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Abstract
Online continual learning (CL) is becoming a mainstream paradigm
to learn incrementally from task streams without forgetting pre-
viously learned knowledge. However, current online CL primarily
focuses on the learning performance, such as avoiding catastrophic
forgetting, neglecting the critical demands of real-time inference.
As a result, the performance of real-time inference in online CL
degrades significantly due to frequent data distribution variations
and time-consuming incremental model adaptation. In this work,
we propose ELITE, an online CL framework with device-cloud col-
laboration, to realize on-device real-time inference on time-varying
task streams with performance guarantee. To realize on-device
real-time inference in online CL, ELITE features a new design of
the model zoo comprising various pre-trained models with the
assistance of the cloud, and proposes a task-oriented on-device
model selection to quickly retrieve the best-fit models instead of
performing time-consuming model retraining. To prevent perfor-
mance degradation on new tasks not available in the cloud, we
introduces a latency-aware on-device model fine-tuning strategy to
adapt to new tasks with accuracy-latency trade-off, and dynamically
updates the model zoo in the cloud to enhance ELITE. Extensive
evaluations on five real-world datasets have been conducted, and
the results demonstrate that ELITE consistently outperforms the
state-of-art solutions, improving the accuracy by 16.3% on average
and reducing the response latency by up to 1.98 times.

1 Introduction
Nowadays, massive data are continuously collected from ubiquitous
end devices, and required immediate process to support real-time
data analysis applications, e.g., real-time detection on massive IoT
data [54], real-time recommendation in web applications [18] and
real-time person identification through surveillance cameras [12].
The time-varying task streams in these applications urges end
devices to learn in a continual fashion [15, 58]. Online CL gains
increasing interests to learn incrementally from task streams, and
much efforts have been proposed to realize stability-plasticity trade-
off, meeting that models should learn new tasks (plasticity) while
retaining the learned one (stability) [8, 25]. Despite promising, cur-
rent online CL has primarily focused on optimizing the learning
performance, overlooking the requirements of system performance,
such as the inference latency and resource efficiency. The perfor-
mance of real-time inference in online CL deteriorates significantly.

Most of previous efforts in online CL have employed sophisti-
cated and time-consuming model retraining process to guarantee
learning performance, making on-device real-time inference in-
feasible. Specifically, when new tasks arrive, directly utilizing the
current model on end devices for inference leads to performance
degradation due to changes in data distribution [14, 28]. To avoid
this, classical online CL usually conduct the on-device model re-
training with new data samples [15, 58]. In this way, it takes a

long time to perform model retraining on the new tasks, which
would result in delayed model response. Thus, there exist related
works proposed to realize online CL on resource-constrained end
devices. Most existing practices focus on reducing resource con-
sumption through designing lightweight models or using fewer
samples [5, 21, 57, 59, 65]. However, these approaches still strug-
gle to make an effective trade-off between model performance
and resource consumption. Therefore, it is highly necessary for
resource-constraint end devices to realize real-time inference on
time-varying task streams.

There exist two technical challenges to realize on-device real-
time inference in online CL. First, end devices are unable to execute
the classical model adaptation (i.e., sample replay [31] and model ex-
pansion [62]), since there are not substantial computation resources
and data samples on end devices [40, 56]. Specifically, compared
to the setting with abundant resources, the classical online CL
algorithms (i.e., EWC++ [6], GDumb[41] and AGEM[7]) have a no-
ticeable performance drop (about 10%, in Section 2) in the inference
accuracy for the new learning task on resource-constrained end
devices. Second, the time-consuming model adaptation on resource-
constraint end devices makes it not possible to realize real-time
inference. When new tasks arrive, classical online CL approaches
typically perform model adaptation with new data samples, and
then use the upgraded model for inference response. However, in
real-world scenarios, new tasks often require immediate inference
response without waiting for model adaptation. For example, high-
velocity task streams, such as video analysis streams where traffic
cameras capture 25 frames per second [23], necessitate real-time
inference for vehicle tracking and re-identification to prevent traf-
fic accidents. Compared to short intervals between task arrivals,
the model adaptation on resource-constrained end devices is quite
computation-intensive, inevitably resulting in prolonged response
times. Thus, to realize real-time inference on high-velocity task
streams, it is imperative to reduce the computation overhead with-
out performance degradation in online CL on end devices.

To realize real-time inference on resource-constrained end de-
vices, we propose a new dEvice-cloud coLlaboratIve onlIne conTinual
lEarning framework, namely ELITE, which enables end devices to
calibrate the on-device model timely with the support of the cloud.
ELITE explores the connection between continual (sequential) train-
ing and multitask (simultaneous) training, where both of them aim
to obtain a solution that performs well across various tasks, and re-
gards multi-task learning (MTL) as the upper bound of CL. In partic-
ular, ELITE leverages MTL with abundant cloud-side data resources
to pre-train various models for different tasks, forming a model zoo
in the cloud. To realize real-time inference on high-velocity and
time-varying task streams, ELITE propose a task-oriented online
model selection to extract feature with a low compute cost, and
retrieve the best-fit models from the model zoo in a fast and ro-
bust way. Furthermore, we address the extended scenario where
the cloud, lacking new data samples on end devices, is unable to
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provide efficient models for real-time inference. To enhance ELITE,
we propose the latency-aware model fine-tuning on end devices
and dynamic model zoo updating in the cloud to adapt to new tasks
with accuracy-latency trade-off. With this device-cloud collabora-
tion in ELITE, we avoid the time-consuming incremental model
retraining, because the time cost of model selection and model
fine-tuning is significantly lower than that of model retraining on
resource-constrained end devices.

The main contributions of our work are summarized as follows:

• In this work, we aim to realize real-time inference in online
CL on resource-constrained end devices, and propose ELITE,
a new device-cloud collaborative CL framework for time-
varying task streams.
• To realize on-device real-time inference in online CL, ELITE
features a new design of the model zoo comprising various
pre-trained models with the assistance of the cloud, and pro-
poses a task-oriented on-device model selection to quickly
retrieve the best-fit models from the cloud.
• To prevent performance degradation on new tasks not avail-
able in the cloud, we introduces a latency-aware online
model fine-tuning strategy to adapt to new taskswith accuracy-
latency trade-off, and dynamically updates the model zoo to
enhance ELITE.
• Extensive evaluations on five image and video datasets have
been conducted, and the results demonstrate that ELITE
improves the accuracy by 16.3% on average, and reduces the
response latency by up to 1.98×, compared to the state-of-
the-art approaches.

2 Background and Related Works
In this section, we provide a comprehensive review on online CL,
real-time inference and device-cloud collaboration.

2.1 Online Continual Learning
Online CL has garnered increasing attention for its ability to learn
incrementally from data streams, by enabling frequent model re-
training to adapt to new arriving data samples, and not forgetting
the previously learned knowledge [9, 16]. The current online CL
approaches to overcome catastrophic forgetting can be identified
into three main categories: parameter regularization [1, 27, 32],
sample replay [24, 31, 45] and model expansion [19, 34, 62]. These
approaches require substantial computation resources and data
samples to perform model adaptation, rendering them unsuitable
for resource-constrained end devices. As shown in Figure 1(a), we
have evaluated five representative CL algorithms deployed on Jet-
son Nano [52], a end device from INVIDIA, and observe that these
algorithms have high learning performance with unrestricted com-
putation resources, while the model performance of on-device CL
degrades significantly in resource-limited scenarios. Specifically,
the corresponding model performance decreases about 10% with
50% computation resources in use. Moreover, as stated in compu-
tationally budgeted CL [40], all existing CL approaches, including
distillation [33], sampling [3, 48], FC layers correction [17] and
model expansions [42], fail to have good model performance in
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Figure 1: (a) the performance comparison of different re-
sources in use on the Jetson Nano; (b) the time comparison
of model training and inference on the Jetson Nano.

Table 1: The communication latency of model transmission
by using six classical models with different size.

Model Size Training Time Comm Latency
CNN 0.304MB 1.401s 0.0026s
LeNet5 2.181MB 2.021s 0.0043s

SqueezeNet 2.869MB 3.850s 0.0114s
ShuffleNet V2 8.772MB 5.020s 0.0384s
MobileNet V2 13.501MB 5.331s 0.0819s
ResNet18 42.838MB 6.577s 0.1295s

a computation-constraint setting. Therefore, it is critical to real-
ize online CL with performance guarantee under the constraint of
computation resources.

2.2 Real-Time Inference
Massive task streams are required real-time inference to support
time-sensitive intelligent applications [12, 14, 38]. However, most
of online CL approaches with time-consuming model adaptation
makes on-device real-time inference infeasible. As shown in Figure
1(b), considering different CL algorithms (i.e., EWC++ [6], AGEM[7],
LwF[35], ER[46] and GDumb[41]), the time consumption of model
adaptation is up to 55 times of that of model inference, which would
result in a long-time model adaptation before conducting the model
inference for the current task. There exist several related works
proposed to realize timely model inference on task streams. In order
to realize inference queries at any time, Koh Hyunseo et al. design
a new memory management scheme and learning rate scheduling
strategy to adapt to online blurry task streams [28]. To evaluate
current CL methods, a new real-time evaluation in online CL has
been proposed to take the delay of model training and change in
data distribution into account [14]. Although these methods can
perform model inference without any delay, the performance of
real-time inference is subpar due to the reuse of an out-of-date
model, especially for the CL methods with high model retraining
cost [2, 41], and task streams with fast data distribution change and
high throughout. Thus, it is crucial to achieve real-time inference
in online CL while ensuring learning performance guarantees.

2.3 Device-Cloud Collaboration
The new paradigm of device-cloud collaborative learning is emerg-
ing to leverage the advantages of both end devices and the cloud
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Figure 2: The overview of device-cloud collaboration.

server [55, 60]. Most of previous efforts aims to offload the com-
putation intensive tasks on end devices to the cloud [36, 37, 63].
However, these methods require uploading a significant amount
of raw data with considerable communication latency. While AMS
[50] and DCCL [61] have tried to unload partial computation to
the cloud to alleviate the computation deficiency on end devices,
they primarily focus on the optimization of model training and
aggregation, which are not applicable to realize real-time inference.
Comparing to previous efforts, we prefer to enable real-time infer-
ence on resource-constrained end devices by retrieving suitable
models from the cloud with model transmission. However, it is
noteworthy that device-cloud collaboration may incur communica-
tion latency due to model transmission. As shown in Table 1, we
measure the communication latency of model transmission by us-
ing six classical models (i.e., LeNet5, SqueezeNet, CNN, ShuffleNet
V2, MobileNet V2 and ResNet18) with different sizes . We find that
it is feasible to realize cloud-enabled on-device CL, as the commu-
nication latency is extremely short comparing with the time cost
of model adaptation. Despite promising, realizing cloud-enabled
on-device CL for real-time inference also poses new challenges.
Although we can resolve the problem of insufficient computation
resources on end devices by requesting models from the cloud,
the separation between arriving task streams on end devices and
machine learning models in the cloud makes it difficult to retrieve
suitable models for end devices. Moreover, the mismatch between
outdated models in the cloud and the high-velocity task streams
with frequent data distribution variations on end devices under-
mines the model performance of real-time inference. Therefore, it
is urgent to realize real-time inference in online CL with efficient
device-cloud collaboration.

3 Overview of Device-Cloud Collaboration
As shown in Figure 2, to realize real-time inference on resource-
constraint end devices with device-cloud collaboration may involve
the following three stages: (a) Initialization: This stage serves as the
preparation for model zoo generation and real-time inference. It
involves the clustering of massive data for multi-taskmodel training
in the cloud, coupled with the establishment of task streams with
frequent data distribution variations on end devices; (b) ELITE:
This is our primary design to realize real-time inference with two
main components: the cloud-enabled model zoo and on-device

real-time inference. The cloud-enabled multitask model zoo is an
offline component that pretrains and stores a collection ofmulti-task
models in the cloud to handle inference requests from end devices.
The on-device real-time model inference is an online component
responsible for task-oriented model selection, aiming to identify
the best-fit models from the model zoo in the cloud instead of
time-consuming model retraining; (c) Enhancement: To prevent
the performance degradation of ELITE when the cloud is unable
to provide efficient models, we propose the latency-aware model
fine-tuning on end devices, and dynamic model zoo updating in
the cloud to adapt to new tasks with accuracy-latency trade-off.

The process of device-cloud collaboration can be summarized as
follows: First, we ❶ segment the entire dataset in the cloud server
into various data clusters, associate each data cluster with a corre-
sponding skilled model, and then form the model zoo. It is worth to
note that each data cluster can capture the data distribution from
multiple tasks, and thus the corresponding model can also han-
dle the inference requests from multiple tasks. When task streams
❷ arrive, end devices need to determine whether to utilize local
models in buffer or to request suitable models from the cloud. If
the local models on end devices can effectively handle the current
tasks, we use these local models to perform real-time inference
without additional operations. Otherwise, we ❸ perform an on-
line model selection to request several multi-task models from the
model zoo, and the cloud server then transmits the corresponding
multi-task models to end devices for real-time inference. After com-
pleting real-time inference on current tasks, if the models requested
from the cloud prove inefficient for new tasks, end devices ❹ must
perform model fine-tuning to adapt to new data samples, and sub-
sequently transmit the fine-tuned model back to the cloud server.
With the newly fine-tuned models collected from end devices, the
zoo updater ❺ replaces outdated multi-task models to improve the
plasticity of model zoo.

4 Design of ELITE
In this section, we provide the design of two components in ELITE:
the cloud-enabled model zoo and on-device real-time inference.

4.1 Cloud-Enabled Model Zoo
To generate a multi-task model zoo, we first use the k-means algo-
rithm to cluster the entire data samples on the cloud server into 𝑛
data clusters. The data samples in each cluster with high similar-
ity are regarded as a training task. For the set of 𝑛 training tasks
T = {𝜏1, 𝜏2, ..., 𝜏𝑛}, the objective of multi-task training is to identify
the model 𝜃 that minimizes the average loss across 𝑛 tasks:

min
𝜃
L(𝜃,T) = 1

𝑛

𝑛∑︁
𝑖=1
L𝑖 (𝜃, 𝜏𝑖 ), (1)

where L𝑖 represents the loss associated with task 𝜏𝑖 , and L denotes
the average loss across 𝑛 tasks. Considering the task competition
and model capability in multi-task learning, it is inefficient to train
a single multi-task model with all 𝑛 tasks [53, 64]. Therefore, we
prefer to construct a zoo of 𝑚 (𝑚 < 𝑛) multi-task models Θ =

{𝜃1, 𝜃2, ..., 𝜃𝑚}, such that each model 𝜃𝑖 ∈ Θ can handle a subset of
𝑛 tasks, thereby ensuring inference performance. In this manner,
we first compute the affinity score 𝑍𝑖 𝑗 to characterize the task
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relationship between task 𝜏𝑖 and 𝜏 𝑗 as follows:

𝑍𝑖 𝑗 =
L𝑖 (𝜃𝑖 𝑗 , 𝜏𝑖 )
L𝑖 (𝜃𝑖 , 𝜏𝑖 )

+
L 𝑗 (𝜃 𝑗𝑖 , 𝜏 𝑗 )
L 𝑗 (𝜃 𝑗 , 𝜏 𝑗 )

,∀𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ [1, 𝑛], (2)

where L𝑖 (𝜃𝑖 𝑗 ,𝜏𝑖 )
L𝑖 (𝜃𝑖 ,𝜏𝑖 ) represents the affinity of task 𝜏 𝑗 with respect to

task 𝜏𝑖 , and similar with L 𝑗 (𝜃 𝑗𝑖 ,𝜏 𝑗 )
L 𝑗 (𝜃 𝑗 ,𝜏 𝑗 ) . When the affinity score 𝑍𝑖 𝑗 is

lower, it is more efficient to group these two tasks together for
multi-task models training.

Without the information of task streams on end devices, the
multi-task models pretrained in advance may be unsuitable for
on-device model inference. To enhance the plasticity of multi-task
models in model zoo, it is crucial to maximize the diversity of tasks
that the pretrained multi-task model involve with. Information
entropy has been employed to incorporate diversity and is also
widely used as a diversity index [20, 44]. Thus, the problem of task
grouping for model zoo generation can be formulated as follows:

max
𝑋

𝐻 (𝑋 ) = −
𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑋𝑖 𝑗∑𝑛
𝑘=1 𝑋𝑘 𝑗

log
𝑋𝑖 𝑗∑𝑛

𝑘=1 𝑋𝑘 𝑗
(3)

𝑠 .𝑡 .

𝑛∑︁
𝑖=1

𝑛∑︁
𝑘=𝑖+1,

𝑋𝑖 𝑗 · 𝑋𝑘 𝑗 · 𝑍𝑖𝑘 ≤ 𝑎, ∀𝑗 ∈ [1,𝑚], (3a)

𝑚∑︁
𝑗=1

𝑋𝑖 𝑗 ≤ 𝑏𝑖 , ∀𝑖 ∈ [1, 𝑛], (3b)

𝑋𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚], (3c)

where 𝑋𝑖 𝑗 is the decision variable indicating whether the task 𝜏𝑖
is assigned to the model 𝜃 𝑗 , and 𝐻 (𝑋 ) denotes the information en-
tropy of grouped task sets. The first constraint (3a) ensures that the
multiple tasks utilized for model training are mutually beneficial by
requiring the sum of their affinity score less than a given threshold
𝑎. The second constraint (3b) ensures that each task 𝜏𝑖 ∈ T can be
allocated at most 𝑏𝑖 ∈ B times where B = {𝑏1, 𝑏2, ..., 𝑏𝑛}. The last
constraint (3c) indicates that 𝑋𝑖 𝑗 is a binary decision variable. We
can find that this optimization problem of task grouping can be
reduced to a multi-dimensional binary knapsack problem [4, 11],
which is known to be NP-hard. Specifically, the objective of this op-
timization problem is to maximize the diversity of tasks by selecting
the binary option under two capacity constraints.

Traditional algorithms for solving the multi-dimensional knap-
sack problem, such as dynamic programming or branch-and-bound
methods, are often computationally expensive and struggle to scale
efficiently with increasing problem dimensions and complexity.
Instead of exhaustively searching the solution space, ELITE intro-
duces a heuristic greedy allocation strategy with sequential two-
step allocation: an initial random allocation to satisfy the second
constraint in Eq. (3b), following a greedy reallocation to adjust the
initial solution to meet the first constraint in Eq. (3a). As shown in
Algorithm 1, ELITE first generates an initial solution to satisfy the
second constraint in Eq. (3b) in a random manner, by regarding the
training task 𝜏𝑖 allocated at most 𝑏𝑖 times as the same 𝑏𝑖 training
tasks (line 1 and 2). According to the first constraint in Eq. (3a),
ELITE divides the the initial random allocations into two sets: the
satisfied task allocation set S and the unsatisfied setU (line 3). To
adjust the initial solution (line 4 to 13), ELITE employs a greedy

Algorithm 1: Cloud-Enabled Model Zoo
Input: 𝑛 training tasks T = {𝜏1, ..., 𝜏𝑛}, affinity scores

{𝑍𝑖 𝑗 }, budget B = {𝑏1, ..., 𝑏𝑛}, threshold 𝑎
Output: model zoo Θ = {𝜃1, 𝜃2, ..., 𝜃𝑚}

1 For each 𝑗 ∈ [1,𝑚], T𝑗 ← ∅;
2 {T𝑗 }𝑚𝑗=1 ← Randomly allocate 𝑋 with B;
3 S,U ← Divide {T𝑗 }𝑚𝑗=1 by using Eq. (3a);
4 while |U| > 0 do
5 for T𝑗 ∈ U do
6 𝑖 ← 𝑎𝑟𝑔max𝑖∈T𝑗 {

∑
𝑘≠𝑖,𝑘∈T𝑗 𝑍𝑖,𝑘 }

| T𝑗 |
𝑖=1 ;

7 for T𝑘 ∈ S do
8 𝑎𝑘 ← Compute T𝑘 ∪ {𝑖} by using Eq. (3a);
9 Compute △𝐻𝑘 by using Eq. (4), if 𝑎𝑘 < 𝑎;

10 𝑘 ← 𝑎𝑟𝑔max𝑘,T𝑘 ∈S{△𝐻𝑘 };
11 T𝑗 ← T𝑗 \ {𝑖},T𝑘 ← T𝑘 ∪ {𝑖};
12 𝑎𝑖 ← Compute T𝑗 by using Eq. (3a);
13 U ←U \ {T𝑗 },S ← S ∪ {T𝑗 }, if 𝑎 𝑗 < 𝑎;

14 Pretrain multi-task models {𝜃 𝑗 }𝑚𝑗=1 with S;
15 return Θ = {𝜃1, 𝜃2, ..., 𝜃𝑚}.

reallocation strategy to satisfy the first constraint in Eq. (3a) while
maximizing the entropy increment computed as follows:

△𝐻 𝑗 = 𝐻 (𝑋𝑖 𝑗 = 1) − 𝐻 (𝑋𝑖 𝑗 = 0),∀𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚] . (4)

ELITE pre-trains multi-task models {𝜃 𝑗 }𝑚𝑗=1 in model zoo based on
the satisfied task allocation S (line 14). During this task allocation
process, there exist at most |U| ≤ 𝑚 unsatisfied sets that need to be
reallocated, and each set contains at most 𝑛 ·max{𝑏𝑖 }𝑛𝑖=1 training
tasks to be reallocated. Thus, the time complexity of this algorithm is
𝑂 (𝑚 ·𝑛 ·max{𝑏𝑖 }𝑛𝑖=1). This sequential two-step allocation approach
obtains an efficient solution with reduced computational cost, and
provides better flexibility in addressing complex, multi-constraint
problems that existing algorithms might fail to solve efficiently.

4.2 On-Device Real-Time Inference
Given the non-stationary task streams B𝑡 ∼ D𝑡 on end devices,
where D𝑡 is the data distribution at time step 𝑡 , the objective of
real-time inference is to obtain a model 𝜃𝑡 that predicts a label
𝑦𝑡 ∈ Y for an input feature 𝑥𝑡 ∈ X without any delay. At each
time step 𝑡 , we execute the following two steps to realize real-time
model inference: (1) First, the current task reveals the input of cur-
rent data samples {𝑥𝑡

𝑖
}𝑛𝑡
𝑖=1 ⊆ B𝑡 , and end devices utilize these data

samples to perform model selection from either local models in
buffer or the model zoo in the cloud; (2) Then, we employ the se-
lected models to generate predictions {𝑦𝑡

𝑖
}𝑛𝑡
𝑖=1 for the given {𝑥

𝑡
𝑖
}𝑛𝑡
𝑖=1.

Upon completing real-time inference, the system reveals the true
labels {𝑦𝑡

𝑖
}𝑛𝑡
𝑖=1 (i.e., generated by large models or human annotators

[43]), and evaluate the performance of real-time inference by com-
paring {𝑦𝑡

𝑖
}𝑛𝑡
𝑖=1 to {𝑦

𝑡
𝑖
}𝑛𝑡
𝑖=1. This process highlights the importance

of efficient model selection in achieving real-time inference with
guaranteed performance.
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Figure 3: The illustration of on-device model selection.

As illustrated in Figure 3, there exist two probabilities for retriev-
ing the best-fit models from the local buffer on end devices or the
model zoo in the cloud. To ascertain whether the local models on
end devices are adequate for the current tasks, we calculate pre-
diction uncertainty to evaluate the confidence of the local models
in predicting the input data [13, 39]. The prediction uncertainty,
denoted as𝑈 , is computed as follows:

𝑈 = −
𝑐∑︁

𝑘=1
𝜎 (𝑦 = 𝑘 |𝑥) log𝜎 (𝑦 = 𝑘 |𝑥), 𝜎 (𝑦 = 𝑘 |𝑥) = 𝑒𝑧𝑘∑𝑐

𝑖=1 𝑒
𝑧𝑖

(5)

where 𝜎 (𝑦 = 𝑘 |𝑥) represents the probability of predicting class 𝑘
with the given input 𝑥 , and 𝑧𝑘 denotes its logits of the final layer in
the model. If the value of𝑈 is small, end devices prefer to utilize the
local models for task inference. Otherwise, models are requested
from the model zoo in the cloud.

Unlike directly applying neural networks to determine model se-
lection from the cloud without performance guarantee [47], ELITE
enables task-oriented on-device model selection by transmitting a
pretrained model as feature extractor (e.g., adopting ResNet18 pre-
trained on ImageNet as feature extractor), and feature embeddings
as task representations from the cloud to end devices in advance.
We extract features of data samples by using the pretrained model
as domain similarity, and aggregate the features of all data samples
pretrained in multi-task models to form their task embeddings:

𝐸 = {𝑒𝑖 |𝑒𝑖 =
𝑛𝑖∑︁
𝑗=1

𝑔(𝑥 𝑗 )
𝑛𝑖
}𝑚𝑖=1, (6)

where 𝐸 is the set of task embedings of multi-tasks models in model
zoo, and 𝑔(𝑥 𝑗 ) represents the feature embedding of the input 𝑥 𝑗
extracted with the feature layers 𝑔 of the pretrained model. With
the set of task embeddings 𝐸 = {𝑒𝑖 }𝑚𝑖=1 provided from the cloud, we
extract the current task embedding 𝑒𝑡 in the same way, and select
the most 𝑘 suitable multi-task models with the KNN method into
the candidate set 𝑅𝑡 :

min
𝑅𝑡 ⊆𝐸

∑︁
𝑒𝑡 ∈𝑅𝑡

∥𝑒𝑡 − 𝑒𝑖 ∥, 𝑠 .𝑡 . |𝑅𝑡 | = 𝑘. (7)

After obtaining the 𝑘 most suitable models {𝜃𝑡
𝑖
}𝑘
𝑖=1 from the cloud

server, ELITE selects the model with highest confidence to realize
model inference, and evaluates the inference performance on the
current task B𝑡 by revealing the true labels {𝑦𝑡

𝑖
}𝑛𝑡
𝑖=1:

𝐴𝑐𝑐𝑡 = 𝐴𝑐𝑐 (𝜃𝑡𝑖 , {𝑦
𝑡
𝑖 }

𝑛𝑡
𝑖=1), 𝑖 = 𝑎𝑟𝑔min{𝑈𝑖 }𝑘𝑖=1, (8)

where 𝐴𝑐𝑐 (𝜃𝑡
𝑖
, {𝑦𝑡

𝑖
}𝑛𝑡
𝑖=1) is the prediction accuracy of the selected

model 𝜃𝑡
𝑖
on the current task, and 𝑈𝑖 denotes its prediction uncer-

tainty. If the inference performance 𝐴𝑐𝑐𝑡 is low, it indicates that
the current task is new to both end devices and the cloud server. In
this scenario, ELITE needs to perform model fine-tuning to adapt
to the new task, which will discuss in next.

5 Enhancement of ELITE
In this section, we focus on the extension scenario where the cloud
cannot provide efficient inference models to enable on-device real-
time inference, and introduce latency-aware model fine-tuning and
dynamic zoo updating to enhance ELITE.

5.1 Latency-aware Model Fine-Tuning
If the accuracy of real-time inferencewith on-devicemodel selection
is low, model fine-tuning is necessary to enhance the performance
of inference models without long-time delay. To adapt to new tasks
and reduce the time consumption of model fine-tuning, we consider
a sparse fine-tuning approach that avoids massive computation, and
assume that each inference model has 𝐿 layers. To determine which
layers of the inference model 𝜃𝑡 should be fine-tuned, we further
generate a sparse mask 𝑧𝑡 ∈ {0, 1}𝐿 , where 𝑧𝑖𝑡 = 1 indicates that
the 𝑖-th layer of the inference model 𝜃𝑡 will be updated; otherwise,
it will remain frozen without any operation. Moreover, the value of
sparse mask 𝑧𝑡 is closely related to the latency constraints △𝑡 :

𝑧𝑖𝑡 =

{
1, 𝑖 𝑓 △𝑡 − (𝐿 − 𝑖)𝜉 > 0 ,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

(9)

where 𝜉 represents the time cost of fine-tuning one layer in the
inference model.

To improve the performance of inference models on the current
task, we need to allocate the given latency △𝑡 among the 𝑘 candi-
date models {𝜃𝑖 }𝑘𝑖=1. Therefore, we formulate the following time
allocation optimization problem:

𝐴𝑐𝑐𝑡 =𝑚𝑎𝑥{𝐴𝑐𝑐 (𝜃𝑡𝑖 (𝑧𝑡 (△𝑡𝑖 )), {𝑦
𝑡
𝑖 }

𝑛𝑡
𝑖=1)}

𝑘
𝑖=1, 𝑠 .𝑡 .

𝑘∑︁
𝑖=1
△𝑡𝑖 = △𝑡, (10)

where 𝜃𝑡
𝑖
(𝑧𝑡 (△𝑡𝑖 )) denotes the model 𝜃𝑡

𝑖
fine-tuned with the al-

located time △𝑡𝑖 . However, this time allocation problem can be
framed as the multi-armed bandits (MAB) due to the uncertainty of
𝐴𝑐𝑐 (𝜃𝑡

𝑖
(𝑧𝑡 (△𝑡𝑖 )), {𝑦𝑡𝑖 }

𝑛𝑡
𝑖=1). To address this intractable problem, we

propose a two stage time allocation method with exploration and
exploitation to improve model performance:

𝐴𝑐𝑐𝑡 = 𝐴𝑐𝑐 (𝜃𝑡𝑖 (𝑧𝑡 (
△𝑡
2
)), {𝑦𝑡𝑖 }

𝑛𝑡
𝑖=1),

𝑠 .𝑡 . 𝑖 = 𝑎𝑟𝑔max{𝐴𝑐𝑐 (𝜃𝑡𝑖 (𝑧𝑡 (
△𝑡
2𝑘
)), {𝑦𝑡𝑖 }

𝑛𝑡
𝑖=1)}

𝑘
𝑖=1 .

(11)

Specifically, we divide the given latency into two equal time slots.
In the first slot, we allocate △𝑡2 evenly among 𝑘 candidate models,
and perform model fine-tuning with the same amount of time △𝑡2𝑘
to evaluate its model performance. In the second slot, we select
the candidate model with highest prediction accuracy in the first
slot, and use the remaining time △𝑡2 to continually fine tune this
selected model. In this way, we obtain an efficient fine-tuned model
to adapt to new data samples.

5



Table 2: The details of Datasets. We consider two kind of task
streams: image streams and video streams.

Dataset Classes Samples Size Task Stream
CIFAR10 10 50k 170MB Image Classification
CIAFR100 100 50k 197MB Image Classification

Tiny-ImageNet 200 100k 1.1GB Image Classification
HDMB51 51 6.84k 2.12GB Video Analytic
UCF101 101 13.32k 6.93GB Video Analytic

5.2 Dynamic Zoo Updating
When the current task is new and not available in the cloud, there
is a urgent to dynamically update the multi-task model zoo to im-
prove its plasticity. Traditional approaches tend to upload new data
samples to the cloud for model retraining, resulting in significant
communication overhead and data privacy concerns. To avoid up-
loading new data samples, we propose an incremental zoo updater
designed to refresh multi-task models in a timely and efficient man-
ner. At each time step, the incremental zoo updater dynamically
enhances model zoo with fine-tuned models collected from end
devices. To determine which model to replace, the zoo updater mon-
itors the request counts for each multi-task model in the model zoo,
identifying the least requested model for replacement. In this way,
the model zoo updater can effectively learn the changing patterns
of task streams on end devices, retains useful models in the model
zoo, thereby enhancing the efficiency of on-device model selection
and avoiding unnecessary model fine-tuning on end devices.

6 Experiment
In this section, we first describe the experimental setup, and then
report the experimental results with the performance analysis.

6.1 Experiment Setup
Datasets and Tasks. We consider two kind of task streams includ-
ing image classification and video analytic with five datasets as
shown in Table 2. For image classification tasks, we utilize three
different image datasets: CIFAR10/100 [29] and Tiny-ImageNet [10].
In video analytic tasks, we consider two classical video datasets:
HDMB51 [30] and UCF101 [51]. As for task streams, we consider
class-incremental continual learning [26, 49] by dividing the whole
classes of each dataset into different task groups. Moreover, we
consider two types of task streams: fuzzy-boundary and sharp-
boundary task stream. In fuzzy-boundary task stream, the classes
of each task are randomly selected, and adjacent tasks may have
the same classes. As for sharp-boundary task stream, adjacent tasks
are different, indicating no overlapping classes.
Baselines. The current practices about online CL can be categorized
into two main categories: cloud-enabled online CL approaches
and on-device one. The cloud-enabled online CL performs model
adaptation on the cloud server and model inference on end devices,
i.e., AMS [50] and RECL [22]. As for on-device CL, both model
training and inference are conducted entirely on end devices, i.e.,
EWC++ [6], LwF[35], GDumb[41], A-GEM[7], ER[46] and MIR[2].
Evaluation Metrics. We evaluate the performance of real-time
inference in Online CL by using the following three metrics:

CPU: 4-core ARM A57@1.43GHz
Memory: 4GB LPDDR4
GPU: 128-core Maxwell @921MHz
Storage: MicroSD 32G

End DeviceCloud Server

CPU: 10-core Intel(R) Xeon(R) Silver 
4210R CPU @ 2.40GHz
Memory: 125G
GPU: 2 NVIDIA GeForce RTX 3090

Figure 4: The prototype system of ELITE.

• Average Accuracy: Given the length of task streams𝑇 , we use
△𝑓 (𝑥𝑡 , 𝑦𝑡 ;𝜃 ) to denote the prediction accuracy of predictor
𝜃 where 𝑥𝑡 is the input feature, 𝑦𝑡 is the truth label and 𝑡 is
the time step of the current task. The average accuracy at
the end of task streams can be measured as:

A =
1
𝑇

𝑇∑︁
𝑡=1
△𝑓 ((𝑥𝑡 , 𝑦𝑡 ;𝜃 ). (12)

• Response Latency: Given the length of task streams 𝑇 , we
compute the inference time 𝑐𝑡 and the waiting time 𝜏𝑡 (e.g.,
the time of model retraining or fine-tuning) at time step 𝑡 ,
and add these two time cost as its response latency L𝑡 . The
response latency of task streams can be obtained as:

L =
1
𝑇

𝑇∑︁
𝑡=1
L𝑡 = 𝑐𝑡 + 𝜏𝑡 . (13)

• Forgetting Rate: It evaluates how much the model forgets
about the previously learned knowledge, and measured by
comparing the prediction accuracy at the end of task streams
with the one at the beginning in task streams:

F =
max𝑖 (△𝑓 (𝑥 |𝑡 = 1, 𝑦) − △𝑓 (𝑥 |𝑡 = 𝑖, 𝑦))

△𝑓 (𝑥 |𝑡 = 1, 𝑦) . (14)

Implementation Details. To conduct extensive experiments, we
select five lightweight models: LeNet5, SqueezeNet, ShuffleNet V2,
MobileNet V2 and ResNet18. The learning rate and batch size of
model retraining are 0.01 and 64, respectively. Moreover, we set the
latency for model fine-tuning to one second, i.e., △𝑡 = 1𝑠 . To make
the results more persuasive, all experiments are performed three
times. As shown in Figure 4, we realize the prototype system of
ELITE by utilizing a Jetson Nano with 4GB memory and the cloud
server with 2 NVIDIA RTX 3090. The communication interaction
between Jetson Nano and the cloud server is facilitated through
wifi routers. All CL methods are written in Python with PyTorch.

6.2 Overall Performance
Table 3 analyzes average accuracy, response latency, and forgetting
for CL methods across five datasets: CIFAR10/100, Tiny-ImageNet,
HDMB51, and UCF101. ELITE consistently shows the highest in-
ference performance in image classification tasks (CIFAR10/100,
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Table 3: The performance comparison of different CL methods on five different datasets.

EWC++ MIR LwF ER AGEM GDumb AMS RECL ELITE

CIFAR10
A 0.176 ± 0.063 0.268 ± 0.093 0.275 ± 0.028 0.371 ± 0.030 0.130 ± 0.016 0.277 ± 0.004 0.125 ± 0.021 0.172 ± 0.002 0.413 ± 0.039
L(𝑠) 2.011 ± 0.488 3.031 ± 0.518 1.496 ± 0.292 2.589 ± 0.220 2.576 ± 0.138 3.268 ± 0.291 1.971 ± 0.034 1.441 ± 0.097 1.127 ± 0.201
F 0.844 ± 0.063 0.736 ± 0.093 0.581± 0.030 0.851± 0.016 0.742 ± 0.028 0.778± 0.004 0.881 ± 0.021 0.791 ± 0.001 0.581 ±0.039

CIFAR100
A 0.176 ± 0.023 0.174 ± 0.029 0.153 ± 0.008 0.197 ± 0.029 0.178 ± 0.023 0.051 ± 0.006 0.059 ± 0.011 0.164 ± 0.011 0.397 ± 0.014
L(𝑠) 3.334 ± 0.566 6.884 ± 0.108 4.078 ± 0.097 5.367 ± 0.492 7.033 ± 0.138 7.207 ± 0.034 4.241 ± 0.343 1.884 ± 0.199 1.341 ± 0.117
F 0.796 ±0.028 0.821 ±0.027 0.848 ±0.016 0.795± 0.032 0.954± 0.039 0.792 ±0.026 0.921 ±0.015 0.834 ±0.013 0.587 ±0.056

Tiny-ImageNet
A 0.182 ± 0.053 0.176 ± 0.034 0.207 ± 0.027 0.175 ± 0.049 0.188 ± 0.060 0.101 ± 0.047 0.117 ± 0.051 0.196 ± 0.038 0.275 ± 0.028
L(𝑠) 1.718 ± 0.225 3.538 ± 0.632 1.589 ± 0.213 3.764 ± 0.838 2.861 ± 0.562 6.074 ± 0.487 3.064 ± 0.567 1.945 ± 0.474 1.034 ± 0.059
F 0.890± 0.042 0.881± 0.027 0.811 ±0.012 0.861± 0.034 0.846± 0.044 0.895± 0.012 0.958 ±0.032 0.827± 0.029 0.728 ±0.018

HDMB51
A 0.157 ± 0.152 0.220 ± 0.136 0.346 ± 0.129 0.362 ± 0.129 0.148 ± 0.146 0.192 ± 0.153 0.136 ± 0.143 0.543 ± 0.130 0.654 ± 0.043
L(𝑠) 3.006 ± 0.777 4.117 ± 0.761 2.482 ± 0.476 3.278 ± 0.723 3.694 ± 0.419 2.884 ± 0.327 6.269 ± 2.253 1.123 ± 0.263 1.032 ± 0.067
F 0.952± 0.016 0.771± 0.071 0.675 ±0.019 0.556 ±0.016 0.952± 0.017 0.965 ±0.044 0.954 ±0.008 0.563 ±0.047 0.328± 0.013

UCF101
A 0.129 ± 0.153 0.392 ± 0.138 0.252 ± 0.135 0.483 ± 0.126 0.131 ± 0.149 0.188 ± 0.158 0.136 ± 0.143 0.412 ± 0.106 0.652 ± 0.075
L(𝑠) 2.846 ± 0.431 4.509 ± 1.022 2.519 ± 0.232 3.412 ± 0.728 3.593 ± 0.955 2.994 ± 0.593 6.269 ± 2.253 1.139 ± 0.258 1.033 ± 0.078
F 0.923 ±0.034 0.483± 0.081 0.831 ±0.020 0.424± 0.050 0.921 ±0.034 0.989 ±0.050 0.954 ±0.008 0.565± 0.038 0.376± 0.066
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Figure 5: The performance comparison of different CL methods with five different models.

Tiny-ImageNet), though accuracy and forgetting rate decline with
increasing data complexity, especially for Tiny-ImageNet. Response
latency is affected by both dataset complexity and model adapta-
tion strategy. In video analytics tasks, ELITE maintains around 60%
accuracy, benefiting from fewer classes and frame similarity. ELITE
outperforms other methods in accuracy, latency, and forgetting
across all datasets, demonstrating its reliability.

To validate the stability of the experimental results, we con-
ducted ablation studies on five different models: LeNet5, ShuffleNet
V2, SqueezeNet, MobileNet V2, and ResNet18. Figure 5 shows the
analysis of average accuracy, response latency, and forgetting rate.
While LeNet5 demonstrates the highest accuracy for ELITE among
CL methods, its overall performance is low due to its limited ca-
pacity. ShuffleNet V2, SqueezeNet, and MobileNet V2 show similar
inference performance, with approximately 7% improvement over
LeNet5. ResNet18 exhibits the highest inference performance due

to its larger size. ELITE consistently outperforms other CL methods
in average performance and response latency. Notably, average ac-
curacy improves with increasing model complexity, while latency
remains stable, as ELITE does not require model retraining. In con-
trast, other CL methods show significant fluctuations in accuracy
and latency, further validating the reliability and stability of ELITE.

6.3 Robustness of ELITE
Figure 6(a) illustrates the impact of stream type on average accu-
racy by analyzing both fuzzy-boundary and sharp-boundary task
streams. In fuzzy-boundary task streams, ELITE demonstrates an
approximately 11% improvement in accuracy compared to other CL
methods. In sharp-boundary task streams, ELITE achieves the high-
est average accuracy among all CL methods, with a significant 16%
improvement, indicating its robust performance stability across
different task scenarios. Additionally, we observe that most CL
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Figure 6: The performance comparison on: (a) different task
streams; (b) the similarity of feature embeddings.
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Figure 7: The performance of ELITE with 1000 tasks.

methods tend to have higher average accuracy in fuzzy-boundary
streams compared to sharp-boundary streams, while ELITE exhibits
superior performance in sharp-boundary task streams compared
to fuzzy-boundary ones, likely because multi-task models often
perform better across a broader range of tasks. The performance
of feature embedding similarity calculations, as depicted in Figure
6(b), demonstrate that the task-oriented model selection is robust
with feature embedding similarity. Figure 7 presents the average
accuracy, latency and forgetting rate of ELITE as the length of task
streams extends to 1,000 tasks. ELITE maintains stable performance
as the number of tasks increases. Initially, average accuracy and
forgetting rate show significant fluctuations, but it stabilizes as the
number of tasks grows. This behavior can be attributed to the need
for continual updates in the model zoo during the early stages to
accommodate new tasks.

In Figure 8(a), we denote the number of multi-task models in the
zoo as 𝑀 . The results show that increasing the number of multi-
task models in the zoo improves average inference accuracy, with a
marked improvement at𝑀 = 20. However, when𝑀 = 30, accuracy
plateaus and performance becomes unstable, indicating that the
optimal number of models should be carefully balanced. Next, we
analyze the impact of the task number of multi-task models involve
with, represented as 𝑁 , on inference performance. The Figure 8(b)
shows that as 𝑁 increases, so does the average accuracy. However,
once 𝑁 reaches a higher value, the rate of accuracy improvement
diminishes significantly. This observation underscores the need to

20 50 100
T

0.0

0.1

0.2

0.3

0.4

0.5
M=10 M=20 M=30

(a)

20 50 100
T

0.0

0.1

0.2

0.3

0.4

0.5
N=4 N=6 N=8

(b)

Figure 8: The performance of model zoo on: (a) different
model number; (b) different task number.
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Figure 9: The performance comparison of ELITE with (w/)
and without (w/o) the enhancement by using five different
models on two datasets.

carefully design the task number to optimize model performance.
As shown in Figure 9, we validate the performance of ELITE with
(w/) and without (w/o) the enhancement by using five lightweight
models (e.g., CNN, LeNet, SqueezeNet, ShuffleNet and MobileNet)
and two datasets, e.g., CIFAR10 (C10) and CIFAR100 (C100). It is
obvious that the inference performance of ELITE with the enhance-
ment is superior to that without additional operations, due to the
model fine-tuning to adapt to new tasks.

7 Conclusion
In this paper, we focused on the real-time inference on resource-
constraint end devices in online CL, and proposed a new device-
cloud collaborative CL framework, namely ELITE, for time-varying
task streams. To realize real-time model inference, ELITE formed
model zoo in the cloud server, and proposed task-oriented on-device
model selection on end devices. To prevent performance degrada-
tion on new tasks not available in the cloud, we introduced latency-
aware online model fine-tuning strategy to adapt to new tasks,
and dynamically updated model zoo to enhance ELITE. Extensive
evaluations on five image and video datasets have been conducted,
and the results demonstrate that ELITE improves 16.3% inference
performance and reduces up to 1.98x response latency compared
to the-state-of-art solutions.
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