
The Trade-off between Label Efficiency and Universality of Representations
from Contrastive Learning

Zhenmei Shi * 1 Jiefeng Chen * 1 Kunyang Li 1 Jayaram Raghuram 1 Xi Wu 2 Yingyu Liang 1 Somesh Jha 1

Abstract
The pre-train representation learning paradigm
is a recent popular approach to address distribu-
tion shift and limitations in training data. This
approach first pre-trains a representation function
using large unlabeled datasets from multiple tasks
by self-supervised (e.g., contrastive) learning, and
then learns a simple classifier on the representa-
tion using small labeled datasets from the down-
stream target tasks. The representation should
have two key properties: label efficiency (i.e.,
ability to learn an accurate classifier with a small
amount of labeled data) and universality (i.e., use-
fulness across a wide range of downstream tasks).
In this paper, we focus on contrastive learning
and systematically study the trade-off between
label efficiency and universality both theoretically
and empirically. We empirically show that this
trade-off exists in different models and datasets.
Theoretically, we propose a data model with a
hidden representation and provide analysis in a
simplified linear setting. Our analysis shows that
compared to pre-training on the target task, pre-
training on diverse tasks leads to a larger sample
complexity for learning the optimal classifier, and
thus has worse prediction performance.

1. Introduction
The pre-train representation learning paradigm is a recent
successful approach to utilize large-scale unlabeled data to
address the challenges of labeled data scarcity and distribu-
tion shift. Different from the traditional supervised learning
approach using a large set of labeled data, representation
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learning first pre-trains a representation function using large-
scale diverse unlabeled datasets by self-supervised learning
(e.g., contrastive learning), and then learns a predictor on
the representation using a small labeled dataset for a down-
stream target task. The pre-trained model is sometimes
referred to as a foundation model (Bommasani et al., 2021),
and has achieved good performance in many applications,
e.g., BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020)
and CLIP (Radford et al., 2021). While the foundation
models exist for different applications and with different
learning methods, the following two properties are key to
their success: (1) label efficiency: with the pre-trained rep-
resentation, only a small amount of labeled data is needed
to build accurate predictors for downstream target tasks;
(2) universality: the pre-trained representation can be used
across various downstream tasks.

This work points out and studies a potential trade-off be-
tween label efficiency and universality, though ideally one
would like to have these two key properties simultaneously.
We focus on contrastive learning which is one exemplary
pre-training method, while we believe similar observations
and insights apply to other methods.

Empirically, we observe that such a trade-off indeed ex-
ists when the representation is pre-trained via contrastive
learning on a large and diverse unlabeled dataset consisting
of different tasks (or distributions). Since pre-training on
diverse tasks is widely used in practice, such a trade-off
deserves to be fully understood. More precisely, we perform
controlled experiments comparing two cases: (1) specific
representation pre-trained on a specific unlabeled dataset
similar to that of the target task; (2) universal representation
pre-trained on the union of diverse unlabeled datasets. The
diverse data include the specific unlabeled dataset and some
other datasets that can be quite different from that of the
target task, which mimics the practical scenario that the
foundation model is pre-trained on diverse data to be widely
applicable for various downstream tasks. We observe that
when the specific dataset is large, universal representation
leads to worse prediction on the target, i.e., adding the di-
verse datasets in pre-training can harm the label efficiency
though enhancing the universality. We also observe that if
the specific dataset is small, then adding diverse datasets
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can help. These suggest the following explanation: diverse
unlabeled datasets have both positive and negative impacts
for prediction on a specific target task. On one hand, they
share some useful semantic features with the target task, that
can help learn these features in the representation and im-
prove the prediction. On the other hand, they can have many
other features not so useful for the target, and encoding such
features into the representation essentially down-weights
the useful ones and thus hurts prediction. When the specific
dataset is large, the positive impact is marginal and over-
whelmed by the negative impact, leading to the trade-off.

Theoretically, we provide analysis formalizing the intuition
that the diverse unlabeled datasets have both positive and
negative impacts by helping the representation learn vari-
ous semantic features. We propose a hidden representation
model for the data, which first generates a hidden representa-
tion containing various features, and then uses it to generate
the label and the input. We then provide analysis in a sim-
plified setting with linear data and representation functions.
We show that contrastive learning can learn hidden features
invariant to the transformations, and thus allows an accu-
rate predictor if the label depends only on such invariant
features. On the other hand, when pre-trained on diverse
unlabeled data, it encodes all invariant features from differ-
ent tasks and essentially emphasizes those common features
but down-weights those specific to the target task. This then
leads to a larger sample complexity for prediction on the
target task and thus a worse generalization performance.

Related Work. We only discuss the most related ones here
and include more in Appendix A. Cole et al. point out
the “diversity-difficulty trade-off”: pre-training on pooled
datasets leads to worse performance on the in-domain task
compared to pre-training on the in-domain dataset only. Sim-
ilarly, Bommasani et al. call for further research on the issue
of specialization vs. diversity in foundation model training.
Neither of them provide a systematic investigation or theo-
retical analysis on the trade-off. Our work aims to provide
empirical and theoretical analysis on how the pre-training
data leads to the trade-off. We also note that existing theoret-
ical analysis (e.g., (Arora et al., 2019; HaoChen et al., 2021))
typically assumes that the pre-training data distribution is
the same as the target distribution, while the difference be-
tween the two is critical for the trade-off focused in this
work. Thus, our work proposes a new analysis approach.

2. Theoretical Analysis
In this section, we will analyze the sample complexity of
learning the predictor on top of the pre-trained representa-
tion. Here, the representation is pre-trained on diverse data
(modeled by the union of unlabeled data from several tasks)
via contrastive learning, to obtain representations that are
potentially useful for a wide range of diverse tasks; while the

predictor is learned for a specific target task using labeled
data from that task. Existing analyses on contrastive learn-
ing are not applicable since they typically assume the same
distribution for the pre-training and the prediction stages.

To model the intuition that the pre-training can learn se-
mantic features from the unlabeled data such that a subset
of them can be useful for prediction on even different data
distributions, we propose a hidden representation model for
the data, which first generates a hidden representation z and
then uses z to generate the label y and the input x. While we
are not able to perform analysis for the most general case,
we consider a simplified linear setting where the data model
and the representation functions are linear.

In this simplified setting, our analysis shows that contrastive
learning can learn hidden features invariant to the transfor-
mation, and thus allows an accurate predictor if the label
depends only on such invariant features. On the other hand,
when pre-trained on a union of unlabeled data from different
tasks, it encodes all invariant features from different tasks
and essentially emphasizes those that are shared among the
tasks, but down-weights those that are specific to a single
task. Compared to pre-training only on unlabeled data from
the target task, this then leads to a larger sample complex-
ity for prediction on the target task (formalized by a larger
Rademacher complexity of the predictor hypothesis class).
Equivalently, this gives a worse generalization performance.
Therefore, we formally show a trade-off between universal-
ity and the label efficiency.

Contrastive Learning. Let X = Rd denote the input space,
Y the label space, Z = Rd the hidden representation space,
Z = Rk the output space of the learned representation
function. Let Φ denote the hypothesis class of representa-
tion functions ϕ : X 7→ Z , and Fϕ the hypothesis class
of predictors on the representation ϕ. Each task t is a data
distribution Dt over X × Y . In pre-training, using trans-
formations on unlabeled data from the tasks, we have a
distribution over positive pairs (x, x+) and negative exam-
ples x−, where x, x− are two independent examples, while
x+ is obtained by applying some random transformations on
x (e.g., cropping or color jitter for images). The contrastive
loss is

− log
eϕ(x)

⊤ϕ(x+)

eϕ(x)⊤ϕ(x+) + eϕ(x)⊤ϕ(x−)
= ℓ

(
ϕ(x)⊤(ϕ(x+)− ϕ(x−))

)
where ℓ(·) is the logistic loss ℓ(z) = log(1 + exp(−z)). In
practice multiple independent negative examples are used,
and thus we consider the simplified contrastive loss:

min
ϕ∈Φ

E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+)− Ex−ϕ(x−))

)]
(1)

to pre-train a representation ϕ. Minimizing the contrastive
loss maximizes the representation similarity between pos-
itive pairs x and x+, while minimizes the representation
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similarity between negative pairs x and x−. Then we learn
a predictor f on top of ϕ using labeled data from a specific
target task Dt:

min
f∈Fϕ

E(x,y)∼Dt
[ℓc(f(ϕ(x)), y)] (2)

where ℓc is a prediction loss (e.g. cross-entropy). Usually,
f is a linear classifier, and for ϕ ∈ Φ:

Fϕ = {f(ϕ) = u⊤ϕ : u ∈ Rk, ∥u∥2 ≤ B} (3)

for some norm bound B specified later.

Hidden Representation Data Model. Suppose the data
is generated by first sampling a hidden representation z ∈
Z from some distribution, and then generating the input
x ∈ X and the label y ∈ Y from the hidden representation
z. We assume that the dimensions of z are partitioned
into two subsets: spurious features U that are affected by
the transformations, and invariant features R = [d] \ U .
Intuitively, the transformation should be chosen such that
useful semantic features will not be affected, and our goal
is to recover the invariant features R. Therefore, we assume
that k = |R|, and in each task t the label y will only depend
on a subset of invariant features Rt ⊆ R of size |Rt| = r.
Formally, for Dt, we assume zRt ∼ N (0, I), zR\Rt

= 0,
zU ∼ N (0, I), and y = (u∗

t )
⊤zRt for some ground-truth

parameter u∗
t . Then the positive pairs (x, x+) are generated

as follows:

zRt ∼ N (0, I), zR\Rt
= 0, zU ∼ N (0, I), z+U ∼ N (0, I),

z = [zR; zU ], z
+ = [zR; z

+
U ], (4)

and x, x+, and x− are generated from different conditional
distributions Dz , Dz+ , and Dz− respectively.

A Simplified Setting. The general case of data distribu-
tions and pre-training is challenging to analyze. Here we
consider a simplified setting with linear models and binary
classification for the downstream task with Y = {−1,+1}.
Formally,
(1) x is generated from z linearly: x = Mz where
M ∈ Rd×d is an orthonormal dictionary.
(2) The representations are linear functions with weight
matrices of bounded Spectral and Frobenius norms:

Φ = {ϕ(x) = Wx : W∈Rk×d, ∥W∥≤1, ∥W∥F≤
√
r}.

Under this simplified setting, we show that pre-training on
diverse tasks needs a larger Rademacher complexity to learn
the optimal classifier compared to pre-training on the target
task. We first assume that the pre-training is on an equal
mixture of two tasks D1 and D2, with R1 = {1, 2, . . . , r}
and R2 = {1, . . . , s}∪{r+1, r+2, . . . , 2r−s} where s =
|R1 ∩R2|; the prediction is on the first task D1. We include
the generalized analysis for multiple tasks in Appendix B.
We first analyze the optimal representation.

Proposition 2.1. There exist min(1/2, s/r) ≤ α ≤ 1,

β = min
(
1, r−αs

2(r−s)

)
∈ [1/2, 1] such that ϕ∗(x) = W ∗x

is an optimal representation for the contrastive loss (1)
with any W ∗ of the form: W ∗ = [OA∗, 0]M−1 where
O ∈ Rk×k is any orthonormal matrix, A∗ is diagonal with
A∗
jj =

√
α if j ∈ R1 ∩R2, and A∗

jj =
√
β otherwise, and

the matrix of zeros 0 has size k × (d− k).

That is, ϕ∗ is a rotation of the weighted features, where the
common features in R1 ∩R2 are weighted by

√
α and those

task-specific features are weighted by
√
β.

Given the representation ϕ∗, we would like to ensure there
exists a predictor in Fϕ∗ matching the ground-truth label.
Note that f(ϕ) = u⊤ϕ with u = O1:k,1:r(A

∗
1:r,1:r)

−1 u∗
1 +

O1:k,r+1:k v for any v ∈ Rk−r satisfies f(ϕ∗(x)) = y =
(u∗

1)
⊤zR1

, and u∗ = O1:k,1:r(A
∗
1:r,1:r)

−1u∗
1 is the least-

norm optimal solution. So the predictor class should be

Fϕ∗ = {f(ϕ∗) = u⊤ϕ∗ : u ∈ Rk, ∥u∥2 ≤ ∥u∗∥2}. (5)

Proposition 2.2. Let v1 =
∑s
j=1(u

∗
1j)

2 and v2 =∑r
j=s+1(u

∗
1j)

2. Then the Rademacher complexity of

Fϕ∗ in Eqn. (5) satisfies
∣∣∣Rm(Fϕ∗)− R̃m(Fϕ∗)

∣∣∣ ≤

O

(√
1
m

(
1
αv1 +

1
β v2

))
where the estimate R̃m(Fϕ∗) is

R̃m(Fϕ∗) =

√
1

m

(
1

α
v1 +

1

β
v2

)
(sα+ (r − s)β). (6)

So ignoring the small-order term, the Rademacher com-
plexity is roughly R̃m(Fϕ∗). We now discuss the impli-
cation (details in Appendix B.3). When we pre-train on
one task (equivalent to r = s), the complexity is roughly√

r
m∥u∗

1∥2. Consider pre-training on two tasks with r = 2s

and v1 = v2 =
∥u∗

1∥
2
2

2 . We can show that the optimal is

α = 1, β = 1
2 , and the complexity is roughly

√
9r
8m∥u∗

1∥2.
Therefore, the complexity of pre-training on two tasks is
larger than just pre-training on the target task. This quanti-
fies the trade-off between universality and label efficiency.

3. Experiments
We conduct experiments via contrastive learning to answer
the following questions. (Q1) Does the trade-off between
universality and label efficiency exist? (Q2) What condi-
tions lead to the trade-off, and (Q3) how can we use the
pretrain-finetune learning paradigm effectively?

We summarize the answers as follows: (A1) The trade-off
widely exists in different models and datasets. (A2) When
the task-relevant dataset is large enough, the task-irrelevant
datasets will lead to the trade-off. (A3) Given knowledge of
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Figure 1. Trade-off on downstream tasks CIFAR-10 and MNIST for MoCo v2 and SimSiam.

the downstream task, pre-training on a task-related dataset
is better than pre-training on an unrelated dataset.

3.1. Experimental Setup

Model. We evaluate two popular contrastive learning frame-
works, MoCo v2 (He et al., 2020) and SimSiam (Chen &
He, 2021). MoCo v2 can be regarded as SimCLR (Chen
et al., 2020) equipped with a memory bank, while SimSiam
can be regarded as a modification from BYOL (Grill et al.,
2020) similar to Barlow Twins (Zbontar et al., 2021), which
does not need negative pairs.

Dataset. We consider two sets of data. In the first set, our
downstream task is CIFAR-10, and the pre-training datasets
may include CIFAR-10, CINIC-10, SVHN, GTSRB, and
ImageNet32. CINIC-10 has classes identical to CIFAR-10
and is the most target-relevant, while the others are different.
In the second set, our downstream task is MNIST, and the
pre-training datasets may include EMNIST-Digits&Letters,
Fashion-MNIST, GTSRB, and ImageNet32. Here, EMNIST-
Digits&Letters is the most target-relevant.

Evaluation & Methods. We pre-train a ResNet18 net-
work (He et al., 2016) as a feature extractor using SGD
for 800 epochs with a cosine learning-rate schedule and
a base learning rate of 0.06. Then we fix the pre-trained
feature extractor, and train a linear classifier called Linear
Probing (LP) on 1%, 5%, 10%, 20%, 100% of the labeled
data from the downstream task. For LP we use SGD for
100 epochs and a cosine learning rate schedule with a base
learning rate of 5.0. We finally report the test accuracy on
the downstream task.

3.2. Experimental Details

In Figs. 1(a) and (b), we report results for MoCo v2 and Sim-
Siam (respectively) on CIFAR-10 as the downstream task.
The size and diversity of unlabeled data for pre-training is
increased on the x-axis by incrementally adding datasets
in the following order: CINIC-10, SVHN, GTSRB, and
ImageNet(500k). Then, we do LP on CIFAR-10 using
different proportions of labeled samples. When the pre-
training dataset is combined with more diverse data, the
test accuracy for the specific downstream task decreases.
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Figure 2. Varying the number of classes of ImageNet32 from 50 to 1000 under a fixed size of pre-training data.

As more diverse unlabeled data are included, more labeled
data from the target task is needed to achieve a comparably-
good prediction accuracy. This validates our hypothesis
about the trade-off between universality and label efficiency.
In Figs. 1(c) and (d), we report results for MoCo v2 and
SimSiam (respectively) on MNIST as the downstream task.
The size and diversity of unlabeled data for pre-training is
increased on the x-axis by incrementally adding datasets
in the following order: EMNIST-Digits&Letters, Fashon-
MNIST, GTSRB, ImageNet(500k). This is followed by LP
on MNIST with different proportion of labeled data. We
observe the same trend in test accuracy as in Figs. 1(a) and
(b). The handwritten dataset (EMNIST) is the most target-
relevant, and it helps pre-training features suitable for the
handwritten recognition task on MNIST. However, when
we mix Fashion-MNIST, GTSRB, and ImageNet32 in the
pre-training, the test accuracy on MNIST drops significantly.
This supports our claim that pre-training on target-relevant
data will learn more target-relevant features and get a better
performance on the target task, while introducing diverse
pre-training data will allow learning diverse features but can
down-weight those for a specific task. The above analy-
sis establishes that the trade-off widely exists in different
models and datasets, answering Q1.

3.3. Ablation Study

We report results from three ablation studies: (1) varying the
class number of ImageNet32, (2) varying the percentage of
target-relevant pre-training data, and (3) replacing CINIC-
10 with CIFAR-10 in the pre-training dataset.

Varying the Class Number of ImageNet32. To further
support A1, we show that the trade-off between universality
and label efficiency also exists under a fixed dataset size. In
Fig. 2, we pre-train MoCo v2 and SimSiam on CIFAR10
+ ImageNet(200k) and keep the same setting as Fig. 1 ex-
cept that we vary the class number of ImageNet(200k). In
previous experiments, we randomly pick 500,000 images

from ImageNet32 without considering labels. Here, we fix
the number of classes to 50, 100, 200, 500, 1000. Then we
randomly sample 200,000 images from the subset of classes.
The downstream task is CIFAR-10. In Fig. 2, we observe
that with a fixed pre-training datasets size, e.g., 250,000,
when the data is more diverse, the pre-training will learn
more irrelevant features, and the performance will drop on
the downstream task. This supports our analysis as well.

Due to the page limit, we provide details of (2) and (3) in
Appendix C.2. We answer Q2 from (2) that the data from
diverse tasks may have a positive effect when the data from
similar (relevant) tasks is not sufficiently large. Combining
(3) with previous results, we answer Q3. If we choose
a good task-relevant pre-training dataset, we can directly
get similar performance as pre-training on the downstream
task. However, the performance will drop if we introduce
task-irrelevant data in the pre-training dataset.

4. Discussion and Future Work
In this work, we have shown that the trade-off between label
efficiency and universality of representations widely exists
in contrastive learning. For future work, there are many
open questions we will continue to study. (1) What features
does the model learn from specific pre-training and diverse
pre-training datasets? (2) What properties do these features
have? (3) Can we solve the trade-off in a better way in order
to gain both properties at the same time?
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Appendix

A. Related Work
Pretrain-finetune Learning Paradigm. The pretrain-finetune learning paradigm, where a model (or a representation) is
pre-trained on a large dataset (e.g., ImageNet) and is then fine-tuned to various downstream tasks, has been widely used
in practice (Devlin et al., 2019; Kolesnikov et al., 2020; Brown et al., 2020). There are mainly two kinds of pre-training
approaches: one is the supervised pre-training (Kolesnikov et al., 2020), where we pre-train representations on large
labeled datasets; the other is the self-supervised pre-training (Newell & Deng, 2020), where we pre-train representations on
large and diverse unlabeled datasets. The self-supervised pre-training learning paradigm is sometimes referred to as the
foundation models (Bommasani et al., 2021). Recently, it has been demonstrated that self-supervised pre-training can learn
effective representations that even outperform the representations learned by supervised pre-training when evaluating them
on downstream tasks (Ericsson et al., 2021). Also, some practical examples like BERT (Devlin et al., 2019), GPT-3 (Brown
et al., 2020) and CLIP (Radford et al., 2021) have demonstrated the effectiveness of self-supervised pre-training in learning
universal representations that can be used for a wide range of downstream tasks. In our work, we study the properties of
self-supervised pre-training due to its superiority over supervised pre-training.

Self-supervised Representation Learning. Early self-supervised representation learning methods typically focus on
solving hand-designed “pretext tasks” (Doersch et al., 2015; Gidaris et al., 2018; Noroozi & Favaro, 2016). Recent works
have explored contrastive learning-based approaches where the pretext task is to distinguish matching and non-matching
pairs of augmented input images (van den Oord et al., 2018). Common examples include SimCLR (Chen et al., 2020),
MoCo (He et al., 2020), SimSiam (Chen & He, 2021), BYOL (Grill et al., 2020) and Barlow Twins (Zbontar et al., 2021).

Analysis of Self-supervised Pre-training Paradigm. Existing works have studied the effect of the pre-training datasets on
the performance of the self-supervised pre-training (Arora et al., 2019; Tosh et al., 2021; Garg & Liang, 2020; HaoChen
et al., 2021; Tsai et al., 2020; Wen & Li, 2021; Saunshi et al., 2022; Wang & Isola, 2020; Liu et al., 2021; Kotar et al., 2021;
Gansbeke et al., 2021; Yang et al., 2020). However, existing analysis typically assumes that the pre-training data distribution
is the same as the target distribution, while the difference between the two is the critical reason for the trade-off focused in
this work. Thus, our work proposes new analysis approaches. Recently, Cole et al. have tried to identify conditions where
self-supervised contrastive representation learning methods can produce “good” visual representations and point out the
“diversity-difficulty trade-off” phenomenon, which is most relevant to our work. However, they only empirically show the
trade-off, but do not provide a systematic study and analysis to explain why it happens. Bommasani et al. call for further
research on the issue of specialization vs. diversity in foundation model training data, but do not provide a thorough study as
well. Our work attempts to provide a better understanding of the trade-off between universality and label-efficiency.

B. Proof and More Analysis
We note that the contrastive loss can be written using logistic loss:

− log
eϕ(x)

⊤ϕ(x+)

eϕ(x)⊤ϕ(x+) + eϕ(x)⊤ϕ(x−)
= ℓ

(
ϕ(x)⊤[ϕ(x+)− ϕ(x−)]

)
(7)

where ℓ(·) is the logistic loss ℓ(z) = log(1 + exp(−z)). This will be useful for the analysis.

B.1. Proof of Propositions 2.1

Proof of Proposition 2.1. For each Dt,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
= E(z,z+)

[
ℓ
(
(WMz)⊤(WMz+ − Ez− [WMz−])

)]
(8)

= E(z,z+)

[
ℓ
(
z⊤(M⊤W⊤WM)(z+ − Ez− [z−])

)]
(9)

≥ EzR
[
ℓ
(
(EzU [z])⊤M⊤W⊤WM(Ez+U [z

+]− Ez− [z−])
)]

(10)

= EzR
[
ℓ
(
[zR; 0]⊤M⊤W⊤WM([zR; 0]− 0)

)]
(11)

= EzR
[
ℓ
(
∥WM [zR; 0]∥2

)]
(12)
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where the inequality comes from the convexity of ℓ(z) and Jensen’s inequality. Then on the mixture, we have

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
=
∑
t=1,2

1

2
E(x,x+)∼Dt

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
(13)

≥
∑
t=1,2

1

2
EDt

[
ℓ
(
∥WM [zRt ; 0]∥2

)]
. (14)

Let WM = [AR, AU ] where AR ∈ Rk×k, AU ∈ Rk×(d−k). By rotational invariance of zR1∩R2
, zR1\R2

, and zR2\R1
,

without loss of generality, we can assume AR = OA where A is a diagonal matrix with diagonal entries ajj’s and O is any
orthonormal matrix. Then

∑
t=1,2

1

2
EDt

[
ℓ
(
∥WM [zRt ; 0]∥2

)]
=
∑
t=1,2

1

2
E{zj∼N (0,1)}

ℓ
∑
j∈Rt

a2jjz
2
j

 := g({ajj}). (15)

Now consider the minimum of the function g({ajj}) on the right hand side, under the constraints that |ajj | ≤ 1 and∑
j a

2
jj ≤ r. We have the following claim for this optimization.

Lemma B.1. There exists min(1/2, s/r) ≤ α ≤ 1, β = min
(
1, r−αs

2(r−s)

)
∈ [1/2, 1], such that the minimum of the above

optimization is achieved when a2jj = α for any j ∈ R1 ∩R2, and a2jj = β for any j ̸∈ R1 ∩R2.

Proof. We first prove that to achieve the minimum, we can set:

(1) a2ℓℓ = a2ℓ′ℓ′ for any ℓ ̸= ℓ′ ∈ R1 ∩R2;

(2) a2ℓℓ = a2ℓ′ℓ′ for any ℓ ̸= ℓ′ ∈ R1 \R2;

(3) a2ℓℓ = a2ℓ′ℓ′ for any ℓ ̸= ℓ′ ∈ R2 \R1.

For (1): By symmetry of zj’s and the convexity of ℓ(·),

E

ℓ
∑
j∈R1

a2jjz
2
j

 =
1

2
E

ℓ
 ∑
j∈R1,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j + a2ℓℓz

2
ℓ + a2ℓ′ℓ′z

2
ℓ′

 (16)

+
1

2
E

ℓ
 ∑
j∈R1,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j + a2ℓℓz

2
ℓ′ + a2ℓ′ℓ′z

2
ℓ

 (17)

≥ E

ℓ
 ∑
j∈R1,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ′ +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ

 . (18)

A similar inequality holds for R2. Then

g({ajj}) ≥
∑
t=1,2

1

2
E

ℓ
 ∑
j∈Rt,j ̸=ℓ,j ̸=ℓ′

a2jjz
2
j +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ′ +

a2ℓℓ + a2ℓ′ℓ′

2
z2ℓ

 . (19)

Therefore, the minimum is achieved when a2ℓℓ = a2ℓ′ℓ′ .

For (2): The same inequality in Eqn. ( 16) holds for any ℓ ̸= ℓ′ ∈ R1 \R2, which then implies the statement (2).

For (3): The proof is similar to that for the statement (3).

These statements mean that the minimum is achieved when a2jj = α for j ∈ R1∩R2, a2jj = α1 for j ∈ R1\R2, and a2jj = α2

for j ∈ R2 \ R1, for some values α, α1, α2 ≥ 0. Let Z =
∑
j∈R1∩R2

z2j , Z1 =
∑
j∈R1\R2

z2j , Z2 =
∑
j∈R2\R1

z2j . By
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symmetry of zj’s, Z1 and Z2 follow the same distribution. Then

g({ajj}) =
1

2
E [ℓ (αZ + α1Z1)] +

1

2
E [ℓ (αZ + α2Z2)] (20)

=
1

2
E [ℓ (αZ + α1Z1)] +

1

2
E [ℓ (αZ + α2Z1)] (21)

≥ E
[
ℓ

(
αZ +

α1 + α2

2
Z1

)]
. (22)

So the minimum is achieved when α1 = α2 := β, leading to

g({ajj}) = E [ℓ (αZ + βZ1)] . (23)

Given the constraint αs+ 2β(r − s) =
∑
j a

2
jj ≤ r, 0 ≤ α, β ≤ 1, and that ℓ(·) is monotonically non-increasing, we have

α ∈ [0, 1], β = min
(
1, r−αs

2(r−s)

)
.

Furthermore, we can show that α ≥ min(1/2, s/r). Suppose α < min(1/2, s/r) for contradiction.

First consider the case when r ≤ 2s. Then 1/2 ≤ s/r and thus α < 1/2. Note that

g({ajj}) = E

ℓ
α

s∑
j=1

z2j + β

r∑
j=s+1

z2j


and α

∑s
j=1 z

2
j + β

∑r
j=s+1 z

2
j is stochastically dominated by

∑s
j=1 z

2
j +

1
2

∑r
j=s+1 z

2
j , which is achieved when α = 1.

So the optimal cannot be achieved when α < 1/2.

Next consider the case when r > 2s. Then 1/2 > s/r and thus α < s/r. We also have r−αs
2(r−s) < 1 so β = r−αs

2(r−s) . Let cj
be the coefficients such that cj = α for 1 ≤ j ≤ s and cj = β for s < j ≤ r. Then

g({ajj}) = E

ℓ
 r∑
j=1

cjz
2
j

 (24)

= E

ℓ
r−s∑
j=1

cjz
2
j +

r∑
j=r−s+1

cjz
2
j

 . (25)

Let Π be the set of all permutations of [r − s]. Again by symmetry of zj’s and the convexity of ℓ(·),

g({ajj}) =
1

|Π|
∑
σ∈Π

E

ℓ
r−s∑
j=1

cσ(j)z
2
j +

r∑
j=r−s+1

cjz
2
j

 (26)

≥ E

ℓ
r−s∑
j=1

1

|Π|
∑
σ∈Π

cσ(j)z
2
j +

r∑
j=r−s+1

cjz
2
j

 (27)

= E

ℓ
r−s∑
j=1

sα+ (r − 2s)β

r − s
z2j +

r∑
j=r−s+1

βz2j

 . (28)
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When α < s/r, since β = r−αs
2(r−s) , we have sα+(r−2s)β

r−s < 1/2, so

g({ajj}) > E

ℓ
r−s∑
j=1

1

2
z2j +

r∑
j=r−s+1

βz2j

 (29)

≥ E

ℓ
r−s∑
j=1

1

2
z2j +

r∑
j=r−s+1

z2j

 (30)

= E

ℓ
 s∑
j=1

z2j +
1

2

r∑
j=s+1

z2j

 . (31)

The right-most hand side is achieved when α = 1, β = 1/2. So the optimal cannot be achieved when α < s/r.

In summary, we have α ≥ min(1/2, s/r).

Therefore,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
≥ E [ℓ (αZ + βZ1)] . (32)

On the other hand, it can be verified that for any ϕ∗ with W ∗,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
= E [ℓ (αZ + βZ1)] . (33)

Therefore, ϕ∗ is the optimal solution.

B.2. Proof of Proposition 2.2

Proof of Proposition 2.2. ED1 [(ŷ − y)2] ≥ 0 and

ED1
[(ŷ − y)2] = 0 ⇔∀zR1

, u⊤[OA∗, 0]M−1M [zR1
; 0; zU ] = u∗

1
⊤zR1

(34)

⇔∀zR1
, u⊤OA∗[zR1

; 0] = u∗
1
⊤zR1

(35)
(∗)⇔A∗

1:r,1:r(O
⊤)1:r,1:ku = u∗

1 (36)

⇔∀v ∈ Rr, u = O1:k,1:r(A
∗
1:r,1:r)

−1u∗
1 +O1:k,r+1:kv. (37)

The (∗) is from non-zero variance for zR1
. The empirical Rademacher complexity and Rademacher complexity of Fϕ∗ with

m samples are

R̂m(Fϕ∗) =
1

m
Eσ

[
sup

fu,ϕ∈Fϕ∗

m∑
i=1

σifu,ϕ(x
(i))

]
(38)

=
1

m
Eσ

[
sup

∥u∥2≤∥u∗∥2

m∑
i=1

σiu
⊤OA∗[z

(i)
R1

; 0]

]
(39)

=
1

m
Eσ

[
sup

∥u∥2≤∥u∗∥2

u⊤
m∑
i=1

σiO1:k,1:rA
∗
1:r,1:rz

(i)
R1

]
(40)

=
∥u∗∥2
m

Eσ

[∥∥∥∥∥
m∑
i=1

σiO1:k,1:rA
∗
1:r,1:rz

(i)
R1

∥∥∥∥∥
2

]
, (41)

Rm(Fϕ∗) =EzR,zU
[
R̂m(Fϕ∗)

]
(42)

=
∥u∗∥2
m

E
z
(i)
R1

[
Eσ

[∥∥∥∥∥
m∑
i=1

σiO1:k,1:rA
∗
1:r,1:rz

(i)
R1

∥∥∥∥∥
2

]]
(43)

=
∥u∗∥2
m

E
z
(i)
R1

[∥∥∥∥∥A∗
1:r,1:r

m∑
i=1

z
(i)
R1

∥∥∥∥∥
2

]
. (44)
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Define X := A∗
1:r,1:r

∑m
i=1 z

(i)
R1

. Note that for j ∈ R1 ∩ R2, Xj = α
∑m
i=1 z

(i)
j is a Gaussian of mean zero and variance

E[X2
j ] = αE

[(∑m
i=1 z

(i)
j

)2]
= αE

[∑m
i=1

(
z
(i)
j

)2]
= mα. Similarly, for j ∈ R1 \R2, Xj = β

∑m
i=1 z

(i)
j is a Gaussian

of mean zero and variance E[X2
j ] = mβ. Since Xj is sub-gaussian, X2

j − mα for j ∈ R1 ∩ R2 and X2
j − mβ for

j ∈ R1 \R2 are sub-exponential and more precisely

∥X2
j −mα∥ψ1 ≤ C1∥X2

j ∥ψ1
= C1∥Xj∥2ψ2

≤ C2mα, j ∈ R1 ∩R2, (45)

∥X2
j −mβ∥ψ1 ≤ C1∥X2

j ∥ψ1 = C1∥Xj∥2ψ2
≤ C2mβ, j ∈ R1 \R2, (46)

where C1, C2 are absolute constants and C2 > 1. Let K = max(C2mα,C2mβ) ≤ C2m and µ := m(sα+ (r − s)β). By
Bernstein’s inequality, we have for every γ ≥ 0 that

P
{∣∣∣∣1r (∥X∥22 − µ)

∣∣∣∣ ≥ γ

}
≤ 2 exp

[
−cmin

(
γ2

K2
,
γ

K

)
r

]
(47)

⇒P
{∣∣∣∣∥X∥22

µ
− 1

∣∣∣∣ ≥ rγ

µ

}
≤ 2 exp

[
− c

C2
2

min

(
γ2

m2
,
γ

m

)
r

]
, (48)

where c is an absolute constant. For all numbers z ≥ 0, we have |z− 1| ≥ δ ⇒ |z2 − 1| ≥ max(δ, δ2). Thus, for any δ ≥ 0,
we have

P
{∣∣∣∣∥X∥2√

µ
− 1

∣∣∣∣ ≥ δ

}
≤P
{∣∣∣∣∥X∥22

µ
− 1

∣∣∣∣ ≥ max(δ, δ2)

}
(49)

≤2 exp

[
− c

C2
2

min

((
µmax(δ, δ2)

mr

)2

,
µmax(δ, δ2)

mr

)
r

]
(50)

≤2 exp

[
− c

C2
2

( µ

mr

)2
min

((
max(δ, δ2)

)2
,max(δ, δ2)

)
r

]
(51)

=2 exp

[
− c

C2
2

µ2

m2r
δ2
]
, (52)

where the last inequality is from µ ≤ mr. Changing variables to θ = δ
√
µ, we obtain the desired sub-gaussian tail

P {|∥X∥2 −
√
µ| ≥ θ} ≤2 exp

[
− c

C2
2

µ

m2r
θ2
]
. (53)

By generalization of integral identity, we have

|E [∥X∥2 −
√
µ]| =

∣∣∣∣∫ ∞

0

P{∥X∥2 −
√
µ > θ}dθ −

∫ 0

−∞
P{∥X∥2 −

√
µ < θ}dθ

∣∣∣∣ (54)

≤2

∫ ∞

0

P{|∥X∥2 −
√
µ| > θ}dθ (55)

≤4

∫ ∞

0

exp

[
− c

C2
2

µ

m2r
θ2
]
dθ (56)

≤C3
m
√
r

√
µ

(57)

≤
√
2mC3, (58)

where C3 is an absolute constant and the last inequality is from µ = m(sα+ (r − s)β) = 1
2m(sα+ r) ≥ 1

2mr. Thus, we
have ∣∣∣∣∣Rm(Fϕ∗)−

√
1

m

(
1

α
v1 +

1

β
v2

)
(sα+ (r − s)β)

∣∣∣∣∣ =∥u∗∥2
m

|E [∥X∥2 −
√
µ]| (59)

≤O

(√
1

m

(
1

α
v1 +

1

β
v2

))
. (60)
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B.3. Discussion on the Implications

Pre-training and Predicting on One Task. Suppose we only pre-train the representation and then learn a predictor on the
task D1. This is equivalent to setting r = s, which leads to D1 = D2. Then by Proposition 2.1, we know that

ϕ∗(x) = W ∗x = O
∑
j∈R1

√
αzjej

where ej’s are the basis vectors. The contrastive loss is

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
= E

ℓ
α

r∑
j=1

z2j

 .

Since zj’s are standard Gaussians, α = 1 in the optimal. So ϕ∗(x) = W ∗x =
∑
j∈R1

zjej .

Furthermore, we have v1 = ∥u∗
1∥22, v2 = 0 in Proposition 2.2, then the Rademacher complexity of Fϕ∗ satisfies∣∣∣∣∣Rm(Fϕ∗)−

√
r∥u∗

1∥22
m

∣∣∣∣∣ ≤ O

(√
∥u∗

1∥22
m

)
. (61)

Ignoring the low-order term on the right hand side, we have

Rm(Fϕ∗) ≈
√

r

m
∥u∗

1∥2. (62)

Pre-training and Predicting on Two Tasks. Consider the case with r = 2s, that is, each task has half of the invariant
features being common features, and the other half being task-specific features. Then by Proposition 2.1, we know that

ϕ∗(x) = W ∗x = O ×

 ∑
j∈R1∩R2

√
αzjej +

∑
j∈R\(R1∩R2)

√
βzjej


where ej’s are the basis vectors.

We now show that α = 1 in the optimal. Since r = 2s, r−αs
2(r−s) = 2−α

2 ≤ 1, then β = min
(
r−αs
2(r−s) , 1

)
= 2−α

2 . The
contrastive loss is

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
= E

ℓ
α

∑
j∈R1∩R2

z2j + β
∑

j∈R1\R2

z2j

 (63)

= E

ℓ
α

s∑
j=1

z2j +
2− α

2

r∑
j=s+1

z2j

 (64)

= E
[
ℓ

(
αZ +

2− α

2
Z1

)]
(65)

where Z =
∑s
j=1 z

2
j and Z1 =

∑r
j=s+1 z

2
j are i.i.d. χ2

s random variables. Let Qα = αZ + 2−α
2 Z1. Then it can be shown

that Q1 stochastically dominates Qα for α < 1. Then the loss E [ℓ (Qα)] is minimized at α = 1. So

ϕ∗(x) = O ×

 ∑
j∈R1∩R2

zjej +
∑

j∈R\(R1∩R2)

√
1

2
zjej

 .

Then when v1 = v2 = ∥u∗
1∥22/2, by Proposition 2.2, the Rademacher complexity of Fϕ∗ satisfies∣∣∣∣∣Rm(Fϕ∗)−

√
9r∥u∗

1∥22
8m

∣∣∣∣∣ ≤ O

(√
3∥u∗

1∥22
2m

)
. (66)
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Ignoring the low-order term on the right hand side, we have

Rm(Fϕ∗) ≈
√

9r

8m
∥u∗

1∥2. (67)

Compared to the case of pre-training only on the target task, pre-training on the target task and a different task can lead to a
larger Rademacher complexity and thus worse generalization.

B.4. Analysis for Multiple Tasks

Pre-training on Multiple Tasks. Consider multiple different data distributions for contrastive learning, while the target
(downstream) task is one of them. That is, suppose we have T different invariant-feature subsets R1, . . . , RT ⊆ [d],
where |Rt| = r for any t ∈ [T ]. Let R = R1 ∪ · · · ∪ RT be the set of all invariant features, and U = [d] \ R
be the set of spurious features. Assume all distributions share a public feature set S := R1 ∩ · · · ∩ RT of size s,
and each distribution owns a private disjoint feature set of size r − s, which means ∀ti, tj ∈ [T ], ti ̸= tj we have
Rti ∩ Rtj \ S = ∅. For j ∈ S, zj ∼ N (0, σ2

S), σS > 0. For the data distribution Dt (t = 1, . . . , T ), we have
for j ∈ Rt \ S, zj ∼ N (0, σ2

R), σR > 0, while zR\Rt
= 0, and y = (u∗

t )
⊤zRt

is the ground-truth label for task
t. Contrastive learning is over an uneven mixture of unlabeled data from the T distributions, where Rt has weights
wt > 0 and

∑T
t=1 wt = 1. The target downstream task is D1. Without loss of generality, assume S = {1, , 2, . . . , s} and

∀t ∈ [T ], Rt = S ∪ {s+ (t− 1)(r− s) + 1, s+ (t− 1)(r− s) + 2, . . . , s+ t(r− s)} and R = {1, 2, . . . , s+ T (r− s)}.

Proposition B.2 (General Version of Proposition 2.1). There exists α ∈ [0, 1], β = min
(
1, r−αs

T (r−s)

)
∈ [1/T, 1] such that

the following holds. ϕ∗(x) = W ∗x is an optimal representation for the loss (1) in contrastive learning with any W ∗ of the
form:

W ∗ = [OA∗, 0]M−1 (68)

where O ∈ Rk×k is any orthnormal matrices, A∗ is a k × k diagonal matrix with

A∗
jj =

{√
α if j ∈ S,

√
β otherwise,

(69)

and the matrix of zeros has size k × (d− k).

Proof. Following the same argument as in the proof of Proposition 2.1,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+)− Ex−ϕ(x−)]

)]
≥

T∑
t=1

wtE{zj}

ℓ
∑
j∈Rt

a2jjz
2
j

 (70)

=

T∑
t=1

wtE{z̃j∼N (0,1)}

ℓ
∑
j∈S

a2jjσ
2
S z̃

2
j +

∑
j∈Rt\S

a2jjσ
2
Rz̃

2
j

 (71)

:= g({ajj}), (72)

where z̃j is a random variable draw from standard Gaussian. Following the same argument as in Lemma B.1, we have the
following claim: to achieve the minimum, we can set (1) a2ℓℓ = a2ℓ′ℓ′ =: α for any ℓ ̸= ℓ′ ∈ S, (2) a2ℓℓ = a2ℓ′ℓ′ := αt for
any ℓ ̸= ℓ′ ∈ Rt \ S,∀t ∈ [T ]. Let Z =

∑
j∈S z̃

2
j and Zt =

∑
j∈Rt\S z̃

2
j ,∀t ∈ [T ]. By symmetry of z̃j’s, all Zt follow the

same distribution. Then

g({ajj}) =
T∑
t=1

wtE
[
ℓ
(
ασ2

SZ + αtσ
2
RZt

)]
(73)

=

T∑
t=1

wtE
[
ℓ
(
ασ2

SZ + αtσ
2
RZ1

)]
(74)

≥ E

[
ℓ

(
ασ2

SZ + σ2
RZ1

T∑
t=1

wtαt

)]
. (75)
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So the minimum is achieved when αti = αtj := β for any ti, tj ∈ [T ], leading to

g({ajj}) = E
[
ℓ
(
ασ2

SZ + βσ2
RZ1

)]
. (76)

Given the constraint αs + Tβ(r − s) =
∑
j a

2
jj ≤ r, 0 ≤ α, β ≤ 1. Following the same argument as in the proof of

Proposition 2.1, we finish the proof.

Given this result we can also analyze the Rademacher complexity of the predictor class similarly as that for the case with
two tasks and obtain a result similar to Proposition 2.2.

Similar to the two-task setting, f(ϕ) = u⊤ϕ with u = O1:k,1:r(A
∗
1:r,1:r)

−1u∗
1 + O1:k,r+1:kv for any v ∈ Rk−r satisfies

f(ϕ∗(x)) = y = (u∗
1)

⊤zR1
, and u∗ = O1:k,1:r(A

∗
1:r,1:r)

−1u∗
1 is the least norm optimal solution. So the predictor class

should be the same as Eqn. ( 5).

Proposition B.3 (General Version of Proposition 2.2). Suppose α > 0. Let v1 =
∑s
j=1(u

∗
1j)

2 and v2 =
∑r
j=s+1(u

∗
1j)

2.
Then the Rademacher complexity of Fϕ∗ in Eqn. ( 5) satisfies∣∣∣∣∣Rm(Fϕ∗)−

√
1

m

(
1

α
v1 +

1

β
v2

)
(sασ2

S + (r − s)βσ2
R)

∣∣∣∣∣ ≤ O

(
max{σ2

S , σ
2
R}

min{σS , σR}

√
1

m

(
1

α
v1 +

1

β
v2

))
. (77)

Proof of Proposition B.3. Following the same argument as in the proof of Proposition 2.2, the Rademacher complexity of
Fϕ∗ with m samples are

Rm(Fϕ∗) =
∥u∗∥2
m

E
z
(i)
R1

[∥∥∥∥∥A∗
1:r,1:r

m∑
i=1

z
(i)
R1

∥∥∥∥∥
2

]
. (78)

Define X := A∗
1:r,1:r

∑m
i=1 z

(i)
R1

. Following the same argument as in the proof of Proposition 2.2, we have

∥X2
j −mασ2

S∥ψ1
≤ C2mασ2

S , j ∈ S, (79)

∥X2
j −mβσ2

R∥ψ1
≤ C2mβσ2

R, j ∈ R \ S, (80)

where C2 is an absolute constants and C2 > 1. Let K = max(C2mασ2
S , C2mβσ2

R) ≤ C2m(σ2
S + σ2

R) and µ :=
m(sασ2

S + (r − s)βσ2
R). By Bernstein’s inequality, we have for every γ ≥ 0 that

P
{∣∣∣∣1r (∥X∥22 − µ)

∣∣∣∣ ≥ γ

}
≤ 2 exp

[
−cmin

(
γ2

K2
,
γ

K

)
r

]
(81)

⇒P
{∣∣∣∣∥X∥22

µ
− 1

∣∣∣∣ ≥ rγ

µ

}
≤ 2 exp

[
− c

C2
2

min

(
γ2

m2(σ2
S + σ2

R)
2
,

γ

m(σ2
S + σ2

R)

)
r

]
, (82)

where c is an absolute constant. We have µ ≤ m(σ2
S+σ2

R)r. Following the same argument as in the proof of Proposition 2.2,
for any δ ≥ 0, we have

P
{∣∣∣∣∥X∥2√

µ
− 1

∣∣∣∣ ≥ δ

}
≤2 exp

[
− c

C2
2

µ2

m2(σ2
S + σ2

R)
2r

δ2
]
. (83)

Changing variables to θ = δ
√
µ, we obtain the desired sub-gaussian tail

P {|∥X∥2 −
√
µ| ≥ θ} ≤2 exp

[
− c

C2
2

µ

m2(σ2
S + σ2

R)
2r

θ2
]
. (84)

By generalization of integral identity, following the same argument as in the proof of Proposition 2.2, we have

|E [∥X∥2 −
√
µ]| ≤C3

m(σ2
S + σ2

R)
√
r

√
µ

(85)

≤
√
2mC3

(σ2
S + σ2

R)

min{σS , σR}
, (86)
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where the last inequality is from µ = m(sασ2
S + (r − s)βσ2

R) ≥ min{σ2
S , σ

2
R}m(sα+ (r − s)β) ≥ min{σ2

S , σ
2
R} 1

2mr
and C3 is an absolute constant. Thus, we have∣∣∣∣∣Rm(Fϕ∗)−

√
1

m

(
1

α
v1 +

1

β
v2

)
m(sασ2

S + (r − s)βσ2
R)

∣∣∣∣∣ = ∥u∗∥2
m

|E [∥X∥2 −
√
µ]| (87)

≤ O

(
max{σ2

S , σ
2
R}

min{σS , σR}

√
1

m

(
1

α
v1 +

1

β
v2

))
. (88)

C. More Experiments Details and Results
C.1. Dataset

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60,000 32× 32 color images in 10 classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. Each class has 6,000 images. There are 50,000 training images and
10,000 test images.

CINIC-10. CINIC-10 (Darlow et al., 2018) consists of 32 × 32 color images from both CIFAR and ImageNet and has
90,000 training images with ten classes identical to CIFAR-10.

SVHN. The Street View House Numbers (Netzer et al., 2011) contains 10 digits color images of size 32× 32 in natural
scene. It has 73,257 digits for training and 26,032 digits for testing.

GTSRB. The German Traffic Sign Recognition Benchmark (Stallkamp et al., 2012) is a dataset of color images depicting
43 different traffic signs. The images are not of fixed dimensions and have a rich background and varying light conditions as
expected of photographed images of traffic signs. The original training set contains 34,799 images, and the original test
set contains 12,630 images. We resize each image to 32×32. The dataset has a significant imbalance in the number of
sample occurrences across classes. We use data augmentation techniques to enlarge the training data and balance the number
of samples in each class. We construct a class preserving data augmentation pipeline consisting of rotation, translation,
and projection transforms and apply this pipeline to the training images until each class contains 2,500 examples. So we
construct a new training set containing 107,500 images in total. We also construct a new test set by randomly selecting
10,000 images from the original test set for evaluation.

ImageNet32. ImageNet32 (Deng et al., 2009) is a huge dataset made up of small images called the down-sampled version
of ImageNet. ImageNet32 is composed of 1,281,167 training data and 50,000 test data with 1,000 labels.

MNIST. The Modified National Institute of Standards and Technology (LeCun et al., 1998) is a database of handwritten
gray-scale digits of size 28× 28. It contains 60,000 training images and 10,000 testing images.

EMNIST. Extended MNIST (Cohen et al., 2017) includes images of handwritten letters and digits. The images in EMNIST
were converted into the same size 28 × 28 by the same process as MNIST. EMNIST-Letters has 145,600 lower case
characters with 26 balanced classes, and EMNIST-Digits has 280,000 characters with ten balanced classes.

Fashion-MNIST. Fashion-MNIST (Xiao et al., 2017) is a dataset of 28× 28 gray-scale images with ten classes: T-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot. The training set size is 60,000, and the test set size is
10,000.

C.2. Ablation Study

Varying Target-Relevant pre-training Data Percentage. In Fig. 3 and 4, we use (a) 100% (b) 50% (c) 20% CINIC-10 to
train MoCo v2 and SimSiam, and keep the same setting as Fig. 1. For Fig. 3 (b) with 50% CINIC-10, test accuracy drops,
e.g., the test accuracy of 1% CIFAR-10 in Fig. 3 (a) 80.63% vs. (b) 76.45%. We can also see the decreasing curve in Fig. 3
(b). On the other hand, we also have test accuracy drops in Fig. 3 (c) and Fig. 4 (b) (c). However, we can see a U-curve
rather than a strictly decreasing curve in Fig. 3 (c) and Fig. 4 (b) (c). ImageNet32 is more relevant with CIFAR-10 than
SVHN and GTSRB, consistent with human intuition. When we have a small partition of CINIC-10 which does not cover
all target relevant features, the feature extractor can learn these missing features from ImageNet32. Although there are
many irrelevant features in ImageNet32, the positive effect is larger than the negative effect, and so it plots a U-curve. It is
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Figure 3. Trade-off on CIFAR-10 for MoCo v2 with varying target relevant pre-training data percentage.
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Trade-off on CIFAR-10 for SimSiam pretrained on 50% CINIC-10
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Figure 4. Trade-off on CIFAR-10 for SimSiam with varying target relevant pre-training data percentage.

consistent with our statement that we need a large and target relevant pre-training dataset rather than a diverse irrelevant one.
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Figure 5. Trade-off on CIFAR-10 for MoCo v2 and SimSiam pre-trianed on CIFAR-10.

Replacing CINIC-10 With CIFAR-10. In Fig. 5, we keep the same setting as Fig. 1 except we replace CINIC-10 with
CIFAR-10. Note that our downstream task is still CIFAR-10. In Fig. 5, we can see the same phenomena and similar
performance as Fig. 1. Thus, if we have a good choice of a task-relevant pre-training dataset, we can get similar performance
as pre-training on the downstream task domain directly.


