all method had the same (100%) success rate. In terms of
accuracy, we compared the MSE between the final estimations coordinated and the ground truth
coordinates on the BAL (10) dataset, and got similar results (difference < 0.002) for all methods.

Limitations. When small BA problems which are commonly solved in a few iterations by the classic
approach are considered, we cannot improve them to the same extent as bigger BA problems. For
example, when 5 points and 5 camera poses are used, the classic approach reaches convergence
within 5 iterations on average, while our method and (8) required 4 iterations on average. Moreover,
GN was calculated in all iterations.

5

References
[1] F. D. Foresee and M. T. Hagan, “Gauss-newton approximation to bayesian learning,” in Proceedings of

international conference on neural networks (ICNN’97), vol. 3. IEEE, 1997, pp. 1930–1935.

[2] J. J. Moré, “The levenberg-marquardt algorithm: implementation and theory,” in Numerical analysis.
Springer, 1978, pp. 105–116.

[3] K. Ni, D. Steedly, and F. Dellaert, “Out-of-core bundle adjustment for large-scale 3d reconstruction,” in
2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007, pp. 1–8.

[4] L. Zhou, Z. Luo, M. Zhen, T. Shen, S. Li, Z. Huang, T. Fang, and L. Quan, “Stochastic bundle adjustment
for efficient and scalable 3d reconstruction,” in European Conference on Computer Vision, 2020, pp.
364–379.

[5] J. Ortiz, M. Pupilli, S. Leutenegger, and A. J. Davison, “Bundle adjustment on a graph processor,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2416–
2425.

[6] T. Tanaka, Y. Sasagawa, and T. Okatani, “Learning to bundle-adjust: A graph network approach to faster
optimization of bundle adjustment for vehicular slam,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 6250–6259.

[7] J. Huang, S. Huang, and M. Sun, “Deeplm: Large-scale nonlinear least squares on deep learning frameworks
using stochastic domain decomposition,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 10 308–10 317.

[8] A. Belder, R. Vivanti, and A. Tal, “A game of bundle adjustment - learning efficient convergence,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp.
8428–8437.

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International
Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[10] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment in the large,” in European
conference on computer vision. Springer, 2010, pp. 29–42.

[11] I. Khan, M. A. Z. Raja, M. Shoaib, P. Kumam, H. Alrabaiah, Z. Shah, and S. Islam, “Design of neural
network with levenberg-marquardt and bayesian regularization backpropagation for solving pantograph
delay differential equations,” IEEE Access, vol. 8, pp. 137 918–137 933, 2020.

[12] A. P. Piotrowski and J. J. Napiorkowski, “Optimizing neural networks for river flow forecasting–
evolutionary computation methods versus the levenberg–marquardt approach,” Journal of hydrology,
vol. 407, no. 1-4, pp. 12–27, 2011.

[13] R. Zhou, D. Wu, L. Fang, A. Xu, and X. Lou, “A levenberg–marquardt backpropagation neural network
for predicting forest growing stock based on the least-squares equation fitting parameters,” Forests, vol. 9,
no. 12, p. 757, 2018.

[14] J. Shawash and D. R. Selviah, “Real-time nonlinear parameter estimation using the levenberg–marquardt
algorithm on field programmable gate arrays,” IEEE Transactions on industrial electronics, vol. 60, no. 1,
pp. 170–176, 2012.

[15] Z. Song, F. Yang, P. Schonfeld, J. Li, and H. Pu, “Heuristic strategies of modified levenberg–marquardt
algorithm for fitting transition curves,” Journal of Surveying Engineering, vol. 146, no. 2, p. 04020001,
2020.

[16] N. Demmel, C. Sommer, D. Cremers, and V. Usenko, “Square root bundle adjustment for large-scale
reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 11 723–11 732.

[17] N. Demmel, D. Schubert, C. Sommer, D. Cremers, and V. Usenko, “Square root marginalization for sliding-
window bundle adjustment,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2021, pp. 13 260–13 268.

[18] R. Clark, M. Bloesch, J. Czarnowski, S. Leutenegger, and A. J. Davison, “Ls-net: Learning to solve
nonlinear least squares for monocular stereo,” CoRR, vol. abs/1809.02966, 2018. [Online]. Available:
http://arxiv.org/abs/1809.02966

[19] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel
et al., “Soft actor-critic algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[20] Z. Ding, “Popular-rl-algorithms,” https://github.com/quantumiracle/Popular-RL-Algorithms, 2019.

6

http://arxiv.org/abs/1809.02966
https://github.com/quantumiracle/Popular-RL-Algorithms

	Introduction
	Related Work
	Method
	Experiments

