
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL OVERLAPPING CLUSTERING: COST
FUNCTION, ALGORITHM AND SCALABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Overlap and hierarchy are two prevalent phenomena in clustering, and usually
coexist in a single system. There are several studies on each of them separately,
but it is unclear how to characterize and evaluate the hybrid structures yet. To
address this issue, we initiate the study of hierarchical overlapping clustering
on graphs by introducing a new cost function for it. We show the rationality of
our cost function via several intuitive properties, and develop an approximation
algorithm that achieves a provably constant approximation factor for its dual
version. Our algorithm is a recursive process of overlapping bipartition based
on local search, which makes a speed-up version of it extremely scalable. Our
experiments demonstrate that the speed-up algorithm has good performances in
both effectiveness and scalability on synthetic and real datasets.

1 INTRODUCTION

Clustering is a major task in data mining and has a wide range of applications in many areas. Two
fundamental categories of clustering have attracted in-depth study recently. The first is hierarchical
clustering (HC) which requires a recursive partitioning of a graph into smaller clusters to form a
cluster tree Dasgupta (2016); Li & Pan (2016); Cohen-Addad et al. (2019); Charikar & Chatziafratis
(2017); Moseley & Wang (2017); Naumov et al. (2021). The other is overlapping clustering (OC)
that allows data points to belong to multiple clusters Orecchia et al. (2022); Zhang et al. (2007);
Shen et al. (2009); Chen et al. (2010); Nicosia et al. (2009); Whang et al. (2016); Li et al. (2017);
Yang & Leskovec (2012a). These two structures are widely present in the real world, and the hybrid
structure of hierarchical overlapping clustering (HOC) that allows for the presence of overlaps
among hierarchical clusters better reflects real-world scenarios. For instance, in social networks, an
agent may belong to several different groups, which can form larger communities with overlapping
structures based on different themes. In cooperation networks, the coauthors of a paper can be thought
of as a small cluster, which may belong to more than one research area due to the topic. This hybrid
structure in fact poses a significant challenge to the study of clustering. There are many works for
HC and OC separately, but we lack research on HOC. In this paper, we address this problem.

We study HOC on graphs. Constructing a cost function is a common method for the research on HC
and OC. Similarly, a proper cost function is helpful to evaluate the quality of HOC, which transforms
the HOC problem to an optimization task. In this paper, we propose a new cost function for HOC,
and present an approximation algorithm for it in some reasonable condition. Our contributions are
summarized as follows:

(1) Cost function. We propose a cost function (Definition 2.8) that is the first one for HOC to our best
knowledge. The cost function is evaluated on overlapping clustering graphs, and can be unified with
Dasgupta’s cost function for HC trees in the specific case of non-overlap. We give a comprehensive
study on the rationality of this cost function from multiple perspectives such as examples, algorithms,
experiments, and a series of properties including compatibility (Property 2.11), additivity of nodes
(Property 2.12) and binary optimality (Property 2.13).

(2) Approximation algorithm. Based on our cost function, we formulate the primal and the
dual versions of HOC, respectively. We provide an a = 2

3
√
6
− Θ(1+ϵ

n)-approximation algorithm
(Algorithm 2) for the dual k-HOC problem, where k ∈ Z+ is an upper bound of key clusters
(explained in Definition 2.10). Our algorithm is a recursive process of overlapping bipartition in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

which the height of the overlapping clustering graph and the cluster number are both restricted to two.
We denote this simple case by 2-OC, which is the theme of recent study of Orecchia et al. (2022)
on OC. We show that our algorithm also achieves an approximation factor (1− a)(1 + dmax/davg)
for the primal 2-OC problem. Instead of the complicated “cut-matching and improve” approach in
Orecchia et al. (2022), our method for 2-OC takes a simple local search heuristic based on our cost
function, which makes our algorithm much more scalable.

(3) Effectiveness and scalability. We speed up our approximation algorithm by some simple
heuristics during local search, and verify its effectiveness and scalability by experiments. For
effectiveness, experimental results demonstrate that on random graph models with good clustering
structures, our algorithm is able to reconstruct the overlapping clusters. For scalability, benefiting
from our subtle design of cost function and simple local search process, on real datasets with around
one million vertices and three million edges, the runtime of our speed-up algorithm implemented
on a single laptop is less than 12 minutes, which is only around 20% of the runtime of the baseline
method that runs on a server.

1.1 RELATED WORK

Hierarchical graph clustering. The most popular cost function for HC is proposed by Dasgupta
(2016). Given a weighted graph G = (V,E,w) and a cluster tree T , Dasgupta’s cost is defined as

das_costT (G) =
∑
i,j∈E

wij |V (i ∨ j)|, (1)

where i∨ j denotes the least common ancestor (LCA) of i and j in T , and V (i∨ j) represents the set
of descendent leaf nodes under i ∨ j. On similarity-based graphs, optimization of HC trees can be
performed by minimizing Dasgupta’s objective. The intuition is that for a good clustering tree, the
edges with larger weights ought to be placed as far down from the root as possible, which makes the
number of leaves covered by its LCA on the HC tree as small as possible. Dasgupta also showed that
minimizing das_costT (G) and maximizing its dual das_costT (G) are both NP-hard.

Along this line of study, Dasgupta showed that recursive bipartition applying Arora’s seminal
algorithm for sparsest cut problem Arora et al. (2009) yields O(log1.5 n)-approximation, and it
was improved by Roy & Pokutta (2016) and Charikar & Chatziafratis (2017); Cohen-Addad et al.
(2019) to O(log n) and O(

√
log n), respectively. It is also known to be SSE-hard to achieve any

constant approximation factor for this objective Charikar & Chatziafratis (2017). Moseley and Wang
studied the dual of Dasgupta’s cost function and showed that the average linkage algorithm achieves
a (1/3)-approximation Moseley & Wang (2017). This factor has been improved by a series of
works to 0.336 Charikar et al. (2019), 0.4246 Ahmadian et al. (2019) and 0.585 Alon et al. (2020),
respectively. There are also some studies considering the problem of maximizing Dasgupta’s cost
function on dissimilarity-based graphs Cohen-Addad et al. (2019); Charikar et al. (2019); Rahgoshay
& Salavatipour (2021); Naumov et al. (2021).

Overlapping graph clustering. Newman and Girvan proposed modularity in 2004 Newman &
Girvan (2004), which was one of the most popular cost functions for flat non-overlap clustering.
Many researchers have extended modularity to the scope of OC. Nepusz et al. (2008) and Nicosia
et al. (2009) proposed the concept of belonging factor, which is used to represent the intensities of a
node and an edge belonging to a cluster. A function of the belonging factor was introduced to the
definition of modularity to make it applicable to OC, and a heuristic algorithm was proposed based
on maximizing OC modularity. Zhang et al. (2007), Shen et al. (2009) and Chen et al. (2010) also
proposed their own definitions of belonging factor and cost functions based on modularity. Inspired
by these works, our cost function also utilizes belonging factor for HOC.

On the worst-case guarantee analysis for OC, Khandekar et al. (2014) formulated it as the problem
that minimizes the maximum or the sum of conductances of overlapping clusters, with or without
a bounded number of clusters. They proposed the algorithms that achieve O(log n)-approximation
factors for the four kinds of versions, where n is the number of vertices. The techniques behind the
proof include the tree decompositions Räcke (2002; 2008); Harrelson et al. (2003) and a dynamic
programming. As claimed in their work, the complexity of the dynamic program hinders the
scalability of their methods.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Another representative work for OC is attributed to Orecchia et al. (2022), in which two cost
functions called ϵ-overlapping ratio-cut (ϵ-ORC) and λ-hybrid ratio-cut (λ-HCUT) respectively
are proposed for OC with two overlapping clusters. Both cost functions are designed based on
the ratio-cut objective, and treat the overlapping part of the two clusters as a penalty. Concretely,
given a graph G = (V,E,w, µ) with non-negative edge weights w, vertex measure µ, and two
overlapping clusters L and R of vertices, they define two ratio-cut-like measures to be qE [L,R] =
w(L\R,R\L)/min{µ(L), µ(R)} and qV [L,R] = µ(L∩R)/min{µ(L), µ(R)}. Then the ϵ-ORC
problem is defined to be the minimization of qE [L,R] under the condition that qV [L,R] ≤ ϵ, and the
λ-HCUT problem is the minimization of qE [L,R]+λqV [L,R]. These two problems are defined with
hyper-parameters, which restricts the applications and scalability of OC algorithms that solve them.
Moreover, since the edge weights w and vertex measure µ are usually derived from independent
systems and have different units, the linear combination of qE [L,R] and qV [L,R] in λ-HCUT is less
explainable. However, for both ϵ-ORC and λ-HCUT, Orecchia et al. (2022) gave a nearly-linear-time
O(log n)-approximation algorithms called cm + improve for both of them. cm + improve is
scalable to large graphs with tens of millions of edges, and is the main competitor in our experiments.

With regard to HOC, there is much less work. Only a few methods for dissimilarity-based vector data
are proposed. Some heuristics based on density criterion Jeantet et al. (2020) and cut metrics Gama
et al. (2018) are utilized during the clustering process. But no cost function and theoretical guarantee
have been developed yet, which is just what our work addresses.

2 A COST FUNCTION FOR HOC

In this section, we formulate our cost function for HOC. First of all, we briefly introduce the
underlying idea. HOC can be represented by a directed acyclic graph, called HOC graph, that is a
natural generalization of HC tree. Inspired by Dasgupta’s cost function for HC, we extend the LCA of
an edge to its minimal common ancestor set, and introduce the belonging factor to measure the degree
by which a node, a cluster, or an edge belongs to an ancestor. Intuitively, for a similarity-based graph,
a quality HOC graph should involve edges of heavy weights into clusters that are small and as far
down from the root of the HOC graph as possible. Overlapping is desirable when a node has strong
connections to more than one cluster simultaneously, in which case, the belonging factor allows to
suppress the cost contributed by the edges incident to the node. This is the crucial idea of our cost
function for HOC.

Preliminaries. An undirected weighted graph G = (V,E,w) is specified by a node set V , an edge
set E ⊆ {(u, v)|u, v ∈ V }, and a weight function w : E → R+. Let n = |V | and m = |E| represent
the number of nodes and the number of edges, respectively. The degree of a node u, denoted by du,
is the sum of weights of all edges incident to u, i.e., du =

∑
(u,v)∈E w(u, v). The induced subgraph

of G on the node set U is denoted by G[U]. For any A,B ⊆ V , let E(A) = {(u, v)|(u, v) ∈
E, u, v ∈ A}, E(A,B) = {(u, v)|(u, v) ∈ E, u ∈ A, v ∈ B}, w(A) =

∑
(u,v)∈E(A) w(u, v),

w(A,B) =
∑

(u,v)∈E(A,B) w(u, v). For a node v ∈ V,w(v,A) =
∑

a∈{a|a∈A,(v,a)∈E} w(v, a).
For any E0 ⊆ E, w(E0) =

∑
e∈E0

w(e).

Partial ordering relationship of two nodes N and N ′ on a directed acyclic graph D, denoted by
N ≤ N ′, means that N ′ is reachable from N , and we say that N and N ′ are comparable in this
case, and incomparable otherwise. An anti-chain L = {N1, N2, N3, ...} on D is a set of nodes of D
satisfying that any two nodes in L are incomparable. We define the width of an HOC graph to be the
length of the longest anti-chain that consists of non-leaf nodes. HC on graph G is represented by an
HC tree T . It has n leaf nodes corresponding to the nodes of G. For any internal node N on T , let
V (N) denote the set of leaf nodes in the subtree that treats N as the root. Let u ∨ v denote the LCA
of u and v on T . A weighted graph G = (V,E,w) is called a similarity-based graph if it satisfies
that the larger w(u, v) is, the more similar u and v are. The cost function for HOC discussed in this
paper is proposed for similarity-based graphs.
Definition 2.1 (hierarchical overlapping clustering graph). Given a graph G, a hierarchical overlap-
ping clustering graph (HOC graph) D on G is a directed acyclic graph that satisfies the following
three constraints: (1) There is only one node of D with out-degree of 0, referred to as the root node
and denoted by R. (2) There are n nodes of D with in-degree of 0, corresponding to all the nodes
in V , referred to as leaf nodes. (3) For each non-root node of D, its parent node set {N1, N2, ...},
which is the collection of nodes it points to directly, forms an anti-chain.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) The original graph G (b) HOC graph D1 (c) HOC graph D2 (d) HOC graph D3

Figure 1: An example of HOC graphs.

On an HOC graph, two nodes satisfying X ≤ Y means that V (X) is a subset of V (Y). Note that
we do not need the converse also holds, because although syntactically we have V (X) ⊆ V (Y),
semantically in practice, X and Y may have unrelated meanings from two different systems that are
organized by different mechanisms. HOC graph extends the concept of HC tree by allowing each
non-root node to have multiple parent nodes that are incomparable with each other. It is a canonical
representation for hierarchical set containment that a subset is only allowed to point to a minimal set
that contains it. If each non-root node has out-degree one, an HOC graph degenerates into an HC
tree. The distance dis(X,Y) is the length of the shortest path from X to Y . The height of D is the
maximum distance from any leaf to the root, denoted by hD = maxv∈V dis(v,R). For any node
N on D, Let N− denote the set of N ’s parent nodes and N− denote the set of N ’s children nodes.
Figure 1 demonstrates three HOC graphs of height 2 for a graph G that consists of two triangles
intersecting at a single node, in which D2 is an HC tree without overlap.
Definition 2.2 (minimal common ancestor set). The minimal common ancestor set for nodes u and v
in D is defined as Muv = {N |N ∈ D,u, v ∈ V (N), and ∀X ∈ N−, u /∈ X or v /∈ X}.

The term "minimal" in the above definition means that any child node of this common ancestor of
u and v is not a common ancestor, and thus cannot be further reduced. This is an extension of the
unique LCA on HC trees to multiple ones on HOC graphs. For convenience, when u, v are two
endpoints of an edge, we also say a common ancestor of this edge (u, v). As illustrated in D3 of
Figure 1, Mbc = {N1, N2}, Mae = {R}.
Then we introduce belonging factor that is a key ingredient of our cost function. We define two kinds
of belonging factors on an HOC graph D, node-to-node and edge-to-node belonging factors, that
are generalizations of those proposed by Nepusz et al. (2008) and Nicosia et al. (2009) for OC. The
belonging factor of node X (resp. edge (u, v)) to node Y represents the degree for which X (resp.
edge (u, v)) belongs to Y .
Definition 2.3 (node-to-node belonging factor). The node-to-node belonging factor of X to Y ,
denoted by αX,Y , is defined recursively. First, define the node-to-node belonging factor for each
parent-child node pair on D, whose value can be assigned freely as long as it satisfies the following
two constraints: (1) 0 ≤ αX,Y ≤ 1 for all X ∈ D and Y ∈ X−; (2)

∑
Y ∈X− αX,Y = 1 for each

non-root node X ∈ D. Second, for other relationships of X and Y , αX,Y is defined as

αX,Y =

∑

N∈X− αX,N · αN,Y X ≤ Y,X ̸= Y

1 X = Y

0 otherwise

(2)

To better understand the belonging factor, it is easy to verify that the above definition is equivalent
to the following plain one. For any two comparable nodes X ≤ Y , denote by PX,Y the set of
all paths from X to Y . For each path p = [p0, p1, ..., plen(p)] ∈ PX,Y , let p0 = X , plen(p) = Y ,
len(p) be the length of p. Then the node-to-node belonging factor αX,Y is defined as αX,Y =∑

p∈PX,Y

∏len(p)−1
i=0 αpi,pi+1 if X ≤ Y,X ̸= Y , and has the same values as Eq. (2) for the other

two cases. That is, αX,Y is the sum of the multiplication of all belonging factors of parent-child pairs
along each path from X to Y . The node-to-node belonging factor has some fundamental properties.
Property 2.4. If Y is the only parent node of X , then αX,Y = 1.
Property 2.5. The node-to-node belonging factor of any node to the root is 1, that is, αN,R =
1, ∀N ∈ D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Property 2.6. For two nodes X,Y of D where X is reachable to Y , if there is a node set S =
{N1, N2, ..., Nk} satisfying: (1) S is an anti-chain, (2) ∀N ∈ S,X ≤ N ≤ Y , (3) ∀N ∈ S, ∃p ∈
PX,Y , N ∈ p, (4) ∀p ∈ PX,Y , |p ∩ S| = 1. Then αX,Y =

∑
N∈S αX,N · αN,Y .

Property 2.4 unifies the HOC graph and the common HC tree. Property 2.5 coincides with the
common sense that any cluster and leaf belong totally to the root. Property 2.6 means that the
node-to-node belonging factor of X to its ancestor Y can be disassembled by a maximal anti-chain
between X and Y . The proofs of the above properties are provided in Appendix A.1. Based on
node-to-node belonging factor, edge-to-node belonging factor can be defined as follows.
Definition 2.7 (edge-to-node belonging factor). For an edge (u, v) in graph G, let X ∈Muv be one
of its minimal common ancestor. The edge-to-node belonging factor βX

(u,v) of (u, v) with respect to
X is defined as βX

(u,v) = fX
(u,v)/

∑
Y ∈Muv

fY
(u,v), where fX

(u,v) = αu,X · αv,X .

βX
(u,v) is normalized over all minimal common ancestors of (u, v) to guarantee that the mass of its

belonging factors sums up to 1 over all clusters that (u, v) belongs to. A natural option is the uniform
allocation to each parent. Formally, for a node X ∈ D,

αX,Y =

{
1

|X−| Y ∈ X−

0 Y /∈ X− (3)

We adapt this definition of belonging factor in Section 3. As illustrated in D1 of Figure 1, leaves c
has two minimal ancestors N1 and N2, for each of which has belonging factor 1/2, and all edges
in G belongs totally to N1 or N2. In D3, leaves b, c and d have both N1 and N2 as their minimal
ancestors with belonging factor 1/2 to each, and the edge-to-node belonging factors of (b, c) and
(c, d) to either N1 or N2 are 1/2. We also demonstrate another toy example in Appendix A.2.

Now, we are ready to introduce our HOC cost function based on the edge-to-node belonging factor.
Definition 2.8 (cost function for HOC). Given a graph G and an HOC graph D of G, the cost
function of D on G is defined as

HD(G) =
∑

(u,v)∈E

(
w(u, v) ·

∑
N∈Muv

βN
(u,v) · |V (N)|

)
.

The cost function contains two summations. The first is over all edges, and the second is over the
minimal common ancestors of the endpoints of corresponding edge. The cost contributed by each
edge is given by w(u, v)

∑
N∈Muv

βN
(u,v) · |V (N)|. Compared with Dasgupta’s cost function (1),

HD(G) generalizes it from HC to HOC by assigning a belonging factor for each minimal common
ancestor of each edge.
Definition 2.9 (HOC problem). The HOC problem on a similarity-based graph G is defined as
minD HD(G) under some proper constraints on the HOC graph D.

The intuition behind minimizing the cost function on similarity-based graphs is the same as Dasgupta’s
cost function das_cost, that is, to assign heavy edges to the clusters as small as possible. On an HOC
graph, this can be achieved by ensuring that the minimal common ancestors of these edges are as far
down from the root as possible.

As illustrated in Figure 1, according to Definition 2.8, the costs of D1, D2 and D3 are 18, 21 and
24, respectively. We provide the calculating process in Appendix A.3. We can see that D1 has the
smallest cost, which indicates that D1 is a more reasonable overlapping clustering graph than D2

and D3. Obviously, D1 is more consistent with our intuition. This instance also demonstrates that
introducing overlaps has the advantage of reducing the minimal common ancestors of edges, thereby
decreasing their costs (compare D2 to D1). On the other hand, this comes at the expense of increasing
the number of descendant leaf nodes of the ancestors. So, excessive overlap gets punished (compare
D1 to D3). Therefore, our cost function balances the two cases of non-overlap and excessive overlap.

Remark. Note that HOC is quite different from HC since it allows possibly an exponential number of
overlapping clusters without any restriction, and thus proper constraints on D are necessary. However,
we need to be very careful in formulating the constraints. In fact, there is a trivial solution that allows

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

two endpoints of each edge to form a cluster, which achieves the minimum cost 2w(E). Treating
two endpoints of each edge as a cluster is in fact an intuitive way for overlapping cluster settings, but
due to the large number of clusters, it is meaningless. This is quite different from the optimization
of Dasgupta’s cost function for HC. A natural restriction on HOC graphs may be on the number
of clusters. However, since an HOC graph has hierarchical clusters, we seek to have a meaningful
constraint on the cluster number. To this end, we utilize the width of an HOC graph, which is the
longest anti-chain on it.

Definition 2.10 (k-HOC problem). The k-HOC problem on a similarity-based graph G is defined as
minD HD(G) for which the width of the HOC graph D is at most k.

To better understand this problem, let us consider a non-overlapping HC tree first. Here, the width
means the largest number of bottom and smallest non-overlapping clusters that contain the leaves
directly. These can be considered as a set of key clusters that are closest to the leaves on the tree.
Similarly, on an HOC graph, since the longest anti-chain blockades all paths from leaves to the root,
the width measures intuitively the number of the incomparable key clusters that contain the leaves.

Moreover, we define k-OC problem to be the k-HOC problem in which we additionally restrict
the height of D at most 2, in which case HOC degrades to OC. A fundamental case is 2-OC that
allows only two overlapping clusters. 2-OC can be considered as a key ingredient of HOC with
multiple clusters since it could be a nice way to construct a k-HOC graph by recursively calling 2-OC
algorithm in a top-down fashion. In Section 3, our algorithm for k-HOC proceeds in this way.

Next, we give some fundamental properties of our HOC cost function, and prove them in Appendix
A.4.

Property 2.11 (compatibility). If D is restricted to be an HC tree, then HD(G) = das_costD(G) =∑
(u,v)∈E w(u, v) · |u ∨ v|.

Property 2.12 (additivity on nodes). For any node N on D, let ED
N denote the set of edges with N

as a minimal common ancestor, i.e., ED
N = {(u, v)|(u, v) ∈ E,N ∈Muv}. The HOC cost function

can be rewritten as: HD(G) =
∑

N∈D

(
|V (N)| ·

∑
(u,v)∈ED

N
w(u, v)βN

(u,v)

)
.

Property 2.13 (binary optimality). When the number of nodes of D is unbounded, there is an optimal
HOC graph that is binary, i.e., the number of children of each node is at most 2.

Property 2.11 indicates that our cost function for HOC can be unified with Dasgupta’s cost. That is,
under the constraint of hierarchical non-overlapping clustering, our cost function for HOC problem
degrades to Dasgupta’s objective whose optimization is NP-hard Dasgupta (2016). Property 2.12
provides an alternative interpretation of the cost function from another perspective, for which it can
be seen as the sum of costs associated with each node. Property 2.13 describes the structure of the
optimal HOC graph with unbounded number of nodes, and Dasgupta’s cost also has this property.

Primal and dual versions of HOC problem. Next, we introduce the primal and the dual ver-
sions of the HOC problem. Note that besides the trivial lower bound 2w(E) for minD HD(G),
we also have a trivial upper bound nw(E), since the size of any common ancestor of two
leaves on D is at most n. So, we define the primal HOC problem, denoted by k-HOC-P, to be
minD HD(G) as we have defined in Definition 2.9. We define the dual HOC problem, denoted
by k-HOC-D, to be maxD{nw(E) − HD(G)}, where by Definition 2.8, nw(E) − HD(G) =∑

(u,v)∈E

(
w(u, v) ·

∑
N∈Muv

βN
(u,v) · (n− |V (N)|)

)
. The solutions to primal and dual problems

achieve optima on the same HOC graph. Similarly, k-OC-P and k-OC-D denote the corresponding
version of OC problem, respectively.

3 AN ALGORITHM FOR k-HOC

In this section, we propose our algorithm for the k-HOC problem. We use the Equation (3) as the
node-to-node belonging factor. As mentioned earlier, we first study the fundamental case of 2-OC,
and then apply it to k-HOC. The 2-OC problem has its own interests.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.1 AN APPROXIMATION ALGORITHM FOR 2-OC

Cost functions for 2-OC. In the 2-OC setting, given a graph G = (V,E,w), we restrict the height
of the HOC graph to 2 and the number of children of the root R to 2. Suppose that two clusters
N1 = A ∪ B and N2 = C ∪ B overlap on B. Definition 2.8, the cost function of 2-OC-P can be
formulated as costprimal(A,B,C) = [w(A) + w(A,B)](|A| + |B|) + [w(B,C) + w(C)](|B| +
|C|) + (|A|+2|B|+|C|)w(B)

2 + w(A,C)n, and 2-OC-P can be formulated as

min
A,B,C⊆V

costprimal(A,B,C) (2-OC-P)

We also have the cost function costdual(A,B,C) = (w(A+B)− w(B)
2)|C|+(w(B+C)− w(B)

2)|A|
for 2-OC-D, and 2-OC-D can be formulated as

max
A,B,C⊆V

costdual(A,B,C) (2-OC-D)

The derivation processes of the forms of costprimal and costdual are presented in Appendix B.1. We
remark that although our cost functions for 2-OC look complicated, they are hyper-parameter free
and natural from the perspective of HOC, which is superior to the objective proposed by Orecchia
et al. (2022). Then we propose our algorithm for 2-OC.

Algorithm 1: Algorithm for 2-OC
Input: an undirected graph G = (V,E,w)
Output: node sets A,B and C for 2-OC

1 n← |V |, p← 1√
6
, x← p

1+2p ;
2 Define a new costtemp(A,B,C) = w(E)− w(A,C) + xw(B);
3 Divide arbitrarily V into three disjoint parts A, B, C satisfying |A| = |C| = pn,
|B| = (1− 2p)n, such that two endpoints of the edge with the largest weight are both in A;

4 repeat
5 Exchange any two nodes from different sets of A, B, C whenever costtemp can be amplified

by more than 1 + 1/ϵn2 times;
6 until get stuck;
7 return A, B, C.

Approximation algorithm for 2-OC. Algorithm 1 is a simple local search process for 2-OC.
It first defines a surrogate cost function costtemp(A,B,C) = w(E) − w(A,C) + xw(B), and
initializes A, B, C arbitrarily (e.g. a random initialization). After that, the nodes in A, B, C
exchange pairwisely on the condition that current cost can be amplified by 1 + 1/ϵn2 times, that
is, costtemp(A

′, B′, C ′) > (1 + ϵ
n2)costtemp(A,B,C), where A′, B′, C ′ are the node sets after

exchanging corresponding to A, B, C respectively. It doesn’t terminate until no pair of nodes meets
the exchange condition. For the worst-case guarantee, we have the following theorem.
Theorem 3.1. Algorithm 1 achieves an approximation factor a = 2

3
√
6
−Θ(1+ϵ

n) for 2-OC-D with
time complexity O(ϵ−1n4 logm) for any ϵ > 0.

The idea of the proof of Theorem 3.1 is as follows. Since nw(E) is a trivial upper bound on
the objective function, we only have to show that costdual ≥

(
2

3
√
6
−Θ(1+ϵ

n)
)
· nw(E). Since

Algorithm 1 fixes the sizes of A, B, C, we only need to build the relationship between w(E) and
edge weights of different parts in the objective function. A lower bound on the latter related to w(E)
(Inequality (11)) can be obtained by the three stuck exchange conditions when the iteration terminates.
The detailed proof of Theorem 3.1 is provided in Appendix B.2. Moreover, we have the following
proposition to demonstrate the tightness of our guarantee in some sense.

Proposition 3.2. There is an instance I whose optimal value OPT (I) =
(

2
3
√
6
−Θ(1n)

)
nw(E).

Proposition 3.2 implies that, if an approximation algorithm for 2-OC-D is designed based on the
upper bound nw(E) of costdual, the optimal approximation ratio cannot be better than 2

3
√
6
−Θ(1n).

The detailed proof of Proposition 3.2 is provided in Appendix B.3.

In Appendix B.4, we show that Algorithm 1 is also a good approximation algorithm for 2-OC-P.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 AN APPROXIMATION ALGORITHM FOR k-HOC

Now we turn to the k-HOC problem. We assume that k ≤ n for practical significance. Since the
width of the HOC graph is no more than k, we invoke the 2-OC algorithm k − 1 times to guarantee
this. We first construct a binary tree (excluding the leaves) for the internal nodes, and then merge
the identical ones that consists of the same set of leaves, while keeping all directed edges on them.
In each iteration, the splitting cluster is chosen greedily according to the relative benefit of cost.
Formally, we define ∆(X) = costdual(X)

|X|w(X) for the most bottom clusters X , where costdual(X) is the
dual cost obtained by the 2-OC algorithm on the subgraph induced by X . In each round, we choose
the X with the largest ∆(X) to split. This procedure is described as Algorithm 2.

Algorithm 2: Algorithm for k-HOC
Input: an undirected graph G = (V,E,w), an integer k ≤ n
Output: a k-HOC graph D

1 initialize D with all leaves pointing to the root r;
2 S ← {r};
3 repeat
4 Xmax ← argmaxX∈S{∆(X)};
5 Apply Algorithm 1 to the subgraph induced by Xmax and obtain two internal nodes XL, XR;
6 S = S \ {Xmax};
7 S = S ∪ {XL, XR};
8 Add XLandXR to D as Xmax’s left and right child, respectively, and redirect the leaves to

their corresponding parents;
9 until |S| = k;

10 Merge identical nodes in D into a single one while keeping all the connections on them;
11 Remove all redundant directed edges (X,Y) for which there is another path from X to Y in D;
12 return D.

Now we show that D output by Algorithm 2 is a legal k-HOC graph. By definition 2.1, we have to
show that the parents of any non-root node form an anti-chain, and the width of D is at most k. For
any node X , since we remove all the directed edges (X,Y) for which there is another path from X
to Y in D, X− is obviously an anti-chain. Since the 2-OC algorithm is called for at most k− 1 times,
the width of D before merging is at most k. Since merging does not increase the width, the final D is
a k-HOC graph. For the approximation guarantee, we have the following theorem.

Theorem 3.3. Algorithm 2 achieves an approximation factor 2
3
√
6
−Θ(1+ϵ

n) for the dual version of
the k-HOC problem.

To prove Theorem 3.3, we only have to show that the dual cost is at least that of Algorithm 1, which
is lower bounded by

(
2

3
√
6
−Θ(1+ϵ

n)
)
·nw(E). Then the approximation factor follows from the fact

that nw(E) upper bounds the dual cost of any HOC graph. We prove it formally in Appendix B.6.

Time complexity. The runtime of Algorithm 2 consists of three parts: the recursive division, merging
identical nodes and removing redundant edges. In the division step, it calls Algorithm 1 k times,
which takes O(kϵ−1n4 logm) time. In the node merging step, an efficient way of implementation
leverages bitmaps and sorting. The bitmap of each internal node indicates the membership of each
leaf, and its length is n. It is necessary to check whether O(k) bitmaps are the same, which takes
O(nk log k) time. In the edge removing step, a redundant edge (X,Y) can be decided by reversing it
and checking whether there is a cycle containing X and Y . This takes O((n+ k)2) time. Combining
the above three parts and noting that k ≤ n, the total runtime is O(kϵ−1n4 logm).

A speed-up version. Algorithms 2 and 1 have theoretical significance, but are not efficient enough in
practice. Moreover, the setting of fixed sizes of A, B and C in Algorithms 1 is too rigid to fit for
flexible scenarios. For scalability and practical application of our algorithm, we propose the speed-up
version (Algorithm 3) of Algorithm 1 and use it in Algorithm 2 to yield our speed-up algorithm for
k-HOC. Their effectiveness and scalability will be verified in Section 4. Two easy heuristics are
proposed for speed-up, and the pseudocode of Algorithm 3 is presented in Appendix B.7.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(1) Initialization based on ratio-cut Hagen & Kahng (1992): Instead of the random strategy for the
initial trisection, we use the spectral clustering algorithm RatioCut to split the node set into two
pieces, denoted by X,Y , let A = X , B = ∅, C = Y . Then the nodes move greedily among A, B,
and C instead of exchange.

(2) Batch migration: Starting from the initial A, B, C, calculate the variation of the cost for each
node when it moves to another set, and select a batch of γ|V | nodes (if any) with positive and the
largest variation of cost to move in one step UNTIL all nodes get stuck. In our experiment, we set
γ = 0.02. If this threshold is not reached, we just move all nodes that need to move.

4 EXPERIMENTS

In this section, we verify by experiments the effectiveness and scalability of the speed-up version of
Algorithm 2, which also demonstrates the validity of our cost function as well. All experiments were
performed on a computer equipped with a 2.3GHz quad-core Intel i5 processor with 8GB memory.
For the source codes and datasets, please refer to the supplementary materials.

Baseline. We include two baseline methods. The first one is OHC’20 proposed by Jeantet et al.
(2020), which is a density-based algorithm for HOC in an agglomerative bottom-up fashion. It works
only for dissimilarity-based vector data. To fit to graph clustering in our experiments, we feed to
OHC’20 as input the spectral embedding consisting of the top-k eigenvectors of the Laplacian matrix.
Since this method need to deal with all-pair distance, it cannot work on large graphs. The second
one is cm+ improve proposed by Orecchia et al. (2022), which is a nearly linear-time overlapping
bipartition algorithm with O(log n)-approximation. However, due to the version issue and complicate
organization of the source files, we are not able to compile correctly their codes published online. So
we compare our 2-OC algorithm with cm+ improve on the same datasets as Orecchia et al. (2022)
uses by moving their results to our table directly (Table 1, the last column).

Synthetic datasets. We use the overlapping stochastic block model (OSBM). OSBM is a generaliza-
tion of SBM such that the preset k clusters overlap. We modify it to preset two hierarchies by setting
the first level inter-link probability p1, the second level inter-link probability p2, and the intra-link
probability p3. We give its definition in Appendix C.1. We use NMI for OC Lancichinetti et al. (2009)
to evaluate our algorithm, and its formal definition is provided in Appendix C.2. Since such NMI is
only fit to non-hierarchical clusters, we evaluate our algorithm results on each level of HOC graph.

Real datasets. For a fair comparison, we adopt the real datasets on http://snap.stanford.
edu/data including Amazon, Youtube, and DBLP Yang & Leskovec (2012b) that are also used by
cm+ improve Orecchia et al. (2022). Because of lacking ground truth for HOC, we only evaluate
scalability on the real datasets.

Effectiveness. We demonstrate in Figure 2 the results on OSBM datasets with varying sizes. We
show the time, cost, and NMI of our k-HOC algorithm, and compare it with OHC’20, as well as the
non-overlapping version that sets B in Algorithm 1 empty and thus degrades to optimizing Dasgupta’s
cost. It can be observed that the runtime of our HOC algorithm that generates four overlapping
bottom clusters for dense graph of size 5000 is only around 80s, and that for sparse graph of size 105
is less than 15min. We do not show the results of OHC’20 for sparse graphs since it is not able to
terminate in one hour for a graph of size 104. The cost results indicate that our algorithm outperforms
OHC’20, and we have indeed gained benefits of cost from overlapping when compared with the
non-overlapping counterpart of Dasgupta’s cost. We evaluate NMI on the two hierarchies respectively.
For OHC’20, since it cannot restrict the hierarchy numbers, in each round of evaluation, we choose
the level that achieves the highest NMI compared with the ground truth. Most NMIs are above 0.9,
which demonstrates that our k-HOC algorithm achieves high accuracy in reconstructing hierarchical
overlapping clusters on each level. We also visualize a result in Appendix C.4.

Scalability. Figure 2 has demonstrated that our k-HOC algorithm has good scalability in synthetic
graphs. Next, we show in Table 1 the scalability of our algorithm for 2-OC on large real datasets.
It can be seen that the runtime of our algorithm on all the datasets is much shorter than that of the

9

http://snap.stanford.edu/data
http://snap.stanford.edu/data

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 2: The results of time, cost, and NMI. In each figure, the x-axis indicates the graph size. The
graphs in the first row are small and dense, while those in the second row are large and sparse. We
take k = 4 in OSBM, and in each cluster, the size ratio of overlapping to non-overlapping is 9:1. In
the fist row, p1 = 10−3, p2 = 5× 10−3, p3 = 0.5. In the second row, p1 = 10−4, p2 = 2× 10−4,
p3 = 5×10−3. Regard to the last two columns of NMI results, “level 1” is the first level that contains
the two high-level clusters, and “level 2” is the second one that contains the four low-level clusters.
Each point is calculated on average over 5 trials, and error bar indicates standard deviation.

baseline method cm+ improve 1. Especially, on Youtube dataset that has around one million nodes
and three million edges, the runtime of our speed-up algorithm implemented on a single personal
computer is less than 12 minutes, which is only around 20% of the runtime of cm+ improve that is
run on a server. Although Orecchia et al. (2022) showed that cm+ improve has nearly linear runtime,
which is built on the recent solid work Chen et al. (2022) that has provided a nearly linear-time
algorithm for the maximum-flow problem, they actually used the HIPR implementation Cherkassky
et al. (1994) with the push-labeled method for this. The advantage of our algorithm in efficiency
benefits from our new cost function and the simple local search strategy.

Table 1: Scalability performance on real datasets
dataset n m time cm time

Amazon 334863 925872 <3min 15-18min
Youtube 1134890 2987624 <12min 55-75min

DBLP-all 317080 1049866 <3min –
DBLP-cm 83114 409541 <21s 2-4min

5 CONCLUSIONS AND FUTURE WORK

Conclusions. In this paper, we study the problem of hierarchical overlapping clustering from the
aspects of cost function, algorithm and scalability. We propose a cost function and give some basic
properties. We provide an approximation algorithm that achieves constant factor for the dual version
of k-HOC problem. A speed-up version of our algorithm based on some easy heuristics during local
search has good performances in HOC reconstruction and good scalability.

Future work. There are many directions worth further study. The first is about approximation
algorithm for the primal k-HOC problem for k > 2. Although we know the complementary
relationship between the primal and the dual problems, the approximation guarantees are quite
different. The second is about variant versions of the HOC problem, e.g., having other constraints on
HOC graphs and alternative definitions of node-to-node and edge-to-node belonging factors. These
flexible settings may adapt to different application scenarios.

1The results in the last column of Table 1 are from Table 3 of the original paper Orecchia et al. (2022) whose
experimental operating environment includes a cluster of machines with 24 Cores (2x 24 core Intel Xeon Silver
4116 CPU @ 2.10GHz), 48 threads and 128GB RAM. In contrast, we have only used a personal computer.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sara Ahmadian, Vaggos Chatziafratis, Alessandro Epasto, Euiwoong Lee, Mohammad Mahdian,
Konstantin Makarychev, and Grigory Yaroslavtsev. Bisect and conquer: Hierarchical clustering
via max-uncut bisection. arXiv preprint arXiv:1912.06983, 2019.

Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue approximation.
In Conference on Learning Theory, pp. 153–162. PMLR, 2020.

Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 841–854. SIAM, 2017.

Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than average-
linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 2291–2304. SIAM, 2019.

Duanbing Chen, Mingsheng Shang, Zehua Lv, and Yan Fu. Detecting overlapping communities of
weighted networks via a local algorithm. Physica A: Statistical Mechanics and its Applications,
389(19):4177–4187, 2010.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pp. 612–623. IEEE, 2022. doi: 10.1109/FOCS54457.2022.00064. URL
https://doi.org/10.1109/FOCS54457.2022.00064.

Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory
and experimental evaluation. In Daniel Dominic Sleator (ed.), Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pp.
516–525. ACM/SIAM, 1994. URL http://dl.acm.org/citation.cfm?id=314464.
314638.

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM (JACM), 66(4):1–42, 2019.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
Forty-eighth Annual ACM Symposium on Theory of Computing, pp. 118–127, 2016.

Fernando Gama, Santiago Segarra, and Alejandro Ribeiro. Hierarchical overlapping clustering of
network data using cut metrics. IEEE Trans. Signal Inf. Process. over Networks, 4(2):392–406,
2018.

L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074–1085,
1992. doi: 10.1109/43.159993.

Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition to minimize
congestion. In Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 34–43. ACM, 2003.

Ian Jeantet, Zoltán Miklós, and David Gross-Amblard. Overlapping hierarchical clustering (OHC).
In IDA, volume 12080 of Lecture Notes in Computer Science, pp. 261–273. Springer, 2020.

Rohit Khandekar, Guy Kortsarz, and Vahab S. Mirrokni. On the advantage of overlapping clusters
for minimizing conductance. Algorithmica, 69(4):844–863, 2014.

Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

11

https://doi.org/10.1109/FOCS54457.2022.00064
http://dl.acm.org/citation.cfm?id=314464.314638
http://dl.acm.org/citation.cfm?id=314464.314638

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Angsheng Li and Yicheng Pan. Structural information and dynamical complexity of networks. IEEE
Transactions on Information Theory, 62(6):3290–3339, 2016.

Pan Li, Hoang Dau, Gregory Puleo, and Olgica Milenkovic. Motif clustering and overlapping
clustering for social network analysis. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pp. 1–9. IEEE, 2017.

Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Average
linkage, bisecting k-means, and local search. Advances in Neural Information Processing Systems,
30, 2017.

Stanislav Naumov, Grigory Yaroslavtsev, and Dmitrii Avdiukhin. Objective-based hierarchical
clustering of deep embedding vectors. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9055–9063, 2021.

Tamás Nepusz, Andrea Petróczi, László Négyessy, and Fülöp Bazsó. Fuzzy communities and the
concept of bridgeness in complex networks. Physical Review E, 77(1):016107, 2008.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

Vincenzo Nicosia, Giuseppe Mangioni, Vincenza Carchiolo, and Michele Malgeri. Extending the
definition of modularity to directed graphs with overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment, 2009(03):P03024, 2009.

Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar. Practical
almost-linear-time approximation algorithms for hybrid and overlapping graph clustering. In
International Conference on Machine Learning, pp. 17071–17093. PMLR, 2022.

Harald Räcke. Minimizing congestion in general networks. In Proceedings of the 43rd Symposium
on Foundations of Computer Science, pp. 43–52. IEEE Computer Society, 2002.

Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 255–264. ACM,
2008.

Mirmahdi Rahgoshay and Mohammad R Salavatipour. Hierarchical clustering: New bounds and
objective. arXiv preprint arXiv:2111.06863, 2021.

Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. Advances in Neural
Information Processing Systems, 29, 2016.

Huawei Shen, Xueqi Cheng, Kai Cai, and Mao-Bin Hu. Detect overlapping and hierarchical
community structure in networks. Physica A: Statistical Mechanics and its Applications, 388(8):
1706–1712, 2009.

Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. Overlapping community detec-
tion using neighborhood-inflated seed expansion. IEEE Transactions on Knowledge and Data
Engineering, 28(5):1272–1284, 2016.

Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping network
community detection. In 2012 IEEE 12th international conference on data mining, pp. 1170–1175.
IEEE, 2012a.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp. 1–8, 2012b.

Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics
and its Applications, 374(1):483–490, 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A SUPPLEMENT TO THE COST FUNCTION FOR HOC

In this section, we provide some supplements for our cost function for HOC.

A.1 PROOFS OF THE PROPERTIES OF BELONGING FACTOR

(1) Proof of Property 2.4

Proof. By the definition of α,
∑

Y ∈X− αX,Y = 1.

(2) Proof of Property 2.5

Proof. We prove it by induction. We group the nodes on an HOC graph by the distances from the root
R. Let P = {L1, L2, ...}, where Li = {v|dis(v,R) = i}. Then we prove the property by induction
on i. ∀N ∈ L1, since |N−| = 1, we have αN,R = 1. Suppose that ∀X ∈ Lk, αX,R = 1, then ∀N ∈
Lk+1, by the recursive definition of α, αN,R =

∑
X∈N− αN,X · αX,R =

∑
X∈N− αN,X = 1.

(3) Proof of Property 2.6

Proof. It can be verified directly by the definition of α.

αX,Y =
∑

p∈PX,Y

len(p)−1∏
i=0

αpi,pi+1

=
∑
N∈S

∑
p:|p∪N |=1

len(p)−1∏
i=0

αpi,pi+1

=
∑
N∈S

 ∑
p∈PX,N

len(p)−1∏
i=0

αpi,pi+1

 ∑
p∈PN,Y

len(p)−1∏
i=0

αpi,pi+1

=
∑
N∈S

αX,N · αN,Y

A.2 A TOY EXAMPLE OF BELONGING FACTOR

(a) Original graph: a path of 4
nodes.

(b) An HOC graph of the original
graph.

Figure 3: An illustration of HOC graph.

In order to better understand node-to-node and edge-to-node belonging factors, we give an example
in this section.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

As shown in Figure 3, graph G is a path of 4 nodes, and a possible HOC graph is shown in Figure (b).

Table 2 demonstrates the minimal common ancestor set of each leaf node pair. Table 3 shows the
node-to-node belonging factor of each child-to-parent node pair on the HOC graph, and those of any
others can be calculated by Definition 2.3. For example,

αb,N4 = αb,N1 · αN1,N4 + αb,N2 · αN2,N4 =
1

2
× 1 +

1

2
× 1

2
=

3

4
,

αb,N5 = αb,N2 · αN2,N5 =
1

2
× 1

2
=

1

4
.

Table 2: Minimal common ancestor set
node pair (u, v) (a, b) (a, c) (a, d) (b, c) (b, d) (c, d)

Muv {N1} {N2} {R} {N2} {N5} {N3}

Table 3: node-to-node belonging factor (child to parents)
node pair (X,Y) (a,N1) (b,N1) (b,N2) (c,N2) (c,N3) (d,N3)

αX,Y 1 1/2 1/2 1/2 1/2 1
node pair (X,Y) (N1, N4) (N2, N4) (N2, N5) (N3, N5) (N4, R) (N5, R)

αX,Y 1 1/2 1/2 1 1 1

We can also verify the properties of the node-to-node belonging factor. Here we only verify Property
2.6, and other properties can be easily verified. Let X = b, Y = N4, S = {N1, N2}. We can verify
that S satisfies all conditions of Property 2.6. Then

αb,N4
=
∑
N∈S

αb,N ∗ αN,N4
= αb,N1

· αN1,N4
+ αb,N2

· αN2,N4
=

3

4

Table 4: edge-to-node belonging factor
edge (u, v) minimum common ancestor N βN

(u,v)

(a, b) N1 1
(b, c) N2 1
(c, d) N3 1

Table 4 shows edge-to-node belonging factors of all edges and their minimum common ancestors.
Because every edge has only one minimum common ancestor, the edge-to-node belonging factor is 1.

A.3 COST CALCULATION FOR THE RUNNING EXAMPLE

For reading convenience, we demonstrate the example again.

(a) The original graph G (b) HOC graph D1 (c) HOC graph D2 (d) HOC graph D3

Figure 4: An example of HOC graphs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

In D1, all edges have only one minimal common ancestor, so the edge-to-node belonging factors of
them are 1. The graph contains 6 edges in all, and each minimal common ancestor has 3 descendant
leaf nodes, resulting in the cost HD1(G) = 6× 3 = 18.

D2 is not overlapping. For (a, b), (a, c), (b, c), their minimal common ancestor has 3 descendant
leaf nodes. For (d, e), the minimal common ancestor has 2 descendant leaf nodes. For (c, d), (c, e),
their minimal common ancestor has 5 descendant leaf nodes. All together, the cost HD2(G) =
3× 3 + 2 + 2× 5 = 21.

In D3, consider 6 terms separately corresponding to the 6 edges. Taking (b, c) as an example, it
has two minimal common ancestors. Due to symmetry, the edge-to-node belonging factors of (b, c)
regarding to both ancestors are 0.5. Therefore, the cost contributed by (b, c) is 0.5× 4+ 0.5× 4 = 4.
Thus, the cost HD3(G) = 1×4+1×4+(0.5×4+0.5×4)+(0.5×4+0.5×4)+1×4+1×4 = 24.

A.4 PROOFS OF PROPERTIES OF THE COST FUNCTION

(1) proof of Property 2.11 (compatibility)

Proof. When D is an HC tree, the minimal common ancestor of edge (u, v) is unique and
degenerates to the LCA on the HC tree, and the edge-to-node belonging factor is also 1.
Then, we get

HD(G) =
∑

(u,v)∈E

(
w(u, v)

∑
N∈Muv

βN
(u,v) · |V (N)|

)

=
∑

(u,v)∈E

w(u, v) · |u ∨ v|

= das_costD(G)

(2) Proof of Property 2.12 (additivity on nodes)

Proof.

HD(G) =
∑

(u,v)∈E

(
w(u, v)

∑
N∈Muv

βN
(u,v) · |V (N)|

)

=
∑
N∈D

|V (N)| ·
∑

(u,v)∈ED
N

w(u, v)βN
(u,v)

(3) Proof of Property 2.13 (binary optimality)

Proof. As shown in Figure 5, assume that (a) represents a local optimum of the optimal
solution D, where node N has three children: N1, N2, and N3. For any edge (u, v) treating
N as a minimal common ancestor, u and v cannot belong to any single cluster of N1, N2,
and N3 simultaneously, since otherwise, N would not be the minimal common ancestor for
them. Without loss of generality, let’s assume that u belongs to N1 and v belongs to N2 (or
N2 and N3).
Now, we construct a new node X as the parent of N1 and N2, resulting in the transformed
structure shown in (b). As a result, the minimal common ancestor for (u, v) becomes X .
We observe the following.
Since every path from u to N ′ passes through X and αX,N ′ = 1, we have αu,N =
αu,N ′ = αu,X . Since a path from v to N corresponds to a path from v to X , but v may
also belong to N3, we have αv,N ≥ αv,X . Therefore, βN (u, v) ≥ βX(u, v), indicating
that the edge-to-node belonging factor of (u, v) to X is less than or equal to its edge-
to-node belonging factor to N . Additionally, we have |X| < |V (N)|, implying that

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 5: Binary property proof graph

w(u, v)βX(u, v)|X| < w(u, v)βN (u, v)|V (N)|. This leads to a reduction in the cost
function associated with this term. It is important to note that the cost reduction holds true
for any edge treating N as a minimal common ancestor. Moreover, by Property 2.12, the
cost function can be expressed as

∑
N∈D |V (N)| ·

∑
(u,v)∈ED

N
w(u, v)βN

(u,v). The above
operation affects only the cost of a single node. For other nodes, the edge-to-node belonging
factor and the number of descendant leaf nodes remain unchanged, thus their values do not
change. As a result, the overall cost function decreases. In this way, we can transform any
case where a node has more than two children into a binary structure, resulting in a lower
cost function value. Therefore, when the number of nodes of D is unbounded, the binary
HOC graph constructed above is optimal.

B SUPPLEMENT TO THE ALGORITHMS

In this section, we provide some supplements to our algorithms.

B.1 PRIMAL AND DUAL PROBLEMS OF 2-OC

Following is the derivation process of the forms of costprimal and costdual for 2-OC.

min
D

HD(G) =
∑

(u,v)∈E

w(u, v)
∑

N∈Muv

βN
(u,v) · |V (N)|

=
∑

(u,v)∈E(A)

w(u, v)(|A|+ |B|) +
∑

(u,v)∈E(A,B)

w(u, v)(|A|+ |B|)

+
∑

(u,v)∈E(C)

w(u, v)(|B|+ |C|) +
∑

(u,v)∈E(B,C)

w(u, v)(|B|+ |C|)

+
∑

(u,v)∈E(B)

w(u, v)
(
βN1

(u,v) · (|A|+ |B|) + βN2

(u,v) · (|B|+ |C|)
)

+
∑

(u,v)∈E(A,C)

w(u, v)n

= w(A)(|A|+ |B|) + w(A,B)(|A|+ |B|)
+w(C)(|B|+ |C|) + w(B,C)(|B|+ |C|) + w(A,C)n

+
1

2
w(B)(|A|+ |B|+ |B|+ |C|)

= (w(A) + w(A,B))(|A|+ |B|) + (w(B,C) + w(C))(|B|+ |C|)

+w(B)
|A|+ 2|B|+ |C|

2
+ w(A,C)n

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Explanation of the derivation: We classify the edges into six parts, denoted by E(A), E(A,B),
E(B,C), E(C), E(B), E(A,C), and calculate the cost of each part separately. For (u, v) ∈
E(A), E(A,B), the only minimal common ancestor is N1, βN1

(u,v) = 1, |V (N1)| = |A|+ |B|. Simi-

larly, for (u, v) ∈ E(C), E(B,C), the only minimal common ancestor is N2, βN2

(u,v) = 1, |V (N2)| =
|B|+ |C|. For (u, v) ∈ E(B), the minimal common ancestors are N1, N2, and βN1

(u,v) = βN2

(u,v) =
1
2 .

For (u, v) ∈ E(A,C), the only minimal common ancestor is R, βR
(u,v) = 1, |V (R)| = n.

Observe that

|A|+ |B|, |B|+ |C|, |A|+ 2|B|+ |C|
2

< n

|A|+ |B|+ |C| = n

w(E) = w(A) + w(B) + w(C) + w(A,B) + w(B,C) + w(A,C)

A	+	B	= n−	C
B	+	C	= n−	A
A	+ 2	B	+	C

2
= n− |A|+ |C|

2

then we have

costprimal(A,B,C)

= (w(A) + w(A,B))(|A|+ |B|) + (w(B,C) + w(C))(|B|+ |C|)

+w(B)
|A|+ 2|B|+ |C|

2
+ w(A,C)n

= (w(A) + w(A,B))(n− |C|) + (w(B,C) + w(C))(n− |A|)

+w(B)(n− |A|+ |C|
2

) + w(A,C)n

= nw(E)−
(
w(A) + w(A,B) +

w(B)

2

)
|C| −

(
w(C) + w(B,C) +

w(B)

2

)
|A|

= nw(E)−
(
w(A+B)− w(B)

2

)
|C| −

(
w(B + C)− w(B)

2

)
|A|.

B.2 PROOF OF THEOREM 3.1

We prove Theorem 3.1 with two lemmas respectively.

Lemma B.1. The time complexity of Algorithm 1 is O(n
4 logm

ϵ).

Proof. Let wmax be the largest weight, then w(E) ≤ mwmax, xw(B) ≤ xmwmax, so costtemp =
w(E) − w(A,C) + xw(B) ≤ (1 + x)mwmax. Observe that the edge with the largest weight is
in A in the initial STATE, so costtemp ≥ wmax. Each cycle costtemp increases by 1 + ϵ

n2 times,

then the maximum number of cycles is log1+ ϵ
n2

((1 + x)mwmax/wmax) = O(n
2 logm

ϵ). The time

complexity is O(n
4 logm

ϵ).

Lemma B.2. The approximate ratio of Algorithm 1 is 2
3
√
6
−Θ(1+ϵ

n). That is, A, B, C output by
the algorithm satisfy

costdual ≥ (
2

3
√
6
−Θ(

1 + ϵ

n
))costdual(A

∗, B∗, C∗),

where A∗, B∗, C∗ are the optimal solution to 2-OC-P.

Proof. Considering the conditions satisfied by A,B,C at the time of termination, exchanging
the nodes in A,B or B,C or A,C at this time cannot make cost′temp(A

′, B′, C ′) > (1 +
ϵ
n2)costtemp(A,B,C), let costold = costtemp(A,B,C). In other words, if an exchange is per-
formed again (no matter which two nodes are exchanged), costtemp after the exchange is denoted by

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

costnew, so costnew ≤ (1+ ϵ
n2)costold. Define ∆ = costnew−costold, then we get ∆ ≤ ϵ

n2 costold.
The above conclusion should be true for the exchange process of any two nodes, and the algorithm
will terminate.

Figure 6: Schematic diagram of overlapping clustering dual problem

Before discussing the ∆ value for swapping any two nodes, let’s calculate some intermediate results
for later use. For a ∈ A, b ∈ B, c ∈ C, denote the sets after the swap as A′, B′, C ′, respectively.
Consider the following cases.

(1) Swap a and b: w(A′, C ′)−w(A,C) = w(b, C)−w(a,C), w(B′)−w(B) = w(a,B)−w(a, b)−
w(b, B).

(2) Swap b and c: w(A′, C ′) − w(A,C) = −w(c, A) + w(b, A), w(B′) − w(B) = −w(b, B) +
w(c,B)− w(b, c).

(3) Swap a and c: w(A′, C ′)− w(A,C) = −w(a,C)− w(c, A) + w(a,A) + w(c, C) + 2w(a, c),
w(B′)− w(B) = 0.

Note that ∆ = −(w(A′, C ′)−w(A,C)) + x(w(B′)−w(B)). Therefore, by substituting the above
equations, we can obtain the value of ∆ for each case.

Consider the memberships of the two exchanging nodes separately.

(1) For any a ∈ A, b ∈ B, exchanging a, b, we have ∆ = costnew−costold = −w(b, C)+w(a,C)+
x(w(a,B)− w(a, b)− w(b, B)) ≤ ϵ

n2 costold. Summing over all a, b, we have

−pnw(B,C) + (1− 2p)nw(A,C) + x ((1− 2p)nw(A,B)− w(A,B)− 2pnw(B))

≤ ϵ

n2
p(1− 2p)n2costold (4)

(2) For any b ∈ B, c ∈ C, exchanging b, c, by the symmetry of A,C, we have

−pnw(A,B) + (1− 2p)nw(A,C) + x((1− 2p)nw(B,C)− w(B,C)− 2pnw(B))

≤ ϵ

n2
p(1− 2p)n2costold (5)

(3) For any a ∈ A, c ∈ C, exchanging a, c, ∆ = w(a,C)+w(c, A)−w(a,A)−w(c, C)−2w(a, c) ≤
ϵ
n2 costold. Summing over all a, c, we have

pnw(A,C) + pnw(A,C)− 2pnw(A)− 2pnw(C)− 2w(A,C) ≤ ϵ

n2
p2n2costold

then

−w(A)− w(C) ≤ −pn− 1

pn
w(A,C) +

ϵp2costold
2pn

(6)

Summing up Inequalities (4) and (5), we get

((−p+ (1− 2p)x)n− x)w(A,B) + ((−p+ (1− 2p)x)n− x)w(B,C)− 4pxnw(B)

≤ (−2 + 4p)nw(A,C) + 2ϵp(1− 2p)costold (7)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Substituting x = p
1+2p into Inequality (7), we get

−4p2n+ p

1 + 2p
(w(A,B) + w(B,C) + w(B)) +

p

1 + 2p
w(B)

≤ (−2 + 4p)nw(A,C) + 2ϵp(1− 2p)costold (8)

Multiplying the coefficient 4p2n+p
1+2p on Inequality (6), we get

−4p2n+ p

1 + 2p
(w(A) + w(C)) ≤ −4p2n+ p

1 + 2p
· pn− 1

pn
w(A,C) +

4p2n+ p

1 + 2p
· ϵp

2costold
2pn

(9)

Summing up Inequalities (8) and (9), we have

−4p2n+ p

1 + 2p
w(E) +

p

1 + 2p
w(B) ≤

(
(−2 + 4p)n− 4p2n+ p

1 + 2p
· 2pn− 1

pn

)
w(A,C)

+2ϵp(1− 2p)costold +
4p2n+ p

1 + 2p
· ϵp

2costold
2pn

(10)

After removing w(B) on the left, we get

4p2n+ p

1 + 2p
w(E) ≥

(
(2− 4p)n+

4p2n+ p

1 + 2p
· 2pn− 1

pn

)
w(A,C)

− 2ϵp(1− 2p)costold −
4p2n+ p

1 + 2p
· ϵp

2costold
2pn

(11)

Focusing on w(A,C), we have

w(A,C) ≤
4p2n+p
1+2p

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

w(E) + 2ϵp(1− 2p)costold

+
4p2n+ p

1 + 2p
· ϵp

2costold
2pn

≤ 4p2n2 + pn

2n2 − 2pn− 1
w(E) +

2ϵp(1− 2p)(1 + x)

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

w(E)

+

4p2n+p
1+2p ·

ϵp2(1+x)
2pn

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

w(E)

≤ 4p2n2 + pn

2n2 − 2pn− 1
w(E) +

2ϵp(1− 2p) · 1+3p
1+2p

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

w(E)

+

4p2n+p
1+2p ·

ϵp2

2pn ·
1+3p
1+2p

(2− 4p)n+ 4p2n+p
1+2p ·

2pn−1
pn

w(E)

≤ 4p2n2 + pn

2n2 − 2pn− 1
w(E) +

2np(−6p2 + p+ 1)ϵ

2n2 − 2np− 1
w(E)

+
p2(4np+ 1)(3p+ 1)ϵ

2(2p+ 1)(2n2 − 2np− 1)
w(E)

≤
(
2p2 +Θ(

1

n
))w(E) + Θ(

ϵ

n

)
w(E)

=

(
2p2 +Θ(

1 + ϵ

n
)

)
w(E) (12)

So
w(E)− w(A,C) ≥ (1− 2p2 −Θ(

1 + ϵ

n
))w(E).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

At last,

costdual(A,B,C) =

(
w(A+B)− w(B)

2

)
|C|+

(
w(B + C)− w(B)

2

)
|A|

= (w(A+B) + w(B + C)− w(B))pn

= (w(E)− w(A,C))pn

≥
(
1− 2p2 −Θ(

1 + ϵ

n
)

)
w(E)pn

=

(
−2p3 + p−Θ(

1 + ϵ

n
)

)
nw(E)

≥
(
−2p3 + p−Θ(

1 + ϵ

n
)

)
costdual(A

∗, B∗, C∗) (13)

The fact costdual ≤ nw(E) is used here.

Letting p = 1√
6

and substitute it into Inequality (13), we can get

costdual(A,B,C) ≥
(

2

3
√
6
−Θ(

1 + ϵ

n
)

)
costdual(A

∗, B∗, C∗) (14)

Remarks: We have a rounding error in costdual(A,B,C) incurred by setting |A|, |B|, |C| to be
integers in the above proof. But because the error is a constant multiple of w(E) due to the constant
errors incurred by each of |A|, |B|, |C|, it can be absorbed safely in ϵ.

By Lemma B.1, B.2, Theorem 3.1 follows.

B.3 PROOF OF PROPOSITION 3.2

Proof. We give an example satisfying that OPT = (2
3
√
6
−Θ(1n))nw(E).

Consider a complete graph with n nodes, and study its optimal solution for OC-D. Consider any
A,B,C, let x = |A|, y = |B|, z = |C|. Let

f(x, y, z) = costdual(A,B,C) =

(
x(x− 1)

2
+ xy +

y(y − 1)

4

)
z+

(
z(z − 1)

2
+ yz +

y(y − 1)

4

)
x,

and our goal is maxx,y,z∈Z+,x+y+z=n f(x, y, z).

First prove that f(x, y, z) takes the maximum value when x = y.

Consider (x, y, z)→
(
x+z
2 , y, x+z

2

)
, then we have

f

(
x+ z

2
, y,

x+ z

2

)
− f(x, y, z)

=
x+ z

2

(
x+ z

2

(
x+ z

2
− 1

)
+ (x+ z)y +

y(y − 1)

2

)
− x+ z

2

y(y − 1)

2

−2xyz − xz(x+ z − 2)

2

=
x+ z − 2

2

(
(x+ z)2 − 4xz

4

)
+

(x+ z)2 − 4xz

2
y

≥ 0

indicating that when y is given, f gets maximum when x = z.

So the problem is transformed into maxx,y∈Z+,2x+y=n g(x, y) =
(
(x− 1)x+ 2xy + y(y−1)

2

)
x,

and is further transformed into

max
0<x<n

2

h(x) =

(
(x− 1)x+ 2x(n− 2x) +

(n− 2x)(n− 2x− 1)

2

)
x

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Then we have

h(x) =

(
(x− 1)x+ (n− 2x)

n− 1 + 2x

2

)
x

=

(
(x− 1)x+

n2 − 4x2 − (n− 2x)

2

)
x

h
′
(x) = −3x2 +

n2 − n

2

So, h(x) gets the maximum value at x =
√

n2−n
6 . For the optimal solution value, then we have

cost∗dual = −
n2 − n

6

√
n2 − n

6
+

n2 − n

2

√
n2 − n

6

=
n2 − n

3

√
n2 − n

6

Finally, notice that nw(E) = n · n(n−1)
2 = n3−n2

2 . Then we have

cost∗dual
nw(E)

=

n2−n
3

√
n2−n

6

n3−n2

2

=
2

3

√
n2 − n

6n2

=
2

3
√
6

√
n2 − n+ n− n

n

=
2

3
√
6
− 2

3
√
6

n−
√
n2 − n

n

=
2

3
√
6
− 2

3
√
6

n

n(n+
√
n2 + n)

=
2

3
√
6
− 2

3
√
6

1

n+
√
n2 + n

=
2

3
√
6
− ϵ

where ϵ = Θ
(
1
n

)
.

It can be observed that, for a complete graph, its relationship with nw(E) is exactly the approximate
ratio of Algorithm 1.

B.4 APPROXIMATION GUARANTEE FOR 2-OC-P

In the section, we show that Algorithm 1 is actually a good approximation algorithm for 2-OC-P. We
simply treats the output of Algorithm 1 as the result for 2-OC-P, we have the following approximation
guarantee for 2-OC-P.
Theorem B.3. The approximation factor of Algorithm 1 for 2-OC-P is (1 − a)(1 + dmax/davg),
where dmax is the maximum degree of all nodes, davg is the average degree, and a = 2

3
√
6
−Θ(1+ϵ

n).

By this theorem, we have two corollaries for regular and bounded-degree graphs, respectively.
Corollary B.4. If the graph G is d-regular, then the approximation factor of Algorithm 1 for 2-OC-P
on G is (1− a)(1 + d).
Corollary B.5. If the degree of each node in graph G is upper bounded by a certain constant d, then
the approximation factor of Algorithm 1 for 2-OC-P on G is 2(1− a)d.

Then we prove Theorem B.3.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Let cost∗dual and cost∗primal be the optimal objective values, costdual and costorimal be the
values that Algorithm 1 outputs, for 2-OC-D and 2-OC-P, respectively. Let a and b be the approximate
ratios of Algorithm 1 for the dual and the primal problems, respectively. We have the following
relationship.

Lemma B.6. b ≤ (1− a)(1 + cost∗dual/cost
∗
primal).

Proof. Note the following relationships hold.

cost∗primal + cost∗dual = costprimal + costdual = n · w(E)

and

costdual ≥ anw(E) ≥ a · cost∗dual
Therefore, we have

costprimal = nw(E)− costdual

≤ nw(E)− anw(E)

= (1− a)(cost∗primal + cost∗dual)

Since costprimal = b · cost∗primal, Lemma B.6 follows.

Since we already have a = 2
3
√
6
− Θ(1n), if we can give an upper bound on cost∗dual/cost

∗
primal,

then we also have an upper bound on b. The following lemma provides this upper bound.

Lemma B.7. For 2-OC-D and 2-OC-P, cost∗dual/cost
∗
primal < ρmax/ρavg ≤ dmax/davg, where

ρavg = w(E)/|V | is the average density, ρmax is the maximum density of all induced subgraphs,
dmax is the maximum degree of all nodes, and davg is the average degree of all nodes.

Proof. Let A∗, B∗, C∗ be the optimal solution (no matter whether it is primal or dual because the
two problems are equivalent), let cost∗primal denote costprimal(A

∗, B∗, C∗) and cost∗dual denote
costdual(A

∗, B∗, C∗) for short. Let A, B, C be the output of Algorithm 1, and use it as the output
for 2-OC-P. Let costprimal denote costprimal(A,B,C) and costdual denote costdual(A,B,C).

cost∗dual = |C∗|
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+|A∗|

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
cost∗primal = (|A∗|+ |B∗|)

(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|B∗|+ |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
+ nw (A∗, C∗) .

Consider two cases of cost∗dual

cost∗primal
.

(1) If cost∗dual

cost∗primal
≤ 1, then b = 2(1− a).

(2) If cost∗dual

cost∗primal
> 1, namely cost∗dual > cost∗primal, substituting into the specific form of the

objective function, we have

|C∗|
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+ |A∗|

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
> (|A∗|+ |B∗|)

(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|B∗|+ |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
+ nw (A∗, C∗) .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Then we get

(|C∗| − |A∗| − |B∗|)
(
w (A∗) + w (A∗, B∗) +

1

2
w (B∗)

)
+(|A∗| − |B∗| − |C∗|)

(
w (C∗) + w (B∗, C∗) +

1

2
w (B∗)

)
> nw (A∗, C∗) .

This holds if and only if

(|C∗| − |A∗|)(w(A∗) + w(A∗, B∗)− w(C∗)− w(B∗, C∗))

> nw(A∗, C∗) + |B∗|(w(A∗) + w(A∗, B∗) + w(B∗) + w(C∗) + w(B∗, C∗)),

which implies that

(|C∗| − |A∗|)(w(A∗) + w(A∗, B∗)− w(C∗)− w(B∗, C∗)) > 0.

Without loss of generality, we assume that |C∗| > |A∗|, w(A∗)+w(A∗, B∗) > w(C∗)+w(B∗, C∗).
We consider two types of scaling for cost∗dual

cost∗primal
.

Scale 1: replace |A∗| with |C∗| for the numerator, remove nw(A∗, C∗) for the denominator, replace
|C∗| with |A∗|, and then we get

cost∗dual

cost∗primal

<
|C∗|(w(A∗)+w(A∗,B∗)+ 1

2w(B∗))+|C∗|(w(C∗)+w(B∗,C∗)+ 1
2w(B∗))

(|A∗|+|B∗|)(w(A∗)+w(A∗,B∗)+ 1
2w(B∗))+(|B∗|+|A∗|)(w(C∗)+w(B∗,C∗)+ 1

2w(B∗))

= |C∗|(w(A∗)+w(A∗,B∗)+w(B∗)+w(C∗)+w(B∗,C∗))
(|A∗|+|B∗|)(w(A∗)+w(A∗,B∗)+w(B∗)+w(C∗)+w(B∗,C∗))

= |C∗|
|B∗|+|A∗| .

Scale 2: replace the numerator w(C∗) + w(B∗, C∗) with w(A∗) + w(A∗, B∗), remove the denomi-
nator Contents of |B∗|, and then we have

cost∗dual

cost∗primal

<
(|A∗|+|C∗|)(w(A∗)+w(A∗,B∗)+ 1

2w(B∗))

|A∗|(w(C∗)+w(B∗,C∗)+ 1
2w(B∗))+|C∗|(w(C∗)+w(B∗,C∗)+ 1

2w(B∗))+(|A∗|+|C∗|)w(A∗,C∗)

<
(|A∗|+|C∗|)(w(A∗)+w(A∗,B∗)+ 1

2w(B∗))

(|A∗|+|C∗|)(w(C∗)+w(B∗,C∗)+ 1
2w(B∗)+w(A∗,C∗))

=
w(A∗)+w(A∗,B∗)+ 1

2w(B∗)

w(C∗)+w(B∗,C∗)+ 1
2w(B∗)+w(A∗,C∗)

.

Therefore,

cost∗dual
cost∗primal

< max

{
1,min

{
|C∗|

|A∗|+ |B∗|
,

w(A∗) + w(A∗, B∗) + 1
2w(B

∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)

}}
Let

x =
|C∗|

|A∗|+ |B∗|

y =
w(A∗) + w(A∗, B∗) + 1

2w(B
∗)

w(C∗) + w(B∗, C∗) + 1
2w(B

∗) + w(A∗, C∗)

then we have
|A∗|+ |B∗| = 1

1 + x
|V |

and
w(A∗) + w(A∗, B∗) +

1

2
w(B∗) =

y

1 + y
w(E)

Recall that |C∗| > |A∗|, w(A∗) + w(A∗, B∗) > w(C∗) + w(B∗, C∗), and observe that the density
of the induced subgraph G[A∗ +B∗] should be large. Set ρmax = maxU⊆V

{
w(E(G[U]))

|U |

}
to be the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

maximum density of the induced subgraph on G, E(G[U]) to be the edge set of G[U], ρavg = w(E)
|V |

to be the average density of G, and then

w(A∗) + w(A∗, B∗) + 1
2w(B

∗)

|A∗|+ |B∗|

=
y(1 + x)

1 + y
· w(E)

|V |

≤ wA+B

|A∗|+ |B∗|
≤ ρmax

We have
y(1 + x)

1 + y
≤ ρmax

ρavg

Now according to the value of min(x, y), we consider the following two cases.

(1)x ≤ y :, we have

x =
(1 + y)x

1 + y
=

x+ xy

1 + y
≤ y + xy

1 + y
=

y(1 + x)

1 + y
≤ ρmax

ρavg

(2)x > y, we have

y =
y(1 + x)

1 + x
<

y(1 + x)

1 + y
≤ ρmax

ρavg

Therefore,

min

{
|A∗|
|B∗|

,
w(B∗)

w(A∗) + w(A∗, B∗)

}
<

ρmax

ρavg

Then for cost∗dual

cost∗primal
, we have

cost∗dual
cost∗primal

< max(1,
ρmax

ρavg
) =

ρmax

ρavg

Calculating ρmax is difficult. However, it is observed that the average degree d ≤ dmax on G[U],
and w(E(G[U])) = d|U |

2 . So, we have an upper bound on ρmax, that is

ρmax =
w(E(G[U]))

|U |
≤ d · |U |

2|U |
≤ dmax

2

On the other hand,

ρavg =
w(E)

|V |
=

davg · |V |
2|V |

=
davg
2

This implies that
ρmax

ρavg
≤ dmax

davg

Therefore, cost∗dual

cost∗primal
< ρmax

ρavg
≤ dmax

davg
, approximate ratio b = (1− a)

(
1 + dmax

davg

)
.

Combining Lemmas B.6 and B.7, Theorem B.3 follows.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.5 DERIVATION PROCESS FOR APPROXIMATION RATIO OF 2-OC-P

Note the following relationships

cost∗primal + cost∗dual = costprimal + costdual = n · w(E)

and

costdual ≥ anw(E) ≥ a · cost∗dual

Therefore, we have

costprimal = nw(E)− costdual

≤ nw(E)− anw(E)

= (1− a)(cost∗primal + cost∗dual)

= b · cost∗primal

B.6 PROOF OF THEOREM 3.3

Proof. Note that Algorithm 1 achieves a dual cost at least
(

2
3
√
6
−Θ(1+ϵ

n)
)
· nw(E) for 2-OC-D,

in which nw(E) is an upper bound for the cost of the dual HOC problem with any constraints. So,
Theorem 3.3 follows if the final dual cost is no less than the one after the first round of invoking
Algorithm 1.

Let N1 and N2 be the two overlapping clusters that Algorithm 1 yields in the first round of the repeat
loop, and e ∈ E be an edge that treats N1 or N2 as a common ancestor. Then the root r is not
a minimal common ancestor of e, since otherwise, r forms an chain with N1 or N2. In the next
iterations, r will not be included in the minimal common ancestor set of e during both splitting and
merging process. Since N1 and N2 have the same size, no matter how the belonging factors of e
change, the final primal cost that e contributes will not exceed that after the first round of invoking
Algorithm 1. Theorem 3.3 follows immediately.

B.7 PSEUDOCODE OF THE SPEED-UP ALGORITHM

We present the pseudocode of the speed-up algorithm for 2-OC in Algorithm 3.

Algorithm 3: Speed-up algorithm for 2-OC
Input: an undirected graph G = (V,E,w), move batch ratio γ
Output: node sets A, B and C for 2-OC

1 X,Y ← RatioCut(G);
2 A← X , B ← ∅, C ← Y ;
3 repeat
4 Calculate the delta of costdual when each node moves to the other two sets, and select the

one with the larger increment as the potential action at that node;
5 Let S be the node set that brings costdual increment;
6 t← min{|S|, γ|V |};
7 Move the top-t nodes with the largest increment;
8 until S is empty;
9 return A, B, C.

Replacing Algorithm 1 with Algorithm 3 in Algorithm 2, we get the speed-up version of k-HOC
algorithm.

C SUPPLEMENT TO EXPERIMENTS

In this section, we provide more information about our experiments.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C.1 OSBM AND OUR SETTINGS

OSBM is specified by a k × k symmetric matrix Z, where each element is a natural number, and a
pair of real numbers p1, p2 (0 ≤ p1 ≤ p2 ≤ 1). Zij (i ̸= j) represents the number of overlapping
nodes between the i-th and the j-th clusters, and Zii represents the number of nodes in the i-th cluster
that do not participate in overlap. Denote by C1, ...Ck the planted overlapping clusters. p1 represents
the inter-link probability between each pair of clusters, while p2 represents the intra-link probability
within each cluster. For two nodes in the overlapping parts, we have two independent samples, and
the edge is present if any of them generate an edge. In other words, the probability of edge presence
between any two nodes in the overlapping parts is 1− (1− p2)

2.

In our experiments, we assume that each node belongs to at most two clusters. Thus, the total number
of nodes is the sum of entries in the upper triangle of Z. For simplicity of implementation, all clusters
are of the same size and have the same size of overlaps between clusters. For a 2-level hierarchical
structure, we choose three probability values 0 ≤ p1 ≤ p2 ≤ p3 ≤ 1, in which p1 is the inter-link
probability between clusters on the first level, p2 is the inter-link probability between clusters on the
second level, and p3 is the intra-link probability within each cluster. So now, the probability of edge
presence between any two nodes in the overlapping parts is 1− (1− p3)

2.

C.2 DEFINITION OF NMI FOR OC

NMI for OC is a natural generalization from NMI for non-overlapping partition. For two different
groups of overlapping clusters X = {x1, x2, ...}, Y = {y1, y2, ...} on the same graph G = (V,E) ,
xi, yi are all clusters. We define NMI of X,Y as follows.

p(xi) =
|xi|
|V |

p(xi, yj) =
|xi ∩ yj |
|V |

H(X) = −
∑
xi∈X

p(xi) log p(xi)

H(X,Y) = −
∑

xi∈X,yj∈Y

p(xi, yj) log p(xi, yj)

I(X : Y) = H(X) +H(Y)−H(X,Y)

NMI(X,Y) =
I(X : Y)

max(H(X), H(Y))

C.3 EVALUATION ON THE MNIST DATASET

To show intuitively that our algorithm is able to find out the blurred overlapping area of datasets,
we run our 2-OC algorithm on the MNIST dataset LeCun et al. (1998), which is a benchmark of
handwritten digits containing ten classes of images labeled by 0 ∼ 9, respectively. We select two
pairs of labels that are easily confused by hand writing, i.e., 1 vs. 7, 3 vs. 8, and construct a k-nearest
neighbor graph for each of them. Each node of the graph represents an image of handwritten digit,
and the similarity is measured by applying the Gaussian kernel function to the Euclidean distance
of pixel vectors. We remark that not all embeddings (e.g., word embeddings) that are generated
by modern-day AI models are suitable for clustering. We just find that pixel vector in MNIST is
somewhat a good use-case to showcase our results of overlapping, ambiguous samples.

The parameters, NMI, size of the overlapping part, the costs of ground truth (GT) and 2-OC output
are summarized in Table 5. NMI is calculated with the non-overlapping ground truth of data points,
although our algorithm gives overlapping results. However, the NMI for the labels 1 vs. 7 is above
0.9, and only 5 digits, which can be viewed as ambiguous ones, are allocated in the overlapping
part. We demonstrate all of them in Figure 7(a). For the labels 3 vs. 8, there are 180 ambiguities.
We demonstrate five of them in Figure 7(b). A significant factor that impacts the accuracy of our
algorithm is that we simply use the pixel vectors of digits which is a very rough representation of
images.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) labels 1 vs. 7

(b) labels 3 vs. 8

Figure 7: Demonstrations of the ambiguous samples our 2-OC algorithm yields.

Table 5: Parameters and results on the MNIST dataset
label size k NMI overlapping size GT cost 2-OC cost
1 vs. 7 7877 + 7293 100 0.915 5 7.37× 109 7.33× 109

3 vs. 8 7141 + 6825 100 0.714 180 6.47× 109 6.63× 109

C.4 VISUALIZATION ON FOUR OVERLAPPING CLUSTERS

We visualize in Figure 8 a 4-HOC results of Algorithm 2 on a small graph that is generated from
OSBM and contains 100 nodes and 1264 edges. It has four embedded overlapping clusters of size 30,
each of which contains 20 nodes that entirely belong to the cluster. There are 6 overlapping regions,
each of which corresponds to a pair of overlapping clusters out of the 4 clusters, and each region
contains 2 nodes. We label them from 81 to 100. We demonstrate the ground-truth membership of all
nodes in Tables 6 and 7. The edge presence probabilities are p1 = 0.05, p2 = 0.1 and p3 = 0.5.

Table 6: Membership of level-2 nodes in each of the four clusters. Each diagonal entry numbers
the nodes that belong exclusively to the corresponding cluster. The entry (i, j) (i ̸= j) denotes the
overlapping region between clusters i and j. In the visualization, the corresponding colors of clusters
1, 2, 3, and 4 are red, green, yellow, and blue, respectively, while the overlapping nodes are the mixed
colors of their clusters.

cluster label 1 2 3 4
1 1-20 85,91,97 86,92,98 81,87,93,99
2 85,91,97 21-40 82,88,94,100 83,89,95
3 86,92,98 82,88,94,100 41-60 84,90,96
4 81,87,93,99 83,89,95 84,90,96 61-80

Table 7: Membership of level-1 nodes in each of the two clusters. Clusters 1 and 2 form one cluster,
denoted by (1, 2), on level 1, while clusters 3 and 4 form the other one, denoted by (3, 4).

cluster label (1,2) (3,4)
(1,2) 1-40,85,91,97, 81-83,86-89,92-95,98-100
(3,4) 81-83,86-89,92-95,98-100 41-80,84,90,96

Our algorithm bipartitions the node set at the first level into two overlapping clusters, one consists of
red and green (1 and 2), the other yellow and blue(3 and 4). It achieve NMI = 0.881 on this level.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 8: List of misclassified nodes given by our algorithm on level 2.
node number cluster label in ground truth cluster label by the k-HOC algorithm

81 1,4 4
88 2,3 3
98 1,3 3
99 1,4 4

(a) Ground truth of the 4 clusters (Level 1). (b) The result of our algorithm (Level 1).

(c) Ground truth of the 4 clusters (Level 2). (d) The result of our algorithm (Level 2).

Figure 8: Visualization of a 4-HOC clustering.

Table 9: List of misclassified nodes given by our algorithm on level 1.
node number cluster label in ground truth cluster label by the k-HOC algorithm

81 (1,2),(3,4) (3,4)
88 (1,2),(3,4) (1,2)
98 (1,2),(3,4) (3,4)
99 (1,2),(3,4) (3,4)

At the second level, it achieves NMI = 0.914 for the 4 ground-truth overlapping clusters. In Figure
8, we visualize this result. Our algorithm successfully captures the overall outlines of the clusters,
except membership errors on only four nodes, whose labels are 81, 88, 98 and 99. We list them in
Tables 9 and 8. These nodes are misclassified into non-overlapping region.

28

	Introduction
	Related work

	A cost function for HOC
	An algorithm for k-HOC
	An approximation algorithm for 2-OC
	An approximation algorithm for k-HOC

	Experiments
	Conclusions and future work
	Supplement to the cost function for HOC
	Proofs of the properties of belonging factor
	A toy example of belonging factor
	Cost calculation for the running example
	Proofs of properties of the cost function

	Supplement to the algorithms
	Primal and dual problems of 2-OC
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Approximation guarantee for 2-OC-P
	Derivation process for approximation ratio of 2-OC-P
	Proof of Theorem 3.3
	Pseudocode of the speed-up algorithm

	Supplement to Experiments
	OSBM and our settings
	Definition of NMI for OC
	Evaluation on the MNIST dataset
	visualization on four overlapping clusters

