
Uni-MuMER: Unified Multi-Task Fine-Tuning of
Vision-Language Model for Handwritten

Mathematical Expression Recognition

Yu Li∗ Jin Jiang∗ Jianhua Zhu Shuai Peng Baole Wei Yuxuan Zhou Liangcai GaoB
Wangxuan Institute of Computer Technology, Peking University, Beijing, China

liyu@stu.pku.edu.cn jiangjin@stu.pku.edu.cn zhujianhuapku@pku.edu.cn glc@pku.edu.cn

Abstract

Handwritten Mathematical Expression Recognition (HMER) remains a persistent
challenge in Optical Character Recognition (OCR) due to the inherent freedom
of symbol layouts and variability in handwriting styles. Prior methods have faced
performance bottlenecks by proposing isolated architectural modifications, making
them difficult to integrate coherently into a unified framework. Meanwhile, recent
advances in pretrained vision-language models (VLMs) have demonstrated strong
cross-task generalization, offering a promising foundation for developing unified
solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM
for the HMER task without modifying its architecture, effectively injecting domain-
specific knowledge into a generalist framework. Our method integrates three data-
driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial rea-
soning, Error-Driven Learning (EDL) for reducing confusion among visually simi-
lar characters, and Symbol Counting (SC) for improving recognition consistency
in long expressions. Experiments on the CROHME and HME100K datasets show
that Uni-MuMER achieves super state-of-the-art performance, outperforming the
best lightweight specialized model SSAN by 16.31% and the top-performing VLM
Gemini2.5-flash by 24.42% under zero-shot setting. Our datasets, models, and
code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER

1 Introduction

38.64 37.75 37.45

62.58 62.51
65.30

72.62

64.26

69.14

82.05
77.94 79.23

30

40

50

60

70

80

90

100

CROHME 2014 CROHME 2016 CROHME 2019

E
x
p

R
a
te

(%
)

SSAN(2025) Qwen2.5VL Zero-Shot Qwen2.5VL SFT(Vanilla) Uni-MuMER†

Figure 1: Performance comparison on CROHME
sets (%). Our Uni-MuMER† achieves significant
improvements compared to the previous SOTA
(SSAN) and Qwen2.5VL Zero-Shot.

Handwritten Mathematical Expression Recog-
nition (HMER) seeks to translate handwrit-
ten expressions into machine-readable markup,
supporting document understanding and dig-
ital preservation of scientific material. Un-
like standard Optical Character Recognition
(OCR), HMER involves parsing complex 2D
structures [15], ambiguous symbols, and the
inherent freedom of symbol layout and variabil-
ity in handwriting styles [68], requiring not just
recognizing individual symbols but also layout
reasoning and parsing their complex spatial re-
lationships. Recent approaches have primarily
leveraged RNNs [23] or Transformers [48] due

∗ Equal contribution, BCorresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/BFlameSwift/Uni-MuMER

to their powerful sequential modeling capabilities. Additional modules, such as tree-structured
decoders [64, 52, 70] and relative-position-aware mechanisms [18, 62, 53, 54], have been introduced
to further enhance performance. These dominant research directions in HMER have focused on in-
corporating prior human knowledge into model architectures, particularly through manually designed
structural modules or attention mechanisms [63, 65, 66, 67, 30, 18, 4].

Despite the importance of HMER and numerous proposed improvements, the field has seen only
marginal progress in recent years. As is shown in Tab. 1, performance on the CROHME datasets [38,
39, 37] has improved by merely 3% (from CoMER [66] to SSAN [62]), underscoring an urgent
need for a novel paradigm. The limited progress of these models arose from three constraints: (1)
Improvements are isolated and model-specific, making them hard to integrate or scale. (2) Optimizing
across multiple auxiliary tasks remains challenging, with many approaches focusing on singular
priors rather than adopting a unified, multi-faceted enhancement [7]; and (3) Models trained on
single-domain datasets, struggling to generalize to other datasets, lack essential scalability and
transferability [68, 46]. Additionally, widely standard metrics like ExpRate fail to capture visual
equivalence in LATEX outputs, and the scarcity of diverse data exacerbates these constraints. Recently
introduced visual metrics such as CDM and large-scale datasets like Mathwriting offer opportunities
for large-scale cross-dataset training and multiple LATEX syntax style evaluation.

Rapid advancements in pretrained vision-language models (VLMs) have significantly enhanced
foundational recognition capabilities and generalization across related tasks [8, 25, 28, 31, 32]. While
early benchmarks like OCRBench [34] reported poor HMER performance for generalist VLMs,
Tab. 1 presents our evaluation of recent open-source and closed-source VLMs, such as Qwen2.5-
VL [3], Doubao-1.5-pro [45], Gemini2.5-flash [11], and GPT4o [41]. Our results indicate that these
large-scale models have exhibited unexpectedly strong capabilities in handling structured recognition
tasks. However, these high-performance closed-source models trained on massive amounts of
undisclosed data [1] make it difficult to pinpoint how to systematically improve performance on
HMER. Consequently, empowering open-source VLMs to achieve comparable or superior HMER
performance remains an open and urgent challenge.

To bridge this gap, we propose Uni-MuMER, a unified multi-task fine-tuning framework for enhancing
open-source VLMs in HMER. Unlike previous methods constrained by single-domain datasets or
isolated architectural improvements, Uni-MuMER fully exploits existing data resources through
data-driven fine-tuning. Another motivation of our work is to unify previously fragmented HMER
tasks into a unified framework, shifting the focus from incremental architectural modifications
toward generalizable recognition capabilities. Concretely, we introduce specialized training data
and learning objectives, employing novel tasks such as Tree-Aware Chain-of-Thought for explicit
structural reasoning [51, 57], Error-driven learning to reduce symbol confusion [36], and Symbol
Counting [30] to enhance parsing expressions capabilities. Fig. 1 nicely illustrates the jump with
Uni-MuMER; it exceeds Qwen-2.5-VL in the zero-shot setting and the vanilla SFT setting across
multiple CROHME datasets. Besides, owing to advancements in open-source inference frameworks
(e.g., vllm [29]), our method achieves superior inference speeds compared to traditional methods,
enhancing its practical applicability. Our contributions are listed below:

• We propose a new unified paradigm for HMER. Unlike prior methods that heavily rely on special-
ized networks and single-task training, our data-driven multi-task method injects domain knowledge
into a generalist VLM, yielding cumulative performance gains.

• We introduce three data-driven tasks: Tree-Chain-of-Thought, Error-Driven Learning, and Symbol
Counting. These systematically address the challenges of HMER, which are two-dimensional
structure, ambiguous handwriting, and output consistency.

• Our Uni-MuMER method achieves new SOTA results on the CROHME and HME100K datasets.
Notably, it attains 79.74% averaged across CROHME datasets (+41.79% over Qwen2.5-VL,
+24.42% over Gemini2.5-flash in zero-shot setting, and +16.31% over specialized models SSAN).

2 Related Work

2.1 HMER

Early rule-based approaches attempted to address the challenges of HMER through symbol segmenta-
tion, recognition, and syntactic parsing based on handcrafted grammars [6, 60, 10, 2, 22, 47]. These
methods struggled with generalization to diverse handwriting styles and complex layout structures.

2

Sequence-based decoding methods The emergence of deep learning shifted HMER towards end-
to-end sequence modeling tasks. Early encoder-decoder architectures based on RNNs, WAP [65]
first applied sequence-to-sequence learning to HMER. Subsequent RNN-based models improved
visual encoding [63] and robustness to handwriting style [53, 54]. Inspired by the Transformer’s
success [48], BTTR [67] introduced the first Transformer-based model for HMER. To enhance
alignment during decoding, CoMER [66] introduced a coverage attention mechanism.

Multi-task Learning Beyond sequence modeling, researchers have explored structural decoders
and multi-task models to better capture 2D structure. One central line of work focuses on modeling
the hierarchical tree structure of expressions. TreeDecoder (TD) [64] and its improved version TDv2
directly predict a tree-structured representation of the expression. SAN [58] introduced syntactic
constraints into the decoding process, and TAMER [70] jointly optimizes both sequence and tree
decoding within a unified Transformer framework. Various auxiliary tasks have also been proposed to
inject domain knowledge: ABM [4] adds a dual-direction decoder loss to enhance context modeling.
RLFN [9] fuses a language-model-based module with the recognizer to leverage LATEX syntax and
context. ICAL [69] proposed an implicit character construction to capture latent symbol-level
semantics. To address symbol omission and repetition, CAN [30] incorporated an auxiliary symbol-
counting task. UniMERNet [49] adds a Length-Aware Module targeting real-world expressions’
extreme length variance. PosFormer [18] and SSAN [62] explicitly model spatial relationships among
symbols to guide the network’s attention.

2.2 Vision-Language Models

Vision-Language Models (VLMs), initially popularized by contrastive learning frameworks like
CLIP [43], laid the groundwork for powerful zero-shot multimodal recognition. Donut [27] and
LayoutLMv3 [24] extended this capability specifically to OCR tasks, effectively recognizing diverse
textual content. High-resolution, document-centric VLMs, notably Monkey [33] and TextMon-
key [35], enhanced OCR performance by combining patch-based image encoding with explicit
textual supervision. For mathematical OCR, models like Im2LaTeX [12] and Nougat [5] focused
explicitly on end-to-end LaTeX reconstruction from printed equations and scientific documents. The
recent FERMAT benchmark [40] explicitly evaluated multiple SOTA VLMs on handwritten mathe-
matics recognition, revealing critical gaps between general text OCR and handwritten mathematical
recognition. Domain-specific adaptations such as VLPG [20] and HiE-VL [21] propose graph-based
or hierarchical adapters to enhance mathematical recognition, although their extensive architectural
modifications and modest performance limit broader adoption. In contrast, recent general-purpose
frameworks like Qwen2.5-VL [3], equipped with dynamic-resolution ViTs and structured outputs,
demonstrate promising potential for adaptation to mathematical OCR tasks.

3 Method

We introduce Uni-MuMER, a unified multi-task fine-tuning framework for enhancing open-source
VLMs in HMER. The overall pipeline is shown in Fig. 2. Given an input image of a handwritten
expression and a task-specific instruction, the model is trained to produce the corresponding output.
Uni-MuMER integrates four tasks: Vanilla HMER, Tree-aware Chain-of-Thought, Error-Driven
Learning, and Symbol Counting, into a unified training paradigm. The primary goal is to adapt a
general-purpose VLM to the highly structured and domain-specific knowledge of HMER without
modifying any original architecture. Subsequent subsections provide additional details for each task.

3.1 Vanilla HMER

Base Model We adopt Qwen2.5-VL-3B [3] as the VLM Backbone. It comprises a ViT-based visual
encoder and a transformer-based language decoder, pre-trained to perform various image-to-text tasks,
which provide robust visual grounding and structured sequence-generation capabilities, rendering it
an effective foundation for end-to-end fine-tuning in HMER tasks.

Vanilla HMER As is shown at the top of Fig. 2, Vanilla HMER involves providing an image of a
mathematical expression alongside a textual instruction, prompting the model to directly output the
corresponding LATEX formatted expression. Traditional lightweight specialized models took images
alone as input and generated the expressions, whereas VLMs now exhibit strong generalization
capabilities across related tasks. We also utilize models fine-tuned specifically on the Vanilla HMER

3

I have an image... and its OCR recognition result. Please correct the errors marked
<error_start> <error_end> and <deleted> and give the correct mathematical expression.
Marked Expression:

I have an image ... and its OCR recognition result. Please help me to detect possible errors in the
recognition result and mark the places where errors occur with <error_start> <error_end> and
<deleted>. Expression: | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { d ^ { 2 } + b ^ { 2 } } } |

I have an image ... Please identify and count each visible mathematical
 symbol in the image, and then provide its corresponding LaTeX format.

 Please recognise this image of a mathematical
 expression and give the result in latex format.

I have an image of a handwritten mathematical
expression. Please write out the expression of
the formula in the image using LaTeX format.

Error Detection and Correction

Vanilla HMER
Result:

Qwen-VL
🔥🔥🔥

Error
Detection

Uni-MuMER

Symbol Counting

 | \frac { a x _ { 0 } + b y _ { 0 } + c }
 { \sqrt { <error_start> d <error_end> ^ { 2 } + b ^ { 2 } } } |

 | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { <error_start> d <error_end> ^ { 2 } + b ^ { 2 } } } |

Error Correction
 REPLACE:d -> a

I have an image ... Please generate the abstract syntax tree (AST) of the
formula in the image, and then provide its corresponding LaTeX format.

Tree-Aware Chain-of-Thought

 | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ^ { 2 } + b ^ { 2 } } } |

 | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ^ { 2 } + b ^ { 2 } } } |

|\n\frac (right)\n\t a (above)\n\t x
(right)\n\t\t 0 (sub)\n\t + (right)\n\t b
(right)\n\t y (right)\n\t\t 0 (sub)\n\t +
(right)\n\t c (right)\n\t \sqrt (below) \n\t\t a
(above)\n\t\t\t 2 (sup) \n\t\t + (right)\n\t\t b
(right)\n\t\t\t 2 (sup)\n | (right)

Final Result:
 | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ^ { 2 } + b ^ { 2 } } } |

Tree-CoT:

Count:
 |: 2, \frac: 1, a: 2, x: 1, _: 2, 0: 2, +: 3, b: 2, y: 1, c: 1, \sqrt: 1, ^: 2, 2: 2
 | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ^ { 2 } + b ^ { 2 } } } |

Figure 2: Overview of our Uni-MuMER Framework: which augments a VLM base with four
distinct integrated tasks: Vanilla HMER, Tree-Aware Chain-of-Thought, Error-Driven Learning,
and Symbol Counting to generate robust and accurate LATEX from an input image of a handwritten
expression.

task as baselines for subsequent comparison. Through Vanilla HMER, the model acquires essential
recognition capabilities and ensures accurate and structured outputs.

3.2 Tree-Aware Chain-of-Thought

\frac

a

+2

2
right

1

Abstract
Syntax Tree

Serialized AST

Formula

Tree-CoT Depth-First
Traversal

Parsing

right

sup

belowabove

Input Output

Figure 3: Illustration of the proposed Tree-CoT
construction and serialization procedure. For
input expression, we parse it into an AST, then
traverse in depth-first order and serialize it into a
structured textual format.

We propose a Tree-CoT task that employs pars-
ing Abstract Syntax Trees (ASTs) as interme-
diate cognitive structures for expression recog-
nition. The model accepts an input comprising
an image and an instruction, subsequently gen-
erating both a serialized tree and the final rec-
ognized LATEX expression. Inspired by ASTs
widely utilized in mathematical information re-
trieval [61, 42] and previous tree-decoding meth-
ods in HMER [64, 52, 70], we incorporate ex-
plicit tree-structured decoding into the textual
output. This explicit intermediate representation
enables the model to directly reason the inherent
2D spatial relationships among symbols. Conse-
quently, Tree-CoT guides the model to produce
structurally coherent and semantically accurate
LATEX outputs by bridging visual input process-
ing and linear textual serialization. Below, we
describe in detail the construction.

Tree-CoT The construction procedure of Tree-CoT is illustrated in Fig. 3. We first parse the input
expression to derive its Abstract Syntax Tree (AST), explicitly capturing hierarchical and spatial
relationships among symbols. We subsequently perform a depth-first traversal (DFS) of the AST
to sequentially linearize the tree structure. To encode this structured representation, we introduce a
specific serialization scheme, using tab-based indentation to reflect tree depth and newline separation
to distinguish individual nodes clearly, and the raw text is in Fig. 2. Each serialized line explicitly
contains the symbol label and its spatial relation to its immediate parent node, resulting in a coherent
textual representation of the AST.

3.3 Error-Driven Learning

Error-Driven Learning (EDL) leverages a learning-from-mistakes paradigm to enhance model accu-
racy. Its input consists of an error corpus generated by the model itself, structured into two distinct
subtasks: error detection and error correction. Inspired by self-improvement strategies and previous

4

work indicating the suitability of language models for correcting HMER errors [9], we integrate
these subtasks explicitly. The subsequent sections detail the generation of the error corpus and the
definitions of error detection and correction subtasks.

...

...

(n-1) Fold
as Train Data

Fold

...
multi-sample on

Sample 1

Sample 2

...
Sample k

Sample m

Error
Corpus

🔥 🔥

Error Detection &
Correction Data

Build

Partitioning Out-of-Fold Training Duel Task of EDLMulit-Sample Corpus

Figure 4: Illustration of Error Corpus Genera-
tion for Error-Driven Learning Task (EDL),
where erroneous model outputs are collected
through cross-fold training and multiple sampling
from held-out evaluation subsets.

Error Corpus Generation As is shown in the
Fig. 4. Initially, the complete dataset (e.g.,
CROHME) is randomly partitioned into multi-
ple distinct subsets denoted as F1, F2, . . . , Fn.
Subsequently, we perform cross-validation train-
ing, where each VLM is trained on n − 1 folds
and evaluated on the remaining held-out fold Fi.
During this, multiple candidate predictions are
generated through multiple sampling for each in-
put image to collect potential model outputs. By
comparing these candidate predictions to their
corresponding ground-truth labels, we explicitly
identify erroneous outputs and compile these er-
roneous predictions into the final error corpus.

Error Detection and Correction Based on this
error corpus, we formulate two related subtasks:
error detection and error correction. As shown in
the Fig. 2, the error-detection task takes as input the original expression image alongside a potentially
erroneous predicted expression, outputting a marked expression wherein errors are explicitly enclosed
by <error_start> and <error_end> tags, and omissions are explicitly indicated by <deleted>
tags. The subsequent error-correction subtask receives this masked expression as input and produces
the correction log and corresponding LATEX expression. The scale of the error corpus obtained for
each training set used in Sec. 4.1 is approximately equal to that of the original training data.

3.4 Symbol Counting Auxiliary Task

We introduce a Symbol Counting (SC) auxiliary task designed to encourage the model to explicitly
account for all symbols appearing in expressions. The input to this task comprises an expression
image along with a counting instruction, and the expected output consists of the total count of
visible symbols in the expression alongside the corresponding LATEX expression. Inspired by the
CAN [30], we observe that models frequently produce locally coherent yet globally inconsistent
outputs, especially involving repeated symbols. To mitigate this issue, we explicitly integrate symbol-
counting information into the textual output representation. This task compels the model to accurately
predict symbol counts, thus reducing the likelihood of symbol omissions or hallucinations during
final LATEX expression generation.

Symbol Counting. We construct training targets that prepend the count string to the actual
LATEX. Specifically, for a given handwritten expression image, the target output becomes <Count
String>\n<Expression string>. For example: For the expression a2+1

2 , the textual count string
is: \frac:1,a:1,2:2,+:1.

4 Experiments
4.1 Experimental Setup

This section details the experimental setup used to evaluate the Uni-MuMER, including datasets,
evaluation metrics, training settings, and baselines.

Datasets The CROHME series [37, 38, 39] is the most widely used dataset for HMER. It comprises
8836 training samples, and three test sets contain 986, 1147, and 1199 images for the CROHME
2014, 2016, 2019. Recently, the CROHME 2023 [56] iteration provided an expanded training
set of 10979 images and a test set of 2300 images. HME100K [59] is a large-scale, real-world
dataset. It consists of 74502 training and 24607 testing images, encompassing various writing styles
and conditions. MathWriting [17], released by Google Research in 2024, is the largest HME
corpus to date with 230K human-written and 400K synthetically-generated expressions. Finally,
Im2Latexv2 [44] builds upon the printed expression dataset Im2Latex-100k[12] and enhances it with
improved LATEX normalization and 59 diverse rendering styles for more realistic expression images.

5

Table 1: Performance comparison on CROHME datasets(%). We evaluate our model and four
baselines using expression recognition rate (Exp) and ExpRate@CDM (@CDM) on the CROHME
2014, 2016 and 2019 test sets. We use the following notation for reported results: All models are
evaluated under zero-shot inference settings, a denotes training with data augmentation, p denotes
reproduced by us, and † denotes the use of external data.

Method CROHME14 CROHME16 CROHME19 Average
Exp ↑ @CDM ↑ Exp ↑ @CDM ↑ Exp ↑ @CDM ↑ Exp ↑ @CDM ↑

Closed-Source Models

GPT-4o[41] 50.61 60.85 46.03 50.65 49.79 57.13 48.81 56.21
Doubao-1.5-pro[45] 50.41 69.17 49.00 64.08 46.87 64.05 48.79 65.77
Gemini2.5-flash [41] 58.01 69.98 52.74 61.34 55.21 65.38 55.32 65.57

Open-Source Models

Qwen2.5-VL-3B[3] 38.64 44.01 37.75 43.33 37.45 43.04 37.95 43.46
Qwen2.5-VL-7B[3] 55.98 65.51 50.92 56.32 49.62 56.55 52.17 59.46
Qwen2.5-VL-72B[3] 59.74 68.56 54.32 59.37 55.13 61.05 56.40 62.99

Specialized Models

DenseWAP[63] 50.1 – 47.5 – – – – –
BTTR[67] 53.96 – 52.31 – 52.96 – 53.08 –
ABM[4] 56.85 – 52.92 – 53.96 – 54.58 –
CAN-ABM[30] 57.26 – 56.15 – 55.96 – 56.46 –
CoMER[66] 58.38 61.66 56.98 63.03 59.12 62.71 58.16 62.47
ICAL 60.63 – 58.79 – 60.51 – 59.98 -
PosFormer[18] 60.45 – 60.94 – 62.22 – 61.20 –
TAMER[70] 61.36 63.28 59.54 62.94 60.13 63.46 60.34 63.23
SSAN[62] 60.85 – 60.02 – 61.83 – 60.90 –

CoMERa[66] 59.33 – 59.81 – 62.97 – 60.70 –
CoMERap†[66] 46.96 53.55 43.33 48.47 48.25 54.84 46.18 52.29
PosFormera[18] 62.74 65.88 61.03 65.39 64.97 69.30 62.91 66.85
SSANa[62] 62.58 – 62.51 – 65.30 – 63.43 –
UniMERNeta† 67.4 – 68.4 – 65.4 – 67.07 –

VLPG†[20] 60.41 – 60.51 – 62.34 – 61.09 –
HiE-VLa†[21] 73.30 – 70.70 – 69.3 – 71.13 –

Vanilla (baseline) 72.62 75.66 64.26 67.83 69.14 71.98 68.64 71.82
Uni-MuMER 75.36+2.74 79.11+3.45 70.79+6.53 75.24+7.41 73.73+4.59 77.23+5.25 73.29+4.65 77.19+5.37

Uni-MuMER† 82.05+9.43 85.09+9.43 77.94+13.68 81.08+13.25 79.23+10.09 82.40+10.42 79.74+11.10 82.86+11.04

Evaluation Metrics The standard metric for HMER is Expression Recognition Rate (ExpRate),
which measures exact-match accuracy. However, Exprate unfairly penalizes visually correct pre-
dictions that differ only in LATEX syntax styles. Character Detection Matching (CDM) offers a
visual evaluation alternative. It renders both prediction and ground-truth into images, comparing
them via character detection that considers spatial layout. This yields two metrics: the CDM Score,
quantifying visual similarity, and Exprate@CDM, a visually-based accuracy measure. These CDM
metrics provide evaluation robustness against variations in LATEX syntax.

Training We fine-tune the Qwen2.5-VL-3B model on all datasets with three data-driven tasks
simultaneously for a single epoch. Further details can be found in the Appendix B.4.

Baselines We compare our methods against four types of baselines: (i) Closed-source VLMs,
including Gemini2.5-flash, etc; (ii) Open-source VLMs, such as the Qwen-2.5VL family. Both
closed-source VLMs and open-source VLMs are evaluated under zero-shot inference settings; (iii)
Previous SOTA methods on HMER and their data augmentation versions, for example, PosFormer
and SSAN, etc; and (iv) A Vanilla(baseline) and a Uni-MuMER model, which is only fine-tuned on
the CROHME training set to ensure a fair comparison with previous SOTA methods.

4.2 Main Results

Tab. 1 displays the strong performance of our Uni-MuMER and previous methods on the CROHME
dataset. As CDM is a recently proposed metric, we reproduced all reported results involving CDM. For
a fair comparison, the Vanilla (baseline) reported in Tab. 1 and Tab. 2 was trained exclusively on either
CROHME or HME100K dataset. The Uni-MuMER variant incorporated training samples constructed
from the corresponding images for three tasks. Further utilizing external data, UniMuMER† was
trained on approximately 1.6M samples, comprising data from 386K images across the three tasks
and all datasets. Due to space limitations, additional results are presented in Appendix D.

6

Comparison with Previous SOTA Methods Data augmentation has traditionally improved perfor-
mance in lightweight models, yet inherent limitations still restrict overall effectiveness. Recently,
VLPG [20] and HiE-VL [21], have integrated VLM into HMER. HiE-VL enhances performance
through non-end-to-end training, architectural refinements, and extra data. However, both Uni-
MuMER and Uni-MuMER† (use external data) maintain a notable performance advantage over these
VLM-based methods. Notably, we also trained CoMERa† [66] using the same external data (386K
images) and observed a significant performance degradation. This finding indicates that the inherent
limitations of lightweight models hinder their ability to effectively utilize large and diverse datasets.

Comparison with Large VLMs (Zero-Shot) Next, we investigate the zero-shot performance of
both open-source (Qwen-2.5VL family) and closed-source large VLMs on CROHME. Although
open-source models exhibit nontrivial results, they tend to lag behind previous SOTA methods when
no fine-tuning is involved. Contrastingly, certain closed-source VLMs like Gemini2.5-flash exhibit
remarkable accuracy, surpassing lightweight specialized models in a purely zero-shot setting. They
still underperform relative to our proposed Uni-MuMER and Uni-MuMER† method.

Table 2: Performance on HME100K dataset
(%), evaluated by Exp, @CDM, and CDM. The
† denotes the use of external data.

Method HME100K
Exp↑ @CDM↑

GPT-4o [41] 22.96 27.02
Gemini2.5-flash [11] 28.14 34.32
Doubao1.5-pro [45] 43.90 55.08

Qwen2.5-VL-3B [3] 44.42 47.41
Qwen2.5-VL-7B [3] 54.57 58.84
Qwen2.5-VL-72B [3] 49.59 55.09

DenseWAP [63] 61.85 -
CoMER [66] 68.12 70.36
TAMER [70] 69.50 71.30

HiE-VL† [21] 64.20 -

Vanilla (baseline) 70.15 71.80
Uni-MuMER 71.62+1.47 73.40+1.60

Uni-MuMER† 72.66+2.51 74.30+2.50

Incremental Gains Building upon the Qwen2.5-
VL-3B VLM base, our Vanilla (baseline) model
already surpasses most published SOTA meth-
ods. After integrating three data-driven tasks,
Tree-CoT, EDL, and SC, our method, Uni-
MuMER† further improves both ExpRate and Ex-
pRate@CDM, as shown in Tab. 1. For a fair
comparison, both the Vanilla (baseline) and Uni-
MuMER are trained solely on the CROHME train-
ing set, without using any external data. Intro-
ducting Upon incorporating external data along
with these tasks (1.6M samples), our final model,
Uni-MuMER†, achieves even greater performance,
notably reaching an ExpRate of 79.74% and Ex-
pRate@CDM of 82.86% on the CROHME Aver-
age. Both Uni-MuMER and Uni-MuMER† sig-
nificantly outperform both the Vanilla (baseline)
model and prior methods, underscoring the vital
role of data-driven tasks and diverse external data
in enhancing model accuracy.

Performance on HME100K To focus the evalu-
ation on mathematical expression recognition, fol-
lowing [16], we exclude all test instances contain-
ing CJK characters. Detailed impacts are discussed in Appendix C.5. Tab. 2 shows that open-source
and closed-source VLMs exhibit modest performance, which is due to the challenging real-world con-
ditions in HME100K dataset. In contrast, several prior lightweight specialized methods exclusively
trained on HME100K, such as TAMER, achieve strong performance. Although HiE-VL utilizes
external training data, it achieves limited results on HME100K, even underperforming compared to
prior models. Our Uni-MuMER achieves SOTA performance. Additionally, by using external data,
Uni-MuMER† further enhances its performance, clearly surpassing HiE-VL.

5 Analysis

5.1 Ablation Study

Table 3: CROHME-Average ablation
results (ExpRate %).

Tree-CoT EDL SC ExpRate↑

✗ ✗ ✗ 68.64
✓ ✗ ✗ 70.85+2.21

✗ ✓ ✗ 70.30+1.66

✗ ✗ ✓ 69.86+1.22

✗ ✓ ✓ 71.95+3.31

✓ ✗ ✓ 71.06+2.42

✓ ✓ ✗ 71.76+3.12

✓ ✓ ✓ 73.29+4.65

In this section, we present an ablation study to quantify
the contribution of the three proposed tasks, Tree-CoT,
EDL, and SC. As is shown in Tab. 3, each individual task
enhances performance compared to the Vanilla(baseline).
The Uni-MuMER combined integration of all tasks results
in the best overall performance, while removing any mod-
ule leads to noticeable performance degradation, highlight-
ing their complementary roles and collective importance.

7

Tree-CoT enhances comprehension of structurally complex expressions Fig. 5a presents a
comparative analysis of accuracy across models with varying structural complexities of expressions.
The Vanilla model experiences a significant degradation in accuracy as structural complexity increases.
Introducing the Tree-CoT strategy notably alleviates this performance decline. Specifically, for
structurally complex expressions, Vanilla+Tree-CoT demonstrates an accuracy improvement of
approximately 5–6% over the Vanilla baseline, closely matching the performance of the Full model.
Conversely, Tree-CoT offers marginal improvements for simpler expressions, suggesting its primary
utility is enhancing model robustness and accuracy when handling structurally intricate expressions.

Table 4: Top-5 alphabet–number confu-
sions (SUB1) on CROHME-Average, com-
paring the Vanilla vs. Vanilla + EDL.

Type Top-5 misrecognition pair (%)
Σ

2↔z 0↔o 3↔z 1↔ i 1↔n

Vanilla 1.40 1.48 0.74 0.89 0.74 5.25

w/ EDL 1.23 1.16 0.15 0.62 0.15 3.31

∆ (↓) −0.17−0.32−0.58−0.27−0.59 1.94

EDL reduces confusion among visually similar
characters Tab. 4 enumerates the top five most fre-
quent alphabet-number confusion pairs on CROHME-
Average for the Vanilla model and Vanilla+EDL. The
Vanilla model frequently misclassifies pairs such as
2↔z, resulting in 5.24 misrecognitions per expres-
sion in all SUB1 cases. After applying EDL, the
number of misclassifications decreases to 3.31. This
implies that EDL effectively guides the model in
distinguishing fine-grained differences among com-
monly confused symbols, enhancing symbol-level
accuracy and overall recognition performance.

SC improves recognition consistency in long expressions Fig. 5b compares model accuracy with
increasing symbol repetition. The Vanilla baseline accuracy deteriorates as repetition frequency rises,
when symbols repeat five or more times. Incorporating the SC task substantially mitigates this decline,
closely matching the Uni-MuMER model’s stable performance under high repetition conditions.
However, for simpler expressions with minimal repetition, SC slightly reduces accuracy compared to
the Vanilla baseline, suggesting it occasionally diverts attention from primary recognition tasks.

80.21

70.92

67.54

63.64

51.87

44.49

81.47

72.48

68.70

66.06

59.33

50.22

84.00

75.46

72.34

67.07

60.82

51.54

40

50

60

70

80

90

0 1 2 3 4 5+

E
x

p
R

a
te

(%
)

Expression Structural Complexity Level

Vanilla

Vanilla+Tree-CoT

Uni-MuMER

(a) Model performance relative to structural complexity.
The Tree-CoT task notably reduces accuracy loss as
structural complexity increases.

75.09

74.51

68.78

64.63 64.29

53.33

71.91
72.64

72.84

68.94 69.17

56.00

77.34 77.53

75.68

70.92

72.56

56.53

50

60

70

80

0 1 2 3 4 5+

E
x

p
R

a
te

(%
)

Maximum Symbol Occurrence Count

Vanilla

Vanilla+Symbol Counting

Uni-MuMER

(b) Model performance concerning symbol repetition
count. Symbol Counting (SC) task mitigates accuracy
degradation caused by frequent symbol repetitions.

Figure 5: Model accuracy comparison under varying (a) structural complexities and (b) symbol
repetition counts. Both models significantly outperform the Vanilla baseline, approaching Uni-
MuMER model performance in challenging scenarios.

5.2 Effects of Data Diversity

In this section, we examine the influence of incrementally scaling training datasets on model per-
formance. As illustrated in Fig. 6, start with the CROHME dataset, which serves as the standard
benchmark in HMER. We then sequentially incorporate increasingly diverse datasets, including the
updated CROHME-2023 set, the real-scene HME100K dataset, the extensive handwritten corpus
MathWriting, and finally the printed-expression Im2LaTeXv2 dataset. At each step, the model is
retrained from scratch on the cumulative training data and evaluated across multiple distinct test sets.

8

To effectively account for variations in LATEX notation styles, we employ ExpRate@CDM as the
standardized metric for consistent performance comparison.

77.19
79.61 78.01

83.20 82.86

67.56

74.10 73.83 73.33
74.42

47.90
50.47

74.24 74.51 74.30

23.93
27.46 32.89

68.93 69.11

30.17

22.16

35.20

75.17

93.29

20

30

40

50

60

70

80

90

100

CROHME Train

8K

+ CROHME-23

(10K)

+ HME100K

(72K)

+ MathWriting

(220K)

+ Im2Latexv2

(69K printed)

T
es

t
 S

et

E

x
p

R
a

te
@

C
D

M
(%

)

CROHME Avg. Test Sets

CROHME-23 Test Set

HME100K Test Set

Mathwriting Test Set

Im2LaTeXv2 Test Set

Figure 6: Impact of incrementally training data
scaling on ExpRate@CDM. Starting from the
CROHME training set, we incrementally incor-
porate four additional datasets. The model is re-
trained from scratch and evaluated on five distinct
test sets at each expansion step.

Benefits of Enhanced Data Diversity Each in-
cremental expansion of the training sets with
more varied handwritten expressions yields con-
sistent gains on all evaluation sets, confirming
that performance scales with data diversity.

Out-of-Domain Generalization Accuracy on
printed expression images gradually improves
with increased handwritten training data, reflect-
ing partial transfer of structural knowledge for ex-
pression recognition. Nevertheless, its accuracy
improves significantly after adding Im2LaTeXv2,
reflecting the value of in-domain printed data for
that target.

Leave-One-Out Ablation To further investigate
the out-of-domain generalization performance,
we conducted an additional “Leave-One-Out” ex-
periment, training Uni-MuMER on N-1 datasets
and evaluating it on the held-out N-th dataset.
The results below present the expression recognition accuracy in each scenario. For comparison, we
include the baseline CoMER and Doubao-1.5-pro under zero-shot settings.

Table 5: Leave-one-out ablation of training datasets. (ExpRate@CDM%) We train Uni-MuMER
in six configurations: using all data (all five sources), and using all-minus-one for each major
dataset. Results are reported on CROHME-Average, CROHME 2023, HME100K, MathWriting, and
Im2LaTeXv2. For reference, we also show a specialized model (CoMER) trained with and without
CROHME, and a closed-source VLM (Doubao-1.5-pro) for reference.

Model CROHME-Avg CROHME 2023 HME100K MathWriting Im2LaTeXv2

CoMER† (w/o CROHME) 45.99 58.28 39.49 23.23 40.39
CoMER† 52.29 59.91 44.63 28.45 53.37
Doubao-1.5-pro 65.77 58.18 55.08 26.34 27.66
Uni-MuMER† (w/o CROHME) 78.22 72.19 74.47 68.08 89.18
Uni-MuMER† (w/o CROHME-2023) 82.31 71.66 74.68 68.85 89.77
Uni-MuMER† (w/o HME100K) 82.30 72.01 52.38 68.94 91.19
Uni-MuMER† (w/o MathWriting) 79.58 73.51 74.29 32.55 93.31
Uni-MuMER† (w/o Im2LaTeXv2) 83.20 73.33 74.51 68.93 75.17
Uni-MuMER† 82.89 74.42 74.30 69.11 93.29

The leave-one-out evaluation confirms that our unified model can generalize to an unseen dataset
reasonably well. When the unseen domain is very different, performance drops more markedly,
which highlights an area for improvement. HME100K for real-life, low-quality images, MathWriting
for densely structured expression, and Im2LaTeXv2 for printed expression images, each of which
represents a markedly different and challenging domain.

Crucially, after introducing even modest amounts of domain-relevant data, our unified approach easily
achieves top-tier performance. Thus, our results indicate that, compared to existing specialized models
and general VLM baselines, our approach provides superior generalization with minimal domain-
specific data requirements, highlighting a clear advantage and direction for future improvement.

5.3 Mixing General-Purpose VLM Data

From the perspective of general-purpose LLMs and VLMs, mixing data from different domains
can yield substantial performance gains. Although our Uni-MuMER addresses previous limitations
by introducing a unified solution, achieving super SOTA performance, it’s necessary to validate
whether Uni-MuMER benefits from general domain data beyond HMER-only training and how
Uni-MuMER-Data affects the model’s general capabilities. To this end, we introduce Uni-MuMER-
LLAVA, fine-tuned using an equal 1:1 mixture of HMER and LLaVA-OneVision data, and compare its
performance with Uni-MuMER across benchmarks assessing HMER-specific and general capabilities.

9

Table 6: Comparison among Uni-MuMER, Uni-MuMER-LLAVA and Qwen2.5-VL on multi-
modal reasoning benchmarks. Results are reported on MMMU_val, Math-Vision, and Math-
Vista_testmini, covering general multimodal understanding and mathematical reasoning tasks.

Model MMMU_val Math-Vision MathVista_testmini
Uni-MuMER 47.89 24.01 47.8
Uni-MuMER-LLAVA 48.67 24.34 51.1
Qwen2.5-VL-3B-Instruct 52.78 21.38 47.9

Table 7: Cross-benchmark comparison between Uni-MuMER and Uni-MuMER-LLAVA across
benchmarks. Results are reported on CROHME-Avg, CROHME-2023, HME100K, MathWriting,
and Im2LaTeXv2.

Model CROHME-Avg CROHME-2023 HME100K MathWriting Im2LaTeXv2
Uni-MuMER 82.89 74.42 74.30 69.11 93.29
Uni-MuMER-LLAVA 81.99 69.10 73.48 70.48 93.44

As shown in Tab. 6 and Tab. 7, Uni-MuMER exhibits strong generalization capabilities despite being
fine-tuned exclusively on HMER-specific data, achieving performance comparable to Qwen2.5VL-3B.
Notably, Uni-MuMER-LLAVA further enhances overall performance, surpassing Uni-MuMER on
general tasks like MMMU and Math, while incurring marginal performance decreases on specific
HMER test sets. It’s promising to integrate our method and Uni-MuMER-Data to empower VLMs.

6 Discussion

For Small Models: Larger Model, Better Performance, Faster Speed Previous HMER models
were lightweight and relied on task-specific architectural designs (e.g., tree-structured modules).
Uni-MuMER builds upon both these task-specific insights and current VLM, taking a significant
step forward with a unified and more powerful model. Benefiting from recent advances in efficient
inference frameworks, Uni-MuMER not only achieves substantially improved performance but also
delivers faster inference compared to smaller models. Further detail is provided in Appendix C.2.

For VLM: A Chain-of-Thought Perspective on Expression Recognition Unlike direct expression
recognition, Uni-MuMER adopts a chain-of-thought perspective by formulating three tasks: expres-
sion tree construction, error detection and correction, and symbol counting. These tasks guide the
model step by step toward the final prediction, enhancing both interpretability and generalization.
This approach offers a novel direction for advancing expression recognition with current VLM.

Future Direction: Self-Correction for Expression Recognition Uni-MuMER provides a new
perspective for enabling self-correction during inference in expression recognition. By integrating
the Tree-CoT mechanism with an explicit error correction task, the model can exhibit self-corrective
behavior within CoT process. Moreover, incorporating colloquial, human-like expressions (e.g., "wait,
there’s a left parenthesis earlier—this is more likely a right parenthesis, not ’2’") can further induce
R1-like spontaneous self-correction [19], enhancing the upper limit of the model’s performance.

Limitations Despite the strong results, our method has several limitations. Due to computational
resource constraints, a 400k synthetic subset of the MathWriting dataset was unused, potentially
limiting the diversity benefits. Additionally, exploring optimal task mixture ratios within Uni-MuMER
and optimal domain mixture ratios between HMER-specific data and general-domain data is crucial;
however, these experiments were omitted due to significant resource constraints. Investigating these
ratios could yield further enhance performance and generalizability.

7 Conclusion

This paper introduces Uni-MuMER, a unified multi-task fine-tuning framework for HMER , estab-
lishing a new paradigm by leveraging large-scale VLMs integrating multiple HMER tasks in a unified
textual modality. Without architectural modifications, Uni-MuMER integrates Tree-aware Chain-
of-Thought, Error-Driven Learning, and Symbol Counting tasks to jointly address structured spatial
reasoning, error correction, and long-expression consistency in expression recognition, achieving
super SOTA performance. This unified method provides enhanced accuracy, scalability, and faster
inference speed, establishing a promising new research direction for future advancements in HMER.

10

8 Acknowledgement

This work is supported by the projects of Beijing Nova Interdisciplinary Program (20240484647) and
National Natural Science Foundation of China (No. 62376012), which is also a research achievement
of State Key Laboratory of Multimedia Information Processing and Key Laboratory of Science,
Technology and Standard in Press Industry (Key Laboratory of Intelligent Press Media Technology).

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 2

[2] F. Álvaro, J.-A. Sánchez, and J.-M. Benedí. Recognition of on-line handwritten mathematical expressions
using 2d stochastic context-free grammars and hidden markov models. Pattern Recognition Letters,
35:58–67, 2014. 2

[3] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, H. Zhong, Y. Zhu,
M. Yang, Z. Li, J. Wan, P. Wang, W. Ding, Z. Fu, Y. Xu, J. Ye, X. Zhang, T. Xie, Z. Cheng, H. Zhang,
Z. Yang, H. Xu, and J. Lin. Qwen2.5-VL technical report, Feb. 2025. 2, 3, 6, 7

[4] X. Bian, B. Qin, X. Xin, J. Li, X. Su, and Y. Wang. Handwritten mathematical expression recognition
via attention aggregation based bi-directional mutual learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 113–121, 2022. 2, 3, 6

[5] L. Blecher, G. Cucurull, T. Scialom, and R. Stojnic. Nougat: Neural optical understanding for academic
documents, 2023. 3

[6] K.-F. Chan and D.-Y. Yeung. Mathematical expression recognition: a survey. International Journal on
Document Analysis and Recognition, 3:3–15, 2000. 2

[7] K. Chen, H. Shen, L. Zhong, and M. Chen. Mmhmer: Multi-viewer and multi-task for handwritten
mathematical expression recognition. arXiv preprint arXiv:2502.05557, 2025. 2

[8] X. Chen, X. Wang, S. Changpinyo, A. J. Piergiovanni, P. Padlewski, D. Salz, S. Goodman, A. Grycner,
B. Mustafa, L. Beyer, A. Kolesnikov, J. Puigcerver, N. Ding, K. Rong, H. Akbari, G. Mishra, L. Xue,
A. V. Thapliyal, J. Bradbury, W. Kuo, M. Seyedhosseini, C. Jia, B. K. Ayan, C. R. Ruiz, A. P. Steiner,
A. Angelova, X. Zhai, N. Houlsby, and R. Soricut. PaLI: A jointly-scaled multilingual language-image
model. In The Eleventh International Conference on Learning Representations, Sept. 2022. 2

[9] Z. Chen, J. Han, C. Yang, and Y. Zhou. Language model is suitable for correction of handwritten
mathematical expressions recognition. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pages 4057–4068, Singapore,
Dec. 2023. Association for Computational Linguistics. 3, 5

[10] P. A. Chou. Recognition of equations using a two-dimensional stochastic context-free grammar. In Visual
Communications and Image Processing IV, volume 1199, pages 852–865. SPIE, 1989. 2

[11] G. DeepMind. Gemini 2.5 Flash: Enhanced multimodal model. https://blog.google/products/
gemini/gemini-2-5-flash-preview/, Apr. 2025. Public preview announced 17 Apr 2025. 2, 7

[12] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush. Image-to-markup generation with coarse-to-fine attention.
In International Conference on Machine Learning, pages 980–989. PMLR, 2017. 3, 5

[13] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, A. Wahid, J. Tompson, Q. Vuong, T. Yu,
W. Huang, et al. Palm-e: An embodied multimodal language model, Mar. 2023. 32

[14] A. Fadeeva, P. Schlattner, A. Maksai, M. Collier, E. Kokiopoulou, J. Berent, and C. Musat. Representing
online handwriting for recognition in large vision-language models. arXiv preprint arXiv:2402.15307,
2024. 32

[15] S. A. Firdaus and K. Vaidehi. Handwritten mathematical symbol recognition using machine learning
techniques: Review. In S. C. Satapathy, K. S. Raju, K. Shyamala, D. R. Krishna, and M. N. Favorskaya,
editors, Advances in Decision Sciences, Image Processing, Security and Computer Vision, volume 4, pages
658–671. Springer International Publishing, Cham, 2020. 1

[16] Y. Gao, W. Wang, and H. Ney. Uniblock: Scoring and filtering corpus with unicode block information. In
K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1324–1329, Hong Kong, China, Nov. 2019. Association for Computational
Linguistics. 7

[17] P. Gervais, A. Fadeeva, and A. Maksai. Mathwriting: A dataset for handwritten mathematical expression
recognition. arXiv preprint arXiv:2404.10690, 2024. 5, 25

[18] T. Guan, C. Lin, W. Shen, and X. Yang. Posformer: recognizing complex handwritten mathematical
expression with position forest transformer. In European Conference on Computer Vision, pages 130–147.
Springer, 2024. 2, 3, 6, 26

11

https://blog.google/products/gemini/gemini-2-5-flash-preview/
https://blog.google/products/gemini/gemini-2-5-flash-preview/

[19] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948,
2025. 10

[20] H.-Y. Guo, C. Wang, F. Yin, X.-H. Li, and C.-L. Liu. Vision–language pre-training for graph-based
handwritten mathematical expression recognition. Pattern Recognition, 162:111346, 2025. 3, 6, 7

[21] H.-Y. Guo, F. Yin, J. Xu, and C.-L. Liu. HiE-VL: A large vision-language model with hierarchical adapter
for handwritten mathematical expression recognition. In Icassp 2025 - 2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (Icassp), pages 1–5, Hyderabad, India, Apr. 2025. IEEE. 3, 6,
7, 25

[22] J. Ha, R. M. Haralick, and I. T. Phillips. Understanding mathematical expressions from document images.
In Proceedings of 3rd International Conference on Document Analysis and Recognition, volume 2, pages
956–959. IEEE, 1995. 2

[23] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982. 1

[24] Y. Huang, T. Lv, L. Cui, Y. Lu, and F. Wei. Layoutlmv3: Pre-training for document ai with unified text
and image masking. In Proceedings of the 30th ACM international conference on multimedia, pages
4083–4091, 2022. 3

[25] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig. Scaling up
visual and vision-language representation learning with noisy text supervision. In International conference
on machine learning, pages 4904–4916. PMLR, 2021. 2

[26] N. Jiang, S. Liang, C. Wang, J. Wang, and L. Tan. Latte: Improving latex recognition for tables and
formulae with iterative refinement. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 4030–4038, 2025. 26

[27] G. Kim, T. Hong, M. Yim, J. Nam, J. Park, J. Yim, W. Hwang, S. Yun, D. Han, and S. Park. Ocr-free
document understanding transformer. In European Conference on Computer Vision, pages 498–517.
Springer, 2022. 3

[28] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica. Efficient
memory management for large language model serving with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages 611–626, 2023. 2

[29] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica. Efficient
memory management for large language model serving with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages 611–626, 2023. 2

[30] B. Li, Y. Yuan, D. Liang, X. Liu, Z. Ji, J. Bai, W. Liu, and X. Bai. When counting meets hmer: counting-
aware network for handwritten mathematical expression recognition. In European Conference on Computer
Vision, pages 197–214. Springer, 2022. 2, 3, 5, 6

[31] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image
encoders and large language models. In International conference on machine learning, pages 19730–19742.
PMLR, 2023. 2

[32] J. Li, D. Li, C. Xiong, and S. Hoi. BLIP: Bootstrapping language-image pre-training for unified vision-
language understanding and generation. In Proceedings of the 39th International Conference on Machine
Learning, pages 12888–12900. PMLR, June 2022. 2

[33] Z. Li, B. Yang, Q. Liu, Z. Ma, S. Zhang, J. Yang, Y. Sun, Y. Liu, and X. Bai. Monkey: Image resolution and
text label are important things for large multi-modal models. In proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 26763–26773, 2024. 3

[34] Y. Liu, Z. Li, M. Huang, B. Yang, W. Yu, C. Li, X.-C. Yin, C.-L. Liu, L. Jin, and X. Bai. Ocrbench: on the
hidden mystery of ocr in large multimodal models. Science China Information Sciences, 67(12):220102,
2024. 2

[35] Y. Liu, B. Yang, Q. Liu, Z. Li, Z. Ma, S. Zhang, and X. Bai. Textmonkey: An ocr-free large multimodal
model for understanding document. arXiv preprint arXiv:2403.04473, 2024. 3

[36] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, et al. Self-refine: Iterative refinement with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594, 2023. 2

[37] M. Mahdavi, R. Zanibbi, H. Mouchere, C. Viard-Gaudin, and U. Garain. ICDAR 2019 CROHME+ TFD:
Competition on recognition of handwritten mathematical expressions and typeset formula detection. In
2019 International Conference on Document Analysis and Recognition (ICDAR), pages 1533–1538. IEEE,
2019. 2, 5

[38] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, and U. Garain. Icfhr 2014 competition on recognition of
on-line handwritten mathematical expressions (crohme 2014). In 2014 14th International Conference on
Frontiers in Handwriting Recognition, pages 791–796, 2014. 2, 5

[39] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain. Icfhr2016 crohme: Competition on recognition
of online handwritten mathematical expressions. In 2016 15th International Conference on Frontiers in
Handwriting Recognition (ICFHR), pages 607–612, 2016. 2, 5

12

[40] O. Nath, H. Bathina, M. S. U. R. Khan, and M. M. Khapra. Can vision-language models evaluate
handwritten math? arXiv preprint arXiv:2501.07244, 2025. 3

[41] OpenAI. GPT-4o: Multimodal generative transformer. https://openai.com/index/hello-gpt-4o/,
2024. Flagship model unveiled 13 May 2024. 2, 6, 7

[42] S. Peng, L. Gao, K. Yuan, and Z. Tang. Image to latex with graph neural network for mathematical
formula recognition. In Document Analysis and Recognition–ICDAR 2021: 16th International Conference,
Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II 16, pages 648–663. Springer, 2021. 4

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision. In Proceedings of the 38th International Conference on Machine Learning, pages 8748–8763.
PMLR, July 2021. 3

[44] F. M. Schmitt-Koopmann, E. M. Huang, H.-P. Hutter, T. Stadelmann, and A. Darvishy. MathNet: A
data-centric approach for printed mathematical expression recognition. IEEE Access, 12:76963–76974,
2024. 5, 25, 34

[45] B. D. Team. Doubao 1.5 Vision Pro: Multimodal large language model. https://seed.bytedance.
com/en/special/doubao_1_5_pro, Jan. 2025. Official release reported 22 Jan 2025. 2, 6, 7

[46] T.-N. Truong, C. T. Nguyen, R. Zanibbi, H. Mouchère, and M. Nakagawa. A survey on handwritten
mathematical expression recognition: The rise of encoder-decoder and GNN models. Pattern Recognition,
153:110531, Sept. 2024. 2

[47] H. M. Twaakyondo and M. Okamoto. Structure analysis and recognition of mathematical expressions. In
Proceedings of 3rd International Conference on Document Analysis and Recognition, volume 1, pages
430–437. IEEE, 1995. 2

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in neural information processing systems, 30, 2017. 1, 3

[49] B. Wang, Z. Gu, G. Liang, C. Xu, B. Zhang, B. Shi, and C. He. Unimernet: A universal network for
real-world mathematical expression recognition. arXiv preprint arXiv:2404.15254, 2024. 3

[50] B. Wang, F. Wu, L. Ouyang, Z. Gu, R. Zhang, R. Xia, B. Shi, B. Zhang, and C. He. Image over text:
Transforming formula recognition evaluation with character detection matching. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pages 19681–19690, 2025. 35

[51] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems,
35:24824–24837, 2022. 2

[52] C. Wu, J. Du, Y. Li, J. Zhang, C. Yang, B. Ren, and Y. Hu. TDv2: A Novel Tree-Structured Decoder
for Offline Mathematical Expression Recognition. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(3):2694–2702, June 2022. 2, 4

[53] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu. Image-to-markup generation via paired
adversarial learning. In Machine learning and knowledge discovery in databases: European conference,
ECML PKDD 2018, Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18, pages 18–34.
Springer, 2019. 2, 3

[54] J.-W. Wu, F. Yin, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu. Handwritten mathematical expression
recognition via paired adversarial learning. International Journal of Computer Vision, 128:2386–2401,
2020. 2, 3

[55] Y. Xie and H. Mouchère. Tst: Tree structured transformer for handwritten mathematical expression
recognition. In International Conference on Document Analysis and Recognition, pages 236–252. Springer,
2025. 33

[56] Y. Xie, H. Mouchère, F. Simistira Liwicki, S. Rakesh, R. Saini, M. Nakagawa, C. T. Nguyen, and T.-N.
Truong. Icdar 2023 crohme: Competition on recognition of handwritten mathematical expressions. In
International Conference on Document Analysis and Recognition, pages 553–565. Springer, 2023. 5, 25

[57] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan. Tree of thoughts: Deliberate
problem solving with large language models. Advances in neural information processing systems, 36:11809–
11822, 2023. 2

[58] Y. Yuan, X. Liu, W. Dikubab, H. Liu, Z. Ji, Z. Wu, and X. Bai. Syntax-aware network for handwritten
mathematical expression recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4553–4562, 2022. 3

[59] Y. Yuan, X. Liu, W. Dikubab, H. Liu, Z. Ji, Z. Wu, and X. Bai. Syntax-aware network for handwritten
mathematical expression recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4553–4562, 2022. 5

[60] R. Zanibbi, D. Blostein, and J. R. Cordy. Recognizing mathematical expressions using tree transformation.
IEEE Transactions on pattern analysis and machine intelligence, 24(11):1455–1467, 2002. 2

[61] R. Zanibbi, H. Mouchere, and C. Viard-Gaudin. Evaluating structural pattern recognition for handwritten
math via primitive label graphs. In Document Recognition and Retrieval XX, volume 8658, pages 411–421.
SPIE, 2013. 4

13

https://openai.com/index/hello-gpt-4o/
https://seed.bytedance.com/en/special/doubao_1_5_pro
https://seed.bytedance.com/en/special/doubao_1_5_pro

[62] H. Zhang, X. Su, X. Zhou, and G. Gao. SSAN: A symbol spatial-aware network for handwritten
mathematical expression recognition. Proceedings of the AAAI Conference on Artificial Intelligence,
39(21):22398–22406, Apr. 2025. 2, 3, 6

[63] J. Zhang, J. Du, and L. Dai. Multi-scale attention with dense encoder for handwritten mathematical
expression recognition. In 2018 24th international conference on pattern recognition (ICPR), pages
2245–2250, 2018. 2, 3, 6, 7

[64] J. Zhang, J. Du, Y. Yang, Y.-Z. Song, S. Wei, and L. Dai. A tree-structured decoder for image-to-markup
generation. In ICML, page In Press, 2020. 2, 3, 4

[65] J. Zhang, J. Du, S. Zhang, D. Liu, Y. Hu, J. Hu, S. Wei, and L. Dai. Watch, attend and parse: An end-to-end
neural network based approach to handwritten mathematical expression recognition. Pattern Recognition,
71:196–206, 2017. 2, 3

[66] W. Zhao and L. Gao. Comer: Modeling coverage for transformer-based handwritten mathematical
expression recognition. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXVIII, pages 392–408. Springer, 2022. 2, 3, 6, 7

[67] W. Zhao, L. Gao, Z. Yan, S. Peng, L. Du, and Z. Zhang. Handwritten mathematical expression recognition
with bidirectionally trained transformer. In Document Analysis and Recognition–ICDAR 2021: 16th
International Conference, Lausanne, Switzerland, September 5–10, 2021, Proceedings, Part II 16, pages
570–584. Springer, 2021. 2, 3, 6

[68] D. Zhelezniakov, V. Zaytsev, and O. Radyvonenko. Online handwritten mathematical expression recogni-
tion and applications: A survey. IEEe Access, 9:38352–38373, 2021. 1, 2

[69] J. Zhu, L. Gao, and W. Zhao. Ical: Implicit character-aided learning for enhanced handwritten mathematical
expression recognition. arXiv preprint arXiv:2405.09032, 2024. 3

[70] J. Zhu, W. Zhao, Y. Li, X. Hu, and L. Gao. Tamer: Tree-aware transformer for handwritten mathematical
expression recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
10950–10958, 2025. 2, 3, 4, 6, 7

9 Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction enumerate three contributions, which are uni-
fied multi-task fine-tuning, three data-driven tasks, and new SOTA results, all verified
experimentally in Tab. 1 and Tab. 2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A dedicated “Limitations” paragraph in Sec. 6, which discusses domain-
specific scope, compute constraints, and unused synthetic data.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

14

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The work is empirical and introduces no formal theorems or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have taken steps to ensure the reproducibility of our result. Sec. 4.1 detail
datasets, and Appendix introduce how to preprocess datasets and hyper-parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

15

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We have not included the actual code or data with the submission. However,
we provide thorough instructions and descriptions in the paper and the appendix to reproduce
all main experiments. We will publicly release our code, model checkpoints, and detailed
usage instructions in the future.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All data are public, and provide the split training sets and test sets. Hyperpa-
rameters and optimizer are introduced in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not report explicit error bars, confidence intervals, or statistical signifi-
cance tests for our experimental results. Due to the high cost of fine-tuning large VLMs,
each configuration was run once; we therefore report point estimates without confidence
intervals.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix introduces training used 4 x A800-80 GB GPUs, 80 GB VRAM
each, single-epoch on 1.6M train samples, which cost 96 hours, and describes that training
was run for one epoch on a combined dataset of around 1.6M images.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and confirm that our research
adheres to it. Our work involves improving a handwriting recognition model using public,
licensable datasets and does not present unethical content or methodology.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We did not include a dedicated broader societal impacts section because our
work focuses on a specialized technical application with limited direct societal implications.
The primary impact of our research is positive, improving tools for digitizing and under-
standing handwritten mathematics, which can benefit education and scientific document
processing.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

18

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The released fine-tuned model targets mathematical OCR and poses minimal
dual-use risk; no additional safeguards are required.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Sec. 4.1 cites CROHME, HME100K, MathWriting, and Im2LaTeXv2 with
their original papers and open licences; code bases (e.g., Qwen2.5-VL) are Apache-2.0.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new proprietary assets in this paper. Our contributions lie
in the unified fine-tuning approach and tasks, applied to existing datasets and an existing
open-source model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

19

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work involves only publicly available handwriting datasets; no human
subjects were recruited.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB approval is not applicable because the study does not collect new human-
subject data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We clearly describe our use of a large-scale pre-trained model in the paper. In
particular, Sec. 3, explains that our method is built on the Qwen2.5-VL-3B vision-language
model, which we fine-tune for HMER. The role of this LLM/VLM in our approach is
explicitly documented as a core component of the methodology.

Guidelines:

20

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents
A Prompt Design for Multi-Task Training 23

B Expreimental Details 25
B.1 Uni-MuMER-Data Preprocess . 25
B.2 Evaluation Datasets and Metrics . 26
B.3 Evaluation Prompting Protocol . 27
B.4 Training Detail . 27

C Extended Analysis 28
C.1 Effects of Data Diversity Compared with Specialized HMER Model 28
C.2 Inference Efficiency . 28
C.3 Alternative explorations format . 28
C.4 Hallucination for HMER . 30
C.5 CJK influence for HMER . 31

D More Experimental Results 32
D.1 Results on Handwritten Mathematical Expression 32
D.2 Results on Printed Mathematical Expressions 33

E Case Study 35

22

A Prompt Design for Multi-Task Training

We design distinct prompts for each of the four training tasks in Uni-MuMER. Each prompt guides
the model on a specific sub-task, and the model’s expected output format is tailored to that task. Each
prompt consists of a fixed system prompt: You are a helpful assistant. Below we list the prompts
used for Vanilla HMER, Tree-CoT, Error-Driven Learning, and Symbol Counting (SC), along with
example prompts and the form of expected outputs. It is a detailed expansion of the content in Fig. 2.

Example A.1: Prompt for Vanilla HMER

Prompt: I have an image of a handwritten mathematical expression. Please write out the expression of the
formula in the image using LATEX format.
Answer:
| \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ˆ { 2 } + b ˆ { 2 } } } |

Example A.2: Prompt for Tree-CoT

Prompt: I have an image of a handwritten mathematical expression. Please generate the abstract syntax
tree (AST) of the formula in the image, and then provide its corresponding LATEX format.
Answer:
|
\frac (right)

a (above)
x (right)

0 (sub)
+ (right)
b (right)
y (right)

0 (sub)
+ (right)
c (right)
\sqrt (below)

a (above)
2 (sup)

+ (right)
b (right)

2 (sup)
| (right)
\frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ^ { 2 } + b ^ { 2 } } } |

Example A.3: Prompt for Error Detection

Prompt: I have an image of a handwritten mathematical expression and its OCR recognition result. Please
help me to detect possible errors in the recognition result and mark the places where errors occur with
<error_start> <error_end> and <deleted>.
erroneous formula: | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { d ˆ { 2 } + b ˆ { 2 } } } |
Marked formula:
Answer:
| \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { <error_start> d <error_end> ˆ { 2 } + b ˆ { 2 } } } |

Example A.4: Prompt for Error Correction

Prompt: I have an image of a handwritten mathematical expression and a predicted formula with error
tags, correct the formula by modifying the parts marked with <error_start> and <error_end> and inserting
content where <deleted> are present. Output the modifications in a single string using the following format:
REPLACE:old -> new for errors to be replaced. INSERT:content after the position for missing content.
DELETE:to_delete for parts to be removed.
Marked formula: | \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { <error_start> d <error_end> ˆ { 2 } + b ˆ { 2
} } } |
Correction log:
Answer:
REPLACE:d -> a
| \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ˆ { 2 } + b ˆ { 2 } } } |

23

Example A.5: Prompt for Symbol Counting

Prompt: I have an image of a handwritten mathematical expression. Please identify and count each distinct
visible mathematical symbol in the image, and then provide its corresponding LATEX format.
Answer:
|: 2, \frac: 1, a: 2, x: 1, _: 2, 0: 2, +: 3, b: 2, y: 1, c: 1, \sqrt: 1, ^: 2, 2: 2
| \frac { a x _ { 0 } + b y _ { 0 } + c } { \sqrt { a ˆ { 2 } + b ˆ { 2 } } } |

These carefully designed prompts ensure that during fine-tuning, Uni-MuMER learns not only to
recognize the expressions but also to reason about structure, identify and correct errors, and pay
attention to every symbol. By training on this multi-task prompt set, the model acquires a richer
understanding of handwritten math, which cumulatively improves its accuracy and robustness.

24

B Expreimental Details

B.1 Uni-MuMER-Data Preprocess

We perform comprehensive preprocessing on all datasets to prepare the training and evaluation data
for Uni-MuMER. This involves cleaning noisy data, tokenizing LATEX strings into standardized tokens,
and normalizing different LATEX notations to a consistent style. LATEX expressions can often be written
in syntactically different ways while conveying the same meaning, so unifying these representations
is crucial for effective cross-dataset training.

Data Cleaning First, we exclude all instances containing CJK characters. For example, the
HME100K dataset occasionally contains Chinese characters in annotations; these were removed to
avoid confusing the model. Additionally, we remove characters or symbols that lack semantic value
and negatively impact recognition accuracy, such as \underline{\quad} and empty brace pairs ({}),
which do not contribute to the math content.

Data Tokenization Since the LATEX expressions provided by datasets like CROHME 2023 [56]
and Mathwriting [17] are not inherently tokenized. To train a sequence model effectively, we
convert each expression into a standardized sequence of LATEX tokens. Specifically, we adopt the
tokenization procedure from the preprocess_formulas script of the open-source im2markup
repository, leveraging the KaTeX JavaScript library to perform semantic-level tokenization. During
tokenization, we also remove any syntactically invalid expressions that fail to parse. Finally, the
expression \frac a^2 2 is tokenized as \frac a ^ 2 2, where each LATEX token is separated by a
space.

Table 8: Examples of LATEX math normaliza-
tion. Comparison of original math expressions,
normalized versions, and their rendered figures.
Following the configurations of HiE-VL [21] and
MathNet [44], we apply these transformations to
make training more consistent.

Transform Original Normalized Figure

Brace HˆI Hˆ{I} HI

SubSup \intˆ{b}_{a} \int_{a}ˆ{b}
∫ b

a

Root \sqrt[2]a \sqrt[2]{a} 2
√
a

Stylized \textbf{a} a a
.

Data Normalization After tokenization, we
normalize the ground-truth LATEX sequences
across all training datasets to ensure a consis-
tent format. Different datasets might represent
the same mathematical concept in slightly dif-
ferent LATEX forms. Such variations include no-
tation differences (e.g., using \leq and \le), op-
tional braces (a^ 2 and a ^ { 2 }), or stylistic
markup (e.g., using \textbf{a} vs. just a), which
is typically not visible in handwritten notes. If
left unnormalized, these variations could con-
fuse the model or reduce its ability to generalize
between datasets. We therefore systematically
unify these to a single canonical form. For exam-
ple, the expression \frac a^ 2 2 is normalized
as \frac { a ^ { 2 } } { 2 } . Detailed
normalization transformations are summarized
in Tab. 8, illustrating the specific LATEX syntax standardization rules we applied, extending and
optimizing the practices initially established by MathNet [44].

Table 9: Dataset filtering summary and multi-task sample counts.
Category CROHME CROHME2023 HME100K Mathwriting Im2LaTeXV2
raw 8834 12204 74502 229864 74244

rendering errors 0 587 1166 624 1153
normalization step 0 1 590 4749 3954
brackets invalid 0 0 0 65 82
rendering errors 0 0 0 293 1

Total (after deletion) 8834 11616 72746 224133 69054

Tree-CoT 8834 11616 72746 224133 69054
Error Detection 9010 6287 49959 125316 8828
Error Correction 11434 8860 58884 166387 17047
Symbol Counting 8834 11616 72746 224133 69054

Total (with four tasks) 38112 38379 254335 739969 163983

25

Dataset Filtering Each dataset contributed a different number of valid expressions after prepro-
cessing. Tab. 9 summarizes the filtering outcomes for the major datasets we used: CROHME,
CROHME2023, HME100K, MathWriting, and Im2LaTeXv2. For each dataset, we list the original
number of expressions and how many were removed for various reasons, such as rendering errors or
invalid syntax detected during normalization. The final row gives the count of expressions remaining
in each dataset after all filtering steps.

Task Data Construction With the cleaned datasets in hand, we construct the multi-task training
samples. Each image can yield multiple training samples, one for each task. The lower part of Tab. 9
lists the number of training samples per task for each dataset. For the Tree-CoT, Symbol Counting,
and Vanilla HMER tasks, we typically generate one sample per image, so their counts per dataset are
equal to the number of remaining images. For the Error Detection and Error Correction subtasks, we
collect all error corpus generated by each dataset. Further inspired by recent work on incremental
refinement LATTE [26], our error-correction task is specifically constrained to correcting one error
per round, which is more effective than inputting the whole incorrect expression. In total, across all
datasets, our training set comprises roughly 1.6 million samples derived from about 392k unique
images, spanning the three tasks.

B.2 Evaluation Datasets and Metrics

Datasets The MNE (Multi-level Nested Expression) dataset is specifically designed to evaluate
models on recognizing complex handwritten mathematical expressions [18]. The dataset is organized
into subsets designated as N1, N2, and N3, based on the structural complexity of the expressions,
determined by the maximum nested levels within their substructures. Fig. 7 illustrates various
mathematical expressions along with their corresponding tree-based structural complexities. For
instance, an expression such as a2+1

b possesses a structural complexity level of 2, indicating two
hierarchical nesting layers.

Evalution Metric The Character Error Rate (CER) CER is computed via Levenshtein distance at
the Unicode character level, normalized by ground-truth length. It is widely used in online handwriting
datasets (e.g., MathWriting) to detect localization errors, brace imbalances, and missing superscripts.
EditScore Following MathNet, we adopt EditScore, defined as 1 − Edit distance

max(|ŷ|,|y|) . EditScore, the
sequence-level counterpart to CER, strongly correlates with human judgments in printed Mathematical
Expression Recognition (MER) tasks and tolerates minor reordering and length variations while
preserving semantics. BLEU-4 For consistency and comparability with existing corpus in the
im2latexv2 domain, we incorporate the BLEU-4 metric, calculated based on 4-gram overlap after
LATEX normalization, which effectively quantifies n-gram overlaps and remains a valuable metric.

right

right

a

+2

1

sup
right

right

right

right

+

1

a

=

b

Complexity = 0

\frac

a

+2

2
right

1
right

sup

belowabove

\frac

a

+2

2
right

1
right

sup

belowabove

\sum

n
sub right

Complexity = 2 Complexity = 3Complexity = 1

Figure 7: Examples of structural complexity for different expressions

26

B.3 Evaluation Prompting Protocol

When evaluating the fine-tuned Uni-MuMER model and comparing it to various baselines, we
standardize the prompting method to ensure a fair and consistent evaluation across models: Below,
we describe the exact prompts and settings used in different evaluation scenarios.

Uni-MuMER (Ours) We used the Vanilla HMER prompt to elicit the final LATEX output when
evaluating our fine-tuned model on the test sets. Instead of explicitly prompting the model to show
its chain-of-thought or to count symbols during this evaluation phase, we directly request the final
LATEX output. The rationale is that our multi-task training has already imbued the model with better
internal reasoning and understanding; at test time, we just want the final answer, not the intermediate
steps. Thus, for each test image, we simply provided the vanilla prompt like: "I have an image of a
handwritten mathematical expression. Please write out the expression of the formula in the image
using LATEX format." to the model, along with the handwritten expression image.

Baseline VLMs (Open-Source and Closed-Source) We evaluate several open-source VLMs and
closed-source VLMs in a zero-shot setting on the CROHME and HME100K datasets. However, one
challenge was that some general models might produce additional explanatory text or not output the
expression alone. To mitigate this, we minimally revise the prompt to ask the model to output the
LATEX expression in the \boxed{}. The prompt is "I have an image of a handwritten mathematical
expression. Please write out the expression of the formula in the image using LATEX format and place
it inside \boxed{}". We then post-processed the output by removing the \boxed{} wrapper to retrieve
the raw LATEX.

Output Normalization After obtaining outputs from all VLMs in a zero-shot setting, we apply the
same cleaning and tokenization steps as used in training to each output before evaluation. This is
important so that metrics like ExpRate or CER treat all outputs on equal footing. In particular, for the
HME100K test set, if a model produced any non-LATEX characters or CJK text, we dropped those
outputs entirely.

Reproducibility of Baselines To ensure transparency and reproducibility, we explicitly detail the
exact versions of the models evaluated in this study. Closed-source models were accessed through their
respective APIs or publicly available releases at specific reference dates: Gemini 2.5-flash (version:
gemini-2.5-flash-preview-04-17), Doubao-1.5-pro (version: doubao-1.5-vision-pro-250328), and
GPT-4o (version: gpt-4o-2024-11-20). For open-source models such as Qwen2.5-VL (3B, 7B, and
72B), we adopted the latest publicly accessible checkpoints available at the time of experimentation.
All models underwent evaluation on identical test datasets, specifically the CROHME 2014, 2016, and
2019 datasets, as well as the HME100K test set. We meticulously ensured consistent preprocessing
procedures and uniformly applied evaluation metrics across all model outputs.

By enforcing this consistent prompting and processing protocol, we aimed to make the comparison
as fair as possible. All outputs were judged by exactly the same criteria. This way, the results reflect
the true capability of each model on HMER, without artifacts from prompting differences.

B.4 Training Detail

Implementation Details We fine-tune Qwen2.5-VL-3B using a full-parameter update. Besides,
we employ a cosine decay schedule to gradually reduce the learning rate to 10% of its initial value
(1× 10−5) by the end of training. Training is conducted for a single epoch using all tasks and mixed
dataset batches. Due to memory constraints, we adopt mixed-precision training, which enables us to
fit a batch size of 512 within approximately 80 GB of VRAM per GPU (8×A800). This large batch
size was specifically chosen to accommodate the diversity of tasks and stabilize the training process.

Training time We trained for a single epoch over the combined multi-task dataset. One epoch in
this context amounted to roughly 1.6 million training samples, since each image contributes multiple
task-specific samples. Iterating over 1.6M samples with batch 512 yields about 3152 optimization
steps. In practice, this single epoch took 20 hours to complete on the 8× A800 setup. Although this
runtime slightly exceeds that of training lightweight specialized models from scratch, our approach
achieves convergence to a high-performance level within just a single epoch.

27

C Extended Analysis

C.1 Effects of Data Diversity Compared with Specialized HMER Model

In this subsection, we examine how incrementally scaling training data impacts ExpRate@CDM.
As noted in Sec. 1, previous specialized models typically train on individual datasets, limited by
the available training data and rarely assessed using visual metrics. Building upon the analysis in
Sec. 5.2, we start with the CROHME dataset alone and then progressively add more training data
from four additional sources. At each stage, we train three models from scratch on the combined data
up to that point: (i) a lightweight specialized model, CoMER, which is a strong transformer-based
architecture representative of specialized models; (ii) our vanilla baseline, which is only fine-tuned
on 392k unique images; (iii) Uni-MuMER which is multi-task fine-tuned on the 1.6M samples).

The results, summarized in the Tab. 10, indicate that CoMER initially benefits from increased data
diversity but subsequently exhibits significant performance degradation, settling at modest perfor-
mance. Conversely, the vanilla baseline and Uni-MuMER show a much more robust improvement
curve. Finally, Uni-MuMER consistently outperforms the Vanilla model at every stage and shows
continuous gains. This demonstrates that the multi-task fine-tuning is effective at harnessing diverse
data. Furthermore, specialized models like CoMER typically require extensive hyperparameter
tuning, including adjustments to learning rates and training epochs. In contrast, Uni-MuMER attains
superior performance after only a single training epoch without additional optimization efforts. This
underscores Uni-MuMER’s robustness and efficiency.

Table 10: Effect of progressively adding training datasets on CROHME-Avg ExpRate@CDM.
At each step, models are trained from scratch on the cumulative data. Uni-MuMER improves
monotonically and consistently outperforms the Vanilla (single-task) and CoMER baselines.

Model CROHME Train + CROHME-23 + HME100K + MathWriting + Im2Latexv2
CoMER 58.14 60.08 63.10 52.17 52.29

Vanilla (baseline) 71.14 75.07 75.13 80.87 80.35
Uni-MuMER 75.36 76.27 78.01 83.20 82.89
Uni-MuMER-7B 77.45 81.17 80.35 83.35 83.34

C.2 Inference Efficiency

Table 11: Comparison of methods on effi-
ciency metrics. Throughput is reported in
frames per second (FPS, higher is better) and
model capacity in trainable parameters.

Method FPS ↑ Parameters

CoMER 5.23 6.39 M
TAMER 4.50 8.23 M

Uni-MuMER† 43.40 3.75 B

We evaluated the inference speed and model size of
our proposed Uni-MuMER model against the base-
line methods CoMER and TAMER, utilizing a sin-
gle NVIDIA A800 GPU. To ensure a consistent and
fair comparison, we used the HME100K test dataset,
comprising 24,607 real-scene handwritten mathemat-
ical expression images. Additionally, we leveraged
vLLM, an optimized transformer-based inference
engine known for accelerating decoding processes
through efficient batch processing and caching mech-
anisms. The comparative efficiency metrics are sum-
marized in Table 11. As demonstrated, Uni-MuMER
significantly surpasses previous HMER models in terms of inference speed, achieving an FPS ap-
proximately eightfold higher than existing baselines under identical hardware conditions. As a result,
Uni-MuMER is not only accurate but also efficient enough for practical use.

C.3 Alternative explorations format

In developing the Tree-CoT and Symbol Counting tasks, we explored various output representation
formats and their impact on model performance. Our goal was to find a format that is expressive
enough to capture structure/counts but concise enough for the model to learn effectively. Here we
report experiments with alternative formats for the expression tree serialization in Tree-CoT, as
well as for the symbol counting task. We compare each alternative to the format ultimately used in
Uni-MuMER (referred to as “our format”). All experiments in this section were conducted using

28

only CROHME data for training (no external data), so that differences reflect format efficacy rather
than additional data. We evaluate both in a Vanilla+X setting and in the full Uni-MuMER setting
(all three tasks, but substituting the alternative format for the relevant task) to assess each format’s
influence. Below, we outline each representation with an example.

Example C.1: S-expression foramt for Tree CoT

\mu_{pj}

Example C.2: Json AST foramt for Tree CoT

[’type’: ’supsub’, ’value’: ’base’: ’type’: ’mathord’, ’value’: ’\mu’, ’sub’: ’type’: ’ordgroup’, ’value’: [’type’:
’mathord’, ’value’: ’p’, ’type’: ’mathord’, ’value’: ’j’]]

Example C.3: Simplified Json AST foramt for Tree CoT

[supsub: base: ’\mu’, sub: ordgroup: [’p’, ’j’]]

The S-expression is merely the formula itself and adds no metadata. Its nested structure also hurts
readability and organization. The JSON AST is excessively complex—it reflects JavaScript’s internal
LaTeX format—and includes substantial redundancy. The “Simplified JSON AST” was manually
trimmed and lacks a consistent standard. In contrast, our AST format (used in Uni-MuMER) strikes
a balance between structural clarity and brevity with special delimiters to indicate hierarchical
relationships. Our format avoids the heavy overhead of full JSON while preserving the necessary
structure of the expression tree.

Tab. 12 reports the model performance using each of these tree formats, which shows that the choice
of format significantly impacts accuracy. We attribute this gain to our format’s compactness and
structured guidance: it provides clear structural cues (like JSON) but with far fewer extraneous tokens,
making it easier for the decoder to learn the task.

Table 12: Performance impact of different expression tree formats for Tree-CoT. Bold numbers
are best in column. Setup: Models are trained on the CROHME dataset and evaluated on CROHME
2014, 2016, and 2019 test sets and their average. Results are reported in terms of ExpRate and
ExpRate@CDM. We compare the baseline Vanilla model against variants that incorporate the Tree-
CoT task using various AST output formats, and likewise compare full Uni-MuMER models using
those formats.

Model CROHME 2014 CROHME 2016 CROHME 2019 CROHME Average
Exp @CDM Exp @CDM Exp @CDM Exp @CDM

Vanilla 72.62 75.66 64.26 67.83 69.14 71.98 68.67 71.82
Vanilla + S-expression 72.21 75.56 66.87 70.97 68.06 71.73 69.05 72.75
Vanilla + Json AST 71.70 75.66 66.70 70.51 70.56 74.04 69.65 73.40
Vanilla + Simplified Json AST 72.62 76.47 66.96 70.18 69.89 73.06 69.82 73.24
Vanilla + our AST 73.33 75.76 68.00 70.97 71.23 74.40 70.85 73.71

Uni-MuMER (w/ S-expression) 74.85 78.07 68.07 73.14 72.56 76.14 71.83 75.78
Uni-MuMER (w/ Json AST) 75.46 79.51 70.10 74.28 72.98 76.06 72.85 76.62
Uni-MuMER (w/ Simplified Json AST) 74.44 78.27 70.36 74.63 73.90 77.48 72.90 76.79
Uni-MuMER (w/ our AST) 75.36 79.11 70.79 75.24 73.73 77.23 73.29 77.19

In addition, we investigated alternative formats for the Symbol Counting (SC) auxiliary task. The
default format in Uni-MuMER expresses the symbol counts as a simple list of symbol-count pairs,
separated by commas. We compared this with a more explicit map/dictionary format. For example,
consider the expression x ˆ { 2 } + y ˆ { 2 } < 1.

Example C.4: Map Counting format for Symbol Counting

{’x’: 1, ’^’: 2, ’2’: 2, ’+’: 1, ’y’: 1, ’<’: 1, ’1’: 1}

Example C.5: Our Counting format for Symbol Counting
x: 1, ^: 2, 2: 2, +: 1, y: 1, <: 1, 1: 1

29

The Map Counting format is semantically equivalent to ours but clearly more redundant (it introduces
additional punctuation and quotation characters). We found that this extra overhead can make the
sequence longer and potentially confuse the model (especially because symbols like braces and
quotes have no direct meaning in the counting task itself). As a result, as shown in Tab. 13, the map
format yielded slightly worse performance. The differences are modest, but consistent.

Table 13: Impact of Symbol Counting formats. Bold numbers are best in column. Setup: Models
are trained on the CROHME dataset and evaluated on CROHME 2014, 2016, and 2019 test sets and
their average. Results are reported in terms of ExpRate and ExpRate@CDM. We compare using a
JSON-like Map Counting format versus our simple listing format for the SC task.

Model CROHME 2014 CROHME 2016 CROHME 2019 CROHME Average
Exp @CDM Exp @CDM Exp @CDM Exp @CDM

Vanilla 72.62 75.66 64.26 67.83 69.14 71.98 68.67 71.82
Vanilla + Map Counting 72.92 76.67 65.39 70.01 69.89 73.65 69.40 73.44
Vanilla + our Counting 71.91 76.85 67.04 72.28 70.64 75.15 69.86 74.76
Uni-MuMER (w/ Map Counting) 75.05 78.80 70.62 74.43 72.48 76.21 72.72 76.48
Uni-MuMER (w/ our Counting) 75.36 79.11 70.79 75.24 73.73 77.23 73.29 77.19

C.4 Hallucination for HMER

Large generative models are known to occasionally hallucinate output tokens that do not belong or
omit tokens that should be present. In the context of HMER, both big VLMs and prior specialized
models can produce spurious symbols. To quantitatively analyze this, we preliminarily adopt two
metrics: Hallucination Token Rate (HTR) (percentage of predicted tokens not in the ground truth)
and Missing Token Rate (MTR) (percentage of ground truth tokens not in the pred). Additionally, we
categorized hallucinations by token type (numerical(0-9), variable(a-zA-Z), structural delimiters (e.g.,
[], {}, ()). This gives finer-grained error counts: HTR_num, HTR_var, HTR_delim for hallucinated
numbers, letters, and delimiters, respectively. We evaluated these metrics across the CROHME 2014,
2016, and 2019 test sets, ensuring that no external data was used during training. The results are
summarized below:

Table 14: Error analysis of hallucinations and omissions on CROHME. Results include ExpRate
(Exp), ExpRate@CDM, overall HTR and MTR errors, as well as specific error types (HTR_num,
HTR_var, HTR_delim). We compare two previous SOTA models (CoMER and TAMER), the
Vanilla baseline, ablations adding each of our tasks individually (Tree-CoT, EDL, SC), and the full
Uni-MuMER.

Model Exp @CDM HTR MTR HTR_num HTR_var HTR_delim
CoMER (SOTA’2022) 59.18 62.47 2.55 3.91 0.37 0.33 1.18
TAMER (SOTA’2024) 60.29 63.18 2.17 4.02 0.29 0.29 1.05
Vanilla (baseline) 68.64 71.74 4.08 2.42 1.08 0.29 1.68
Vanilla + Tree-CoT 70.85 73.71 1.67 1.56 0.14 0.21 0.85
Vanilla + EDL 70.30 73.76 2.58 1.94 1.09 0.22 0.83
Vanilla + CAN 69.86 74.76 2.15 2.06 0.23 0.27 1.08
Uni-MuMER (w/ 3 tasks) 73.29 77.19 1.18 1.39 0.12 0.15 0.60

Tab. 14 shows that our full model yields the highest accuracy while also having the lowest HTR
and MTR of all methods. Besides, incorporating each auxiliary task individually already helps:
adding the Tree-CoT task slashes hallucinations to 1.67% HTR, adding the Symbol Counting task
alone significantly lowers omissions (MTR), and adding the Error-Driven Learning task reduces
hallucinations of delim and var. These improvements suggest that Tree-CoT primarily mitigates
structural hallucinations, EDL corrects symbol-level mistakes, and SC enforces global consistency.

30

C.5 CJK influence for HMER

Table 15: Examples of CJK-containing im-
age–caption pairs in HME100K that lie
outside pure expression recognition, which
influence the robustness of expression recog-
nition and are outside the scope of math ex-
pression recognition.

image id caption
train_63827 = 88、5
train_11042 1、3、14 × (9.42 ÷ 3.14)
train_70305 39的因数: 1, 3,

In Sec. 4.2, we excluded samples containing CJK
characters of HME100K. This is primarily for two
reasons:

1. Our prompt specifically targets recognizing math-
ematical expressions, not general textual content
such as CJK characters. This filtering ensures a
clear evaluation of expression recognition capabil-
ity.

2. Some CJK-containing samples introduced prob-
lematic annotations unrelated to pure expressions
(e.g., textual descriptions or numeric lists)

Having justified the filtering strategy, we additionally examine the effect of CJK characters. We
first list typical CJK-containing captions to illustrate the distributional shift (Tab. 15), then compare
performance under two evaluation settings: (i) test set filtered to remove CJK, and (ii) test set retaining
CJK. We also test training variants that include or exclude CJK samples. For reference, we also
include results for CoMER and TAMER (previous specialized models) evaluated on the same splits.

Table 16: Comparison of recognition performance on HME100K test sets with and without
CJK characters. Results are reported in terms of ExpRate and ExpRate@CDM. We evaluate three
models on each subset: CoMER (specialized, SOTA 2022), TAMER (specialized, SOTA 2024),
and Uni-MuMER. For Uni-MuMER, we report two training conditions: w/o CJK and w/ CJK. For
CoMER and TAMER, we evaluated open-sourced models under zero-shot inference settings.

Model HME100K Test w/ CJK HME100K Test w/o CJK
ExpRate ExpRate@CDM CDM ExpRate ExpRate@CDM CDM

CoMER 68.47 70.19 96.79 68.70 70.29 96.81
TAMER 69.50 71.12 97.02 69.74 71.25 97.03
Uni-MuMER† (w/o CJK) 69.46 72.49 97.08 72.66 74.30 97.38
Uni-MuMER† (w/ CJK) 71.63 73.60 97.32 70.98 74.32 97.38

As is shown in Tab. 16, the performance of CoMER and TAMER remained nearly identical before
and after filtering. Our model still outperforms previous methods, with the CJK characters the same
in the training set, which suggests minimal effect on comparability, and including vs. excluding the
CJK samples in training had minimal effect on overall HMER accuracy.

We further examine whether including CJK characters in training has any noticeable effect on the
cross-domain performance of Uni-MuMER. Tab. 16 and Tab. 17 summarizes ExpRate@CDM results
for two model variants across benchmarks. These results indicate that adding the small set of CJK-
containing samples introduces a tiny trade-off: it may slightly compromise performance on the main
handwriting benchmarks, while providing a negligible benefit to certain out-of-domain cases. We
conclude that excluding the CJK data is a reasonable choice to keep the training focused, with no
meaningful loss in generality.

Table 17: Effect of including CJK during training evaluated on ExpRate@CDM across bench-
marks. Results are reported on CROHME-Average, CROHME 2023 test, Mathwriting test, and
Im2Latexv2 test. The best results for each column are highlighted in bold.

Model CROHME-Avg CROHME 2023 Mathwriting Im2Latexv2

Uni-MuMER† (w/o CJK) 82.89 74.42 69.11 88.99
Uni-MuMER† (w/ CJK) 82.21 72.14 68.91 90.28

31

D More Experimental Results

D.1 Results on Handwritten Mathematical Expression

Tab. 1 and Tab. 2 in the main paper, we focused on the strict ExpRate and visual CDM metrics.
Following past lightweight specialized models in HMER, we report ≤ 1 and ≤ 2 tolerating up to
one or two token prediction errors within the generated LATEX sequence. Here, we provide additional
metrics and comparisons on multiple datasets to fully characterize Uni-MuMER’s strengths.

Tab. 18 is an extended version of Tab. 1. Specifically, Tab. 18 reports not only ExpRate but also the
lenient metrics allowing up to ≤ 1 and ≤ 2 token errors. We compare Uni-MuMER against a broad
range of baselines: open-source VLMs, closed-source VLMs, previous SOTA methods on HMER,
and their data augmentation versions.

Tab. 19 presents an extended evaluation of our method on the CROHME2023 test set, providing
metrics including ExpRate, ≤ 1 and ≤ 2 token errors, as well as CDM-based evaluations. We
benchmark Uni-MuMER and Uni-MuMER† against various baselines. Our baseline model already
demonstrates competitive performance against previous SOTA methods. Notably, after incorporating
external data, Uni-MuMER† exhibits a drop in ExpRate due to changes in LaTeX-style outputs but
achieves outstanding performance in ExpRate@CDM.

Tab. 20 and Tab. 21 shows the results on the MNE dataset. This shows that the vanilla model is
already competitive with the prior SOTA on these challenging sets. By introducing three data-driven
tasks and external data, the Uni-MuMER and Uni-MuMER† outperform the prior best methods.

Tab. 22 shows a comparison of MathWriting using CER. Mathwriting is a dataset of handwritten
expressions paired with online handwriting traces and offline rendered images. With its introduction,
Google released two foundation models, PaLI [14] and PaLM-E [13], which are capable of reading
both images and sequences of pen strokes as input [14]. While online handwriting traces typically aid
models in mitigating ambiguity among visually similar characters, resulting in enhanced performance,
our proposed Uni-MuMER model demonstrates superior results despite relying exclusively on offline
image data for both training and evaluation.
Tab. 23 is an extended version of Tab. 2, presenting the performance of various models on the
HME100K test set. We report Exprate, ≤ 1, ≤ 2, and the CDM-based metrics for this dataset.

Table 18: Performance comparison on CROHME datasets (%). We evaluate our model and four
baselines using expression recognition rate (Exp), ≤ 1, and ≤ 2 on the CROHME 2014, 2016, and
2019 test sets. We use the following notation for reported results: All results are zero-shot inference;
a: data augmentation, p: reproduced results, †: external data used.

Method CROHME 2014 CROHME 2016 CROHME 2019
Exp ↑ ≤ 1 ↑ ≤ 2 ↑ Exp ↑ ≤ 1 ↑ ≤ 2 ↑ Exp ↑ ≤ 1 ↑ ≤ 2 ↑

GPT-4o 50.61 65.21 77.69 46.03 61.99 73.85 49.79 64.79 75.06
Doubao-1.5-pro 50.41 68.15 77.69 49.00 61.99 73.85 46.87 68.81 78.65
Gemini2.5-flash 58.01 71.60 81.14 52.74 667.28 76.24 55.21 70.14 79.48

Qwen2.5-VL-3B 38.64 50.81 60.55 37.75 51.00 61.38 37.45 53.88 63.39
Qwen2.5-VL-7B 55.98 68.76 77.28 50.92 67.13 76.37 49.62 67.22 76.73
Qwen2.5-VL-72B 59.74 70.39 78.40 54.32 69.53 77.51 55.13 69.81 78.65

DenseWAP 50.1 – – 47.5 – – – – –
BTTR 53.96 66.02 70.28 52.31 63.90 68.61 52.96 65.97 69.14
ABM 56.85 73.73 80.61 52.92 69.66 78.73 53.96 71.06 78.65
CAN-ABM 57.26 74.52 82.03 56.15 72.71 80.30 55.96 72.73 80.57
CoMER 58.38 74.48 81.14 56.98 74.44 81.87 59.12 77.45 83.87
PosFormer 60.45 77.28 83.68 60.94 76.72 83.87 62.22 79.40 86.57
TAMER 61.36 76.77 83.25 60.26 76.91 84.05 61.97 78.97 85.80
SSAN 60.85 75.56 82.25 60.02 76.22 83.28 61.83 79.08 86.08

CoMERa 59.33 71.70 75.66 59.81 74.37 80.30 62.97 77.40 81.40
CoMERap† 46.96 60.65 69.27 43.33 56.84 64.60 48.29 64.22 71.64
PosFormera 62.68 79.01 84.69 61.03 77.86 84.74 64.97 82.49 87.24
SSANa† 62.58 – – 62.51 – – 65.30 – –

VLPG† 60.41 74,14 78.90 60.51 75.50 79.86 62.34 76.81 81.15
HiE-VLa† 73.30 84.00 87.00 70.70 82.10 86.40 69.30 81.90 86.20

Vanilla (baseline) 72.62 81.34 86.82 64.26 77.77 84.22 69.06 82.07 88.07
Uni-MuMER 75.36+2.74 85.09+3.75 89.05+2.23 70.79+6.53 83.44+5.67 89.54+5.32 73.73+4.67 86.74+4.67 91.83+3.76

Uni-MuMER† 82.05+9.43 89.45+8.11 93.00+6.18 77.94+13.68 87.45+9.68 92.07+7.85 79.23+10.17 90.91+8.84 93.83+5.76

32

Table 19: Performance on CROHME2023 Test set (%). Evaluated by ExpRate, ExpRate@CDM,
and CDM. The † denotes the use of external data. The p denotes the results reproduced by [55].

Method CROHME 2023
ExpRate ↑ ≤ 1 ↑ ≤ 2 ↑ ExpRate@CDM ↑ CDM ↑

VLPG 56.47 68.54 73.63 – –

CoMER p 59.82 69.23 74.12 – –
TST 60.72 70.51 75.00 – –
TST† 62.59 73.59 77.51 – –

Vanilla (baseline) 68.39 79.13 87.57 69.24 94.43
Uni-MuMER 70.26+1.87 81.13+2.00 88.35+0.78 71.47+2.23 95.12+0.69

Uni-MuMER† 70.00+1.61 79.78+0.65 87.00-0.57 74.42+5.18 95.33+0.90

Table 20: Performance comparison on the MNE dataset (%). We compare the expression
recognition rate (ExpRate) and CDM-based metrics between our model and previous SOTA models
on the MNE N1/N2/N3 test sets. The † denotes the use of external data.

Method N1 N2 N3
Exp ↑ @CDM ↑ CDM ↑ Exp ↑ @CDM ↑ CDM ↑ Exp ↑ @CDM ↑ CDM ↑

CoMER 59.73 – – 37.17 – – 24.04 – –
PosFormer 60.59 – – 38.82 – – 36.82 – –
MMHMER 62.03 – – 39.47 – – 34.29 – –

Vanilla (baseline) 64.37 68.21 93.94 51.65 58.22 92.89 35.66 46.59 91.75
Uni-MuMER 70.08+5.71 74.19+5.98 95.33+1.39 55.59+3.94 62.83+4.61 94.64+1.75 38.53+2.87 50.96+4.37 93.63+1.88

Uni-MuMER† 76.00+11.63 81.44+13.23 96.37+2.43 58.88+7.23 71.38+13.16 96.08+3.19 46.45+10.79 66.67+20.08 95.13+3.38

Table 21: Performance comparison on the MNE dataset (%). We compare the expression
recognition rate (ExpRate), ≤ 1, and ≤ 2 between our model and previous SOTA models on the
MNE N1/N2/N3 test sets. The † denotes the use of external data.

Method N1 N2 N3
Exp ↑ ≤ 1 ↑ ≤ 2 ↑ Exp ↑ ≤ 1 ↑ ≤ 2 ↑ Exp ↑ ≤ 1 ↑ ≤ 2 ↑

CoMER 59.73 77.55 84.11 37.17 53.95 65.13 24.04 32.31 36.34
PosFormer 60.59 77.97 84.32 38.82 56.91 66.12 36.82 40.30 43.10
MMHMER 62.03 78.13 84.32 39.47 56.57 65.46 34.29 36.68 40.51

Vanilla (baseline) 64.37 78.61 85.65 51.65 59.54 69.08 35.66 44.81 52.12
Uni-MuMER 70.08+5.71 83.73+5.12 90.29+4.64 55.59+3.94 64.80+5.26 73.36+4.28 38.53+2.87 49.18+4.37 57.24+5.12

Uni-MuMER† 76.00+11.63 87.31+8.70 92.16+6.51 58.88+7.23 74.34+14.80 82.90+13.82 46.45+10.79 54.37+9.56 63.66+11.54

Table 22: Comparison with multi-modal models PaLI and PaLM-E on MathWriting. CER is the
character error rate (lower is better). The † denotes the use of external data.

Model Input CER ↓ Exp ↑ @CDM ↑ CDM ↑
PaLI Image 8.07 – – –
PaLI Ink 4.64 – – –
PaLI Ink + Image 4.55 – – –

PaLM-E Image 4.87 – – –
PaLM-E Ink 6.46 – – –
PaLM-E Ink + Image 4.22 – –

Vanilla Image 4.15 50.51 66.46 94.20
Uni-MuMER Image 4.01 51.19 68.73 94.80
Uni-MuMER† Image 4.00 51.45 69.11 94.84

D.2 Results on Printed Mathematical Expressions

An important aspect of our approach is whether a model fine-tuned primarily for handwritten ex-
pressions also performs well on printed mathematical expressions. To test this, we evaluate on the
Im2LaTeXv2 dataset, a dataset of printed formulas rendered from LATEX. Minor normalization adjust-
ments were applied to align the dataset with our preprocessing standards. Specifically, we performed
synonym replacements such as changing expressions from \le to \leq, inserted spaces to sepa-
rate commands clearly (e.g., converting \begin{align} to \begin {align}), and standardized

33

Table 23: Performance on HME100K dataset (%). Evaluated by Exp, @CDM, and CDM. The †

denotes the use of external data.

Method HME100K
Exp ↑ ≤ 1 ↑ ≤ 2 ↑ @CDM ↑ CDM ↑

GPT-4o 22.96 37.32 47.40 27.02 83.13
Gemini2.5-flash 28.14 44.23 54.75 34.32 85.43
Doubao1.5-pro 43.90 64.52 74.09 55.08 91.28

Qwen2.5-VL-3B 44.42 61.47 70.38 47.41 89.96
Qwen2.5-VL-7B 54.57 71.05 78.44 58.84 92.90
Qwen2.5-VL-72B 49.59 66.21 73.79 55.09 93.08

DenseWAP 61.85 70.63 77.14 – –
CoMER 68.12 84.20 89.71 70.36 96.83
TAMER 69.50 85.48 90.80 71.30 97.07

HiE-VL† 64.20 – – – –

Vanilla (baseline) 70.15 85.81 91.25 71.80 96.97
Uni-MuMER 71.62+1.47 86.92+1.11 92.16+0.91 73.40+1.60 97.30+0.33

Uni-MuMER† 72.66+2.51 87.67+1.86 92.60+1.35 74.30+2.50 97.38+0.41

notation by enclosing single-element subscripts like a_i within braces as a_{i}. Other than these
normalization steps, no further modifications were made, and the mathematical semantics remained
entirely unaffected. These normalization procedures are consistent with the preprocessing approach
detailed in Appendix B. For transparency, we also include results from evaluations performed on the
original, unnormalized test set. Such normalization adjustments were not applied to other test sets in
our study, thus preserving fairness and comparability across datasets.

Tab. 24 summarizes these results using common metrics from the Im2LaTeXv2: Edit Score, BLEU-4,
and ExpRate. We also include ExpRate@CDM for completeness, especially since our models output
LATEX that could be visually equivalent even if not exactly matching. Our Vanilla baseline performed
slightly better than the previous SOTA. After completing three data-driven tasks, Uni-MuMER further
reached an ExpRate of 88.52. We also check our Uni-MuMER†, which is primarily optimized for
handwriting. Interestingly, its performance on purely printed data is a bit lower than Uni-MuMER,
perhaps because training on such a broad mix causes a slight domain shift. Nonetheless, all our
models outperform MathNet [44].

Table 24: Comparison of model performance on the im2latexv2 test set. We compare our models
to prior Im2LaTeX systems. Metrics shown are Edit Score, BLEU-4, ExpRate, and ExpRate@CDM.
All metrics are percentages (%), and higher values ↑ indicate better performance. The lower half
reports results on the original, unnormalized test set. Missing values indicated by ’–’.

Model Train Dataset Edit Bleu-4 ExpRate ExpRate@CDM
WYGIWYS im2latex-100k 37.2 23.9 0.0 –
I2l-strips im2latex-140k 75.9 65.9 10.3 –
I2l-nopool im2latex-140k 76.0 66.4 10.4 –
MathNet im2latexv2 97.2 96.8 83.9 –

Vanilla (baseline) im2latexv2 99.12 98.44 88.08 93.19
Uni-MuMER im2latexv2 99.16 98.70 88.52 93.46
Uni-MuMER† Uni-MuMER-Data 99.33 98.71 88.19 93.29

Evaluation on Unnormalized Test Set

Vanilla (baseline) im2latexv2 98.71 97.59 79.85 93.19
Uni-MuMER im2latexv2 98.75 97.85 80.27 93.46
Uni-MuMER† Uni-MuMER-Data 98.54 96.72 76.36 93.29

34

E Case Study

We present a qualitative comparison to illustrate how Uni-MuMER handles a challenging expression
versus other models. As shown in Fig. 8, we compare the outputs of closed-source VLMs, a
prior lightweight HMER model (CoMER), our fine-tuned baseline (vanilla), and our Uni-MuMER.
The figure displays each model’s predicted LATEX, highlighting any incorrect tokens in red. These
case studies reinforce our quantitative findings: Uni-MuMER is not only quantitatively better but
qualitatively produces significantly cleaner and more complete outputs, especially on expressions
that involve several levels of nesting and a variety of symbols.

2A(x) = b + \frac{4B\pi^2\sqrt{1-x}}
{\sqrt{1+3x}} - 4\left(\gamma + \log(4)\right)

Images

GPT4o

Gemini2.5-flash

Doubao1.5-pro

CoMER

Vanilla (baseline)

Uni-MuMER†

(\infty \infty \infty \infty)
(\infty \infty \infty \infty)

(ooo)(oooo)

(a_{1}a_{2}a_{3}a_{4})
(b_{1}b_{2}b_{3}b_{4})

(0 0 0 0) (0 0 0 0)

(0 0 0 0) (0 0 0 0)

(0 0 0 0 0) (0 0 0 0 0)

2 h (x) = b + \frac { 4 B \pi ^ { 2 } \sqrt { 1 - x } }
{ \sqrt{ 1 + 3 x } } - 4 (\gamma + \log (4))

2 R (x) = b + \frac { 4 B \pi ^ { 2 } \sqrt { 1 - x } }
{ \sqrt { 1 + 3 x } } - 4 (\gamma + \log (4))

2 R(x) = b + \frac{4B \pi^2 \sqrt {1-x}}
{\sqrt{1+3x}} - 4(\gamma + \log(4))

2 h (x) = b + \frac { 4 B \pi ^ { 2 } \sqrt { 1 - x } }
 { \sqrt { 1 + 3 x } } - 4 (\gamma + l g g (1))

2 h (x) = b + \frac { 4 B \pi ^ { 2 } \sqrt { 1 - x } }
 { \sqrt { 1 + 3 x } } - 4 (y + \log (4)

z = (\sin \frac { 1 } { 2 } \theta _ { 1 } \sin \frac { 1 } { 2 } \theta _ { 2 })
/ (\sin \frac { 1 } { 2 } \theta _
{ 1 3 } \sin \frac { 1 } { 2 } \theta _ { 2 3 })

z = (\sin \frac { 1 } { 2 } \theta _ { 1 2 } \sin \frac { 1 }
{ 2 } \theta _ { 3 4 }) / (\sin \frac { 1 } { 2 } \theta _
 { 1 3 } \sin \frac { 1 } { 2 } \theta _ { 2 4 })

z = (\sin \frac { 1 } { 2 } \theta _ { k } \sin \frac { 1 } { 2 } \sin \frac { 1 } { 2 } \theta
_ { k _ { k } }) / (\sin \frac { 1 } { 2 } \theta _ { 1 3 } \sin \sin \frac { 1 } { 2 } \theta
_ { 2 k })

z = \frac{\sin \frac{1}{2} \theta _ { e } \sin \frac{1}{2}
\theta _ { s t } } { \sin \frac{1}{2} \theta _ { s s }
\sin \frac{1}{2} \theta _ { e c } }

Z = \frac{\left(\sin \frac{1}{2} \theta_{ab} \sin
 \frac{1}{2} \theta_{cd}\right)}{\left(\sin \frac{1}{2}
\theta_{ac} \sin \frac{1}{2} \theta_{bd}\right)}

z = \frac{\left(\sin \frac{ \theta_{12} }{2} \sin
\frac{ \theta_{34} }{2} \right)}{\left(\sin
\frac{ \theta_{13} }{2} \sin \frac{ \theta_{24} }{2} \right)}

Figure 8: Qualitative comparison on a challenging handwritten expression. Compared with
closed-source VLMs, CoMER, Vanilla(baseline), and Uni-MuMER†. The red symbols represent
incorrect predictions.

Figure 9: An example of CDM leading to incor-
rect recognition assessment.

CDM is not the ultimate evaluation metric yet
Although CDM metrics [50] quantify the visual
equivalence between predicted and ground-truth
LATEX sequences beyond ExpRate, they are not
definitive for evaluating LATEX recognition ac-
curacy. CDM tends to prioritize local charac-
ter matching, potentially neglecting significant
global structural discrepancies. This oversight
can lead to inaccurate recognition assessments,
as is shown in Fig. 9, CDM fails to detect the
incorrect subscript structure of the character uxux, mistakenly equating it with uuxx, due to relying
solely on local character matching without considering global hierarchical relationships.

35

