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Abstract
Transformer-based architectures have demon-
strated strong capability in capturing global de-
pendencies for CSI feedback, yet their high com-
putational overhead limits practical deployment.
In contrast, CNNs are more efficient and excel at
extracting local features, but struggle with long-
range modeling. To leverage the complementary
strengths of both, we propose TCNet, a hybrid
framework combining CNNs and a Swin Trans-
former to achieve accurate reconstruction with
reduced complexity. Beyond lossy compression,
we further introduce a language model-based loss-
less coding scheme that significantly improves
bit-level efficiency. Unlike conventional fixed-
length or entropy-based encoding methods, our
approach employs a lightweight language model
as a universal probability estimator for variable-
length arithmetic coding. To ensure compatibility
with communication data, we design an alignment
mechanism that maps CSI representations into a
token structure suitable for language modeling.
This alignment enables our method to generalize
to other compression tasks in wireless commu-
nications. Experimental results on COST2100
demonstrate that our framework achieves the best
NMSE–bit rate trade-offs, highlighting the poten-
tial of integrating language modeling with com-
pression task in wireless communications.

1. Introduction
Massive multiple-input multiple-output (MIMO) has
emerged as a cornerstone technology for 5G and future
6G wireless systems, enabling simultaneous service to a
large number of users and devices by equipping base sta-
tions with hundreds or even thousands of antennas (Dong
et al., 2020). Central to its performance is the acquisition
of accurate channel state information (CSI), which captures
signal propagation characteristics such as scattering, fading,
and path loss (Shafin & Liu, 2018). CSI enables precise
beamforming, optimized spatial resource allocation, and ro-
bust interference management. However, obtaining accurate

CSI in dynamic wireless environments remains challenging
and necessitates efficient channel estimation and feedback
mechanisms.

Massive MIMO supports both time division duplexing
(TDD) and frequency division duplexing (FDD) (Chan et al.,
2006), as shown in Figure 1. While TDD systems benefit
from channel reciprocity to infer downlink CSI from up-
link measurements, FDD systems operate over separate
frequency bands, breaking this reciprocity. As a result,
downlink CSI must be estimated at the user equipment and
fed back to the base station. With increasing antenna counts,
the CSI feedback overhead in FDD systems grows linearly,
posing significant challenges to scalability and spectral effi-
ciency. Addressing the CSI acquisition and feedback bottle-
neck in FDD massive MIMO is thus critical for unlocking
its full potential (Wen et al., 2018).

第六代移动通信技术与CSI反馈
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1 研究背景
移动通信标准 时间 标准系统 关键技术

4G 2010s ITU-2010 OFDM、IPv6、MIMO等

5G 2020s ITU-2020 毫米波、SDN、大规模MIMO等

6G 2030s（预计） ITU-2030（预计） RIS、OTFS、AI等（预计）
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Chan P W C, Lo E S, Wang R R, et al. The evolution path of 4G networks: FDD or TDD?[J]. IEEE Communications
Magazine, 2006, 44(12): 42-50.

CSI reciprocity is unavailable

Figure 1. CSI feedback in Massive MIMO systems.

Traditional CSI compression methods such as compressed
sensing, are fundamentally limited by their reliance on pre-
defined signal models. In practice, especially under com-
plex noise conditions or non-ideal sampling scenarios, these
methods often suffer from degraded performance due to
incomplete prior knowledge. To overcome such limitations,
data-driven approaches rooted in deep learning have gained
increasing attention for their ability to learn signal structures
directly from data without explicit analytical models.

A milestone in this direction was set by Wen et al. in 2018
with the introduction of CsiNet (Wen et al., 2018), which
marked the first application of deep learning to CSI feed-
back. By adopting an end-to-end encoder–decoder architec-
ture, CsiNet (Wen et al., 2018) significantly improved the
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efficiency of CSI compression and reconstruction. Follow-
ing this breakthrough, numerous extensions were proposed,
including CsiNet-LSTM (Wang et al., 2018) with temporal
modeling, Attention-CSI (Cai et al., 2019) incorporating
attention mechanisms, and CsiNet+ (Guo et al., 2020) us-
ing higher-resolution convolutional kernels. For scenarios
requiring low computational complexity, CRNet (Lu et al.,
2020) achieved notable reductions in FLOPs while preserv-
ing reconstruction quality. CLNet (Ji & Li, 2021) further
enhanced accuracy in the complex domain with minimal
computational overhead. Recognizing the limitations of con-
volutional neural networks (CNN) in capturing long-range
dependencies, researchers began exploring Transformer-
based architectures for CSI feedback. TransNet (Cui et al.,
2022), for example, replaced CNN-based encoders with
dual-layer Transformer modules, enabling more effective
modeling of global CSI features across compression rates.

Transformer-based architectures (Cui et al., 2022) have
demonstrated remarkable capability in modeling long-range
dependencies and capturing global contextual information,
making them attractive for CSI feedback. However, their
high computational complexity and extensive memory re-
quirements pose significant challenges, especially in scenar-
ios with limited hardware resources or strict latency con-
straints. In contrast, CNN-based methods are computation-
ally more efficient and particularly effective at extracting
local spatial features, but they struggle to capture global
relationships inherent in CSI. This complementary nature
of CNNs and Transformers motivates the design of a hybrid
architecture that balances global modeling capacity with
computational efficiency, which forms a central research
objective of this work.

Deep learning-based methods have greatly reduced the vol-
ume of CSI. However, as the compression ratio increases,
reconstruction quality tends to degrade significantly. Effi-
cient encoding of the compressed CSI is thus crucial, as it
directly impacts the overall compression performance. Cur-
rent deep learning-based CSI compression approaches typi-
cally employ fixed-length encoding schemes, which suffer
from limited coding efficiency despite their low computa-
tional complexity. In contrast, variable-length coding offers
higher encoding efficiency by adapting to the actual data
distribution. However, its performance heavily relies on the
accuracy of the underlying probability model. Some previ-
ous approaches employ entropy models (Yang et al., 2019)
trained over extended periods to obtain the probability dis-
tribution. While entropy models can capture source distribu-
tions relatively accurately, their training is time-consuming
and they exhibit limited generalization. Recently, language
models have emerged as powerful universal probability es-
timators. To tackle the challenge of effectively encoding
CSI, we Leverage a suitably scaled language model as a
distribution predictor for CSI, significantly enhancing the

efficiency of the encoding process, offering a promising
alternative to traditional entropy models.

To summarize, the main contributions of this paper are as
follows:

• We propose a novel CSI feedback framework that in-
tegrates a deep learning-based lossy compression net-
work with a language model-based lossless coding
module, which not only reduces computational com-
plexity but also improves the overall quality of CSI
feedback.

• We are the first to integrate CNN and Transformer ar-
chitectures for CSI feedback, effectively combining
their strengths in local feature extraction and global
context modeling, while maintaining compatibility
with practical computational complexity constraints.

• To the best of our knowledge, this is the first work to
explore the use of language models for lossless CSI
encoding. By utilizing the powerful distribution mod-
eling capabilities of language models, our approach
achieves higher coding efficiency and lower transmis-
sion bit rates.

• We introduce a quantized symbol alignment strategy
that enables effective integration of CSI data with lan-
guage model tokenization. This method is not limited
to CSI, but can be generalized to other types of com-
munication data, broadening the applicability of our
lossless coding approach.

2. System Model
As shown in Figure 2, We consider a FDD massive MIMO
system, where the base station (BS) is equipped with
Nt transmit antennas, and each user equipment (UE) is
equipped with Nr receive antennas. The system bandwidth
is divided into Nc subcarriers in the frequency domain.
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Figure 2. CSI feedback scheme in Massive MIMO FDD systems.
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Figure 3. The proposed CSI feedback network TCNet.

Accordingly, the downlink CSI for a user can be modeled as

H =


h0,0 h0,1 ... h0,Nt−1

h1,0 h1,1 ... h1,Nt−1

...
...

. . .
...

hNc−1,0 hNc−1,1 ... hNc−1,Nt−1

 , (1)

where the i-th row corresponds to the channel coefficients
of the i-th subcarrier, and the j-th column represents the
channel response associated with the j-th transmit antenna.
Although the CSI contains rich but redundant information, it
exhibits a highly sparse structure once transformed into the
angle-delay domain via a two-dimensional Discrete Fourier
Transform (2D DFT). This sparsity arises from the physical
characteristics of wireless propagation, where the number
of dominant transmission paths is inherently limited due to
the predictable nature of the surrounding environment. Con-
sequently, most of the signal energy is concentrated along
a few significant paths, while the contributions from other
paths are negligible. The transformation can be expressed
as

hk,l =
1

NcNt

Nc−1∑
m=0

Nt−1∑
n=0

hm,ne
−j2π( km

Nc
+ nl

Nt
), (2)

where k = 0, 1, ..., Nc−1 and l = 0, 1, ..., Nt−1 represent
the channel coefficient corresponding to the k-th delay and
the l-th angular direction in the angle-delay domain.

Let the transformed CSI matrix be denoted as H′. the ma-
jority of the energy in H′ is concentrated within the first
Na rows (Na ≪ Nc), while the remaining entries are ap-
proximately zero. Therefore, it is reasonable to approximate
H′ by retaining only its first Na rows, constructing a low-
dimensional representative matrix Ha, as expressed by

Ha = Truncaterow(H′), rows = 0, 1, 2, ..., Na − 1. (3)

Although the dimension of Ha is reduced, there is still
need to design compressors fc(.) and encoders fe(.) to
further compress and encode Ha for CSI feedback following
equation (4).

v = fc(Ha),

b = fe(v),
(4)

where v is the CSI vector compressed by deep learning-
based compressor and b is the bit stream. At the receiver,
a decoder fd(.) and a reconstructor fdc(.) are employed to
recover the CSI from the received b, as expressed by

v′ = fd(b),

H′
a = fdc(v

′),
(5)

where v′ and H′
a respectively represent the decoded vector

and reconstructed CSI.

3. Design of TCNet
3.1. General Framework

Figure 3 illustrates the whole feedback network TCNet we
propose. TCNet incorporates a hybrid Transformer–CNN
architecture for feature encoding and decoding, along with a
uniform quantization module, an ASCII-level discretization
component, a probabilistic language modeling unit, and an
adaptive arithmetic coder. This integrated design enables
efficient CSI compression while preserving high reconstruc-
tion fidelity.

At the encoder side, the original CSI matrix is first trans-
formed into a sparse frequency-domain representation via
2D DFT. After removing zero-valued elements, the sparsi-
fied CSI is passed through the Transformer–CNN-based
compressor to extract compact feature representations.
These feature vectors are then activated using a sigmoid
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Figure 4. The proposed Mixed Transformer-CNN-based Lossy Compressor.

function as expressed by

Sigmoid =
1

1 + e−x
. (6)

Subsequently, the CSI feature vectors are uniformly quan-
tized using a n-bit quantizer. The quantized data are then
converted into symbol sequences through an ASCII-based
tokenization scheme. A language model is employed to
learn the global dependencies among tokens and to con-
struct the corresponding probability distribution. Based on
this distribution, an adaptive arithmetic coder performs loss-
less encoding on the token sequence, generating a compact
bitstream for transmission.

At the decoder side, the received bitstream is decoded using
arithmetic decoding guided by the same language model’s
probability distribution, thereby recovering the original to-
ken sequence. The ASCII detokenization module then maps
the tokens back to quantized values, which are subsequently
dequantized. Finally, a logit function is applied to recon-
struct the activated feature values, completing the decoding
process, as expressed by

Logit = ln
y

1− y
. (7)

Subsequently, the CSI is reconstructed using the decoder
module based on the Transformer–CNN architecture. Zero-
padding is then applied to restore the frequency-domain
representation to its original full matrix shape. Finally, an
inverse discrete Fourier transform (IDFT) is performed to
convert the CSI from the frequency domain back to the

time domain, thereby completing the reconstruction of the
original CSI.

In TCNet, both tokenization and detokenization are entirely
lossless. However, the quantization and dequantization steps
inherently introduce quantization errors, which directly af-
fect the fidelity of the reconstructed data.

3.2. Mixed Transformer-CNN-based Lossy Compressor

Existing lossy CSI compression methods are typically built
upon either CNNs or Transformer architectures. While
CNNs exhibit strong capabilities in capturing local features,
they are inherently limited in modeling long-range depen-
dencies. On the other hand, Transformers excel at learning
global contextual relationships but often struggle with pre-
serving fine-grained local spatial details, which are critical
for accurately reconstructing complex CSI distributions.

To address these limitations and motivated by TCM network
(Liu et al., 2023), this paper proposes a hybrid network ar-
chitecture that integrates the strengths of both CNNs and
Transformers, as shown in Figure 4. The proposed design
aims to achieve an effective balance between local feature
extraction and global semantic modeling, while also reduc-
ing computational complexity.

To begin with, the processed CSI Ha is fed into two parallel
convolutional branches. The first branch consists of three
sequential convolutional blocks for hierarchical feature ex-
traction. It begins with a convolutional block using a 9×9
kernel with batch normalization and ReLU activation (CBR),
followed by a 1×11 CBR, and then a 11×1 convolutional

4
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block with only convolution and batch normalization. The
output is then passed into a TransConv module, a hybrid
Transformer–CNN unit designed to capture both global and
local features.

The second branch contains a 9×9 CBR, followed by a
TransConv module. Outputs from both branches are con-
catenated and passed through a 1×1 CBR to extract element-
wise features, followed by another TransConv module for
further representation learning. Finally, a fully connected
layer compresses the output into a feature vector sequence
according to the desired compression ratio.

In the decoding stage, the compressed feature vector is first
projected back to its original size using a fully connected
layer. This is followed by a 9×9 convolutional block and a
TransConv module to integrate both local and global infor-
mation. The reconstructed CSI is then progressively refined
through three TCBlock modules. Each TCBlock is based on
a residual design inspired by ResNet (He et al., 2016), and
includes a TransConv module whose configuration differs
from the encoder in terms of convolutional and attention
dimensions. This adjustment allows the decoder to better
reconstruct global features from higher-dimensional rep-
resentations. A 1×1 convolutional block is then used to
enhance detail-level accuracy. After passing through all
three TCBlocks, the final CSI matrix is reconstructed using
a sigmoid activation function.

3.3. Language Model-Based Arithmetic Coding

Pretrained large language models (LLMs) have demon-
strated strong potential for lossless compression across
various data modalities, including text, images, and audio
(Delétang et al., 2023). This success is largely attributed to
the extensive and diverse nature of the training corpora used

to build such models. However, data of communications
such as CSI exhibits statistical characteristics that differ sig-
nificantly from those of natural language or visual data. As
a result, directly applying pretrained LLMs for modeling the
distribution of CSI tends to yield suboptimal compression
performance. To address this issue, we propose retraining a
language model specifically tailored to the statistical proper-
ties of CSI. Furthermore, to meet the real-time requirements
of CSI feedback, we adopt a lightweight single-layer Trans-
former (Vaswani et al., 2017) as our probabilistic predictor.

Figure 5 illustrates the proposed language model-based cod-
ing scheme. At the encoder, the CSI feature vector gen-
erated by the lossy compressor is first processed through
n-bit uniform quantization, producing a sequence of 2n dis-
crete symbols S = {0, 1, 2, ..., 2n − 1}. These symbols are
then tokenized into a sequence of ASCII characters A, as
expressed by

A =

 02 → STX(Start Of Text),
10 → NL(New Line),
......

 . (8)

These characters are input to the trained language model
LM(.), predicting the conditional probability distribution of
each character based on its contextual history, as expressed
by

ρ = LM(A). (9)

These predicted probabilities are then used by an adap-
tive arithmetic encoder to produce a compact, lossless bit-
stream for transmission. We apply infinite precision arith-
metic coders and refer to (Witten et al., 1987) for the finite-
precision implementation. To be precise, arithmetic encod-
ing represents a sequence of symbols as the binary represen-
tation of a real number λ within the interval [0, 1). The en-
coding process progressively narrows this interval to isolate

5
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a unique subinterval corresponding to the entire symbol se-
quence. Initially, the full interval is defined as [0, 1). At each
encoding step, the current interval Ik−1 = [lk−1, uk − 1)
is partitioned into multiple sub-intervals Ĩk(x1), Ĩk(x2), ...,
each associated with a distinct symbol from a predefined
alphabet X = x1, x2, ..., xN . These sub-intervals are sized
in proportion to the conditional probability of each symbol
given the preceding context. We employ

Ĩk(x) =

[
lk−1 + (uk−1 − lk−1)×

∑
y<x

ρ (y | x<k)

+ (uk−1 − lk−1)×
∑
y≤x

ρ (y | x<k)

]
. (10)

To encode the symbol at position k, the interval from the
previous step is subdivided based on the symbol probabil-
ities conditioned on all prior symbols. The sub-interval
assigned to a given symbol is calculated by accumulating
the probabilities of all symbols that precede it in the prede-
fined ordering, thus determining the lower and upper bounds
of the current interval. The encoder then selects the sub-
interval corresponding to the current symbol as the updated
interval for the next step.

At the decoder, the process is reversed. Starting with a pre-
defined placeholder token, the language model estimates
the probability distribution of the first character. This dis-
tribution, combined with the received bitstream, is passed
to the arithmetic decoder to recover the first ASCII char-
acter. The recovered character and the placeholder token
form the context for predicting the next character, and this
process continues iteratively until the entire ASCII string is
reconstructed. The reconstructed character sequence is then
mapped back to quantized values via ASCII detokenization
and subsequently dequantized to restore the CSI feature
vector.

In fact, the precise source entropy ρ is unknown and is esti-
mated with a parametric probabilistic model ρ̂. Therefore,
the expected suboptimal number of bits is the cross-entropy

H(ρ, ρ̂) = Ex∼p

[
n∑

i=1

− log2 ρ̂(xi|x<i)

]
. (11)

Therefore, reducing the log-loss corresponds to lowering
the compression rate when the model is utilized as a lossless
compressor through arithmetic coding. In essence, con-
temporary language model training frameworks inherently
pursue a maximum compression goal.

4. Experimental Results
4.1. Experimental Setup

In this work, the model performance was systematically
evaluated under an indoor environment at 5.3 GHz. All
channel data were generated based on the standard parame-
ters of the COST2100 channel model, and the experimental
settings were kept consistent with those used by the baseline
methods for a fair comparison.

The simulation parameters for the communication system
are as follows: the base station is equipped with a uniform
linear array consisting of 32 antennas. Operating in FDD
mode, the frequency domain is divided into 1024 subcarri-
ers, with an angular resolution set to 32. The COST2100
dataset comprises 150,000 channel samples, partitioned into
100,000 samples for training, 30,000 for validation, and
20,000 for testing.

The model was implemented using the PyTorch framework.
Network parameters were initialized using the Xavier ini-
tialization method. The learning rate scheduler followed a
cosine annealing schedule, with an initial learning rate of
0.002 and a minimum learning rate of 0.00005. Training
was conducted over 500 epochs, with the first 20 epochs
designated as a warm-up phase.

For the Transformer language model, the vocabulary size
was set to 256 and the embedding dimension to 256. The
model architecture consists of 4 stacked layers of multi-head
self-attention, each with 8 attention heads. The feed-forward
network within each layer has a hidden dimension four times
the embedding size, i.e., 1024. The batch size was set to 16.

4.2. Experimental Metrics

To evaluate the performance of the feedback network, we
adopt the normalized mean square error (NMSE), a com-
monly used metric in previous works, to compare the re-
construction accuracy of different methods. In addition, the
floating point operations (FLOPs) are employed to measure
the computational complexity of each method. Specifically,
the NMSE is calculated between the DFT-processed CSI
matrix and the reconstructed CSI matrix., as expressed by

NMSE = E

{
∥Ha − Ĥa∥22

∥Ha∥22

}
. (12)

To evaluate the effectiveness of the network in terms of
transmission efficiency, we also adopt the number of bits
required per CSI value as a metric to quantify the compres-
sion performance. Assuming the original CSI data consists
of N elements and the total number of transmitted bits is B.
Therefore, the bit rate per CSI element is defined as

Bit Rate =
B

N
. (13)
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4.3. Quantitative Results

We compare the proposed method, TCNet, with several
representative baselines, including CLNet (Ji & Li, 2021),
CRNet (Lu et al., 2020), CsiNet+ (Guo et al., 2020), and
TransNet (Cui et al., 2022), in terms of NMSE and bit
rate. Among these methods, only CsiNet+ adopts mu-law
quantization, while the others employ uniform quantization.

Table 1 presents the average bit rates and the correspond-
ing NMSE of TCNet, compared with CLNet], CRNet, and
TransNet under 7-bit quantization on the COST2100 dataset.
When the average bit rate is 1.258 bits, TCNet achieves an
NMSE of -28.39 dB, which is comparable to that of CLNet,
with the latter requiring a higher average bit rate of 1.75
bits. When the bit rate reaches 0.3275 bits and 0.176 bits,
TCNet achieves NMSEs of -14.68 dB and -10.17 dB, respec-
tively, surpassing CLNet and CRNet by approximately 2 to
3 dB. Even under extremely low bit rate conditions, TCNet
maintains a reconstruction accuracy of -7.80 dB, whereas
CLNet and CRNet only reach -6.34 dB and -6.49 dB at
an average bit rate of 0.1094 bits, clearly demonstrating
TCNet’s superior error resilience and robustness within the
evaluated compression range. TransNet achieves a lower
NMSE at slightly higher bit rates; however, its NMSE–bit
rate trade-off remains slightly inferior to that of TCNet.

Table 1. Experimental results of 7-bit quantized TCNet and other
methods’ NMSE on the COST2100 Dataset.

METHOD FLOPS BIT RATE ENTROPY NMSE

CLNET

4.05M 1.75 NA -28.58
3.01M 0.875 NA -15.16
2.48M 0.4375 NA -11.13
2.22M 0.2188 NA -8.94
2.09M 0.1094 NA -6.34

CRNET

5.12M 1.75 NA -25.61
4.07M 0.875 NA -15.57
3.55M 0.4375 NA -11.33
3.29M 0.2188 NA -8.92
3.16M 0.1094 NA -6.49

TRANSNET

35.72M 1.75 NA -30.01
34.70M 0.875 NA -22.89
34.14M 0.4375 NA -15.06
33.88M 0.2188 NA -10.18
33.75M 0.1094 NA -5.777

TCNET

31.47M 1.258 1.256 -28.39
30.42M 0.675 0.671 -19.39
29.89M 0.3275 0.3250 -14.68
29.64M 0.176 0.1726 -10.17
29.50M 0.0983 0.0845 -7.80

Regarding the entropy of the symbol sequence, the bit rate
achieved by TCNet approaches the theoretical lower bound,
indicating a near-optimal coding efficiency. Moreover, as

the length of the symbol sequence increases, TCNet ex-
hibits enhanced compression capability. This is attributed to
the fact that longer sequences contain richer temporal and
spatial correlations, making them more predictable. The lan-
guage model is able to effectively capture and exploit these
statistical patterns for more efficient entropy coding. In
contrast, shorter sequences tend to exhibit weaker memory
and predictability, resulting in more dispersed probability
distributions that are harder to model.

Table 2. Experimental results of 6-bit quantized TCNet and other
methods’ NMSE on the COST2100 Dataset.

METHOD FLOPS BIT RATE ENTROPY NMSE

CLNET

4.05M 1.5 NA -27.16
3.01M 0.75 NA -14.07
2.48M 0.375 NA -11.09
2.22M 0.1875 NA -8.92
2.09M 0.0938 NA -6.33

CRNET

5.12M 1.5 NA -22.97
4.07M 0.75 NA -14.38
3.55M 0.375 NA -11.27
3.29M 0.1875 NA -8.90
3.16M 0.0938 NA -6.48

CSINET+1

24.57M 1.5 NA -24.97
23.52M 0.75 NA -18.03
23.00M 0.375 NA -14.02
22.74M 0.1875 NA -10.35

TRANSNET

35.72M 1.5 NA -28.84
34.70M 0.75 NA -22.55
34.14M 0.375 NA -14.91
33.88M 0.1875 NA -10.15
33.75M 0.0938 NA -5.708

TCNET

31.47M 1.058 1.018 -26.78
30.42M 0.535 0.533 -19.22
29.89M 0.265 0.2649 -14.54
29.64M 0.1445 0.1408 -10.13
29.50M 0.0831 0.0806 -7.79

1 CSINET+ IS IMPLEMENTED WITH µ-LAW QUANTIZATION.

Table 2 presents a comparison of TCNet with CLNet, CR-
Net, CsiNet+, and TransNet under 6-bit quantization on
the COST2100 dataset. The results show that TCNet con-
sistently demonstrates superior performance across differ-
ent bit rate conditions. For instance, when the average bit
rate is 1.058 bits, TCNet achieves an NMSE of -26.78 dB,
which is comparable to that of CLNet at a bit rate of 1.5
bits, indicating a reduction of approximately 35% in bit
consumption. When the bit rate is 0.265 and 0.1445 bits,
TCNet obtains NMSEs of -14.54 dB and -10.13 dB, respec-
tively, still outperforming CsiNet+ under higher bit rate
settings. TransNet achieves good reconstruction quality in
most scenarios. However, it requires a higher bit rate and
computational complexity. Similar to its performance under
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7-bit quantization, TCNet’s bit rate remains close to the
entropy of the source in most settings, further validating
the effectiveness of the proposed adaptive arithmetic coding
scheme.

Table 3 presents the average bit rate and corresponding
reconstruction performance of TCNet, CLNet, and CR-
Net, CsiNet+ and TransNet under 5-bit quantization on the
COST2100 dataset. As shown in Table 3, with 5-bit uniform
quantization combined with adaptive arithmetic coding for
CSI feedback, TCNet achieves significant performance im-
provements across the entire bit rate range. Moreover, the
average bit rate of TCNet encoding is nearly equal to the
source entropy, further demonstrating the accuracy of the
language model’s probability distribution prediction and the
efficiency of the adaptive arithmetic coding scheme.

Table 3. Experimental results of 5-bit quantized TCNet and other
methods’ NMSE on the COST2100 Dataset.

METHOD FLOPS BIT RATE ENTROPY NMSE

CLNET

4.05M 1.25 NA -23.82
3.01M 0.625 NA -11.13
2.48M 0.3125 NA -10.94
2.22M 0.1563 NA -8.82
2.09M 0.0781 NA -6.01

CRNET

5.12M 1.25 NA -18.29
4.07M 0.625 NA -11.11
3.55M 0.3125 NA -11.04
3.29M 0.1563 NA -8.79
3.16M 0.0781 NA -6.46

CSINET+1

24.57M 1.25 NA -22.13
23.52M 0.625 NA -17.23
23.00M 0.3125 NA -13.64
22.74M 0.1536 NA -10.10

TRANSNET

35.72M 1.25 NA -25.85
34.70M 0.625 NA -21.40
34.14M 0.3125 NA -14.34
33.88M 0.1536 NA -10.04
33.75M 0.0781 NA -5.443

TCNET

31.47M 0.746 0.7425 -22.85
30.42M 0.411 0.408 -18.55
29.89M 0.2025 0.2013 -13.98
29.64M 0.1138 0.1125 -9.95
29.50M 0.068 0.0655 -7.71

1 CSINET+ IS IMPLEMENTED WITH µ-LAW QUANTIZATION.

4.4. Qualitative Results

To clearly illustrate the effectiveness of TCNet, the recon-
struction NMSE of various methods at the corresponding
bit rate is plotted together in an Bit Rate-NMSE curve, as
shown in Figure 6. At low bit rates, TCNet achieves better
performance than CsiNet+ and TransNet, all outperforming
CLNet and CRNet. As the bit rate increases, the recon-

struction advantage of TCNet becomes pronounced, which
stems from the higher bit rate enabling the language model
to capture stronger sequential correlations, thereby facilitat-
ing more accurate predictions and enhancing compression
efficiency. Near an bit rate of 0.5 bits, TCNet continues to
demonstrate a more rapid decline in NMSE, achieving reduc-
tions of 3 to 10 dB compared to other methods. At higher bit
rates, TCNet maintains a substantial NMSE advantage. In
summary, TCNet exhibits a superior bit rate–NMSE trade-
off relative to the compared methods. Moreover, TCNet’s
bit rate approaches the source entropy in most configura-
tions, further validating the potential of leveraging language
models for communication data compression.
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Figure 6. Qualitative results of quantized TCNet and other meth-
ods’ NMSE versus bit rate plot.

5. Conclusion
This paper presents TCNet, a novel CSI feedback frame-
work that efficiently compresses CSI from both lossy and
lossless perspectives. Firstly, we integrate CNNs and Swin
Transformers to capture local and global features, achieving
high reconstruction accuracy with reduced complexity. Ex-
periments on the COST2100 dataset show that our method
consistently outperforms prior methods. Meanwhile, we
combine language model with adaptive arithmetic coding,
offering superior bit rate–NMSE trade-offs without the need
to train quantizers. The results highlight the strong potential
of integrating language models with statistical coding for
efficient lossless compression.
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