
PC-LORA: PROGRESSIVE MODEL COMPRESSION
WITH LOW RANK ADAPTATION

Injoon Hwang1∗, HaeWon Park1∗, Jooyoung Yang1, SunJae Maeng1, Youngwan Lee1 2 3†
1MODULABS, South Korea
2Electronics and Telecommunications Research Institute (ETRI), South Korea
3Korea Advanced Institute of Science and Technology (KAIST), South Korea

ABSTRACT

This work presents Progressive Compression LoRA (PC-LoRA), a novel exten-
sion of Low-Rank Adaptation (LoRA), designed to enable model compression
and parameter-efficient fine-tuning. To mitigate the computational costs of large-
scale models, PC-LoRA introduces a approach of decaying model weights to
zero. This method allows to model compression and efficient fine-tuning by pro-
gressively reducing the pre-trained weights during the fine-tuning process until
they are completely removed. Through empirical analysis on various models, we
demonstrate that PC-LoRA significantly reduces computational costs with minor
performance degradation. Compared to full fine-tuning and LoRA fine-tuning,
PC-LoRA shows an average performance drop of -3.085%. Despite this, our
method substantially compresses models, by 94.1% / 89.1% in parameters and
FLOPs for vision models, and achieves a 93.5% parameter and 84.2% Flops re-
duction for NLP models.

Figure 1: Progressive Compression LoRA (PC-LoRA): The overall diagram of PC-LoRA method.
At each training step, the pre-trained weights ’W’ gradually decay, eventually disappears and only
the Low Rank Adapter corresponding weights ’A’, ’B’, and ’C’ remain. Weights A and B are the
low-rank (r) adapters’ weights, and C is the low-rank adapter’s bias.

1 INTRODUCTION

Since the introduction of pre-trained models from the Transformer (Vaswani et al., 2017), they have
demonstrated exceptional performance across various Natural Language Processing (NLP) (Brown
et al., 2020; Devlin et al., 2019) and Computer Vision (CV) (Dosovitskiy et al., 2021; Carion et al.,
2020; Wang et al., 2021) tasks. However, their massive size and computational costs present chal-
lenges in deployment and fine-tuning. To overcome these obstacles, parameter-efficient fine-tuning
methods such as Prefix Tuning (Li & Liang, 2021), P-Tuning (Liu et al., 2021), Prompt Tuning
(Lester et al., 2021), adapters (Houlsby et al., 2019), and Low-Rank Adaptation (LoRA) (Hu et al.,
2022) have been developed. LoRA, in particular, introduces trainable low-rank matrices to trans-
former layers, significantly reducing the number of trainable parameters for fine-tuing. However,
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since LoRA relies on the pre-trained model as a backbone, it still demands significant memory for
inference, similar to the original pre-trained model.

Based upon the foundation of LoRA, we question “Can we make it representative enough with
just LoRA weights at the final phase of finetuning without the pre-trained weights?” To find the
answer to this question, we propose a Progressive Compression-LoRA (PC-LoRA) method, which
gradually reduces the pre-trained weights (i.e., the base weights) during fine-tuning until they are
completely removed as shown in Figure 1. We intentionally decay the original weights of a model,
and this process ensures that the low-rank adapter learns the original weights’ representations, while
simultaneously updating the weights for downstream tasks. By this approach, PC-LoRA achieves a
dual purpose of low-rank compression and parameter-efficient fine-tuning.

PC-LoRA provides several benefits, such as decreased floating-point operations (FLOPs), a more
compact model size, and versatility due to its layerwise approach. Our method cuts computa-
tional costs significantly while preserving accuracy, achieving up to 94.1%p parameter reduction
and 89.1%p Flops decrease for CV models, and up to 93.5%p parameter and 84.2%p Flops reduc-
tion for NLP models. Additionally, due to its orthogonality to other model compression strategies,
such as quantization (Jacob et al., 2017; Dettmers et al., 2023) and knowledge distillation (Romero
et al., 2015; Hinton et al., 2015), PC-LoRA can be combined with various compression methods.

2 RELATED WORKS

Low-Rank Adaptation (LoRA) LoRA optimize the fine-tuning by adding a small set of trainable
parameters, while the original model parameters remain frozen. This is achieved by constraining
the update of a pre-trained weight matrix W0 to a low-rank structure, represented as W0 +∆W =
W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank r is significantly smaller than the minimum
of d and k. During training, W0 is kept static, and gradient updates are applied only to A and B.
The adaptation is applied as h = W0x+∆Wx = W0x+BAx, ensuring that W0 and ∆W = BA
are multiplied by the same input x, and their output vectors are summed coordinate-wise to yield the
modified output h. Our approach adds weight decay scheduling and a bias term to LoRA, decaying
parameters for model compression and enhancing weight restoration.

Low-rank factorization Low-rank factorization is a technique to reduce model size by decom-
posing weight matrices into products of smaller matrices. Singular Value Decomposition (SVD)
is typically employed, where a matrix A is split into UΣV T : U and V T are orthogonal matrices
containing left and right singular vectors, respectively, and Σ is a diagonal matrix of singular values.
This compression method has evolved to include both fixed and variable rank approaches during
training, with the former utilizing SVD or tensor decomposition on pre-trained networks (Lebedev
et al., 2015; Sainath et al., 2013) and the latter adapting the rank dynamically (Ioannou et al., 2016;
Wen et al., 2017). Despite the sophistication of these methods, the process still revolves around
SVD, demanding high computational resources. However, our PC-LoRA approach achieves Low
Rank Approximation without needing actual SVD operations.

3 APPROACH: PC-LORA

We present Progressive Compression with Low-Rank Adaptation, called PC-LoRA, designed to
incrementally compress a model by progressively reducing and eventually eliminating pre-trained
weights during fine-tuning. In this method, the original weight, along with the LoRA weight, is
used together in the forward pass output, where the original weight gradually decays and eventually
disappears, leaving only the LoRA weight as the final result. More detailed information will be pro-
vided in the following paragraph. A detailed diagram illustrating our approach and its underpinning
principles can be found in Figure 1.

PC-LoRA Layer: Similar to the original LoRA method, our PC-LoRA replaces the model’s linear
layers with PC-LoRA linear layers while preserving original weights and biases. It introduces a
decay factor d, progressively reducing the influence of the original model parameters. LoRA weight
C controls the bias, allowing to correct bias dynamically. Initially, A is set with a random Gaussian
distribution, B at zero, and C also at zero, so BA starts at zero.
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Training Configuration: The model’s output is computed by combining the decay factor-scaled
original output (Di) and the LoRA output (Li). Here, i represents the index of the current LoRA
layer in the model. While training, the final output (Fi) is computed as:

Di = d(Wi(xi)), (1)
Li = Bi(Ai(xi)) + Ci, (2)
Fi = Di + Li. (3)

LoRA weights Ai, Bi, and Ci are updated during fine-tuning, while the original weights (Wi) and
bias are frozen. The bias term is omitted for simplicity in Equation 1. PC-LoRA method’s loss
optimization is based on the target (ground-truth), for instance, in a classification task, we utilize
classification labels and optimize it using classification loss such as cross-entropy.

After progressive compression has been completed through training, the model relies only on LoRA
output (Li), aiming to replace the original model weights with the LoRA weights after training:

Fi = Li (4)

We also investigated the feasibility of training solely with Equation 4, without our weight decay
scheduling method; we found that learning was completely unattainable.

Weight Decay Scheduling: The process follows three phases. In the Warm-Up (0%-5% Itera-
tions) phase, d(n) = 1 which allows the model to fully utilize the original outputs and adjust to new
data without initiating weight decay. During the Decay (5%-85% Iterations) phase, d(n) transi-
tions from 1 to 0, gradually diminishing the influence of the original weights and shifting to LoRA
weights. Finally, in the Cool-Down (≥85% Iterations) phase, d(n) = 0 where the focus shifts to
fine-tuning with LoRA weights exclusively, leading to a compact model that preserves performance.

The equation and graph of decay factor d is as follows:

d(n) =


1 for n ≤ a

− n
b−a + a+b

b−a for a < n < b

0 for n ≥ b

(5)

Figure 2: Weight Decay Scheduler

n represents the current step, a = ⌊0.05N⌋ and b = ⌊0.85N⌋ indicate decay start and end steps,
respectively, for total iterations N .

To summarize, during training, our method utilizes both the decayed original output and the LoRA
output as per Equation 3 ; however, the final outcome is composed exclusively of the LoRA out-
put, following the form of Equation 4. Consequently, our approach involves fine-tuning through
updates to the weights corresponding to the LoRA output, while simultaneously achieving model
compression.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In our study, we assessed model performances in two benchmark tasks: text classification using the
IMDb (Maas et al., 2011) dataset and image classification with the CIFAR-10 (Krizhevsky, 2009)
dataset. Training details are provided in Appendix A and B. We conducted comparisons of PC-LoRA
against two baseline methods. The first baseline method, Full Fine-Tuning (Full-FT),
involves updating all the parameters of a pre-trained model. The second baseline method, LoRA
Fine-Tuning (LoRA-FT) integrates LoRA into the pre-trained model. LoRA was applied
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CIFAR10 IMDb

Model Setting Acc(%) GFlops Param(M) Model Setting Acc(%) GFlops Param(M)

ViT-base/DINO
Full-FT 97.97 16.87 85.81

BERT
Full-FT 94.00 48.37 109.48

LoRA-FT 97.86 16.87 85.81 LoRA-FT 94.01 48.37 109.48
PC-LoRA 93.28 1.06 5.59 (94.1%↓) PC-LoRA 90.83 7.599 29.34 (93.5%↓)

ViT-base/Clip
Full-FT 98.07 16.87 85.81

XLNET
Full-FT 94.00 60.45 117.31

LoRA-FT 98.14 16.87 85.81 LoRA-FT 95.21 60.45 117.31
PC-LoRA 93.90 1.07 5.59 (94.1%↓) PC-LoRA 93.53 32.97 63.12 (58.3%↓)

R50-ViT-base
Full-FT 98.72 20.94 97.90

ELECTRA
Full-FT 95.33 48.37 109.48

LoRA-FT 98.60 20.94 97.90 LoRA-FT 94.63 48.37 109.48
PC-LoRA 97.11 5.14 17.68 (94.1%↓) PC-LoRA 91.12 7.599 29.34 (93.5%↓)

ViT-base/MAE
Full-FT 96.20 16.87 85.81

ROBERTA
Full-FT 94.67 48.37 124.65

LoRA-FT 96.12 16.87 85.81 LoRA-FT 94.40 48.37 124.65
PC-LoRA 93.90 1.06 5.59 (94.1%↓) PC-LoRA 90.62 7.599 44.50 (93.6%↓)

Table 1: Comparison of PC-LoRA with Full-FT, and LoRA-FT methods applied on various pre-
trained models with CIFAR10 and IMDb Benchmarks. GFlops and Params are measured during
inference. The values in parentheses indicate the reduction in parameters of the model with LoRA-
FT applied, compared to when PC-LoRA is applied, both excluding the embedding layers.

across all linear layers except for the embedding layers, with a set rank of 32. For PC-LoRA method,
we adopted the same settings with LoRA-FT baseline. As previously described in our method,
training was conducted solely on the layers that were adapted to low rank.

4.2 MAIN RESULTS

Table 1 presents a comparative analysis of the performance of various vision and language models
on the CIFAR10 and IMDbbbenchmarks, utilizing Full-FT, LoRA-FT, and the proposed PC-LoRA
method. The performance of Full-FT and LoRA-FT is similar. When compared to the LoRA-FT
method, which uses the same number of parameters for training, the PC-LoRA method shows an
average performance degradation of about -3.085%p. Despite such performance degradation, the
final outcome of PC-LoRA is a compressed model, resulting in a reduction of 94.1%p excluding
the embedding layers, and an average 89.1%p decrease in total GFlops in vision models. For NLP
models, also excluding the embedding layer, the reductions are about 93.5%p, and 84.2%p in total
GFlops. Due to the unique structure of the XLNet model, where our method was not applied to the
attention layers, the reduction in model parameters is 58.3%p, and GFlops decrease by 45.4%p. As
the results indicate, the PC-LoRA method demonstrates a favorable trade-off on both CIFAR10 and
IMDb benchmarks, by significantly reducing the GFlops and model parameters while only modestly
compromising accuracy.

Additionally, as mentioned in the Approach: PC-LoRA section, an ablation study was conducted
to assess the performance of training solely with the weights of the LoRA without weight decay
scheduling. This study revealed that, in the absence of weight decay scheduling method, the models
were unable to learn, resulting in negligible accuracy of 50% for IMDb (which has two classes),
and 10% for CIFAR10 (which has ten classes). This underscores the critical role of weight decay
scheduling in facilitating the learning process for our method.

5 CONCLUSION

PC-LoRA introduces a novel approach for simultaneous model compression and parameter-efficient
fine-tuning. By deliberately decreasing and then recovering model weights with low-rank adapta-
tions, PC-LoRA facilitates fine-tuning for new tasks while compressing the model. Our method
effectively reduces computational costs without greatly affecting performance.

Future works We should focus on searching for a more (1) optimized weight decay scheduler
that enhances compression performance. Additionally, we plan to incorporate a (2) knowledge
distillation(KD) loss term (Hinton et al., 2015) into current loss function as a regularization term.
Considering the pre-trained model’s output as a teacher target, we can compute the KD loss term
between this target and the LoRA’s output, treating the latter as a student. Furthermore, we will
compare our approach with other model compression approaches such as pruning (Liu et al., 2019b)
and low-rank factorization (Hsu et al., 2022).
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A TRAINING DETAILS

A.1 DATASETS

The IMDb dataset includes 50,000 movie reviews, evenly divided between training and testing sets.
The CIFAR-10 dataset contains 60,000 color images in 10 classes, split into 50,000 for training and
10,000 for testing.

A.2 SETTINGS FOR TRAINING

For the optimization of the PC-LoRA method, we used AdamW (Loshchilov & Hutter, 2019) opti-
mizer, exploring learning rates within 1e-2, 1e-5. In terms of learning rate scheduling, we adopted
CosineAnnealingLR (Loshchilov & Hutter, 2017), which is set with a minimum value of 0. We
used the batch size to be 64 for CIFAR-10 image classification task and 20 for IMDB text classi-
fication task. The image classification was trained for 62,500 iterations, and the text classification
task, 100,000 iterations. Additionally, all experiments were conducted on RTX 5000 GPUs using
PyTorch version 2.1, Python 3.10, and CUDA 11.8.0.

B MODELS INFORMATION

We employed base versions of various pre-trained models. We used Bert-base (Devlin et al., 2019),
XLNet-base (Yang et al., 2020), RoBERTa-base (Liu et al., 2019a), and ELECTRA-base (Clark
et al., 2020) for text classification task, which were sourced from the HuggingFace Transform-
ers library. For image classification task , we used ViT-base (Dosovitskiy et al., 2021), ViT-
base/DINO (Caron et al., 2021), Clip-ViT-base (Radford et al., 2021), ViT-base-MAE (He et al.,
2021), and R50-ViT hybrid (Dosovitskiy et al., 2021), which incorporates the ResNet-50 architec-
ture, sourced from the ’timm’ library.

DOWNLOAD LINKS FOR PRE-TRAINED MODELS

1. ViT-base/DINO : https://huggingface.co/timm/vit base patch16 224.dino
2. ViT-base/Clip : https://huggingface.co/timm/vit base patch16 clip 224.openai
3. R50-ViT-base : https://huggingface.co/timm/vit base r50 s16 224.orig in21k
4. ViT-base/MAE : https://huggingface.co/timm/vit base patch16 224.mae
5. Bert-base : https://huggingface.co/bert-base-uncased
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6. XLNet-base : https://huggingface.co/xlnet/xlnet-base-cased
7. RoBERTa-base IMDB : https://huggingface.co/FacebookAI/roberta-base
8. ELECTRA-base: https://huggingface.co/google/electra-base-discriminator

DOWNLOAD LINKS FOR FINE-TUNED MODELS

1. Bert-base IMDB : https://huggingface.co/nikitakapitan/bert-base-uncased-finetuned-imdb
2. XLNet-base IMDB : https://huggingface.co/pig4431/IMDB XLNET 5E
3. RoBERTa-base IMDB : https://huggingface.co/aychang/roberta-base-imdb
4. ELECTRA-base: https://huggingface.co/pig4431/IMDB ELECTRA 5E
5. R50-ViT-base Cifar10 : https://console.cloud.google.com/storage/browser/vit models/imagenet21k

For these three models, ViT-base/DINO, ViT-base/CLIP, and ViT-base/MAE, we have conducted
fine-tuning on CIFAR-10 by searching for the optimal hyperparameters.
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https://huggingface.co/xlnet/xlnet-base-cased
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/google/electra-base-discriminator
https://huggingface.co/nikitakapitan/bert-base-uncased-finetuned-imdb
https://huggingface.co/pig4431/IMDB_XLNET_5E
https://huggingface.co/aychang/roberta-base-imdb
https://huggingface.co/pig4431/IMDB_ELECTRA_5E
https://console.cloud.google.com/storage/browser/vit_models/imagenet21k
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