Under review as a conference paper at ICLR 2025

HIERARCHICAL OVERLAPPING CLUSTERING: COST
FUNCTION, ALGORITHM AND SCALABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Overlap and hierarchy are two prevalent phenomena in clustering, and usually
coexist in a single system. There are several studies on each of them separately,
but it is unclear how to characterize and evaluate the hybrid structures yet. To
address this issue, we initiate the study of hierarchical overlapping clustering
on graphs by introducing a new cost function for it. We show the rationality of
our cost function via several intuitive properties, and develop an approximation
algorithm that achieves a provably constant approximation factor for its dual
version. Our algorithm is a recursive process of overlapping bipartition based
on local search, which makes a speed-up version of it extremely scalable. Our
experiments demonstrate that the speed-up algorithm has good performances in
both effectiveness and scalability on synthetic and real datasets.

1 INTRODUCTION

Clustering is a major task in data mining and has a wide range of applications in many areas. Two
fundamental categories of clustering have attracted in-depth study recently. The first is hierarchical
clustering (HC) which requires a recursive partitioning of a graph into smaller clusters to form a
cluster tree [Dasgupta (2016);|L1 & Pan|(2016);|Cohen-Addad et al.|(2019); Charikar & Chatziafratis
(2017); Moseley & Wang|(2017); Naumov et al.| (2021)). The other is overlapping clustering (OC)
that allows data points to belong to multiple clusters |[Orecchia et al.| (2022); Zhang et al.[(2007);
Shen et al.|(2009);|Chen et al.[|(2010); Nicosia et al.| (2009); Whang et al. (2016); [Li et al.| (2017);
Yang & Leskovec|(2012a)). These two structures are widely present in the real world, and the hybrid
structure of hierarchical overlapping clustering (HOC) that allows for the presence of overlaps
among hierarchical clusters better reflects real-world scenarios. For instance, in social networks, an
agent may belong to several different groups, which can form larger communities with overlapping
structures based on different themes. In cooperation networks, the coauthors of a paper can be thought
of as a small cluster, which may belong to more than one research area due to the topic. This hybrid
structure in fact poses a significant challenge to the study of clustering. There are many works for
HC and OC separately, but we lack research on HOC. In this paper, we address this problem.

We study HOC on graphs. Constructing a cost function is a common method for the research on HC
and OC. Similarly, a proper cost function is helpful to evaluate the quality of HOC, which transforms
the HOC problem to an optimization task. In this paper, we propose a new cost function for HOC,
and present an approximation algorithm for it in some reasonable condition. Our contributions are
summarized as follows:

(1) Cost function. We propose a cost function (Definition that is the first one for HOC to our best
knowledge. The cost function is evaluated on overlapping clustering graphs, and can be unified with
Dasgupta’s cost function for HC trees in the specific case of non-overlap. We give a comprehensive
study on the rationality of this cost function from multiple perspectives such as examples, algorithms,
experiments, and a series of properties including compatibility (Property 2.11), additivity of nodes
(Property [2.12) and binary optimality (Property [2.13).

(2) Approximation algorithm. Based on our cost function, we formulate the primal and the
dual versions of HOC, respectively. We provide an a = ﬁ — O(1t<)-approximation algorithm

(Algorithm [2) for the dual k-HOC problem, where k € Z* is an upper bound of key clusters
(explained in Definition [2.10). Our algorithm is a recursive process of overlapping bipartition in

Under review as a conference paper at ICLR 2025

which the height of the overlapping clustering graph and the cluster number are both restricted to two.
We denote this simple case by 2-OC, which is the theme of recent study of |Orecchia et al.| (2022)
on OC. We show that our algorithm also achieves an approximation factor (1 — a)(1 + dynaz/ dm,g)
for the primal 2-OC problem. Instead of the complicated “cut-matching and improve” approach in
Orecchia et al.| (2022), our method for 2-OC takes a simple local search heuristic based on our cost
function, which makes our algorithm much more scalable.

(3) Effectiveness and scalability. We speed up our approximation algorithm by some simple
heuristics during local search, and verify its effectiveness and scalability by experiments. For
effectiveness, experimental results demonstrate that on random graph models with good clustering
structures, our algorithm is able to reconstruct the overlapping clusters. For scalability, benefiting
from our subtle design of cost function and simple local search process, on real datasets with around
one million vertices and three million edges, the runtime of our speed-up algorithm implemented
on a single laptop is less than 12 minutes, which is only around 20% of the runtime of the baseline
method that runs on a server.

1.1 RELATED WORK

Hierarchical graph clustering. The most popular cost function for HC is proposed by Dasgupta
(2016)). Given a weighted graph G = (V, E, w) and a cluster tree T', Dasgupta’s cost is defined as

das_cost” (G) = Z wii |V (i Vv 7)], Q)

i“,jEE

where 7 V j denotes the least common ancestor (LCA) of ¢ and j in 7', and V (3 V j) represents the set
of descendent leaf nodes under ¢ VV 5. On similarity-based graphs, optimization of HC trees can be
performed by minimizing Dasgupta’s objective. The intuition is that for a good clustering tree, the
edges with larger weights ought to be placed as far down from the root as possible, which makes the
number of leaves covered by its LCA on the HC tree as small as possible. Dasgupta also showed that
minimizing das_cost’ (G) and maximizing its dual das_cost” (G are both NP-hard.

Along this line of study, Dasgupta showed that recursive bipartition applying Arora’s seminal
algorithm for sparsest cut problem |Arora et al. (2009) yields O(logl'5 n)-approximation, and it
was improved by [Roy & Pokuttal (2016)) and |Charikar & Chatziafratis| (2017)); (Cohen-Addad et al.
(2019) to O(logn) and O(+/logn), respectively. It is also known to be SSE-hard to achieve any
constant approximation factor for this objective|Charikar & Chatziafratis|(2017). Moseley and Wang
studied the dual of Dasgupta’s cost function and showed that the average linkage algorithm achieves
a (1/3)-approximation Moseley & Wang| (2017). This factor has been improved by a series of
works to 0.336|Charikar et al. (2019)), 0.4246 |Ahmadian et al.| (2019) and 0.585|Alon et al.|(2020),
respectively. There are also some studies considering the problem of maximizing Dasgupta’s cost
function on dissimilarity-based graphs|Cohen-Addad et al.|(2019); |Charikar et al.| (2019); Rahgoshay
& Salavatipour| (2021)); Naumov et al.[(2021)).

Overlapping graph clustering. Newman and Girvan proposed modularity in 2004 Newman &
Girvan| (2004), which was one of the most popular cost functions for flat non-overlap clustering.
Many researchers have extended modularity to the scope of OC. Nepusz et al.|(2008)) and Nicosia
et al.| (2009) proposed the concept of belonging factor, which is used to represent the intensities of a
node and an edge belonging to a cluster. A function of the belonging factor was introduced to the
definition of modularity to make it applicable to OC, and a heuristic algorithm was proposed based
on maximizing OC modularity. [Zhang et al.|(2007), Shen et al.| (2009)) and |Chen et al.|(2010) also
proposed their own definitions of belonging factor and cost functions based on modularity. Inspired
by these works, our cost function also utilizes belonging factor for HOC.

On the worst-case guarantee analysis for OC, Khandekar et al.|(2014)) formulated it as the problem
that minimizes the maximum or the sum of conductances of overlapping clusters, with or without
a bounded number of clusters. They proposed the algorithms that achieve O(log n)-approximation
factors for the four kinds of versions, where 7 is the number of vertices. The techniques behind the
proof include the tree decompositions Récke| (2002; 2008)); Harrelson et al.|(2003) and a dynamic
programming. As claimed in their work, the complexity of the dynamic program hinders the
scalability of their methods.

Under review as a conference paper at ICLR 2025

Another representative work for OC is attributed to |Orecchia et al| (2022)), in which two cost
functions called e-overlapping ratio-cut (e-ORC) and A-hybrid ratio-cut (A\-HCUT) respectively
are proposed for OC with two overlapping clusters. Both cost functions are designed based on
the ratio-cut objective, and treat the overlapping part of the two clusters as a penalty. Concretely,
given a graph G = (V, E, w, 1) with non-negative edge weights w, vertex measure p, and two
overlapping clusters L and R of vertices, they define two ratio-cut-like measures to be gg[L, R] =
w(L\ R, R\ L)/ min{p(L), u(R)} and qv[L, R] = p(LNR)/ min{u(L), u(R)}. Then the e-ORC
problem is defined to be the minimization of ¢g[L, R] under the condition that gy [L, R] < ¢, and the
A-HCUT problem is the minimization of gz [L, R] + Aqy [L, R]. These two problems are defined with
hyper-parameters, which restricts the applications and scalability of OC algorithms that solve them.
Moreover, since the edge weights w and vertex measure y are usually derived from independent
systems and have different units, the linear combination of gg[L, R] and gy [L, R] in A-HCUT is less
explainable. However, for both e-ORC and A-HCUT, Orecchia et al.| (2022) gave a nearly-linear-time
O(log n)-approximation algorithms called ¢m + improve for both of them. c¢m + improve is
scalable to large graphs with tens of millions of edges, and is the main competitor in our experiments.

With regard to HOC, there is much less work. Only a few methods for dissimilarity-based vector data
are proposed. Some heuristics based on density criterion |[Jeantet et al.[|(2020) and cut metrics |Gama
et al.| (2018)) are utilized during the clustering process. But no cost function and theoretical guarantee
have been developed yet, which is just what our work addresses.

2 A COST FUNCTION FOR HOC

In this section, we formulate our cost function for HOC. First of all, we briefly introduce the
underlying idea. HOC can be represented by a directed acyclic graph, called HOC graph, that is a
natural generalization of HC tree. Inspired by Dasgupta’s cost function for HC, we extend the LCA of
an edge to its minimal common ancestor set, and introduce the belonging factor to measure the degree
by which a node, a cluster, or an edge belongs to an ancestor. Intuitively, for a similarity-based graph,
a quality HOC graph should involve edges of heavy weights into clusters that are small and as far
down from the root of the HOC graph as possible. Overlapping is desirable when a node has strong
connections to more than one cluster simultaneously, in which case, the belonging factor allows to
suppress the cost contributed by the edges incident to the node. This is the crucial idea of our cost
function for HOC.

Preliminaries. An undirected weighted graph G = (V, E, w) is specified by a node set V, an edge
set E C {(u,v)|u,v € V}, and a weight function w : E — R™. Letn = |V | and m = | E/| represent
the number of nodes and the number of edges, respectively. The degree of a node u, denoted by d,,,
is the sum of weights of all edges incident to u, i.e., dy = }_(, ,) e W(u, v). The induced subgraph

of G on the node set U is denoted by G[U]. For any A,B C V, let E(A) = {(u,v)|(u,v) €
E,u,v € A}, E(A,B) = {(u,v)|[(u,v) € E,u € A,v € B}, w(A) = 32, ,yepa) w(u,v),

w(A,B) = 3, 0yepa,p W(u,v). Foranode v € Viw(v,A) = 3 crijuca,w.aer WO, a).
Forany Eg C E, w(Eo) = 3_ c p, w(e).

Partial ordering relationship of two nodes N and N’ on a directed acyclic graph D, denoted by
N < N/, means that N’ is reachable from N, and we say that N and N’ are comparable in this
case, and incomparable otherwise. An anti-chain L = { N1, N2, N3, ...} on D is a set of nodes of D
satisfying that any two nodes in L are incomparable. We define the width of an HOC graph to be the
length of the longest anti-chain that consists of non-leaf nodes. HC on graph G is represented by an
HC tree 7. It has n leaf nodes corresponding to the nodes of G. For any internal node N on 7, let
V(N) denote the set of leaf nodes in the subtree that treats IV as the root. Let u V v denote the LCA
of uw and v on T. A weighted graph G = (V, E, w) is called a similarity-based graph if it satisfies
that the larger w(u, v) is, the more similar u and v are. The cost function for HOC discussed in this
paper is proposed for similarity-based graphs.

Definition 2.1 (hierarchical overlapping clustering graph). Given a graph G, a hierarchical overlap-
ping clustering graph (HOC graph) D on G is a directed acyclic graph that satisfies the following
three constraints: (1) There is only one node of D with out-degree of 0, referred to as the root node
and denoted by R. (2) There are n nodes of D with in-degree of 0, corresponding to all the nodes
in'V, referred to as leaf nodes. (3) For each non-root node of D, its parent node set { Ny, Na, ...},
which is the collection of nodes it points to directly, forms an anti-chain.

Under review as a conference paper at ICLR 2025

o e R R R
£ cl MZ Mz @\NZ
a b c d e a b c d e

a b a b c d e

(a) The original graph G (b) HOC graph D, (c) HOC graph D> (d) HOC graph D3

Figure 1: An example of HOC graphs.

On an HOC graph, two nodes satisfying X <Y means that V(X) is a subset of V(Y'). Note that
we do not need the converse also holds, because although syntactically we have V(X) C V(Y),
semantically in practice, X and Y may have unrelated meanings from two different systems that are
organized by different mechanisms. HOC graph extends the concept of HC tree by allowing each
non-root node to have multiple parent nodes that are incomparable with each other. It is a canonical
representation for hierarchical set containment that a subset is only allowed to point to a minimal set
that contains it. If each non-root node has out-degree one, an HOC graph degenerates into an HC
tree. The distance dis(X,Y) is the length of the shortest path from X to Y. The height of D is the
maximum distance from any leaf to the root, denoted by hp = max,cy dis(v, R). For any node
N on D, Let N~ denote the set of N’s parent nodes and N_ denote the set of N’s children nodes.
Figure [I] demonstrates three HOC graphs of height 2 for a graph G that consists of two triangles
intersecting at a single node, in which Ds is an HC tree without overlap.

Definition 2.2 (minimal common ancestor set). The minimal common ancestor set for nodes u and v
in D is defined as My, = {N|N € D,u,v € V(N),andVX € N_,u ¢ X orv ¢ X}.

The term "minimal" in the above definition means that any child node of this common ancestor of
w and v is not a common ancestor, and thus cannot be further reduced. This is an extension of the
unique LCA on HC trees to multiple ones on HOC graphs. For convenience, when u, v are two
endpoints of an edge, we also say a common ancestor of this edge (u,v). As illustrated in D3 of
Figure Mbc = {Nl,NQ}, Mae = {R}

Then we introduce belonging factor that is a key ingredient of our cost function. We define two kinds
of belonging factors on an HOC graph D, node-to-node and edge-to-node belonging factors, that
are generalizations of those proposed by |[Nepusz et al.|(2008)) and [Nicosia et al.|(2009) for OC. The
belonging factor of node X (resp. edge (u, v)) to node Y represents the degree for which X (resp.
edge (u,v)) belongs to Y.

Definition 2.3 (node-to-node belonging factor). The node-to-node belonging factor of X to Y,
denoted by ax y, is defined recursively. First, define the node-to-node belonging factor for each
parent-child node pair on D, whose value can be assigned freely as long as it satisfies the following
two constraints: (1)0 < axy <1forall X € DandY € X~; (2) ZYGX, axy = 1foreach
non-root node X € D. Second, for other relationships of X and 'Y, ax y is defined as

Ynex-oxN-any XSV, X#Y
axy =91 X=Y)
0 otherwise

To better understand the belonging factor, it is easy to verify that the above definition is equivalent
to the following plain one. For any two comparable nodes X < Y, denote by Px y the set of
all paths from X to Y. For each path p = [po, 1, ..., Dien(p)] € Px,v.let po = X, Dienp) = Y,
len(p) be the length of p. Then the node-to-node belonging factor cx y is defined as axy =

D pePyy Héi’g(p)% Qp; piys if X <Y, X Y, and has the same values as Eq. (2) for the other

two cases. That is, cvy y is the sum of the multiplication of all belonging factors of parent-child pairs
along each path from X to Y. The node-to-node belonging factor has some fundamental properties.

Property 2.4. IfY is the only parent node of X, then ax y = 1.

Property 2.5. The node-to-node belonging factor of any node to the root is 1, that is, an g =
1, VN € D.

Under review as a conference paper at ICLR 2025

Property 2.6. For two nodes X,Y of D where X is reachable to Y, if there is a node set S =
{N1, Na, ..., Ni.} satisfying: (1) S is an anti-chain, (2)VN € S, X < N <Y, (3)VN € S,3p €
PX7y,N €p, (4)Vp € PX,y, |pﬁS| = 1. Then axy = ZNES QXN *QN)Y -

Property [2.4] unifies the HOC graph and the common HC tree. Property [2.5] coincides with the
common sense that any cluster and leaf belong totally to the root. Property [2.6] means that the
node-to-node belonging factor of X to its ancestor Y can be disassembled by a maximal anti-chain
between X and Y. The proofs of the above properties are provided in Appendix [A.T] Based on
node-to-node belonging factor, edge-to-node belonging factor can be defined as follows.

Definition 2.7 (edge-to-node belonging factor). For an edge (u,v) in graph G, let X € M., be one
of its minimal common ancestor. The edge-to-node belonging factor ﬁ()fl v) of (u, v) with respect to

X is defined as B({Jj) = f()i_rv)/ ZYGMW f();_’v), where f()f“,) = QX - Oy X-

5()5) is normalized over all minimal common ancestors of (u, v) to guarantee that the mass of its
belonging factors sums up to 1 over all clusters that (u, v) belongs to. A natural option is the uniform

allocation to each parent. Formally, for anode X € D,

) YeX-
- 1X] 3
axy {O Y ¢ X 3)

We adapt this definition of belonging factor in Section[3] As illustrated in D of Figure[T} leaves c
has two minimal ancestors N7 and Nj, for each of which has belonging factor 1/2, and all edges
in G belongs totally to N7 or Ns. In D3, leaves b, ¢ and d have both N; and N> as their minimal
ancestors with belonging factor 1/2 to each, and the edge-to-node belonging factors of (b, ¢) and
(¢, d) to either N7 or N» are 1/2. We also demonstrate another toy example in Appendix

Now, we are ready to introduce our HOC cost function based on the edge-to-node belonging factor.

Definition 2.8 (cost function for HOC). Given a graph G and an HOC graph D of G, the cost
Sfunction of D on G is defined as

HP (@)=) (ww,v)' > B@,U)'IV(NN)-

(u,v)EE NEMyy

The cost function contains two summations. The first is over all edges, and the second is over the
minimal common ancestors of the endpoints of corresponding edge. The cost contributed by each
edge is given by w(u,v) > s, ng) - |V(N)|. Compared with Dasgupta’s cost function ,
HP (@) generalizes it from HC to HOC by assigning a belonging factor for each minimal common
ancestor of each edge.

Definition 2.9 (HOC problem). The HOC problem on a similarity-based graph G is defined as
minp HP(G) under some proper constraints on the HOC graph D.

The intuition behind minimizing the cost function on similarity-based graphs is the same as Dasgupta’s
cost function das_cost, that is, to assign heavy edges to the clusters as small as possible. On an HOC
graph, this can be achieved by ensuring that the minimal common ancestors of these edges are as far
down from the root as possible.

As illustrated in Figure E], according to Definition @ the costs of D1, D5 and Dj3 are 18, 21 and
24, respectively. We provide the calculating process in Appendix[A.3] We can see that Dy has the
smallest cost, which indicates that D, is a more reasonable overlapping clustering graph than Dy
and Ds. Obviously, D; is more consistent with our intuition. This instance also demonstrates that
introducing overlaps has the advantage of reducing the minimal common ancestors of edges, thereby
decreasing their costs (compare D5 to D1). On the other hand, this comes at the expense of increasing
the number of descendant leaf nodes of the ancestors. So, excessive overlap gets punished (compare
D to D3). Therefore, our cost function balances the two cases of non-overlap and excessive overlap.

Remark. Note that HOC is quite different from HC since it allows possibly an exponential number of
overlapping clusters without any restriction, and thus proper constraints on D are necessary. However,
we need to be very careful in formulating the constraints. In fact, there is a trivial solution that allows

Under review as a conference paper at ICLR 2025

two endpoints of each edge to form a cluster, which achieves the minimum cost 2w(E). Treating
two endpoints of each edge as a cluster is in fact an intuitive way for overlapping cluster settings, but
due to the large number of clusters, it is meaningless. This is quite different from the optimization
of Dasgupta’s cost function for HC. A natural restriction on HOC graphs may be on the number
of clusters. However, since an HOC graph has hierarchical clusters, we seek to have a meaningful
constraint on the cluster number. To this end, we utilize the width of an HOC graph, which is the
longest anti-chain on it.

Definition 2.10 (k-HOC problem). The k-HOC problem on a similarity-based graph G is defined as
minp HP (G) for which the width of the HOC graph D is at most k.

To better understand this problem, let us consider a non-overlapping HC tree first. Here, the width
means the largest number of bottom and smallest non-overlapping clusters that contain the leaves
directly. These can be considered as a set of key clusters that are closest to the leaves on the tree.
Similarly, on an HOC graph, since the longest anti-chain blockades all paths from leaves to the root,
the width measures intuitively the number of the incomparable key clusters that contain the leaves.

Moreover, we define k-OC problem to be the k-HOC problem in which we additionally restrict
the height of D at most 2, in which case HOC degrades to OC. A fundamental case is 2-OC that
allows only two overlapping clusters. 2-OC can be considered as a key ingredient of HOC with
multiple clusters since it could be a nice way to construct a k-HOC graph by recursively calling 2-OC
algorithm in a top-down fashion. In Section[3] our algorithm for k-HOC proceeds in this way.

Next, we give some fundamental properties of our HOC cost function, and prove them in Appendix

Property 2.11 (compatibility). If D is restricted to be an HC tree, then HP (G) = das_cost? (G) =
Z(u,U)EE w(u,v) - |u Vol

Property 2.12 (additivity on nodes). For any node N on D, let EJ?, denote the set of edges with N
as a minimal common ancestor, i.e., EX = {(u,v)|(u,v) € E,N € M,,}. The HOC cost function

can be rewritten as: HP? (G) =Y ycp (|V(N)\ . Z(u,v)eEﬁ w(u, v)ﬁ@)v))

Property 2.13 (binary optimality). When the number of nodes of D is unbounded, there is an optimal
HOC graph that is binary, i.e., the number of children of each node is at most 2.

Property [2.1T]indicates that our cost function for HOC can be unified with Dasgupta’s cost. That is,
under the constraint of hierarchical non-overlapping clustering, our cost function for HOC problem
degrades to Dasgupta’s objective whose optimization is NP-hard [Dasguptal (2016). Property [2.12]
provides an alternative interpretation of the cost function from another perspective, for which it can
be seen as the sum of costs associated with each node. Property [2.13]describes the structure of the
optimal HOC graph with unbounded number of nodes, and Dasgupta’s cost also has this property.

Primal and dual versions of HOC problem. Next, we introduce the primal and the dual ver-
sions of the HOC problem. Note that besides the trivial lower bound 2w (E) for minp H? (G),
we also have a trivial upper bound nw(FE), since the size of any common ancestor of two
leaves on D is at most n. So, we define the primal HOC problem, denoted by k-HOC-P, to be
minp HP(G) as we have defined in Definition We define the dual HOC problem, denoted
by k-HOC-D, to be maxp{nw(E) — HP(G)}, where by Definition nw(E) — HP(G) =

2 (uw)eE (w(u, V) D NeM., 6@,1}) “(n— |V(N)|)> The solutions to primal and dual problems

achieve optima on the same HOC graph. Similarly, k-OC-P and k-OC-D denote the corresponding
version of OC problem, respectively.

3 AN ALGORITHM FOR k-HOC

In this section, we propose our algorithm for the k-HOC problem. We use the Equation (3)) as the
node-to-node belonging factor. As mentioned earlier, we first study the fundamental case of 2-OC,
and then apply it to k-HOC. The 2-OC problem has its own interests.

w N

wm &

N

Under review as a conference paper at ICLR 2025

3.1 AN APPROXIMATION ALGORITHM FOR 2-OC

Cost functions for 2-OC. In the 2-OC setting, given a graph G = (V, E, w), we restrict the height
of the HOC graph to 2 and the number of children of the root R to 2. Suppose that two clusters

= AU B and N, = C' U B overlap on B. Definition 2.8] the cost function of 2-OC-P can be
formulated as costprimal(4, B,C) = [w(A4) + w(A4, B)](JA] + |B]) + [w(B,C) + w(C)](|B| +
|C]) + (lAlHlBl;rlCl)M(B) + w(A, C)n, and 2-OC-P can be formulated as

A’g%ngv costprimal (4, B, C) (2-0OC-P)

We also have the cost function costg,qi (A, B,C) = (w(A+B)—)lC| +(w(B+C)—)lA|
for 2-OC-D, and 2-OC-D can be formulated as

A,gl,%'xgv costaual(A, B, C) (2-0C-D)

The derivation processes of the forms of cost,,imar and costqyq are presented in Appendix We
remark that although our cost functions for 2-OC look complicated, they are hyper-parameter free
and natural from the perspective of HOC, which is superior to the objective proposed by |Orecchia
et al.[(2022). Then we propose our algorithm for 2-OC.

Algorithm 1: Algorithm for 2-OC
Input: an undirected graph G = (V, E, w)
Qutput: node sets A'B and C for 2-0OC
n+|V],p+ = o T 555
Define a new costiemp(A, B,C) = w(E) — w(A, C) + zw(B);
Divide arbitrarily V" into three disjoint parts A, B, C satisfying |A| = |C| = pn
|B| = (1 — 2p)n, such that two endpoints of the edge with the largest weight are both in A;
repeat
Exchange any two nodes from different sets of A, B, C' whenever cost;cm, can be amplified
by more than 1 + 1/en? times;

until get stuck;
return A, B, C.

Approximation algorithm for 2-OC. Algorithm [I] is a simple local search process for 2-OC.
It first defines a surrogate cost function costiemp(4, B,C) = w(E) — w(A,C) + zw(B), and
initializes A, B, C arbitrarily (e.g. a random initialization). After that, the nodes in A, B, C
exchange pairwisely on the condition that current cost can be amplified by 1 + 1/en? times, that
is, costiemp(A’, B',C") > (1 + -5)costiemp(A, B, C), where A’, B’, C' are the node sets after
exchanging corresponding to A, B C’ respectively. It doesn’t terminate until no pair of nodes meets
the exchange condition. For the worst-case guarantee, we have the following theorem.

Theorem 3.1. Algorithmachieves an approximation factor a = V — O 1Jre)for 2-OC-D|with
time complexity O(e~n*logm) for any € > 0.

The idea of the proof of Theorem is as follows. Since nw(E) is a trivial upper bound on

the objective function, we only have to show that costgye; > (V — 6 1+5)> -nw(E). Since

Algorithm fixes the sizes of A, B, C, we only need to build the relationship between w(E) and
edge weights of different parts in the objective function. A lower bound on the latter related to w(F)
(Inequality (IT)) can be obtained by the three stuck exchange conditions when the iteration terminates.
The detailed proof of Theorem [3.1]is provided in Appendix [B.2] Moreover, we have the following
proposition to demonstrate the tightness of our guarantee in some sense.

Proposition 3.2. There is an instance I whose optimal value OPT(I) = (2z — @(%)) nw(E).

3v6

Proposition [3.2] implies that, if an approximation algorithm for is des1gned based on the
upper bound nw(E) of costquar, the optimal approximation ratio cannot be better than == — o).

The detailed proof of Proposition [3.2]is provided in Appendix
In Appendix [B.4] we show that Algorithm|[I]is also a good approximation algorithm for [2-OC-P

® N A ! R W N =

o

10
11
12

Under review as a conference paper at ICLR 2025

3.2 AN APPROXIMATION ALGORITHM FOR k-HOC

Now we turn to the k-HOC problem. We assume that k£ < n for practical significance. Since the
width of the HOC graph is no more than &, we invoke the 2-OC algorithm k£ — 1 times to guarantee
this. We first construct a binary tree (excluding the leaves) for the internal nodes, and then merge
the identical ones that consists of the same set of leaves, while keeping all directed edges on them.
In each iteration, the splitting cluster is chosen greedily according to the relative benefit of cost.

Formally, we define A(X) = %((1)(())() for the most bottom clusters X, where cost g,q1(X) is the

dual cost obtained by the 2-OC algorithm on the subgraph induced by X . In each round, we choose
the X with the largest A(X) to split. This procedure is described as Algorithm

Algorithm 2: Algorithm for £-HOC

Input: an undirected graph G = (V, E, w), an integer k < n
Output: a k-HOC graph D
initialize D with all leaves pointing to the root r;
S« {r};
repeat
KXmaz — argmaxxes{A(X)};
Apply Algorithmto the subgraph induced by X,,,,, and obtain two internal nodes Xy, Xpy;
S§=8 \ {X maz};
S=8U {XLyXR};
Add XpandXg to D as X4, s left and right child, respectively, and redirect the leaves to
their corresponding parents;
until [S| = k;
Merge identical nodes in D into a single one while keeping all the connections on them;
Remove all redundant directed edges (X, Y") for which there is another path from X to Y in D;
return D.

Now we show that D output by Algorithm [2]is a legal k~-HOC graph. By definition 2.1} we have to
show that the parents of any non-root node form an anti-chain, and the width of D is at most k. For
any node X, since we remove all the directed edges (X, Y") for which there is another path from X
to Y in D, X~ is obviously an anti-chain. Since the 2-OC algorithm is called for at most k£ — 1 times,
the width of D before merging is at most k. Since merging does not increase the width, the final D is
a k-HOC graph. For the approximation guarantee, we have the following theorem.

Theorem 3.3. Algorithmachieves an approximation factor ﬁ -0 1;':5) for the dual version of
the k-HOC problem.

To prove Theorem[3.3] we only have to show that the dual cost is at least that of Algorithm [T} which

is lower bounded by (ﬁ — Ot)) -nw(E). Then the approximation factor follows from the fact

n

that nw(F) upper bounds the dual cost of any HOC graph. We prove it formally in Appendix

Time complexity. The runtime of Algorithm 2]consists of three parts: the recursive division, merging
identical nodes and removing redundant edges. In the division step, it calls Algorithm [I| k£ times,
which takes O(ke~'n*logm) time. In the node merging step, an efficient way of implementation
leverages bitmaps and sorting. The bitmap of each internal node indicates the membership of each
leaf, and its length is n. It is necessary to check whether O(k) bitmaps are the same, which takes
O(nklog k) time. In the edge removing step, a redundant edge (X, Y") can be decided by reversing it
and checking whether there is a cycle containing X and Y. This takes O((n + k)?) time. Combining
the above three parts and noting that & < n, the total runtime is O(ke~'n*logm).

A speed-up version. Algorithms [2] and [I]have theoretical significance, but are not efficient enough in
practice. Moreover, the setting of fixed sizes of A, B and C' in Algorithms[T]is too rigid to fit for
flexible scenarios. For scalability and practical application of our algorithm, we propose the speed-up
version (Algorithm [3) of Algorithm[I]and use it in Algorithm[2]to yield our speed-up algorithm for
k-HOC. Their effectiveness and scalability will be verified in Section 4} Two easy heuristics are
proposed for speed-up, and the pseudocode of Algorithm [3]is presented in Appendix

Under review as a conference paper at ICLR 2025

(1) Initialization based on ratio-cut[Hagen & Kahng| (1992): Instead of the random strategy for the
initial trisection, we use the spectral clustering algorithm RatioCut to split the node set into two
pieces, denoted by X, Y, let A = X, B = (), C =Y. Then the nodes move greedily among A, B,
and C instead of exchange.

(2) Batch migration: Starting from the initial A, B, C, calculate the variation of the cost for each
node when it moves to another set, and select a batch of y|V| nodes (if any) with positive and the
largest variation of cost to move in one step UNTIL all nodes get stuck. In our experiment, we set
~ = 0.02. If this threshold is not reached, we just move all nodes that need to move.

4 EXPERIMENTS

In this section, we verify by experiments the effectiveness and scalability of the speed-up version of
Algorithm 2] which also demonstrates the validity of our cost function as well. All experiments were
performed on a computer equipped with a 2.3GHz quad-core Intel i5 processor with 8§GB memory.
For the source codes and datasets, please refer to the supplementary materials.

Baseline. We include two baseline methods. The first one is OHC’20 proposed by Jeantet et al.
(2020), which is a density-based algorithm for HOC in an agglomerative bottom-up fashion. It works
only for dissimilarity-based vector data. To fit to graph clustering in our experiments, we feed to
OHC’20 as input the spectral embedding consisting of the top-k eigenvectors of the Laplacian matrix.
Since this method need to deal with all-pair distance, it cannot work on large graphs. The second
one is cm + improve proposed by |Orecchia et al.| (2022), which is a nearly linear-time overlapping
bipartition algorithm with O(log n)-approximation. However, due to the version issue and complicate
organization of the source files, we are not able to compile correctly their codes published online. So
we compare our 2-OC algorithm with cm + improve on the same datasets as|Orecchia et al.|(2022)
uses by moving their results to our table directly (Table[T} the last column).

Synthetic datasets. We use the overlapping stochastic block model (OSBM). OSBM is a generaliza-
tion of SBM such that the preset & clusters overlap. We modify it to preset two hierarchies by setting
the first level inter-link probability p;, the second level inter-link probability p,, and the intra-link
probability ps. We give its definition in Appendix[C.I}] We use NMI for OC [Lancichinetti et al| (2009)
to evaluate our algorithm, and its formal definition is provided in Appendix [C.2} Since such NMI is
only fit to non-hierarchical clusters, we evaluate our algorithm results on each level of HOC graph.

Real datasets. For a fair comparison, we adopt the real datasets on http://snap.stanford,
edu/datalincluding Amazon, Youtube, and DBLP Yang & Leskovec| (2012b)) that are also used by
cm + improve |Orecchia et al.|(2022). Because of lacking ground truth for HOC, we only evaluate
scalability on the real datasets.

Effectiveness. We demonstrate in Figure [2] the results on OSBM datasets with varying sizes. We
show the time, cost, and NMI of our k-HOC algorithm, and compare it with OHC’20, as well as the
non-overlapping version that sets B in Algorithm [Tjempty and thus degrades to optimizing Dasgupta’s
cost. It can be observed that the runtime of our HOC algorithm that generates four overlapping
bottom clusters for dense graph of size 5000 is only around 80s, and that for sparse graph of size 10°
is less than 15min. We do not show the results of OHC’20 for sparse graphs since it is not able to
terminate in one hour for a graph of size 10%. The cost results indicate that our algorithm outperforms
OHC’20, and we have indeed gained benefits of cost from overlapping when compared with the
non-overlapping counterpart of Dasgupta’s cost. We evaluate NMI on the two hierarchies respectively.
For OHC’20, since it cannot restrict the hierarchy numbers, in each round of evaluation, we choose
the level that achieves the highest NMI compared with the ground truth. Most NMlIs are above 0.9,
which demonstrates that our k-HOC algorithm achieves high accuracy in reconstructing hierarchical
overlapping clusters on each level. We also visualize a result in Appendix

Scalability. Figure 2|has demonstrated that our k-HOC algorithm has good scalability in synthetic
graphs. Next, we show in Table [I] the scalability of our algorithm for 2-OC on large real datasets.
It can be seen that the runtime of our algorithm on all the datasets is much shorter than that of the

http://snap.stanford.edu/data
http://snap.stanford.edu/data

Under review as a conference paper at ICLR 2025

Figure 2: The results of time, cost, and NMI. In each figure, the z-axis indicates the graph size. The
graphs in the first row are small and dense, while those in the second row are large and sparse. We
take £ = 4 in OSBM, and in each cluster, the size ratio of overlapping to non-overlapping is 9:1. In
the fist row, p; = 1073, po = 5 x 1073, p3 = 0.5. In the second row, p; = 1074, py = 2 x 1074,
p3 =5 X 1073, Regard to the last two columns of NMI results, “level 1” is the first level that contains
the two high-level clusters, and “level 2” is the second one that contains the four low-level clusters.
Each point is calculated on average over 5 trials, and error bar indicates standard deviation.

baseline method cm + improve [H Especially, on Youtube dataset that has around one million nodes
and three million edges, the runtime of our speed-up algorithm implemented on a single personal
computer is less than 12 minutes, which is only around 20% of the runtime of cm + improve that is
run on a server. Although Orecchia et al.|(2022) showed that cm + improve has nearly linear runtime,
which is built on the recent solid work |Chen et al.| (2022) that has provided a nearly linear-time
algorithm for the maximum-flow problem, they actually used the HIPR implementation |Cherkassky
et al.| (1994) with the push-labeled method for this. The advantage of our algorithm in efficiency
benefits from our new cost function and the simple local search strategy.

Table 1: Scalability performance on real datasets
dataset n m time cm time
Amazon 334863 925872 <3min 15-18min
Youtube 1134890 2987624 <12min 55-75min
DBLP-all 317080 1049866 <3min -
DBLP-cm 83114 409541 <21s 2-4min

5 CONCLUSIONS AND FUTURE WORK

Conclusions. In this paper, we study the problem of hierarchical overlapping clustering from the
aspects of cost function, algorithm and scalability. We propose a cost function and give some basic
properties. We provide an approximation algorithm that achieves constant factor for the dual version
of k-HOC problem. A speed-up version of our algorithm based on some easy heuristics during local
search has good performances in HOC reconstruction and good scalability.

Future work. There are many directions worth further study. The first is about approximation
algorithm for the primal k-HOC problem for k£ > 2. Although we know the complementary
relationship between the primal and the dual problems, the approximation guarantees are quite
different. The second is about variant versions of the HOC problem, e.g., having other constraints on
HOC graphs and alternative definitions of node-to-node and edge-to-node belonging factors. These
flexible settings may adapt to different application scenarios.

'The results in the last column of Tableare from Table 3 of the original paper Orecchia et al. (2022) whose
experimental operating environment includes a cluster of machines with 24 Cores (2x 24 core Intel Xeon Silver
4116 CPU @ 2.10GHz), 48 threads and 128 GB RAM. In contrast, we have only used a personal computer.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Sara Ahmadian, Vaggos Chatziafratis, Alessandro Epasto, Euiwoong Lee, Mohammad Mahdian,
Konstantin Makarychev, and Grigory Yaroslavtsev. Bisect and conquer: Hierarchical clustering
via max-uncut bisection. arXiv preprint arXiv:1912.06983, 2019.

Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue approximation.
In Conference on Learning Theory, pp. 153—-162. PMLR, 2020.

Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):1-37, 2009.

Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 841-854. SIAM, 2017.

Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than average-
linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 2291-2304. SIAM, 2019.

Duanbing Chen, Mingsheng Shang, Zehua Lv, and Yan Fu. Detecting overlapping communities of
weighted networks via a local algorithm. Physica A: Statistical Mechanics and its Applications,
389(19):4177-4187, 2010.

Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pp. 612-623. IEEE, 2022. doi: 10.1109/FOCS54457.2022.00064. URL
https://doi.org/10.1109/F0OCS54457.2022.00064.

Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory
and experimental evaluation. In Daniel Dominic Sleator (ed.), Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pp.
516-525. ACM/SIAM, 1994. URL http://dl.acm.org/citation.cfm?id=314464,
314638.

Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM (JACM), 66(4):1-42, 2019.

Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of the
Forty-eighth Annual ACM Symposium on Theory of Computing, pp. 118-127, 2016.

Fernando Gama, Santiago Segarra, and Alejandro Ribeiro. Hierarchical overlapping clustering of
network data using cut metrics. IEEE Trans. Signal Inf. Process. over Networks, 4(2):392—-406,
2018.

L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. /EEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9):1074-1085,
1992. doi: 10.1109/43.159993.

Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition to minimize
congestion. In Proceedings of the 15th Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 34—43. ACM, 2003.

Ian Jeantet, Zoltdn Miklds, and David Gross-Amblard. Overlapping hierarchical clustering (OHC).
In IDA, volume 12080 of Lecture Notes in Computer Science, pp. 261-273. Springer, 2020.

Rohit Khandekar, Guy Kortsarz, and Vahab S. Mirrokni. On the advantage of overlapping clusters
for minimizing conductance. Algorithmica, 69(4):844-863, 2014.

Andrea Lancichinetti, Santo Fortunato, and Janos Kertész. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11(3):033015, 2009.

11

https://doi.org/10.1109/FOCS54457.2022.00064
http://dl.acm.org/citation.cfm?id=314464.314638
http://dl.acm.org/citation.cfm?id=314464.314638

Under review as a conference paper at ICLR 2025

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Angsheng Li and Yicheng Pan. Structural information and dynamical complexity of networks. /EEE
Transactions on Information Theory, 62(6):3290-3339, 2016.

Pan Li, Hoang Dau, Gregory Puleo, and Olgica Milenkovic. Motif clustering and overlapping
clustering for social network analysis. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pp. 1-9. IEEE, 2017.

Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering: Average
linkage, bisecting k-means, and local search. Advances in Neural Information Processing Systems,
30, 2017.

Stanislav Naumov, Grigory Yaroslavtsev, and Dmitrii Avdiukhin. Objective-based hierarchical
clustering of deep embedding vectors. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9055-9063, 2021.

Tamas Nepusz, Andrea Petrdczi, Laszl6 Négyessy, and Fiilop Bazs6. Fuzzy communities and the
concept of bridgeness in complex networks. Physical Review E, 77(1):016107, 2008.

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

Vincenzo Nicosia, Giuseppe Mangioni, Vincenza Carchiolo, and Michele Malgeri. Extending the
definition of modularity to directed graphs with overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment, 2009(03):P03024, 2009.

Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal Talwar. Practical
almost-linear-time approximation algorithms for hybrid and overlapping graph clustering. In
International Conference on Machine Learning, pp. 17071-17093. PMLR, 2022.

Harald Ricke. Minimizing congestion in general networks. In Proceedings of the 43rd Symposium
on Foundations of Computer Science, pp. 43-52. IEEE Computer Society, 2002.

Harald Récke. Optimal hierarchical decompositions for congestion minimization in networks. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 255-264. ACM,
2008.

Mirmahdi Rahgoshay and Mohammad R Salavatipour. Hierarchical clustering: New bounds and
objective. arXiv preprint arXiv:2111.06863, 2021.

Aurko Roy and Sebastian Pokutta. Hierarchical clustering via spreading metrics. Advances in Neural
Information Processing Systems, 29, 2016.

Huawei Shen, Xueqi Cheng, Kai Cai, and Mao-Bin Hu. Detect overlapping and hierarchical
community structure in networks. Physica A: Statistical Mechanics and its Applications, 388(8):
1706-1712, 2009.

Joyce Jiyoung Whang, David F Gleich, and Inderjit S Dhillon. Overlapping community detec-
tion using neighborhood-inflated seed expansion. IEEE Transactions on Knowledge and Data
Engineering, 28(5):1272-1284, 2016.

Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping network
community detection. In 2012 IEEE 12th international conference on data mining, pp. 1170-1175.
IEEE, 2012a.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-truth.
In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, pp. 1-8, 2012b.

Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of overlapping community
structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics
and its Applications, 374(1):483-490, 2007.

12

Under review as a conference paper at ICLR 2025

A SUPPLEMENT TO THE COST FUNCTION FOR HOC

In this section, we provide some supplements for our cost function for HOC.

A.1 PROOFS OF THE PROPERTIES OF BELONGING FACTOR

(1) Proof of Property [2.4]
Proof. By the definition of o,) 0y - axy = 1. |
(2) Proof of Property [2.5]

Proof. We prove it by induction. We group the nodes on an HOC graph by the distances from the root
R.Let P ={Ly, Lo, ...}, where L; = {v|dis(v, R) = i}. Then we prove the property by induction
oni. VN € Ly, since [N~ | =1, we have ay g = 1. Suppose that VX € Ly, ax g = 1, then VN €
Ly 1, by the recursive definition of o, an.r = D xen- ONX " OX R =D xen-aNx = 1. [

(3) Proof of Property [2.6]

Proof. It can be verified directly by the definition of a.

len(p)—1

axy = E H pi,pit1

pEPxy 1=0
len(p)—1

= Z Z H Qp;,pit1

NeS p:|puN|=1 =0

len(p)—1 len(p)—1
= E: E H Qpi,pita E: H Xpipit1
NeS \pePx.n i=0 pEPNy i=0
= E QX N ONY

NeS

A.2 A TOY EXAMPLE OF BELONGING FACTOR

— o o o
a b C d a b c d

(a) Original graph: a path of 4 (b) An HOC graph of the original
nodes. graph.

Figure 3: An illustration of HOC graph.

In order to better understand node-to-node and edge-to-node belonging factors, we give an example
in this section.

13

Under review as a conference paper at ICLR 2025

As shown in Figure 3] graph G is a path of 4 nodes, and a possible HOC graph is shown in Figure (b).

Table [2| demonstrates the minimal common ancestor set of each leaf node pair. Table |3|shows the
node-to-node belonging factor of each child-to-parent node pair on the HOC graph, and those of any
others can be calculated by Definition[2.3] For example,

1 1 1 3

b, Ny = Qb,Ny QN1 Ny + OB, Ny * ONg Ny = 5 X 1+ 3X5=7
1 1 1
Qp, N5 = Qp, Ny " Ny Ny = 5 X 5 = 1

Table 2: Minimal common ancestor set
node pair (u,v) (a,0) (a,¢) (a,d) (b,c) (b,d) (c,d)
My, Vi) N} {R} {No} {Ns} {Ns}

Table 3: node-to-node belonging factor (child to parents)

node pair (X,Y) (a,Nl) (b, 1) (b, NQ) (C, NQ) (C, Ng) (d, Ng)
axy 1 12 12 172 172 1

node pair (X,Y) (N, Ng) (Na,Ny) (N2, N5) (N3, Ns) (NgyR) (N5, R)
axy 1 1/2 1/2 1 1 1

We can also verify the properties of the node-to-node belonging factor. Here we only verify Property
and other properties can be easily verified. Let X = b, Y = Ny, S = { N7, Na}. We can verify
that S satisfies all conditions of Property 2.6] Then

3

Qp,Ny = E Qp, N * QN Ny = O Ny " Ny, Ny T Qb No - Ny, Ny = 4
NeS

Table 4: edge-to-node belonging factor
edge (u,v) minimum common ancestor N ,Bg:i »)

(a, b) Nl
(b, C) NQ 1
(07 d) N3 1

Table] shows edge-to-node belonging factors of all edges and their minimum common ancestors.
Because every edge has only one minimum common ancestor, the edge-to-node belonging factor is 1.

A.3 COST CALCULATION FOR THE RUNNING EXAMPLE

For reading convenience, we demonstrate the example again.

o e R R R
< N N> Ny N Ny N
a b a b c d e a b c d e a b c d e

(a) The original graph G (b) HOC graph D; (c) HOC graph D> (d) HOC graph D3

Figure 4: An example of HOC graphs.

14

Under review as a conference paper at ICLR 2025

In D, all edges have only one minimal common ancestor, so the edge-to-node belonging factors of
them are 1. The graph contains 6 edges in all, and each minimal common ancestor has 3 descendant
leaf nodes, resulting in the cost HP1 (G) = 6 x 3 = 18.

D, is not overlapping. For (a,b), (a,¢), (b, ¢), their minimal common ancestor has 3 descendant
leaf nodes. For (d, €), the minimal common ancestor has 2 descendant leaf nodes. For (¢, d), (¢, e),
their minimal common ancestor has 5 descendant leaf nodes. All together, the cost HP2(G) =
3x3+2+2x5=21

In D3, consider 6 terms separately corresponding to the 6 edges. Taking (b, ¢) as an example, it
has two minimal common ancestors. Due to symmetry, the edge-to-node belonging factors of (b, ¢)
regarding to both ancestors are 0.5. Therefore, the cost contributed by (b, ¢) is 0.5 x 44+ 0.5 x 4 = 4.
Thus, the cost HP3(G) = 1x4+1x4+(0.5x4+0.5x4)+ (0.5 x4+0.5x4) +1x4+1x4 = 24.

A.4 PROOFS OF PROPERTIES OF THE COST FUNCTION
(1) proof of Property 2.11] (compatibility)

Proof. When D is an HC tree, the minimal common ancestor of edge (u, v) is unique and
degenerates to the LCA on the HC tree, and the edge-to-node belonging factor is also 1.

Then, we get
HP(G) = > (w(u,v) > ﬂ@,v)'IV(NN)
(u,v)EE NEMyy
= > wuv)-|uVo|
(u,v)EE

= das_cost? (@)

O]
(2) Proof of Property [2.12] (additivity on nodes)
Proof.
HP(G) = (w(u, v) > Bl |V(N)|>
(u,v)EE NEM,,
NeD (u,v)EER
O]

(3) Proof of Property (binary optimality)

Proof. As shown in Figure 5] assume that (a) represents a local optimum of the optimal
solution D, where node N has three children: Ny, No, and N3. For any edge (u,v) treating
N as a minimal common ancestor, u and v cannot belong to any single cluster of Ny, No,
and N3 simultaneously, since otherwise, N would not be the minimal common ancestor for
them. Without loss of generality, let’s assume that u belongs to N1 and v belongs to N, (or
N2 and Ng)

Now, we construct a new node X as the parent of N; and Ns, resulting in the transformed
structure shown in (b). As a result, the minimal common ancestor for (u, v) becomes X.
We observe the following.

Since every path from u to N’ passes through X and ax n+ = 1, we have o, v =
Qu, N’ = 0y, x. Since a path from v to N corresponds to a path from v to X, but v may
also belong to N3, we have a, v > «a, x. Therefore, SV (u,v) > 8% (u,v), indicating
that the edge-to-node belonging factor of (u,v) to X is less than or equal to its edge-
to-node belonging factor to N. Additionally, we have |X| < |V(N)|, implying that

15

Under review as a conference paper at ICLR 2025

N N, N3

(a) (b)

Figure 5: Binary property proof graph

w(u,)X (u,v)|X| < w(u,v)B (u,v)|V(N)|. This leads to a reduction in the cost
function associated with this term. It is important to note that the cost reduction holds true
for any edge treating N as a minimal common ancestor. Moreover, by Property [2.12] the
cost function can be expressed as » v p [V(N)] - Z(u,v)eEﬁ w(u, v)ﬂ&,l)). The above
operation affects only the cost of a single node. For other nodes, the edge-to-node belonging
factor and the number of descendant leaf nodes remain unchanged, thus their values do not
change. As a result, the overall cost function decreases. In this way, we can transform any
case where a node has more than two children into a binary structure, resulting in a lower
cost function value. Therefore, when the number of nodes of D is unbounded, the binary
HOC graph constructed above is optimal. O

B SUPPLEMENT TO THE ALGORITHMS

In this section, we provide some supplements to our algorithms.

B.1 PRIMAL AND DUAL PROBLEMS OF 2-OC

Following is the derivation process of the forms of costy,imai and costgyq; for 2-OC.

mDinHD(G) = Z w(u,v) Z B(JX,D)‘W(N”

(u,v)EE NEM,y,

= > wwo)(A+IB)+ Y w(uw)(A]+|B])
(u,v)EE(A) (u,v)€E(A,B)
+ > wo)(Bl+C)+ Y w(uw)(Bl+]C)
(u,v)eE(C) (u,v)€E(B,C)
> wlu) (B - (141 + 1B + B, - (1Bl +(CD)
(u,v)EE(B)

+ Z w(u, v)n

(u,v)EE(A,C)
= w(A) (Al +|B|) +w(A, B)(|A| + |B])
Fw(C)(|B[+C]) + w(B, C)(|B| + |C]) + w(A, C)n

+Lw(B)(|A] + |B| + [B| + C))

2
= (w(4) + w4, B))(JA] + |B]) + (w(B, C) + w(C))(|B] + |C])
+w(B)w +w(A4,C)n

16

Under review as a conference paper at ICLR 2025

Explanation of the derivation: We classify the edges into six parts, denoted by E(A), E(A, B),
E(B,C), E(C), E(B), E(A,C), and calculate the cost of each part separately. For (u,v) €
E(A), E(A, B), the only minimal common ancestor is Ny, ﬁ(]:ilv) =1,|V(N1)| = |A] + |B|. Simi-
larly, for (u,v) € E(C), E(B, C), the only minimal common ancestor is Na, ﬂ(]:[fv) =1,|V(Ng)| =

|B| + |C|. For (u,v) € E(B), the minimal common ancestors are N1, Ny, and 6(]:?”) = 5(]:1271) =1
For (u,v) € E(A, C), the only minimal common ancestor is R, 5{2 » =LIV(R)=n.

Observe that
Al +2|B C
41 +181, 1| + o), ALF2ABEC
|A|+|B[+[C|=n
w(E) =w(A) +w(B) +w(C) +w(A,B)+w(B,C)+w(A,C)
|A| + |B] =n—[C]|
|B] +[C| =n—|4]
[Al+2Bl+(C] _ |Al+]C]
2 2
then we have

costprimal(4, B, C)
= (w(A) +w(4, B))(|A| +|B|) + (w(B,C) +w(C)(|B| + [C])

+w(3)w + w(A,C)n
= (w(4) +w(A, B))(n —|C]) + (w(B, C) + w(C))(n — |A])

suB)n - AL o
= nw(E)— (w(A) +w(A, B) + w(QB)) | - <w(C) +w(B,C) + w(f)) 4]
= nw(E) - <w(A+B) - “’(QB)) le= (w(B-|—C) - “’<QB>) Al

B.2 PROOF OF THEOREM [3.1]

We prove Theorem 3.1 with two lemmas respectively.

Lemma B.1. The time complexity ofAlgorithmis O(@).

Proof. Let wpq, be the largest weight, then w(E) < mwmag, 2w(B) < 2MWimag, SO COStiemp =
w(E) — w(4,C) 4+ zw(B) < (1 + 2)Mmwpq,. Observe that the edge with the largest weight is
in A in the initial STATE, 5o costiemp = Wmaz. Each cycle costienm, increases by 1 + ﬁ times,

then the maximum number of cycles is log;, +5 ((1 4+ 2)mMWmaz /Wmaz) = O(@). The time

complexity is O(%). O

Lemma B.2. The approximate ratio ofAlgorithmis 32% — O(LE). That is, A, B, C output by

the algorithm satisfy
2 1+e¢€
costguar > (—= — O(——))costguai(A*, B*,C*),
dual (3\/6 (==))costauar()

where A*, B*, C* are the optimal solution to

Proof. Considering the conditions satisfied by A, B,C at the time of termination, exchanging
the nodes in A, B or B,C or A,C at this time cannot make costi,,,,(A’, B’,C") > (1 +
=5)c05ttemp(A, B, C), let costoiq = costiemp(A, B,C). In other words, if an exchange is per-
formed again (no matter which two nodes are exchanged), costye,, after the exchange is denoted by

17

Under review as a conference paper at ICLR 2025

COStpews SO COSlpew < (145)cost . Define A = costyey, — oSt o, then we get A < 55costoyq.
The above conclusion should be true for the exchange process of any two nodes, and the algorithm
will terminate.

A B C

Figure 6: Schematic diagram of overlapping clustering dual problem

Before discussing the A value for swapping any two nodes, let’s calculate some intermediate results
for later use. For a € A,b € B,c € C, denote the sets after the swap as A’, B’, C’, respectively.
Consider the following cases.

(1) Swap a and b: w(A’,C")—w(A,C) = w(b,C)—w(a,C), w(B')—w(B) = w(a, B)—w(a,b)—
w(b, B).

(2) Swap b and ¢: w(A',C") — w(A,C) = —w(c, A) + w(b, A), w(B') —w(B) = —w(b, B) +
w(e, B) —w(b, c).

(3) Swap a and ¢: w(A',C") — w(A,C) = —w(a,C) — w(c, A) + w(a, A) + w(c, C) + 2w(a, ¢),
w(B') —w(B) = 0.

Note that A = —(w(A’,C") — w(A4, C)) + x(w(B’") — w(B)). Therefore, by substituting the above
equations, we can obtain the value of A for each case.

Consider the memberships of the two exchanging nodes separately.

(1) Forany a € A,b € B, exchanging a, b, we have A = 08t e — c0Sto1q = —w(b, C)+w(a, C)+
z(w(a, B) —w(a,b) —w(b, B)) < -Scostyq. Summing over all a, b, we have

—pnw(B,C) + (1 — 2p)nw(A, C) + x ((1 — 2p) nw(A, B) — w(A, B) — 2pnw(B))
< %p(l — 2p)n’cost g)

(2) For any b € B, ¢ € C, exchanging b, ¢, by the symmetry of A, C, we have
—pnuw(A, B) + (1 - 2p)nw(A, C) + (1 - 2p)nw(B, C) — w(B, C) — 2pnuw(B))
< %p(l — 2p)n°cost,g (5)
n

(3)Forany a € A, c € C, exchanging a, ¢, A = w(a,C)+w(c, A)—w(a, A)—w(c, C)—2w(a,c) <
~3C0sto1q. Summing over all a, ¢, we have

pnw(A, C) + pnw(A, C) — 2pnw(A) — 2pnw(C) — 2w(A,C) < %anzcostold

then

2
t

w(A, C) + LEo%old ©6)

pn 2pn

—w(A) —w(C) < P2

Summing up Inequalities (@) and (5)), we get
(=p+ (1 =2p)z)n — 2)w(A, B) + ((—p + (1 = 2p)2)n — 2)w(B, C) — dpznw(B)
< (=24 4p)nw(A, C) + 2ep(1 — 2p)cost g @)

18

Under review as a conference paper at ICLR 2025

Substituting = = - into Inequality (7), we get

142p
4p’n+p D
< (—2+4p)nw(A,C) + 2ep(1 — 2p)cost g (8)

Multiplying the coefficient 4’171”2;” on Inequality (El), we get

4p*>n +p 4p*n+p pn—1 4p®>n+1p ep?costoq
- (w(A C)) < — . AC . 9
14+2p (w4) +w(C)) < 14+ 2p pn w(4,) + 14+ 2p 2pn ©)
Summing up Inequalities (§) and (9)), we have
4p*n +p P ap’n+p 2pn—1
———w(F B) < ((=2+4p)n — . A C
1+2p w()+1—|—2pw()= ((Z2+4p)n 1+ 2p pn wl)
4p®>n+p ep’cost,
+2ep(1 — 2p)cost o +]1) - 2pp P o 4 (10
After removing w(B) on the left, we get
dp’n+p dp’n+p 2pn—1
—w(E)>((2-4 . AC
o Eu(B) = (2 B A Y u(a,0)
4p°n +1p ep*costoq
—2ep(1 —2 told — . 11
ep(p)costold 1+ 2p apn (11)
Focusing on w(A, C'), we have
4p°n+p
w(A,C) < 1+2fn —w(E) + 2ep(1 — 2p)costoq
(2 - 4p)n + 411)—'4-2-;1) ’ 2ppn :
4p®>n+p _ ep®cost g
14+2p 2pn
4p*n? + pn 2ep(1 —2p)(1 + x)
ST e — e - ipnep 2ot V()
P (2 4p)n + 1+2p ’ pn
4p®n4p . ep2(1+m)
1+2p 2pn
w(E)
4p2n+ 2pn—1
(2 - 4p)n +]i+2pp ’ ppn
< 4p°n® + pn g 2ep(1 — 2p) - 1132 E
- 9212 -2 _ 1111() + _ 4p2n+p 2pn—1 ’LU()
n pn (2 4p)n + 1+2p ’ pn
4p’n+p ep® 1+3p
14+2p 2pn 142p (E)
4p?ntp 2pn—1
@ tpn+ g 2
4p>n? + pn 2np(—6p% +p+ 1)e
< —w(FE E
- 2n2—2pn—1w()+ 2n2 —2np —1 w(E)
p?(4np +1)(3p + 1)e w(E)
2(2p+1)(2n% —2np — 1)
1
< <2p2 +6(=)w(E) + e(;> w(E)
1
- (2p2+®< +6)) w(E) (12)

So
w(E) — w(A,C) = (1 - 2 — O+

))w(E).

19

Under review as a conference paper at ICLR 2025

At last,

(w(A+B) - w(B)) |C] + <w(B +0C) - w(23)> |A|

costaual(A, B, C) 5

(w(A+ B)+w(B+C) —w(B))pn
(w(E) —w(A, C))pn

> (12— 09) wEpm
- (-t p-0-E9)) e
> (2p3+p@(1n+6)> costauar (A", B*, C")

The fact costgua < nw(E) is used here.

Letting p = % and substitute it into Inequality , we can get

2 1
costgua(A, B,C) > < te

EN G

)) costguai(A*, B*,C*)

13)

(14)

O

Remarks: We have a rounding error in costg,qi(A, B, C) incurred by setting |A|, | B, |C| to be
integers in the above proof. But because the error is a constant multiple of w(E) due to the constant

errors incurred by each of |A|, |B|, |C], it can be absorbed safely in e.
By Lemma BT} [B:2] Theorem [3.1] follows.
B.3 PROOF OF PROPOSITION[3.2]

Proof. We give an example satisfying that OPT = (ﬁ - O(L)nw(E).

Consider a complete graph with n nodes, and study its optimal solution for OC-D. Consider any

A,B,C,letx = |A|,y = |Bl,z = |C|. Let

-1
f(l',y,z) = COStdual(Avac) = <:L'(Z2) +zy + +yz +

4 2
and our goal is max, y »c7, aty+2=n f(Z,¥, 2).

First prove that f(z,y, z) takes the maximum value when = = y.

Consider (z,y, z) — (££2,y, £22), then we have

2

27%2

T4z (x+z (242 yly—1) x4+ zyly—1)
= —1 —
2 (2 (2)+<x+z)y+ 2 2 2
9wy — xz(x—I—Qz —2)
x4 z—2 ((r+2)? —daz +(J:+z)2—4xz
- 2 1 2 Y
> 0

indicating that when y is given, f gets maximum when x = z.

WD, (2D, 0D

)

So the problem is transformed into max, yez, 204+y=n 9(¢,y) = ((x — Dz +2zy + @) z,

and is further transformed into

h(x) = -1 2 -2
OLY}EZZX% (z) ((x) + 2z(n — 2z) +

(n—2x)(r;—2x—1))m

20

Under review as a conference paper at ICLR 2025

Then we have

h(z) = <(g; et (n— 2@”12””5) .
_ <(:U1)x+n24$22(n2x)>x
h/(x):—3x2+n22_n

So, h(z) gets the maximum value at z = 4/ "2T_”. For the optimal solution value, then we have
" n?—n /nz—n+n2—n In2 —n
cos = —
dual 6 6 9 6
B n2—n /n2—-n
3 Ve

-1 3_ 2
nn-1) _ %=1~ Then we have

Finally, notice that nw(E) = n -

n’-n /n2-n

COSt:lual 3 6
nw(E) ni-n?
2 /n?2—n
— 3V 62
_ 2 vVn2—-n+n-—-n
= 37 -
B 2 2 n—vnZ—-n
~ 36 3/6 n
_ 2 2 n
© 3v6 3vV6n(n+vn?+n)
2 2 1
- 3\/6_3\£n—|—\/n2—|—n
2
— ﬁ_e

where e = © (1).

It can be observed that, for a complete graph, its relationship with nw(FE) is exactly the approximate
ratio of Algorithm [T] O

B.4 APPROXIMATION GUARANTEE FOR [2-OC-P|

In the section, we show that Algorithm I]is actually a good approximation algorithm for[2-OC-P| We
simply treats the output of Algorithm [T]as the result for[2-OC-P| we have the following approximation

guarantee for

Theorem B.3. The approximation factor of Algorithm || for is (1 — a)(1 + dimaz/davg),
where dy,qq is the maximum degree of all nodes, d .4 is the average degree, and a = ﬁ — @(%)

By this theorem, we have two corollaries for regular and bounded-degree graphs, respectively.

Corollary B.4. If the graph G is d-regular; then the approximation factor of Algorithm[I)for[2-OC-P|
onGis(1—a)(l1+d).

Corollary B.5. If the degree of each node in graph G is upper bounded by a certain constant d, then
the approximation factor of Algorithm[l|for[2-OC-Plon G is 2(1 — a)d.

Then we prove Theorem[B.3]

21

Under review as a conference paper at ICLR 2025

Proof. Let costy,,,, and costy ., be the optimal objective values, costquar and costorimar be the

values that Algorithm|T|outputs, for[2-OC-D|and[2-OC-P| respectively. Let a and b be the approximate
ratios of Algorithm [I] for the dual and the primal problems, respectively. We have the following
relationship.

Lemma B.6. b < (1 — a)(1 + cost},,,;/cost?,).

primal

Proof. Note the following relationships hold.
o8ty imal + COSt a1 = COStprimal + C08tauar = n - w(E)
and
coStguar > anw(E) > a - costy, .
Therefore, we have
costprimal = NW(E) — costyyal

< nw(E) —anw(E)

= (1 - CL) (COSt;rimal + COSt:}ual)
Since costprimar = b - cost?, Lemmafollows. O

primal?

*

. _ _2 1y 3 *
Since we already have a = e @(5), if we can give an upper bound on cost}, ., / costw,mml,

then we also have an upper bound on b. The following lemma provides this upper bound.

Lemma B.7. F0r|2-0C-D| and|2-0C-P| COStZual/COSt;rimal < Pmaz/Pavg < Gmaz/davg, where
Pavg = W(E)/|V| is the average density, pmaz is the maximum density of all induced subgraphs,
Amaz 1S the maximum degree of all nodes, and dq.q is the average degree of all nodes.

Proof. Let A*, B*, C* be the optimal solution (no matter whether it is primal or dual because the
two problems are equivalent), let cost;‘”,imal denote costprimai(A*, B*,C*) and cost, ,, denote

costauai(A*, B*,C*) for short. Let A, B, C be the output of Algorithm and use it as the output
for Let costprimar denote costprimai(A, B, C) and cost gyq1 denote costgyai(A, B, C).

1
costhau = |C*] (w (A")+w (A", B*) + JW (B*)>

+| A% <w (C*)+w (B*,C*) + %w (B*)>
ostymar = (471187 (10 (4% + 0 (4%, B + G0 ()
+(|B*|+|C*)) (w (C*)+w (B*,C*) + %w (B*)) + nw (A*,C*).

. cost)
Consider two cases of -2~ dual_,

primal

(1) If S%%iuat < 1, then b = 2(1 — a).

primal

(2) If 2tauar > 7, namely costy, ., > costy ..., substituting into the specific form of the

objective function, we have

071 (A% 0 (47 B + G0 (5) #1471 (1(C7) 4w (5,C°) 4 o (87

> (|47 +1B7) (w (A%) +w (4%, B%) 4 Jw (B*))

+ (B + 7)) (w (€) +w (B C) + qu (B*)) +nw (4%, C*).

22

Under review as a conference paper at ICLR 2025

Then we get
* * * * * * 1 *
(7] = 147 = 157]) (w0(A) + w0 (4%, B) + G ()
* * * * * * 1 *
AT =187 =10 (w(C) w0 (B7,C7) + 0 (5))
> nw(A*,C).
This holds if and only if

(17 = [A") (w(A") + w(A", BY) = w(C") — w(B*, C7))
> nw(A*,C*)+ |B*|(w(A*) + w(A*, B*) + w(B*) + w(C*) + w(B*,C")),
which implies that
(7] = [A")(w(A") + w(A", BY) = w(C”) —w(B*, C7)) > 0.

Without loss of generality, we assume that |C*| > |A*|, w(A*) +w(A*, B*) > w(C*)+w(B*, C*).
oSty

*
COStpr'imal

We consider two types of scaling for

Scale 1: replace | A*| with |C*| for the numerator, remove nw(A*, C*) for the denominator, replace
|C*| with | A*|, and then we get

Co:t:;ual
cos ;rimal

IC™ | (w(A")+w (A", B)+ 3w(B*)+|C|(w(C*)+w(B*,C*)+3w(B"))
(A" [+]B*])(w(A*)+w(A*, B*)+3w(B*))+(| B* [+|A*]) (w(C*)+w(B*,C*)+ 5w(B*))
_ |C* | (w(A)+w(A*, B*)+w(B")+w(C*)+w(B*,C*))
(\A”gjllB*I)(w(A*)HU(A*,B*)+w(B*)+w(C*)+w(B*’C*))
~ IBHIAT

A

Scale 2: replace the numerator w(C*) + w(B*, C*) with w(A*) + w(A*, B*), remove the denomi-
nator Contents of | B*|, and then we have

.
costgyal

cost;Mmal
(A" +IC™) (w(A) +w(A*, B*)+Fw(B"))
[A*[(w(C*)+w(B*,C*)+ 5 w(B*))+|C*|(w(C*)+w(B*,C*)+3w(B*))+(|A*[+|C*[)w(A*,C*)
(A" +IC™) (w(A") +w(A*, B*)+Fw(B"))
(A*[+C*) (w(C*)+w(B*,C*)+ 5 w(B*)+w(A*,C*))
w(A*)+w(A*,B*)+3w(B*)
w(C*)+w(B*,C*)+sw(B*)+w(A*,C*)"

A

A

Therefore,
Ot { . { | w(A") + w(A*, BY) + Lw(B") }}
——— < max{ 1, min ” o1 " —— I » ——
oSty imal |A*| + |B*|" w(C*) + w(B*,C*) + sw(B*) + w(A*,C*)
Let
U o
A+ 5]

_ w(A*) + w(A*, B*) + tw(B*)
Y w(C*) 4+ w(B*,C*) + sw(B*) + w(A*,C*)

then we have .
A* B = ——|V
A7)+ 1B"] = ==V

and

w(A) + w(A*, B*) + %w(B*) - ﬁw(E)

Recall that |C*| > |A*|, w(A*) + w(A*, B*) > w(C*) + w(B*, C*), and observe that the density
of the induced subgraph G[A* + B*] should be large. Set pyq, = maxycy {%} to be the

23

Under review as a conference paper at ICLR 2025

w(k)

maximum density of the induced subgraph on G, E(G[U]) to be the edge set of G[U], pgug = \TLI
to be the average density of GG, and then

w(A*) + w(A*, B*) + tw(B*)

|A*| + |B*|
y(1+a) w(E)
14y V|
< WA+B
|A*[+ |B*|
S Pmaz

We have
y(l + x) < Pmaz
1 + Yy Pavg

Now according to the value of min(x,y), we consider the following two cases.

(DHx <y :, we have

x_(1+y)r_w+xy<y+wy_y(1+w) < Pmaz
14+y 14y = 14y 1+y = pavg

(2)x > y, we have

_y(1+=) - y(L+2) _ Pmas

112~ 14y Pag
Therefore,
A* B*
min{| |, w(B") } < Pmaz
|B*|” w(A*) + w(A*, B*) Pavg
Then for C(f:;%, we have
primal
Cosf:;ual < max(l, pma:r) _ Pmazx
COStpTimal Pavg Pavg

Calculating p;,q, is difficult. However, it is observed that the average degree d < d,q4. on G[U],
and w(E(G[U])) = @. So, we have an upper bound on p,;, 4., that is

p _ ’LU(E(G[U])) < d- |U| < dmax
e |U| - 2Ul T2

On the other hand,
W(E) _ davg - [V] _ davg

Povs =Ty = TRV T 2

This implies that
pmaac < dmax

Pavg o davg

COSt:lual Pmaz < dmaz 3 : — _ dmaz
Therefore, 7G=tue < Loy < Gy » Approximate ratio b = (1 —a) (1 + Gee=). O

Combining Lemmas [B.6]and [B.7] Theorem B3| follows.

24

- -

Under review as a conference paper at ICLR 2025

B.5 DERIVATION PROCESS FOR APPROXIMATION RATIO OF[2-OC-P

Note the following relationships
oSty imal + COSt g1 = COStprimal + €OStauar = n - w(E)
and

coStguar > anw(E) > a - costy, .

Therefore, we have

costprimal = NW(E) — costgyal
nw(E) — anw(E)
(1 - CL) (COSt;rimal + COStZlual)

= b-cost

IN

*
primal

B.6 PROOF OF THEOREM[3.3]

3v6
in which nw(E) is an upper bound for the cost of the dual HOC problem with any constraints. So,
Theorem [3.3] follows if the final dual cost is no less than the one after the first round of invoking
Algorithm |1}

Let N; and N, be the two overlapping clusters that Algorithm] yields in the first round of the repeat
loop, and e € E be an edge that treats N1 or Ny as a common ancestor. Then the root r is not
a minimal common ancestor of e, since otherwise, r forms an chain with N; or N5. In the next
iterations, r will not be included in the minimal common ancestor set of e during both splitting and
merging process. Since N; and N> have the same size, no matter how the belonging factors of e
change, the final primal cost that e contributes will not exceed that after the first round of invoking
Algorithm[I] Theorem [3.3|follows immediately. O

Proof. Note that Algorithmachieves a dual cost at least (L - @(%)) - nw(E) for[2-OC-D

B.7 PSEUDOCODE OF THE SPEED-UP ALGORITHM

We present the pseudocode of the speed-up algorithm for 2-OC in Algorithm 3]

Algorithm 3: Speed-up algorithm for 2-OC

Input: an undirected graph G = (V, E, w), move batch ratio v
Output: node sets A, B and C for 2-OC
X,Y «+ RatioCut(QG);
A+« X,B+0,C+Y,;
repeat
Calculate the delta of cost 4,4 When each node moves to the other two sets, and select the
one with the larger increment as the potential action at that node;
Let S be the node set that brings cost 4,4, increment;
¢ min{|S|,y|V]}:
Move the top-t nodes with the largest increment;
until S is empty;
return A, B, C.

Replacing Algorithm [T] with Algorithm [3]in Algorithm[2] we get the speed-up version of k-HOC
algorithm.

C SUPPLEMENT TO EXPERIMENTS

In this section, we provide more information about our experiments.

25

Under review as a conference paper at ICLR 2025

C.1 OSBM AND OUR SETTINGS

OSBM is specified by a k x k symmetric matrix Z, where each element is a natural number, and a
pair of real numbers pq, p2 (0 < p1 < p2 < 1). Z;; (4 # j) represents the number of overlapping
nodes between the ¢-th and the j-th clusters, and Z;; represents the number of nodes in the i-th cluster
that do not participate in overlap. Denote by C1, ...C}, the planted overlapping clusters. p; represents
the inter-link probability between each pair of clusters, while py represents the intra-link probability
within each cluster. For two nodes in the overlapping parts, we have two independent samples, and
the edge is present if any of them generate an edge. In other words, the probability of edge presence
between any two nodes in the overlapping parts is 1 — (1 — p)2.

In our experiments, we assume that each node belongs to at most two clusters. Thus, the total number
of nodes is the sum of entries in the upper triangle of Z. For simplicity of implementation, all clusters
are of the same size and have the same size of overlaps between clusters. For a 2-level hierarchical
structure, we choose three probability values 0 < p; < po < ps < 1, in which p; is the inter-link
probability between clusters on the first level, ps is the inter-link probability between clusters on the
second level, and ps is the intra-link probability within each cluster. So now, the probability of edge
presence between any two nodes in the overlapping parts is 1 — (1 — p3)2.

C.2 DEFINITION OF NMI FOR OC

NMI for OC is a natural generalization from NMI for non-overlapping partition. For two different
groups of overlapping clusters X = {x,zs,...},Y = {y1,y2, ...} on the same graph G = (V| E) ,
x;,1y; are all clusters. We define NMI of X, Y as follows.

iy
V|
H(X)= - Y pl(a:)logp(x;)

z;€X
HX,Y)=— > plaiy;)logp(xiy;)
z,€X,y; €Y
I(X:Y)=H(X)+HY) - HX,Y)
(X :Y)
max(H (X), H(Y))

(24, y5)

NMI(X,Y) =

C.3 EVALUATION ON THE MNIST DATASET

To show intuitively that our algorithm is able to find out the blurred overlapping area of datasets,
we run our 2-OC algorithm on the MNIST dataset [LeCun et al.| (1998), which is a benchmark of
handwritten digits containing ten classes of images labeled by 0 ~ 9, respectively. We select two
pairs of labels that are easily confused by hand writing, i.e., 1 vs. 7, 3 vs. 8, and construct a k-nearest
neighbor graph for each of them. Each node of the graph represents an image of handwritten digit,
and the similarity is measured by applying the Gaussian kernel function to the Euclidean distance
of pixel vectors. We remark that not all embeddings (e.g., word embeddings) that are generated
by modern-day Al models are suitable for clustering. We just find that pixel vector in MNIST is
somewhat a good use-case to showcase our results of overlapping, ambiguous samples.

The parameters, NMI, size of the overlapping part, the costs of ground truth (GT) and 2-OC output
are summarized in Table[5] NMI is calculated with the non-overlapping ground truth of data points,
although our algorithm gives overlapping results. However, the NMI for the labels 1 vs. 7 is above
0.9, and only 5 digits, which can be viewed as ambiguous ones, are allocated in the overlapping
part. We demonstrate all of them in Figure[7(a)] For the labels 3 vs. 8, there are 180 ambiguities.
We demonstrate five of them in Figure[7(b)] A significant factor that impacts the accuracy of our
algorithm is that we simply use the pixel vectors of digits which is a very rough representation of
images.

26

Under review as a conference paper at ICLR 2025

(a) labels 1 vs. 7

(b) labels 3 vs. 8

Figure 7: Demonstrations of the ambiguous samples our 2-OC algorithm yields.

Table 5: Parameters and results on the MNIST dataset

label size k NMI overlapping size GT cost 2-OC cost
lvs. 7 787747293 100 0.915 5 7.37 x 107 7.33 x 107
3vs.8 714146825 100 0.714 180 6.47 x 10° 6.63 x 10°

C.4 VISUALIZATION ON FOUR OVERLAPPING CLUSTERS

We visualize in Figure [§]a 4-HOC results of Algorithm [2]on a small graph that is generated from
OSBM and contains 100 nodes and 1264 edges. It has four embedded overlapping clusters of size 30,
each of which contains 20 nodes that entirely belong to the cluster. There are 6 overlapping regions,
each of which corresponds to a pair of overlapping clusters out of the 4 clusters, and each region
contains 2 nodes. We label them from 81 to 100. We demonstrate the ground-truth membership of all
nodes in Tables[6]and [7] The edge presence probabilities are p; = 0.05, po = 0.1 and p3 = 0.5.

Table 6: Membership of level-2 nodes in each of the four clusters. Each diagonal entry numbers
the nodes that belong exclusively to the corresponding cluster. The entry (i, j) (i # j) denotes the
overlapping region between clusters ¢ and j. In the visualization, the corresponding colors of clusters
1,2, 3, and 4 are red, green, yellow, and blue, respectively, while the overlapping nodes are the mixed
colors of their clusters.

cluster label 1 2 3 4
1 1-20 85,91,97 86,92,98 81,87,93,99
2 85,91,97 21-40 82,88,94,100 83,89,95
3 86,92,98 82,88,94,100 41-60 84,90,96
4 81,87,93,99 83,89,95 84,90,96 61-80

Table 7: Membership of level-1 nodes in each of the two clusters. Clusters 1 and 2 form one cluster,
denoted by (1, 2), on level 1, while clusters 3 and 4 form the other one, denoted by (3,4).

cluster label (1,2) (3.4
(1,2) 1-40,85,91,97, 81-83,86-89,92-95,98-100
(3.4) 81-83,86-89,92-95,98-100 41-80,84,90,96

Our algorithm bipartitions the node set at the first level into two overlapping clusters, one consists of
red and green (1 and 2), the other yellow and blue(3 and 4). It achieve NMI = 0.881 on this level.

27

Under review as a conference paper at ICLR 2025

Table 8: List of misclassified nodes given by our algorithm on level 2.
node number cluster label in ground truth cluster label by the £-HOC algorithm

31 14 4
88 2,3 3
98 1,3 3
99 1,4 4

g 220, S e26% o
5 Prdeg % ®B® s Pobogy % =8 ®
o %;‘o o, @ i %03 ®e, ﬁ)
. e g o o
2 T, T3 5 BB, BT 73 Ty T © 28 B
Sl S P90 ST O P 00
1 ... 3 B N ... s B
', a®e " © o o _ o®e ©_ o®
e = e
’Q: L% T ot o
@ @

(c) Ground truth of the 4 clusters (Level 2). (d) The result of our algorithm (Level 2).

Figure 8: Visualization of a 4-HOC clustering.

Table 9: List of misclassified nodes given by our algorithm on level 1.
node number cluster label in ground truth cluster label by the £-HOC algorithm

81 (1,2),(3,4) 3.4)
88 (1,2),(3,4) (1,2)
98 (1,2),3.4) 3.4)
99 (1,2),(3,4) 3.4)

At the second level, it achieves NMI = 0.914 for the 4 ground-truth overlapping clusters. In Figure
[8] we visualize this result. Our algorithm successfully captures the overall outlines of the clusters,
except membership errors on only four nodes, whose labels are 81, 88, 98 and 99. We list them in
Tables[Q]and[8] These nodes are misclassified into non-overlapping region.

28

	Introduction
	Related work

	A cost function for HOC
	An algorithm for k-HOC
	An approximation algorithm for 2-OC
	An approximation algorithm for k-HOC

	Experiments
	Conclusions and future work
	Supplement to the cost function for HOC
	Proofs of the properties of belonging factor
	A toy example of belonging factor
	Cost calculation for the running example
	Proofs of properties of the cost function

	Supplement to the algorithms
	Primal and dual problems of 2-OC
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Approximation guarantee for 2-OC-P
	Derivation process for approximation ratio of 2-OC-P
	Proof of Theorem 3.3
	Pseudocode of the speed-up algorithm

	Supplement to Experiments
	OSBM and our settings
	Definition of NMI for OC
	Evaluation on the MNIST dataset
	visualization on four overlapping clusters

