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Abstract

Recent advancements in text-to-video (T2V) diffusion models have enabled high-
fidelity and realistic video synthesis. However, current T2V models often struggle
to generate physically plausible content due to their limited inherent ability to
accurately understand physics. We found that while the representations within
T2V models possess some capacity for physics understanding, they lag signifi-
cantly behind those from recent video self-supervised learning methods. To this
end, we propose a novel framework called VideoREPA, which distills physics
understanding capability from video understanding foundation models into T2V
models by aligning token-level relations. This closes the physics understanding
gap and enables more physics-plausible generation. Specifically, we introduce the
Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to
provide soft guidance suitable for finetuning powerful pre-trained T2V models—a
critical departure from prior representation alignment (REPA) methods. To our
knowledge, VideoREPA is the first REPA method designed for finetuning T2V
models and specifically for injecting physical knowledge. Empirical evaluations
show that VideoREPA substantially enhances the physics commonsense of baseline
method, CogVideoX, achieving significant improvement on relevant benchmarks
and demonstrating a strong capacity for generating videos consistent with intuitive
physics. Code and more video results are available at Project Pagel
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Figure 1: Left: Visual comparison of video generation results from CogVideoX [56] (baseline),
CogVideoX finetuned with REPA [58]], and our proposed VideoREPA. Red rectangles denote phe-
nomena that violate physical commonsense for easier distinguish. Our VideoREPA generates videos
that most closely adhere to real-world physical laws. Right: Evaluation of physics understanding
on the Object Contact Prediction (OCP) task within the Physion benchmark [6]]. The plots illustrate a
significant gap in physics understanding between the SSL video encoder VideoMAEv2 and the T2V
model CogVideoX. The proposed VideoREPA substantially narrows this understanding gap.
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1 Introduction

Video diffusion models (VDMs) have recently gained significant attention, demonstrating remarkable
advancements [[1} 145} 24, 56/ 31, 141]]. These generative models are increasingly applied in diverse
domains, including movie-level video generation [S1], animation [49]], and advertising [12]. However,
a critical challenge remains: the physical plausibility (e.g., shape regularity and motion rationality)
of videos generated by even state-of-the-art VDMs is often severely limited [4, 13]]. While existing
VDMs (e.g., VideoCrafter2 [9]], CogVideoX [56], HunyuanVideo [24]], Cosmos [1]], Wan [45]]) have
shown improvements in physics capabilities, typically achieved by scaling training data, refining
model architectures, or collecting higher-quality video-text pairs [4]], these strategies have inherent
drawbacks. The substantial expense of scaling datasets and the limited focus of current architectural
designs on explicit physics modeling make significant advancements in physically plausible video
generation through these avenues difficult and costly.

Current methods for enhancing the physical plausibility of generated videos can be divided into two
main categories: simulation-based approaches [29, 27, 53| 152, 28}, 160] and non-simulation-based
approaches [46, (10, 55)]. Simulation-based methods, which have seen significant development,
typically integrate external physics simulators for guidance or direct generation. However, their
effectiveness is constrained by the complexity of simulations and the challenge of modeling diverse
open-domain phenomena, limiting their potential for creating powerful, general-purpose generative
models. Non-simulation-based methods, on the other hand, have received less attention. For example,
WISA [46] decomposes textual descriptions into physical phenomena and employs Mixture-of-
Physical-Experts Attention. Yet, WISA only show improvement when training with dedicated
collected dataset WISA-32K [46] where each relates to individual explicit physical phenomena. It
struggles to generalize to open-domain data which is much easily to collected and scale. To this
end, this paper explores enhancing the physics-plausible video generation of T2V models using
non-simulation strategies on open-domain datasets, aiming to achieve robust generalization
and broad applicability.

Regarding generating physical coherence videos, it is acknowledged that in generative modeling,
improved understanding often benefits generation quality [22} (1354} 16123} 26]. DynamiCrafter [54],
for example, exemplifies this by using enhanced visual encoding to improve its outputs. However,
our evaluations on physics understanding benchmark Physion [6] (illustrated in Figure [T)) reveal
that the text-to-video diffusion model CogVideoX (2B) exhibits poor physics understanding ability,
performing significantly worse than the much smaller self-supervised video understanding model,
VideoMAEv2 (86M). This notable gap in physics comprehension motivates our core strategy: to
improve the physics understanding of VDMs by transferring inherent physics knowledge from
ViFMs, and thereby enhance physically coherent video generation.

Recent work has explored bridging the gap between foundation models and generative diffusion
models, notably through Representation Alignment (REPA) [58| 25} 42], which enhances semantics
in image diffusion models via feature alignment. Inspired by REPA, we investigate an approach to
improve physical plausibility in video generation by aligning with ViFMs. However, directly applying
REPA techniques to inject physics knowledge into text-to-video models proves infeasible due to
several critical distinctions: First, the spatial focus of REPA is insufficient for crucial temporal
dynamics in videos. Second, REPA targets from-scratch training acceleration, not knowledge
transfer via finetuning pre-trained models. Third, its hard alignment mechanism can destabilize pre-
trained VDMs during finetuning. Finally, VDM temporal latent compression adds further alignment
complexity. Experiments in Figure|l|support this, showing that finetuning with REPA degrades the
performance of CogVideoX significantly. See detailed discussions in Section [3.3]

To address these challenges and enhance physics in video generation by deepening physics under-
standing, we introduce VideoREPA. This method distills token-level relations, capturing dynamics
from Video Foundation Models (ViFMs) and transferring them to VDMs, thereby improving the
physical realism of generated videos. Our method performs well on open-domain video dataset
OpenVid [35]] without relying on the physics explicit dataset WISA-32K [46] which is much harder
to collect. Specifically, we propose a Token Relation Distillation (TRD) loss that distills intra-frame
spatial relations and inter-frame temporal dynamics from ViFM representations into VDMs via
relational alignment, which closes the physics understanding gap as shown in Figure |l Unlike
standard REPA, our TRD loss employs a more moderate alignment mechanism tailored to overcome
difficulties associated with fine-tuning. We argue that the physical plausibility of a video depends
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Figure 2: Overview of VideoREPA. Our VideoREPA enhances physics in T2V models by distilling
physics knowledge from pre-trained SSL video encoders. We apply Token Relation Distillation
(TRD) loss to align pairwise token similarities between video SSL representations and intermediate
features in diffusion transformer blocks. Within each representation, tokens form spatial relations
with other tokens in the same latent frame and temporal relations with tokens in other latent frames.

not only on the regular shape of objects (spatial dimension) but critically on the motion of subjects
(temporal dimension); thus, focus of TRD extends beyond merely spatial alignment to capture these
crucial temporal aspects. Our main contributions can be summarized as follows:

1) We identify an essential gap in physics understanding between self-supervised ViFMs and
T2V models. We then propose VideoREPA, the first method to bridge video understanding models
and T2V models, which closes understanding gaps and achieves more physically plausible generation.

2) We introduce VideoREPA, a novel feature alignment framework for video generation. It
utilizes Token Relation Distillation loss to effectively distill physics knowledge from ViFMs through
token-relational alignment, enabling VDMs to generate videos that better adhere to physical laws.

3) The proposed TRD loss overcomes key limitations (detailed in Section of directly
applying REPA [58]] to the video generation domain, particularly for finetuning pre-trained models
and capturing essential temporal dynamics.

4) Quantitative and qualitative experiments show the superiority of our VideoREPA over base-
lines like CogVideoX and other methods like WISA. VideoREPA achieves a state-of-the-art Physical
Commonsense (PC) score of 40.1 on VideoPhy (24.1% improvement over its CogVideoX baseline)
and significant physics enhancements on the challenging VideoPhy2 benchmark. Visualizations also
confirm VideoREPA generates videos more consistent with physical laws than CogVideoX.

2 Related works

Self-supervised learning for physics understanding. Understanding physical interactions (e.g.,
predicting object trajectories [[17] or movements [29]) is vital for applications like robotics [[11]] and
autonomous driving [38]]. Self-supervised learning (SSL), as a powerful tool for a wide range of
understanding tasks including classification, segmentation, and detection [37, 8, [19, 21]], leverages
pretext tasks to pre-train models on large amounts of unlabeled data, thereby enhancing understanding
ability and yielding the powerful pre-trained models often called foundation models. Recent
studies [[15} 44] highlight the potent physics understanding capabilities of Video Foundation Models,
such as VideoMAEvV2 [47]], and V-JEPA [5]], demonstrated through strong performance on physics
benchmarks like Physion [[6]. Notably, these specialized video models can outperform even large
Multimodal Language Models like GPT4-V [36] on physics reasoning tasks. Building on the principle
that strong understanding facilitates better generation [54]], we investigate how to leverage the physics
knowledge captured by video SSL models to enhance the physical realism of T2V generation.

Physics plausible video generation. While initial T2V model improved visual fidelity, motion, and
realism using scaled data and advanced architectures [56} 45\ 9L (7,131} I59]], recent studies [34} 3} 4} 32]
highlight a major problem: physical plausibility remains poor even in state-of-the-art (SOTA)
models. This realization has driven emerging research towards physics-aware generation, with
many new methods proposed [46} 10,27, |28} 152} 155,160} |29} 33]]. Some techniques, exemplified by



PhysAnimator [52], PhysGen [29] and MotionCraft [33] rely on direct physics simulation. However,
these simulation-dependent methods are inherently limited by the simulator’s scope and accuracy,
making them less suitable for complex real-world scenarios. PhyT2V [55] uses MLLMs to refine
prompts through multiple rounds of generation and reasoning, maximizing the physics potential in
models but not adding new inherent knowledge. WISA [46]] decomposes textual descriptions into
physical phenomena and uses Mixture-of-Experts for different physics categories. However, it faces
challenges in clearly defining physical components from diverse text prompts and its effectiveness
is limited to specialized datasets (i.e., WISA-32K [460]) containing explicit physics phenomena and
fails to generalize to open-domain datasets like Koala-36M [48]], making large-scale data application
difficult. This paper proposes VideoREPA, a training-based method that improves the physical realism
of generated videos by aligning representations with those learned by video SSL models. VideoREPA
features compatibility with open-domain datasets, enhancing its potential for wide adoption.

3 Methods

This section first covers preliminary on Latent Diffusion Models and REPA (Section [3.1). Subse-
quently, Section [3.2] analyzes the interplay between model understanding and generation capabilities,
thereby establishing the motivation for our work. Building upon this, Section [3.3] presents our core
contribution: VideoREPA, a novel framework featuring the Token Relation Distillation (TRD) loss,
distilling physics from video foundation models [47] by aligning token-level relations across both
spatial and temporal dimensions. VideoREPA, for the first time, applies feature alignment to finetune
pre-trained VDM, leveraging relational distillation to incorporate spatial-temporal dynamics.

3.1 Preliminaries

Latent Diffusion Models. Latent Diffusion Models (LDMs) [40Q] typically operate in the latent space
of a pre-trained Variational Autoencoder (VAE). They generate data by learning to reverse a forward
diffusion process that gradually adds noise. Our VideoREPA framework is designed for finetuning
transformer-based video LDM, i.e., CogVideoX [56]. The training objective is the mean squared
error (MSE) between the added noise € and the noise predicted by the model €y:
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where 2 denotes the initial latent input (obtained by encoding video frames, e.g., via a 3D VAE), € ~
N(0,1) is sampled noise, ¢ is the diffusion timestep, «; and oy are schedule-dependent coefficients
(e.g., ay = /&y, 0 = /1 — ), and 6 represents the parameters of the denoising transformer.

Representation alignment for generative models. Representation alignment (REPA) [58] is a
straightforward regularization method, demonstrating that the convergence speed of image diffusion
model training process can be significantly improved by aligning representations y, from encoders f
of pre-trained vision foundation models (e.g., DINOv2 [37]) with the internal representation. REPA
distills the y. of a clean image x into the denoising transformer representation hy of a noisy input x.
Specifically, the y. = f(x) € R¥*P and hy = fy(x¢) which will then be input to a trainable MLP
he for dimension alignment. The alignment loss can be formulated as that maximizes the token-wise
feature similarities:
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The sim(-, -) denotes a similarity metric (e.g., cosine similarity). This method reduces the semantic
gap between h; and vy, accelerating the training speed of DiT. The final loss is: £ = Lgitr + ALREpA-
REPA has been reported to speed up DiT training by over 17.5x. Subsequent works, such as VA-
VAE [57] which improved VAE features, achieved 21 x speedups, and REPA-E [25] which proposed
end-to-end training, reached up to 45x acceleration for DiT.

3.2 Understanding vs. generation

Understanding refers to the ability of models to interpret input data and extract meaningful informa-
tion, whereas generation involves generating novel data. A well-established principle in generative
modeling is that enhancing understanding often leads to improved generation quality [22} 113} (54, [16].



DynamiCrafter [54], for example, improves video generation by leveraging CLIP and query trans-
former to better understand image conditions. Similarly, SmartEdit [22] and MGIE [13] utilize
language models to enhance instruction understanding for more accurate image editing.

This principle motivates our work addressing the poor physics plausibility observed in leading T2V
generation models [3]. We wonder whether physics plausibility in generation can be improved through
deepening the model’s understanding to physics and start by comparing the physics understanding
abilities of large VDMs against specialized Video Foundation Models (ViFMs). Physion [6]], a
benchmark for evaluating physics understanding is used (detailed at Appendix [C). As shown in
Figure|l| CogVideoX (2B) demonstrates significantly weaker physics understanding compared to
smaller VideoMAEvV2 (86M) [47]. This disparity highlights an opportunity: bridging the physics
understanding gap by transferring knowledge from capable ViFMs to powerful VDMs. Therefore, we
propose a method based on representation alignment. The following section details our VideoREPA
framework, which close the understanding the gap through TRD loss, as shown in Figure [T}

3.3 Token Relation Distillation loss

Introducing physics knowledge understanding into VDMs is non-trivial. Unlike text understanding,
which can often be enhanced by incorporating a more powerful text encoder [22] since the text
prompt is provided directly as input, text/image-to-video generation lacks direct video input during
inference. Consequently, directly leveraging a powerful physics understanding video encoder to
guide the generation process is generally infeasible.

Recently, REPA [58] has emerged as a method to bridge the semantic gap between pre-trained
foundation models and diffusion models. By aligning internal representations during from-scratch
training of diffusion models, REPA primarily aims to enhance semantics and accelerate training. This
suggests a potential avenue for transferring physics understanding from capable ViFMs into VDMs.
However, existing REPA [25] 142} 58] approaches are insufficient for effectively achieving this goal,
particularly when finetuning pre-trained VDMs.

The gap of applying REPA for physics enhancement in video generation model. Though REPA
and related methods [25} 158,157, 42]] build bridge between foundation and generation models, they
become expired when aiming at bridging ViFMs and VDMs: 1) Shift in Focus (Spatial vs. Spatio-
Temporal): Existing REPA techniques predominantly focus on aligning spatial features within static
images. However, physical plausibility in videos relies critically on temporal dynamics, i.e., the
rational evolution of motion and interactions over time, in addition to the correct appearance within
single frame at spatial dimension. Standard spatial alignment is insufficient to capture or enforce these
crucial temporal dynamics. 2) Mismatch in Application Context (From-Scratch Acceleration vs.
Finetuning for Knowledge Transfer): Existing REPA approaches have primarily been validated
and utilized for accelerating the training of models from scratch [57,|58]], optimizing convergence
speed. Our goal, however, is different: injecting specific knowledge (physics) into already pre-trained
VDMs via finetuning. This needs further discussion and validation. 3) Mechanism Mismatch
(Hard Alignment vs. Finetuning Stability): REPA employs a direct feature similarity loss (e.g.,
cosine similarity) to train a DiT from scratch. When applied during finetuning, this “hard” alignment
objective attempts to force potentially incompatible feature spaces—the latent space of pretrained and
the SSL-optimized feature space of VIFM—to match directly. As demonstrated in our experiments
(see Section [4.5)), finetuning CogVideoX with standard REPA leads to significant degradation in
semantic quality and overall coherence. We attribute this failure to the direct alignment disrupting the
well-established internal representations in pre-trained VDMs. 4) Added Complexity (Temporal
Compression in Latents): Unlike typical image latents, VDM latent spaces often employ significant
temporal compression (e.g., 4x in CogVideoX [56)). This adds complexity to the design alignment
process, as the temporal granularity between the VDM’s latent representation and the ViFM'’s feature
representation may differ, requiring careful handling during alignment design.

These limitations collectively indicate that a naive application of standard REPA is unsuitable for
enhancing the physical plausibility of pre-trained VDMs via finetuning. A different strategy is
required—one that specifically addresses temporal dynamics, ensures stability during finetuning, and
effectively manages differences between the VDM'’s latent space and the ViFM’s feature space.

To address these challenges, we propose VideoREPA, a framework leveraging a novel Token
Relation Distillation (TRD) loss to distill physics understanding models for better physics plausible



generation. Instead of enforcing direct feature similarity (hard alignment), which proved unsuitable
for finetuning (Section [4.5), TRD aligns the relational structure (i.e., pairwise token similarities)
between the internal representations in VDMs and those of a capable Video Foundation Model
(e.g., VideoMAEV?2). This relational alignment provides a softer guidance suitable for finetuning,
explicitly incorporates spatio-temporal dynamics by considering relationships both within and across
frames, and issues arising from direct feature space incompatibility. Unlike prior REPA work focused
on spatial alignment for image generative model acceleration [58} |57]], VideoREPA represents, to
our knowledge, the first representation alignment method developed for finetuning VDMs to
inject specific knowledge (physics contained in spatial-temporal dynamics), pushing beyond
mere acceleration.

As shown in Figure[2] the TRD loss aligns pairwise token similarities between ViFM and VDM
representations to distill spatial constraints within frames and temporal dynamics across frames from
the ViFM. Specifically, let E,, be the ViFM encoder processing video V' € RF*C*HXW Tt outputs
features y, = F,(V) € RV*DP where N = f x h x w is the token count over f temporal and
h x w spatial positions, with feature dimension D. (F/f, H/h, W/w) represent the temporal/spatial
compression ratios. For VDMs, the 3D VAE encoder [56] compresses V into latent z. The hidden
state hy = fp(z¢) of denoising transformer is derived from noisy latent z;. The hy is input into
a trainable MLP h,, for dimension D alignment, i.e., hy(hg) € Rf*"*w*D Note: Although the
dimensions ( f, h, w) might differ from those derived from the ViFM output, we use the same notation
here for annotation simplicity, representing the dimensions after ensuring compatibility.

We compute spatial token pairwise similarity matrix first. After reshaping y to R/ *(7@)xD ‘the
relation (i.e., cosine similarity) matrix for spatial dimension at frame d can be expressed as:

yd,i,j B ng 'ys’j
P ‘,1 — . )
Py
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where i, j € [1, hw] index spatial positions. This produces yg)aﬁal € RMXhw per frame. Aggregating
across f frames yields ypatial € RS xhwxhw Featyres are normalized before computing similarity.

Then for temporal relation, we compute cross-frame similarities between each token in frame d and
all tokens from other frames e # d. Let y, € R/* (@)D pe reshaped foundation model features.
For each frame d and token position i:
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This produces a 4D tensor yiemp € RS *hwxhwx(f=1)  Corresponding spatial similarity matrix hypyiar

and temporal similarity matrix hemp are computed identically using the VDM features hg ().

The TRD loss then quantifies the difference between VDM and ViFM by calculating the average L1
distance using the corresponding spatial and temporal similarity values

f hw
§ : § : d,ij,e d,ije
+ htemp - Ytemp (5)
de=11,j=1
e

d,i,j d,ij
hspatial ~ Yspatial

f hw
1
Lrrp = P (hw)? dz::liél

Spatial component

Temporal component

The final loss can be expressed as £ = Ly + ALtrp Where A is a hyperparameter. The TRD loss
can be computed in a unified operation that, given a frame, directly calculates its self-similarity and
its similarity with other frames, as implemented in the code.

3.4 Remaining issues for implementation

Successfully applying the Token Relation Distillation (TRD) loss, as detailed in Section [3.3] requires
addressing practical implementation challenges, primarily concerning feature dimensionality and
input configuration for Video Foundation Models (ViFMs).


https://github.com/aHapBean/VideoREPA/blob/main/finetune/models/cogvideox_t2v_align/lora_trainer.py#L348

Table 1: Results of Videophy. t denotes the results reported from WISA [46] and * denotes detailed
prompt input, see Section[d.2] Semantic Adherence (SA) measures the video-text alignment and
fidelity. Importantly, Physical Commensense (PC) measures whether generated videos follow the
physics laws in the real-world.

Solid-Solid ~ Solid-Fluid  Fluid-Fluid Overall

Methods

SA PC SA PC SA PC SA PC
VideoCrafter2 504 322 507 274 481 29.1 503 29.7
DreamMachine 55.1 217 59.6 233 582 182 575 21.8
LaVIE 40.8 183 486 370 69.1 509 487 315
Cosmos-Diffusion-7BT - - - - - - 57 18
HunyuanVideo* 552 161 67.1 30.1 545 545 602 282
PhyT2VT - - - - - - 61 37
WISA (Koala dataset)’ - - - - - - 62 33
WISA (WISA dataset) - - - - - - 67 38
CogVideoX-2B* 496 133 712 28.1 600 509 605 256
VideoREPA-2B* 524 182 774 322 600 527 642 297
CogVideoX-5B* 629 196 760 336 727 618 700 323
VideoREPA-5B* 580 280 829 39.0 800 745 721 40.1

A key issue is the dimensional misalignment between features of ViFM and VDM. After their
respective encoding processes, the temporal f and spatial h x w dimensions often differ. Advanced
VDMs [56, 45| 24] frequently employ 3D VAEs with high temporal compression, e.g., 4x or 8x. In
contrast, ViFMs [47, 5] typically use lower compression ratios, e.g., 2x. This results in ViFM feature
maps y+ having a larger temporal size, and often different spatial sizes, compared to VDM latents
h;. To reconcile these differences while maximizing the guidance from the ViFM, we adopt the
principle of interpolating VDM latent dimensions to match ViFM features, a strategy empirically
found to be more effective. Another consideration arises from computational resource limitations
when processing inputs for ViFMs, which often utilize 3D full attention. Inputting high-resolution
video, e.g., 480x720, as in CogVideoX or a large number of frames, e.g., 49 frames, as in CogVideoX
directly into a ViFM can be prohibitively memory-intensive. This necessitates a trade-off. We explore
three strategies and finally decide to process all frames at a lower resolution to preserve the integrity.
Experiments, as shown in Appendix D] are conducted to support this decision/approach.

4 Experiments

4.1 Implementation details

Model setups. We adopt CogVideoX [56], a powerful T2V diffusion model, as the base model and
fintune it using the proposed TRD loss. Specifically, we develop VideoREPA-2B and VideoREPA-5B,
corresponding to the ones in CogVideoX. The generated videos consist of 49 frames at a resolution
of 480x720. We adopt VideoMAEV?2 [47] as the alignment target encoder.

Training details. Unlike methods such as WISA [460] that require specialized datasets with explicit
physical phenomena (e.g., WISA-32K [460]), we leverage OpenVid [35]], a large-scale, open-domain
video dataset. Videos are center-cropped and resized to 480x720. VideoREPA-2B is finetuned on 32k
OpenVid videos for 4,000 steps. For the larger VideoREPA-5B, we use LoRA for efficient finetuning
on 64k OpenVid videos for 2,000 steps. The default alignment depth is 18. All experiments utilize 8
NVIDIA A100 (80GB) with a total batch size of 32. More details are shown in Appendix [B]

4.2 Evaluation

We evaluate VideoREPA on two challenging benchmarks designed to comprehensively assess the
physical plausibility of videos generated by text-to-video models:



TOVEEEERIARY T EEEEATANE e

Two people stretch a bungee cord... (Elastic) A player kicks a soccer ball... (Human&causality)

Figure 3: Qualitative comparison of HunyuanVideo (HY)[24], CogVideoX (Cog)[56], and Video-
REPA (Ours), exhibiting enhanced physics commonsense of VideoREPA.

VideoPhy [3]. This benchmark uses 344 prompts to test if generated videos adhere to physical
commonsense in real-world activities, covering diverse material interactions (e.g., solid-solid, solid-
fluid) to evaluate whether VDMs can generate videos with plausible physics. The proposed VideoCon-
Physics [3] is adopted as auto-rater in our paper. When testing CogVideoX and our VideoREPA, we
refine the short prompt into a detailed prompt. This is crucial because the models are trained with
long prompts, and prompts impact the quality of the video generation according to the official of
CogVideoX [56]. Details are shown in Appendix [E] Following WISA [46]], we set SA = 1 and PC = 1
when their values are greater than or equal to 0.5. Values less than 0.5 are set as SA = 0 and PC = 0.

VideoPhy2 [4]]. VideoPhy? is an action-centric benchmark designed to evaluate physical common-
sense in generated videos. It aims to overcome limitations of prior benchmarks, such as restricted size,
absence of human interaction, and sim-to-real discrepancies. The dataset includes 590 detailed testing
prompts covering 200 diverse actions. For automated evaluation, we employ the VideoPhy2-AutoEval
model. We utilize the upsampled prompts provided by the VideoPhy2 benchmark.

4.3 Quantitative comparisons

Using auto-evaluators for VideoPhy and VideoPhy2, we quantitatively assess our VideoREPA.
To show its superiority, VideoREPA is benchmarked against its CogVideoX [56] baseline, other
leading T2V models (VideoCrafter2 [9], LaVie [50], DreamMachine [30], Cosmos-Diffusion [,
HunyuanVideo [24]]), and physics-aware methods like PhyT2V [55] and WISA [46].

Results in Table [T show VideoREPA achieves state-of-the-art performance across three interaction
types. Compared to its baseline CogVideoX, VideoREPA-5B improves the Physical Commonsense
(PC) score by 24.1% overall (specifically, 42.9% for Solid-Solid, 16.7% for Solid-Fluid, and
20.6% for Fluid-Fluid). Our method also surpasses WISA [46], a technique designed for enhancing
physics commonsense in video generation. Notably, while WISA shows efficacy when trained on
the physics-explicit dataset WISA-32K [46]), it struggles to generalize to open-domain datasets like



Koala-36M [48]]. In contrast, VideoREPA, trained on an open-domain dataset, demonstrates clear
improvements over WISA on such data (e.g., PC score of 40.1 vs. WISA’s 33 on Koala-36M).

We further assess physical commonsense on VideoPhy?2 [4], an action-centric benchmark featuring
complex human-object interactions. Following its protocol, Semantic Adherence (SA) and Physical
Commonsense (PC) scores are the proportion of videos rated > 4 for each metric. Our VideoREPA
(2B) demonstrates a significant improvement over the baseline by 4.57 scores as shown in Table
further validating the effectiveness of our proposed method.

4.4 Qualitative comparisons

We present qualitative comparisons of videos generated Table 2: Results of Videophy2
by different models in Figpre@ Our VideoREPA achieves Methods SA PC
superior physics plausibility compared to HunyuanVideo -

and CogVideoX. Specifically, in the "pencil roll" scenario, CogVideoX  21.02  67.97

videos from HunyuanVideo and CogVideoX often depict VideoREPA ~ 21.02  72.54

pencils rolling in a manner inconsistent with rigid body

motion laws. In contrast, VideoREPA showcases physically consistent and stable motion. Similarly,
for the "crane lifting bricks" example, VideoREPA accurately portrays the crane maintaining a
physical connection while lifting the pallet. The other methods, however, tend to generate videos
where the bricks are implausibly suspended without any visible means of support from the crane.

For clarity, all prompts are shown in the short version, but the models received the detailed. More
results are provided in Appendix[G] Check detailed prompts and videos atProject Page,

4.5 Ablation studies

We conduct ablation studies to reveal the properties and validate the effectiveness of our proposed
VideoREPA. Performance of VideoREPA-2B on VideoPhy is reported unless otherwise specified.

Table 3: Ablation study on Token Relation Distillation loss. We ablate on TRD loss to assess
TRD loss. NaN means only its effectiveness. Physical plausibility relies on correct spatial ap-
Lgisr is adopted. pearance (e.g., no irregular deformations) and coherent temporal
dynamics (e.g., smooth, accurate motion). We design TRD loss with

Loss Type SA__ PC  both spatial and temporal terms to address these. The PC scores
NaN 63.6 232 in Table El confirm their importance, showing that removing either
TRD loss 642 297  component degrades performance. Interestingly, focusing alignment
only spatial 610 273 on only the spatial or temporal dimension negatively impacts Seman-

only temporal 61.0 27.9  tic Adherence (SA), likely due to harming the integrity of learned
representation of VDMs.

The ineffectiveness of REPA. As discussed in Sec-
tion[3.3} directly applying REPA [58] for physics en- "I\ - 4 k\ 4 fi X 'fii\ REPA Loss
hancement via finetuning pre-trained VDMs presents . | S P £ oovy)
several challenges. Results in Figure ff]demonstrate ‘
this: finetuning a VDM with the standard REPA
loss leads to a significant degradation in video se-
mantic quality. This outcome supports our asser-
tion that REPA, with its “hard” alignment approach
(i.e., token similarity), is unsuitable for finetuning
pre-trained VDM as it can disrupt their established Figure 4: Ablation on REPA loss.
feature spaces. In contrast, our proposed TRD loss,

which offers “soft” guidance, proves substantially more effective for finetuning VDMs.

3 REPA Loss
) (VideoMAEvV2)

l TRD Loss
| (VideoMAEV2)

5 Conclusion and outlook

In this paper, we presented VideoREPA, a framework designed to transfer physics knowledge
from Video Foundation Models (ViFMs) to text-to-video diffusion models (VDMs) via token-level
relation distillation. We first identified a significant physics understanding performance gap between
ViFMs and VDMs. Subsequently, motivated by the principle that enhanced understanding facilitates


https://videorepa.github.io/

higher-quality generation, we proposed the Token Relation Distillation (TRD) loss to distill physics
understanding capability from pre-trained ViFMs to VDMs, thereby achieving more physically
plausible video generation. Extensive experiments demonstrate that VideoREPA achieves state-of-
the-art generation results, exhibiting great physical commonsense in generated videos.

Limitations. Although VideoREPA has achieved significant improvement through fine-tuning
VDMs, its potential for pre-training VDMs remains unvalidated due to computational resource
limitations. Future research could explore incorporating VideoREPA into the pre-training of VDMs
and developing targeted innovations to effectively inject physics knowledge during this phase.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: From line 6 to line 20, we introduce the contribution.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the Conclusion section.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: There are no theoretical assumptions.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We illustrate the experiment details in the Experiments section and Appendix
B.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The dataset that we used is open-sourced and the code has been made public.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the Experiments section and Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the performance of different categories in Table 1, along with the
average performance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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Appendix

A Analysis on why TRD loss contribute to physics knowledge transfer

A key objective of our framework is to enhance the physical plausibility of video generation by
transferring physics-related knowledge from video foundation models (ViFMs) to video diffusion
models (VDMs). Existing VDMs exhibit limited capability in modeling physical dynamics, whereas
ViFMs have demonstrated strong emergent understanding of object configurations and motion
causality. Distilling relational representations from ViFMs into VDMs therefore serves as an effective
mechanism to bridge this capability gap. Rather than being a byproduct of training, physical
consistency is an explicit optimization objective in our framework, and the Token Relation Distillation
(TRD) loss is specifically formulated to encode this objective.

The TRD loss operates by aligning spatial and temporal relational matrices between the ViFM and the
VDM. The spatial component enforces consistency in static structural relations such as object integrity,
contact relationships, and positional dependencies within each frame. The temporal component
captures dynamic interactions, including motion trajectories, causality, and inter-frame dependencies,
which are essential for modeling intuitive physics. By aligning these relational structures instead
of matching raw features, TRD induces the VDM to internalize physical rules governing object
interactions and temporal evolution. Empirical results (see Figure[3) demonstrate that VDMs trained
with TRD exhibit improved physics understanding in intermediate feature evaluations and generate
videos with significantly enhanced physical plausibility (Tables[I]and[2), validating the effectiveness
of relational knowledge transfer.

B Detailed training setting

For finetuning, we utilize the OpenVid dataset [35], an open-source, high-quality collection of videos
with expressive captions, containing over one million in-the-wild videos. The learning rate is set
to le-4 for LoRA-based finetuning of CogVideoX-5B and 2e-6 for full-parameter finetuning of
CogVideoX-2B. For LoRA, the rank is 128 and alpha is 64. The target encoders explored in our
experiments include VideoMAEvV2-B [47]], V-JEPA-L [3]], OmniMAE-B [18]], and VideoMAE-B [43]].
Unless otherwise specified, an alignment depth of 18 is used for both VideoREPA-2B and VideoREPA-
5B. Inspired by VA-VAE [57], to prevent the alignment of unnecessary noise, we incorporate a margin
m (typically ranging from O to 0.1) into the TRD loss (Equation (5)). Specifically, values in TRD
loss less than this margin are set to 0. The appropriate margin value was found to vary: 0.1 for
VideoMAEV2, 0.05 for V-JEPA, and 0 for both VideoMAE and OmniMAE, reflecting the great fit for
each encoder.

C Physion evaluation setting

For the physics understanding evaluation discussed in Section [3.2] we utilize the Physion bench-
mark [6]]. Physion presents realistic simulations of diverse physical scenarios, where objects are
manipulated in various configurations to assess different types of physical reasoning, including stabil-
ity, rolling motion, and object linkage, among others. We specifically employ Physion v1.5 [6], the
latest version, which features improved rendering quality and more physically plausible simulations.

Physion stands out as a challenging benchmark due to its inclusion of diverse physical phenomena,
complex object dynamics, and realistic 3D simulations. These characteristics make it a preferable
choice over other benchmarks like ShapeStacks [20] and IntPhys [39], which offer comparatively
limited object dynamics.

Specifically, for feature extraction from CogVideoX and VideoREPA, we select features from
three temporal dimensions, evenly sampled from the twelve available temporal dimensions in their
respective latent spaces. All spatial tokens within these selected temporal slices are utilized. We
employ the Object Contact Prediction (OCP) task from the Physion for evaluation. The OCP task
assesses a model’s capability to predict future contact between two objects based on an initial context
video, requiring an implicit understanding of physical dynamics for accurate prediction.

The evaluation procedure involves first extracting features using the VDM. Consistent with our align-
ment strategy, we extract these features from the 18th layer of the denoising network. Subsequently,
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Table 4: Ablation study on different alignment target video foundation models.

Models SA PC
- 63.6 232
VideoMAE [43]] 59.8 262
V-JEPA [5]] 64.5 247
OminiMAE [18]] 61.6 247
V-JEPA 2 [2] 65.1 273

VideoMAEV2 [47] 642 29.7

these extracted features are used to train a logistic regression classifier to perform the OCP task, i.e.,
predicting future object contact. For this evaluation, we utilize the "roll" and "contain" subsets of the
Physion benchmark, with prediction accuracies reported in Figure [I]

D Additional ablation study

Additional ablation studies are conducted, aligning the experiment setting with Section 4.5

Different video foundation models. We evaluate aligning the VDM with various pre-trained ViFMs:
VideoMAE [43]], V-JEPA [3], V-JEPA 2 [2]], and VideoMAEV?2 [47]]. Results in Table {] indicate
VideoMAEV2 performs best, likely due to its extensive pre-training on millions of videos and resulting
strong generalization. Thus we choose to align VDM with VideoMAEV2 in our VideoREPA.

Different alignment depth. We also investigate the effect of aligning different layers of the diffusion
models with features extracted from the ViFM. Experiments in Figure [5|indicate that an alignment
depth of 18 yields the best performance, which is adopted in our VideoREPA.

Effect of \. We try different values of A for the weight of TRD loss. The Figure [5]shows that the
A = 0.5 features the best trade-off between the original diffusion loss and the proposed TRD loss.

Dimension alignment. We conduct an ablation study on the dimension alignment issue when
applying the TRD loss. The temporal dimension of VideoREPA’s latent space is typically smaller than
that of VideoMAEV2’s features, while its spatial dimensions are often larger. Our guiding principle is
that interpolating VDM representations (from VideoREPA) to match the dimensions of ViFM features
(from VideoMAEV2) best preserves the ViFM’s knowledge. The experiments in Table [5|support this
choice. Thus, we interpolate the VDM’s latent representations to match the feature dimensions of
the pre-trained ViFM. Furthermore, considering that the first encoded frame in the latent space of
3D VAE primarily serves to maintain semantic information [56]], we exclude it from the alignment
process to focus on dynamic content.

Trade off between input frames and resolution. Given the computational expense of full attention
mechanisms in ViFMs, directly inputting high-resolution video, e.g., 480x720, as used by CogVideoX
for generation or a large number of frames, e.g., 49 frames into a ViFM can be prohibitively memory-
intensive. This necessitates a careful trade-off between input frame count and resolution for ViFM
processing. We explored three common strategies to manage this:

1. Processing all video frames at a uniformly lower resolution.
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Table 5: Dimension alignment target. Target Table 6: Trade-off between resolution and
dimension is VDM refers to interpolating VIFM  frames. Corresponding strategies related to in-

features to match VDM dimensions. dexes are stated in the Appendix @
Spatial Temporal SA  PC Index SA PC
VDM VDM 63.6 26.2 1 64.2 29.7
ViFM VDM 63.1 28.5 2 63.4 29.1
ViFM ViFM 64.2 29.7 3 547 320

2. Processing temporally grouped subsets of frames at high resolution.

3. Processing all frames at high resolution but with spatial cropping into patches or groups.

Based on empirical evaluations in Table[6] we adopted the first strategy: processing all frames at
a reduced resolution. This approach was found to best preserve the holistic nature of the VIFM’s
pre-trained representations with the lowest computation resources needed, whereas the latter two
strategies (grouping or cropping) tended to degrade either physics plausibility or semantic quality of
the generated videos.

E Generating detailed prompt for VideoPhy

Adhering to guidance from the official CogVideoX documentation [56], which emphasizes the criti-
cality of refining prompts, we specifically elaborate the often-brief prompts found in the VideoPhy
benchmark [3]]. Poorly formulated prompts can significantly degrade Semantic Adherence, conse-
quently hindering validations of the perceived Physical Commonsense. To mitigate ambiguity, we
leverage Large Language Models (LLMs) such as GPT-40 or Gemini 2.5 Pro. These LLMs are tasked
with clarifying vague expressions and explicating implicit details within the original prompts, thereby
minimizing confounding factors. We detail the prompts from VideoPhy using the following template:

You are a reasoning expert. Your task is to examine the given user prompt and
identify whether there is any implicit knowledge that should be made explicit in
the description. Your goal is to refine the prompt by making all details clear and
descriptive, ensuring that no reasoning is required for understanding the outcome,
environment, or processes involved. This means removing any assumptions or
implicit components, such as environmental context, sequence of actions, or the
cause-and-effect process, that are not immediately obvious.

Please rewrite the original prompt in a clear, descriptive manner, without including
any formulas or unnecessary reasoning, while providing as much detail as possible
about the scene, actions, and effects. You should create a polished version of the
prompt where the outcome is immediately clear to the reader, leaving no room for
ambiguity. Some in-context examples are provided for your reference, and you
need to finish the current task: ...

Original prompt: A blender spins, mixing squeezed juice within it.

Let’s think step by step. The refined prompt should be less than 150 words.

F User study

While quantitative metrics provide useful indicators of video generation performance, they may
not fully capture human-perceived physical plausibility. To complement the quantitative evaluation
and directly assess perceptual realism, we conducted a user study using the Good-Same-Bad (GSB)
pairwise comparison protocol [14]]. Participants were shown videos generated by VideoREPA-5B
and CogVideoX-5B (the finetuning baseline trained on the same dataset using only L) for 344
prompts from the VideoPhy dataset. Each video pair was evaluated along two axes: (i) Semantic
Adherence (SA), measuring the alignment between the generated video and the input text prompt;
and (ii) Physical Commonsense (PC), assessing the plausibility of physical dynamics such as object
interactions, motion continuity, and causal consistency.
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Table 7: User study results comparing VideoREPA and CogVideoX with respect to Semantic
Adherence (SA) and Physical Commonsense (PC). Values indicate the percentage of user preference.

Criterion VideoREPA Wins CogVideoX Wins  Tie
Semantic Adherence (SA) 6.4 3.8 89.8
Physical Commonsense (PC) 21.7 8.0 70.3

As summarized in Table[7] the two models perform comparably in semantic adherence and Video-
REPA demonstrates a substantial improvement in physical plausibility, being preferred 21.7% of the
time compared to 8.0% for the baseline, representing a 2.7 x relative gain. These results confirm
that VideoREPA effectively captures human-perceived physical commonsense while maintaining
semantic fidelity.

G More qualitative results

In this section, we present additional video generation results from our VideoREPA-5B model,
along with outputs from the baseline CogVideoX-5B. This comparison aims to further demonstrate
the enhanced physical commonsense achieved by our method in the generated videos. Figures[6]
to [8] illustrate these direct comparisons, showcasing the superiority of VideoREPA. Additionally,
to highlight its capabilities further, we display more videos generated by VideoREPA that exhibit
strong physical plausibility in Figure [9]and Figure[I0] Red rectangles denote phenomena that violate
physical commonsense for easier distinguish.

25



o,

arance)
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Figure 6: Qualitative results. The first row displays the outcomes of CogVideoX, and the second row
presents the results of our VideoREPA.
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Parallel bars are shown from a side view with an athlete performing dips. (Commonsense)

Figure 7: Qualitative results. The first row displays the outcomes of CogVideoX, and the second row
presents the results of our VideoREPA.
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A person mops up a puddle of water on a concrete floor... (Commonsense)

rErrr

Figure 8: Qualitative results. The first row displays the outcomes of CogVideoX, and the second row

A spray bottle sprays cleaning solution onto a countertop. (Causality)
presents the results of our VideoREPA.
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A wine bottle pours a red blend into a glass. (Fluid&causality)

A waterfall cascades over jagged rocks... (Fluid)

Figure 9: Qualitative results, displaying videos generated by our VideoREPA.
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Perfume mist diffusing through the air. (Gas&causality)

-

The lifter's feet move slightly during... (Human&commonsense)

Z

Sour cream swirls in hot soup. (Fluid)

A tennis ball rolls down a grassy hill... (Light&shadow)

Figure 10: Qualitative results, displaying videos generated by our VideoREPA.
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