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ABSTRACT

Generating street-view images from satellite imagery is a challenging task, par-
ticularly in maintaining accurate pose alignment and incorporating diverse envi-
ronmental conditions. While diffusion models have shown promise in generative
tasks, their ability to maintain strict pose alignment throughout the diffusion pro-
cess is limited. In this paper, we propose a novel Iterative Homography Adjust-
ment (IHA) scheme applied during the denoising process, which effectively ad-
dresses pose misalignment and ensures spatial consistency in the generated street-
view images. Additionally, currently, available datasets for satellite-to-street-view
generation are limited in their diversity of illumination and weather conditions,
thereby restricting the generalizability of the generated outputs. To mitigate this,
we introduce a text-guided illumination and weather-controlled sampling strategy
that enables fine-grained control over the environmental factors. Extensive quan-
titative and qualitative evaluations demonstrate that our approach significantly im-
proves pose accuracy and enhances the diversity and realism of generated street-
view images, setting a new benchmark for satellite-to-street-view generation tasks.

1 INTRODUCTION

This paper tackles the problem of satellite-to-street-view synthesis, aiming to generate street-view
images that are geometrically consistent with satellite imagery under a pre-determined relative pose
and diverse environmental conditions. Synthesizing such images has critical applications in urban
modeling, geospatial analysis, and virtual reality. While satellite images provide comprehensive
global coverage at low cost, capturing ground-level data is resource-intensive and lacks access to
varied weather and seasonal conditions. Therefore, generating geometrically accurate street-view
images with controllable environmental diversity is a challenging but essential task.

The difficulties in this task stem from two key aspects: geometric consistency and environmental di-
versity. Geometric consistency is challenging due to the vast perspective difference between satellite
and ground views—where satellite images provide a top-down perspective, street-view images show
the scene from a lateral angle, resulting in minimal visual overlap. Establishing a reliable mapping
between these two viewpoints requires precise handling of geometric information. Additionally,
environmental diversity is crucial for practical applications, as street-view images under different
weather and lighting conditions are needed to simulate real-world scenarios. Existing datasets for
satellite-to-street-view tasks offer limited variation in environmental conditions, further complicat-
ing the generation of diverse and realistic outputs.

Recent works have made progress in this domain by using geometric priors to bridge the gap between
satellite and ground perspectives. For example, Shi et al. (2022) used multi-plane images to infer
depth maps from satellite data and generate ground-level images, while Qian et al. (2023) rendered
panoramas from satellite images based on density fields. However, these approaches are prone to
errors due to their reliance on approximate 3D priors. Meanwhile, methods focusing on generating
images with environmental diversity (Assion et al. (2024)) are often limited to in-domain editing
and lack the ability to generate diverse scenes from satellite inputs.

As shown in Fig. 1, this paper proposes a novel framework for satellite-to-street-view synthesis that
addresses two key challenges: ensuring geometric alignment and enabling environmental control.
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Figure 1: Our method synthesizes ground-level images from satellite maps by integrating Iterative Homogra-
phy Adjustment (IHA) to refine geometric alignment and Text-guided Zero-shot Environmental Control (ZoEC)
to provide flexible environmental control, enabling precise pose alignment and diverse scene generation.

Our approach is based on the classical stable diffusion model (Rombach et al. (2022b)), which has
shown strong performance in image synthesis but faces significant challenges in maintaining precise
pose information during generation, often leading to misalignment between generated street-view
images and satellite inputs.

To overcome these issues, we propose two key innovations. First, unlike standard diffusion models
where conditions are implicitly encoded within the denoising U-Net, we introduce a cross-view
conditioning mechanism that incorporates geometric information. This mechanism ensures that
the generated street-view panoramas maintain a consistent spatial layout, aligning scene objects
with the satellite images. Second, we propose an Iterative Homography Adjustment scheme that
operates during the diffusion sampling phase. This process corrects pose misalignment by iteratively
adjusting the intermediate output based on the relative pose difference between the generated image
and the satellite view, ensuring geometric consistency throughout the generation process.

Furthermore, real-world environments exhibit a wide range of illumination and weather conditions,
which are rarely reflected in existing satellite-and-street-view datasets. This lack of diversity limits
the model’s ability to generate realistic street-view images under different environmental settings.
To overcome this limitation, we introduce a Zero-Shot Environmental Control strategy, which uses
text prompts to guide the generation of street-view images under varying illumination and weather
conditions without retraining the model.

Finally, since satellite images lack crucial details like the sky and the sides of buildings that are
present in ground-level views, traditional metrics such as RMSE are inadequate for fair comparisons
across different methods. To provide a more comprehensive evaluation, we introduce new evaluation
metrics that assess both semantic and geometric consistency between generated and ground truth
images, as well as the alignment between the generated images, pose, and environmental conditions.

Our contributions are summarized as follows:

• We introduce a novel cross-view conditioning mechanism that incorporates geometric in-
formation, ensuring precise spatial alignment between the generated street-view panoramas
and satellite images.

• We propose an Iterative Homography Adjustment scheme during the diffusion sampling
process, addressing pose misalignment by iteratively correcting the generated images for
geometric consistency.

• We demonstrate the effectiveness of our framework in generating diverse street-view im-
ages with controllable environmental conditions (e.g., weather and lighting) in a zero-shot
manner.

• We design new evaluation metrics that measure both semantic and geometric consistency
between the generated and ground truth images, as well as the alignment between the gen-
erated outputs and the controllable pose and environmental conditions.
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2 RELATED WORK

Cross-view ground scene generation. In the study by Zhai et al. (2017), the authors first at-
tempted to align the semantic features of satellite images onto ground-level perspectives. In Wu 
et al. (2022), GANs were employed to generate ground images. Strong geometric relationships were 
introduced in the task of ground image generation by Lu et al. (2020); Shi et al. (2022); Qian et al.
(2023). Li et al. (2021; 2024b) explicitly constructed a 3D point cloud representation of the scene, 
and then transformed it into a scene representation in a feed-forward manner. Gao et al. (2024a); Xu 
& Qin (2024); Li et al. (2024a) advocate for generating ground images from ground-to-ground scene 
segmentation images. Among these, Gao et al. (2024a) specifically highlights the impact of various 
noises on the generated results and innovatively proposes a noise-prior-based solution. However, 
previous methods have predominantly relied on coarse scene priors, leading to compounded errors 
in the results. We propose GCA and IHA to ensure geometric consistency between ground images 
and satellite views. The cross-view generation work targeting single objects is also highly inspir-
ing. Liu et al. (2023) overlays camera position encoding for scene transformation, while Poole et al.
(2022) utilizes diffusion to optimize the Nerf representation of scenes. Melas-Kyriazi et al. (2024) 
and Gao et al. (2024b) generate continuous frame data based on video diffusion. These approaches 
often fail in large-scale scene reconstruction, especially when dealing with significant perspective 
differences between satellite and ground images, which is the issue we are dedicated to addressing.

Text-controlled image generation. In text generation, a multitude of solutions have emerged 
over time leveraging Generative Adversarial Networks (GANs) (Dash et al. (2017); Regmi & Borji 
(2018); Ruan et al. (2021); Tao et al. (2022)). However, with the introduction of diffusion (Song et al.
(2020); Rombach et al. (2022b)), its exceptional generation capability has evolved into a potent tool 
for creating images. Significant strides have been taken in text-driven image synthesis through dif-
fusion by Avrahami et al. (2022); Li et al. (2023b); Brooks et al. (2023). Li et al. (2023a); Gao et al.
(2024c) propose a method that generates ground images based on text conditions and BEV segmen-
tation images. However, this strategy is hampered by the limitations of expressive capabilities in 
scene segmentation, leading to arbitrary results in scene synthesis. In this paper, we employ satellite 
images with enhanced representational capabilities for ground synthesis and introduce a novel text-
guided mechanism to ensure both the reliability of scene generation and the diversity of generated 
results.

3 METHOD OVERVIEW

Our task is to generate realistic street-view images based on a given satellite image, a specified 
relative pose, and an environmental factor such as illumination or weather. We use a latent diffusion 
model framework to conditionally synthesize these street-view images while ensuring control over 
both geometric and environmental aspects. The geometric condition is encoded via the satellite 
image and relative pose, while environmental control is applied during inference to achieve diverse 
visual effects.

3.1 DIFFUSION MODEL FRAMEWORK

To generate street-view images with controlled conditions, we leverage a latent diffusion 
model (Rombach et al. (2022a)). Let the target street-view image be denoted as x0 and its cor-
responding latent embedding as z0. Using an image decoder D(·), the target image can be recon-
structed as x0 = D(z0). The forward diffusion process adds Gaussian noise to the latent embedding 
z0 progressively, resulting in zt at each time step t ∈ [0, T ], where the noise level is defined by 
βt ∈ (0, 1):

zt =
√
ᾱtz0 +

√
1− ᾱtε (1)

where ε ∼ N (0, I), αt = 1 − βt, and ᾱt =
∏t

i=0 αi. The denoising U-Net, ϵθ(zt, t, c), is used to
predict the added noise, with condition c representing the posed embedding of the satellite image.

The reverse diffusion process is based on DDIM sampling:

p(zt−1|zt) = N (zt−1;µθ(zt, t, c), σ
2
t I) (2)

3
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Figure 2: Overview of our framework. Our approach aims to utilize satellite images to generate corresponding
ground images. We leverage geometric relationships extensively and have the capability to alter the features of
the generated images based on different text prompts.

where σt controls the sampling’s stochasticity, and µθ(zt, t, c) is calculated as:

µθ(zt, t, c) =
√
ᾱt−1

(
zt −

√
1− ᾱt · ϵθ(zt, t, c)√

ᾱt

)
+
√

1− ᾱt−1 − σ2
t ϵθ(zt, t, c) + σtε (3)

3.2 ENVIRONMENTAL GUIDANCE AND POSE ALIGNMENT

Due to the lack of labeled environmental conditions (e.g., variations in weather and lighting) in the
existing cross-view image datasets, using classifier-free guidance for the control, like satellite image
features and the relative pose, during the training process is impossible. To address this issue, we
propose a zero-shot environmental guidance approach using text prompts by leveraging a classifier
guidance strategy. Specifically, we employ off-the-shelf CLIP text embeddings as environmental
control, enabling the guidance of environmental factors like lighting and weather during inference.
Furthermore, implicitly leveraging satellite image features as a condition often leads to pose mis-
alignment in generated street-view images, as demonstrated in Fig.6. To further enhance the pose
alignment, we introduce an Iterative Homography Adjustment within the DDIM sampling process.
Specifically, we denote environmental and pose guidance as gtext and gpos, respectively. As shown
in Appendix A.4, Using classifier-guidance (Dhariwal & Nichol (2021)), the denoising process with
environmental and pose guidance is defined as:

zt−1 = µθ(zt, t, c) + λ∇zt log p(gpose|zt) + γ∇zt log p(gtext|zt) + σtε (4)

where hyperparameters γ and λ control the strength of environmental and pose conditioning, respec-
tively, ensuring that the generated image meets both environmental and geometric requirements.

In the following section, we discuss how conditions c of the posed satellite image are encoded, along 
with further technical details on enforcing pose alignment through ∇zt log(p(gpose|zt)) and applying 
environmental guidance via ∇zt log(p(gtext|zt)) during the inference process.

4 THE PROPOSED FRAMEWORK

This paper aims to generate ground-level images that accurately align with a given satellite im-
age, a relative pose, and environmental conditions. To achieve precise pose control, as illustrated 
in Fig. 2, we propose embedding satellite features and the relative pose information into the diffu-
sion model through two complementary mechanisms: a Geometric Cross-Attention module within 
the denoising network and an iterative pose enhancement strategy during the inference denoising 
stage. Considering diverse weather and illumination data are absent in the training set, we design a 
Zero-Shot Environmental Control strategy that allows flexible control over scene variations during 
inference without requiring additional training data.

4
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Figure 3: Homography Adjustment. We compare ground-level images with satellite images, calculating the 
loss by assessing the relative pose of the ground images at time t against a predefined pose. Ground images are 
then adjusted based on this comparison.

4.1 CROSS-VIEW CONDITIONING MECHANISM

Instead of implicitly encoding global feature vectors of posed satellite images, we propose a Geo-
metric Cross-Attention (GCA) mechanism that explicitly constructs geometric correspondences.

Given a pixel coordinate (ug, vg) in the target ground image, its corresponding 3D scene point can 
be determined if the depth d is known. Since acquiring an accurate depth map for the ground view 
is impractical, we instead hypothesize a set of N reference height values {hi}i=1 (relative to the 
ground plane) for each pixel, capturing potential depth variations across different regions. For each 
reference height, GCA estimates an offset ∆hi based on the current feature state and calculates an 
attention weight Ai for each height hypothesis to evaluate its reliability. The GCA mechanism then 
aggregates features from the satellite image as follows:

GCA(Q,V ) =

N∑
i=1

Ai (V ⊗ P (ug, vg, hi +∆hi)) , (5)

where Q and V represent the ground and satellite features, respectively. Here, Ai and ∆di are
computed from the ground features Q, and the Ai is the result of applying softmax to the N reference
heights. P (ug, vg, hi+∆hi) maps the ground pixel (ug, vg) at height hi+∆hi to the corresponding
satellite pixel coordinates based on relative pose. The symbol ⊗ denotes a sampling operation that
extracts features from V according to the projected satellite coordinates.

Unlike previous approaches that rely strictly on predefined 3D priors (Li et al. (2024a)), our method
allows for iterative refinement of satellite-to-ground correspondences. This iterative adjustment
enables the model to gradually correct initial misalignments and improve spatial consistency over
time. By focusing on relevant regions through projected coordinates, GCA also reduces computa-
tional load compared to traditional global attention mechanisms, effectively enhancing geometric
alignment between satellite images and generating ground-level views.

4.2 ITERATIVE POSE ALIGNMENT DURING INFERENCE

The inherent randomness of the diffusion process and implicit reasoning can often result in generated
images that deviate from the specified pose, causing positional shifts, as shown in Experiment 5.3.
To address this issue, we propose an iterative position correction mechanism that adjusts each gen-
erated result to better match the specified pose throughout inference. Due to the complex scene
depth, pose discrepancies can lead to substantial misalignments, making pixel-wise color or flow
corrections difficult to learn. Instead, we introduce an Iterative Homography Adjustment mecha-
nism that applies a Homography transformation matrix H to correct the latent representation zt at
each inference step, i.e., zt ⊗ grid(H), where grid(H) represents coordinates generated by H . The
matrix H enables transformations such as scaling, translation, and rotation, corresponding to the
spatial alignment of the camera. Since achieving precise correction with a single H is challenging,
we perform iterative pose adjustments in parallel with DDIM denoising steps, gradually guiding the
output toward the target pose.

The process for adjusting H is illustrated in the bottom left of Fig. 2. We first compute an initial
latent z0,t from zt using the denoising Unet’s output at timestep t. We initialize H as an identity

5
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Algorithm 1 Iterative Homography Adjustment for Pose Refinement.

Input: diffusion steps t, the noisy image zt, satellite image conditions Is and the rotation R and
translation T relative to the satellite image.
for all t from T to 1 do

zt ← zt ⊗ grid(H) // H is a diagonal matrix of ones
zt,0, zt−1 ← DDIM(zt, t,R,T, Is) // eliminate noise to obtain zt,0, zt−1

H ← H −∇HLpose(zt,0,R,T, Is)) // adjust the Homography matrix
zt−1 ← zt−1 ⊗ grid(H)

end for

matrix, applying it to z0,t, which we then project onto an overhead view using a ground plane as-
sumption, as in Shi et al. (2025). To ensure robust pose alignment, as illustrated in Fig. 3, we sample
multiple candidate ground camera poses in addition to the specified pose, cropping and rotating the
corresponding regions from the satellite image feature maps, which are extracted from the condi-
tioning branch of the denoising Unet. We introduce a Feature Refinement module in each branch
to map the ground and satellite features to a shared representation space. These modules share the
same architecture but have separate weights. Next, we compute an alignment score, {Sk}Kk=1, using
cosine similarity between the ground and satellite feature maps at K candidate poses. To quantify
alignment, we use the InfoNCE loss (Oord et al. (2018)):

Lpose = − log
eSk∗/τ∑
k e

Sk/τ
, (6)

where τ is a temperature hyperparameter. The InfoNCE loss reaches its minimum when the ground
and satellite feature maps achieve the highest similarity at the ground truth (GT) relative pose k∗.
Using this loss, we compute the gradient with respect to H and update it to improve alignment.

Our Homography Adjustment module applies transformations directly to the latent vector z0,t rather
than mapping it back to image space, avoiding the need for a heavy ground-to-satellite localization
network which operates on the original image resolution. Instead, we employ a lightweight Feature
Refinement module on z0,t and the satellite features from the denoising Unet’s conditioning branch,
significantly reducing the computational cost.

Training the Homography Adjustment network follows the initial training of the denoising Unet
within the diffusion framework. After obtaining zt,0 from the Unet, we then train the Homography
Adjustment network using the InfoNCE loss defined in Eq. 6. During the inference stage, both the
denoising Unet and the Homography Adjustment network are trained. We then use it to refine H in
the stochastic denoising sampling process in DDIM to improve pose alignment iteratively.

4.3 TEXT-GUIDED ZERO-SHOT ENVIRONMENTAL CONTROL

Many autonomous driving datasets such as CVUSA (Zhai et al. (2017)) lack detailed textual anno-
tations. As shown in Experiment 5.4, we discovered that when using descriptions generated by a
large multimodal model along with detailed satellite images as condition, the generative model tends
to prioritize accurately representing the satellite image conditions, significantly diminishing the in-
fluence of textual prompts during the training process. Therefore, we separated the text prompt.
Inspired by Dhariwal & Nichol (2021), we utilized text prompts to guide the direction of reasoning
during the inference stage. We replace ϵt with ϵ̂t:

ϵ̂t(zt, t, S) = ϵt(zt, t, S) +∇ztLtext(zt, ctext) (7)

The gradient term ∇ztLtext(zt, ctext) guides the diffusion process towards the desired direction,
thereby ensuring that the generated results are consistent with the textual conditions.

To robustly obtain the loss between the generated results and the text prompt, we randomly partition
zt−1 into multiple patches and calculate the similarity with the text for each patch. We then use
CLIP (Radford et al. (2021)) to extract features from the processed patches and the text, and calculate
the cosine similarity between these features to obtain the final loss:

Ltext(zt, ctext) = 1− 1

N

N∑
l=1

sim(CLIP (zlt,0), CLIP (ctext)) (8)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Sat (b) S2S (c) Sat2Den (d) ControlNet (e) Ours (f) GT
Figure 4: Qualitative comparison with previous work on the CVUSA dataset, our framework is able to main-
tain better geometric relationships.
Table 1: Quantitative comparison with existing algorithms on CVUSA dataset. The best results are highlighted
in orange and the second-best in blue.

Method Structural similarity Perceptual similarity Semantic Similarity Pixel Similarity ↓Depth↑SSIM ↓Self sim ↓Psqueeze ↓Palex ↓FID ↓DINO ↓SegAny ↓RMSE ↑PSNR ↑SD

Pix2Pix 0.32 0.21 0.35 0.51 44.51 5.24 0.38 55.84 13.20 12.08 21.85
XFork 0.29 - - - - - - - - - -
S2S 0.35 0.19 0.32 0.48 29.49 5.11 0.39 54.57 13.40 12.30 21.05

Sat2Density 0.33 0.19 0.31 0.46 47.85 4.95 0.38 54.23 13.46 12.27 19.83
ControlNet 0.32 0.20 0.33 0.49 22.55 5.21 0.38 58.25 12.83 12.08 21.78
CrossDiff 0.37 - - - 23.67 - - - 12.00 - -

Ours 0.38 0.18 0.30 0.45 21.30 4.81 0.36 52.92 13.67 12.33 19.58

where zt,0 is the result of removing noise from zt, zlt,0 is the l-th patch of zt,0, ctext is the textual
condition, and sim represents cosine similarity. Similar to the Iterative Pose Alignment illustrated
in Sec. 4.2, this environmental control strategy is also applied during the inference stage, iteratively
modifying the noisy latent during the denoising process.

4.4 EVALUATION METRICS

There is a limited overlap between satellite images and ground truth images, further complicated
by varying weather conditions and seasons, which makes it challenging to synthesize target view
images that perfectly match the ground truth image provided in the dataset. As a result, pixel-level
metrics like RMSE and PSNR are inadequate for this task (Zhang et al. (2018); Shi et al. (2022)).
Instead of focusing on color discrepancies between the generated street view images and the actual
ground truth images, our emphasis should be on whether they represent the same locations. There-
fore, we use structural similarity, perceptual similarity, semantic similarity, and depth similarity for
performance evaluation. Furthermore, since satellite images do not capture sky information, we
advocate for cropping the sky portion during evaluation.

The evaluation of Structural Similarity is derived from SSIM and self-similarity structures based
on DINO features (Caron et al. (2021); Shechtman & Irani (2007); Tumanyan et al. (2022)). Per-
ceptual Similarity is evaluated based on the FID metric and compares the similarity of features ex-
tracted from AlexNet (Krizhevsky et al. (2017)) and SqueezeNet (Iandola (2016)). Semantic Sim-
ilarity is proposed for evaluating high-level semantic features. We employ widely acknowledged
DINO (Caron et al. (2021)) and Segment Anything (Kirillov et al. (2023)) for feature extraction to
compare the semantic consistency of images. Additionally, given that satellite images contain depth
information of ground scenes, evaluating the depth of generated ground images is crucial. We use
DepthAnything (Yang et al. (2024)) to assess the depth differences between real ground truth images
and generated images. For a fair comparison, we also report commonly used metrics such as RMSE,
PSNR, and SD to evaluate Pixel Similarity. These metrics are more forgiving for assessing blurred
images, as clear images tend to exhibit increased pixel differences due to the introduction of details
such as seasons, weather, and shadows. This discrepancy conflicts with the intended outcome of our
generated images, so we strongly recommend utilizing alternative metrics over pixel similarity eval-
uation metrics. Finally, for text similarity, we compute the similarity of Clip Radford et al. (2021)
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(a) Sat (b) S2S (c) Sat2Den (d) ControlNet (e) Ours (f) GT
Figure 5: Qualitative comparison with previous work on the VIGOR dataset, our model can effectively capture
road surface information from satellite images, resulting in clearer and more distinct road lines.
Table 2: Quantitative comparison with existing algorithms on VIGOR dataset. The best results are highlighted
in orange and the second-best in blue.

Method Structural similarity Perceptual similarity Semantic Similarity Pixel Similarity ↓Depth↑SSIM ↓Self sim ↓Psqueeze ↓Palex ↓FID ↓DINO ↓SegAny ↓RMSE ↑PSNR ↑SD

Pix2Pix 0.37 0.17 0.33 0.45 67.96 4.72 0.38 55.00 13.33 12.93 8.65
S2S 0.33 0.18 0.37 0.49 121.10 5.03 0.40 62.94 12.16 12.31 10.87

Sat2Density 0.40 0.16 0.28 0.39 54.49 4.41 0.36 50.23 14.14 12.90 8.05
ControlNet 0.34 0.17 0.34 0.46 23.68 4.95 0.39 63.98 12.02 12.59 10.01

Ours 0.42 0.16 0.27 0.38 28.01 3.32 0.27 52.16 13.80 13.07 7.10

features for evaluation and utilize Blip Li et al. (2022) to describe the images, assessing the recall
rate of answers that align with the textual descriptions.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Experimental setup. We take 256 × 256 satellite images as input to predict 128 × 512 ground
images, following the same setup as in Shi et al. (2022) for fair comparison. Our model is finetuned
based on the Stable Diffusion 1.5 model (Rombach et al. (2022a)), with the Cross-Attention of
diffusion replaced by Geometric Cross-Attention, and satellite image conditions processed through
a simple VIT network for feature extraction. During inference, we employ DDIM sampling with
50 sampling steps, applying the Homography Adjustment scheme in the first 40 sampling steps
and Zero-Shot Environmental Control throughout the entire sampling process. In Geometric Cross-
Attention, we utilize 8 sampling heights of [-3, -2, -1, 1, 2, 3, 4, 5]. This constitutes an empirical
setup. Training process on three GPUs with batch size of 32 for 200 epochs.

Datasets. We adopt three cross-view datasets: CVUSA (Zhai et al. (2017)), KITTI (Geiger et al.
(2013); Shi & Li (2022)), and VIGOR (Zhu et al. (2021); Lentsch et al. (2022)). These datasets com-
prise pairs of cross-view data, combining ground-level images with their corresponding satellites.
The ground-level images in CVUSA and VIGOR are panoramic, while the ground-level images in
KITTI have a limited horizontal field of view (HFoV). CVUSA comprises 35,532 pairs of satellite
and street view images for training and 8,884 pairs for testing. Following the setup of the cross-view
localization task (Shi & Li (2022); Xia et al. (2023)), KITTI includes 19,655 pairs in the training
data and 3,773 pairs in the testing data. VIGOR gathers data from New York, Seattle, San Francisco,
and Chicago, dividing the data from each city into 52,609 pairs for the training set and 52,605 pairs
for the test set.

5.2 COMPARISON WITH EXISTING METHODS

In this section, we compare our approach with previous ground map generation methods.
Pix2Pix (Isola et al. (2017)) and XFork (Regmi & Borji (2018)) are GAN-based methods that ex-
tract implicit features from satellite images to generate ground images. S2S (Shi et al. (2022)) and
Sat2Den (Qian et al. (2023)) introduce explicit geometric information into the network and project
satellite images to ground view based on height priors. CrossDiff (Li et al. (2024a)) is a diffusion
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(a) Sat Map (b) LDM (c) GT (d) LDM W.IHA
Figure 6: Qualitative ablation experiments of IHA on KITTI and CVUSA datasets. IHA can correct pose
offsets in the inference process effectively.

Table 3: Ablation study on the KITTI dataset. We compared the positional accuracy of generated images using
a cross-view localization model.

Distance Angle Lateral Longitudinal Azimuth
↓average ↓median ↓average ↓median ↑d=1 ↑d=3 ↑d=1 ↑d=3 ↑θ=1 ↑θ=3

LDM 10.74 6.92 17.60 6.64 43.97 67.74 15.35 36.79 7.87 24.04
LDM W. IHA 10.67 6.85 17.46 6.73 44.08 67.77 15.77 36.95 8.08 23.78

LDM W.GCA W.IHA 10.51 6.66 17.14 6.64 45.40 68.67 16.78 38.22 8.31 24.22

method that relies on high prior knowledge. Furthermore, noticing the robust capabilities of Control-
Net (Zhang et al. (2023)), we also compared it with our method. The implementation of ControlNet
mirrors the successful case (Sastry et al. (2024)). ControlNet receives textual conditions and ground
map contour conditions. The textual conditions are generated using LLAVA (Liu et al. (2024)) and
randomly masked out with a probability of 0.5 during training. The ground map contour conditions
are derived from satellite maps projected based on prior ground height assumptions.

Quantitative results, as shown in Table 1 and Table 2, demonstrate that the quality of ground image
generation produced by our method significantly surpasses that of other approaches, particularly
in maintaining geometric consistency. This performance stems from the Cross-View Conditioning
Mechanism we employ and the Iterative Pose Alignment conducted during inference. In the visual
representation, as depicted in Fig. 4, our method adheres to the geometric cues from satellite im-
ages, generating ground images that align with the scenes and outperform previous algorithms in
representing pathways. While ControlNet outperforms us in the FID metric on the VIGOR dataset,
we note that its other quantitative metrics are notably lower, indicating that ControlNet accurately
captures dataset distributions but struggles to faithfully translate satellite image hints into improved
ground image generation, a point supported by Fig. 5. On the VIGOR dataset, our method excels in
ground feature identification and architectural representation compared to other algorithms.

5.3 THE EFFECTIVENESS OF POSE ALIGNMENT

Compared to other datasets, KITTI’s data is collected along the same route and divided into training
and test sets. Due to the high similarity in satellite image conditions between adjacent points along
the path, the implicit condition diffusion model fails to distinguish effectively, leading to the gener-
ation of ground images with positional offsets quite easily. To demonstrate the effectiveness of the
proposed pose alignment approaches in this paper, we employ the original implicit diffusion model
as our baseline and gradually add the proposed modules, i.e., the IHA and the GCA. To better eval-
uate the results of Pose Alignment, we employ CCVPE (Xia et al. (2023)), a powerful cross-view
pose estimation method, to evaluate the consistency of the relative pose between generated images
and the satellite images with respect to the conditioning pose, in addition to image-level similarities.

9
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Figure 7: Qualitative comparison with ControlNet on CVUSA. ControlNet trained under weak textual condi-
tions fails to effectively adjust image information based on text prompts. Our Zero-shot Environmental Control 
can adjust image information based on text prompts while preserving the spatial structure of the image.

Table 4: The similarity between generated images and environmental text prompt.

Clip Score Blip Score
spring summer autumn winter spring summer autumn winter

LDM 0.21 0.21 0.20 0.81 5.14 60.87 7.44 1.78
ControlNet 0.21 0.21 0.20 0.20 12.89 44.63 5.50 13.06

Ours 0.26 0.24 0.24 0.23 69.74 82.05 78.62 47.67

The quantitative comparison is shown in Table 3. It can be seen that both IHA and GCA improve
the generated image quality in terms of image-level similarity and pose consistency.

Fig. 6 provides examples of Pose Alignment on KITTI and CVUSA datasets. Both the images
before and after correction are generated with the same noise, the only difference being whether Pose
Alignment is enabled. We can observe the significant role played by Pose Alignment in successfully
correcting pose deformities in the generated results. Furthermore, the method is equally applicable
to both FoV images and panoramic images, demonstrating a high level of universality.

5.4 THE EFFECTIVENESS OF TEXT-GUIDED ENVIRONMENTAL CONTROL

To evaluate the effectiveness of the Text-guided Environmental Control mechanism, we conduct
comparative experiments with LDM and ControlNet on the CVUSA dataset, generating images rep-
resenting the four seasons: spring, summer, autumn, and winter. Notably, our environmental control
mechanism is applied during inference in a zero-shot manner, while for LDM and ControlNet, the
environmental control is incorporated as an additional text condition embedded within the denoising
network. To train ControlNet’s text condition branch, we used LLAVA to generate text annotations
for the ground images.

As shown in Table 4, the quantitative results indicate that our method produces outputs that align
more effectively with the provided textual prompts. One challenge we encountered was the inconsis-
tency in the quality of LLAVA-generated text descriptions, as they were produced without manual
annotations. During ControlNet’s training, the model tended to prioritize well-expressed satellite
image prompts, diminishing the impact of textual prompts over time. This behavior led to Control-
Net’s reduced sensitivity to diverse text prompts, as illustrated in Fig. 7. In contrast, our Zero-shot
Environmental Control (ZoEC) mechanism exhibited greater robustness in handling unsupervised
scenarios, maintaining stronger adherence to the given text conditions.

6 CONCLUSION

In this paper, we have presented a novel approach for generating ground-level images from satellite
imagery, addressing the dual challenges of geometric alignment and environmental diversity. Our
method introduced two key innovations: the Iterative Homography Adjustment (IHA) mechanism,
which ensures accurate pose alignment between the satellite and generated ground-level views, and
the Text-guided Zero-shot Environmental Control (ZoEC), which allows flexible control over light-
ing, weather, and seasonal variations without requiring additional training data. By incorporating
geometric cross-attention in the diffusion process, we further improved the consistency between
satellite and street-level views. Extensive experiments demonstrated that our method outperforms
existing approaches in both geometric accuracy and environmental adaptability.
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A APPENDIX

A.1 THE ROBUSTNESS OF IHA IN THE FACE OF NOISE.

Sample 1 Sample 2 Sample 3 GT

Spring Summer Autumn Winter

Evening Fog No text prompt GT

Different noise

IHA

Figure 8: In the first row, we demonstrate that ground images generated from satellite maps exhibit varying
offsets under different initial noise conditions. The second row illustrates the pose correction results of the first
row using the Iterative Homography Adjustment (IHA).

As shown in Fig. 8, when using different initial noises, the reverse diffusion process often pro-
duces unpredictable outcomes. In the first row, diverse noises result in different view perspectives.
However, the IHA module adeptly corrects these deviations and gets consistent results. This case
shows the remarkable robustness of IHA for identifying and rectifying the accurate pose of generated
ground images.

A.2 DATA AUGMENTATION FOR CROSS-VIEW LOCALIZATION

Table 5: Using generated street data for data augmentation. We report the localization accuracy of Shi et al.
(2025) on the KITTI dataset.

Test1

Distance Angle Lateral Longitudinal Azimuth
↓average ↓median ↓average ↓median ↑d=1 ↑d=3 ↑d=1 ↑d=3 ↑θ=1 ↑θ=3

Wo.augmentation 11.11 7.646 0.1811 0.1492 56.98 87.23 10.68 31.57 99.66 100.0

W.augmentation
Pix2Pix 11.72 9.020 0.1810 0.1491 54.31 86.03 9.833 27.54 99.66 100.0

ControlNet 11.15 7.688 0.1810 0.1491 54.17 87.36 11.61 31.27 99.66 100.0
Ours 10.88 7.167 0.1810 0.1491 57.57 87.70 11.95 32.65 99.66 100.0

Test2

Distance Angle Lateral Longitudinal Azimuth
↓average ↓median ↓average ↓median ↑d=1 ↑d=3 ↑d=1 ↑d=3 ↑θ=1 ↑θ=3

Wo.augmentation 14.07 10.61 0.1570 0.1305 60.32 84.90 8.632 25.14 100.0 100.0

W.augmentation
Pix2Pix 14.44 11.29 0.1569 0.1305 57.44 80.63 8.101 23.89 100.0 100.0

ControlNet 14.31 10.91 0.1569 0.1305 55.99 82.39 8.260 25.05 100.0 100.0
Ours 13.94 9.885 0.1569 0.1305 62.87 85.51 8.923 26.92 100.0 100.0

To verify that the proposed generative model can assist in vehicle localization in autonomous driv-
ing scenarios, we utilize generated street data for data augmentation in training a localization model.
The experiments are conducted on the KITTI dataset (Geiger et al. (2013); Shi & Li (2022)). Geiger
et al. (2013) provides ground images captured by vehicles, while Shi & Li (2022) collects corre-
sponding satellite images for each ground image. The dataset is divided into Training, Test1, and
Test2 subsets. The images in Test1 come from the same area as the images in the training set,
while the images in Test2 come from different areas. In our data augmentation experiment, we use
a ground map resolution of 128x512 and a satellite map resolution of 512x512. For each satellite
image in the training set of the KITTI dataset, we utilize the proposed framework to generate street
scene images under various season conditions. During the training of the cross-view localization
algorithm(Shi et al. (2025)), both generated and real data are employed with a 50% probability each
to augment the KITTI dataset. In Table 5, we present the localization accuracy with and without the
data augmentation. Both of them are trained for 15 epochs. In the W.augmentation experiments, we
compare the data generated by Pix2Pix, ControlNet, and our own method. The data augmentation
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with our generated data significantly improves cross-view localization performance, demonstrating 
the usefulness of our approach to autonomous driving tasks. Compared to our generation strategy 
method, the data generated by GAN-based Pix2Pix is very blurry. Adding the generated data from 
Pix2Pix actually deteriorates the model’s perception of details. The data generated by ControlNet, 
although clear, lacks strong positional constraints. The pose offset leads to incorrect matches in the 
localization model during training. Compared to other methods, our approach can ensure geomet-
rically consistent generation and text-guided diverse environment creation, thereby achieving the 
purpose of data augmentation and yielding outstanding results.

A.3 MORE ANALYSIS OF THE IHA.

A.3.1 THE HOMOGRAPHY TRANSFORMATION IN IHA.

Figure 9: The relationship between Homography Adjustment and the camera position in satellite imagery. The
corresponding satellite position and ground images are labeled with arrows and borders using the same colors.

The Homography transformation is defined by a 3x3 matrix and can map a plane in an image to
another plane. It allows for image manipulations including rotation, translation, scaling, shearing,
and perspective transformation. As depicted in Fig. 9, adjusting the ground map through Homogra-
phy enables correspondence with different perspectives in a satellite image. Translating the ground
image corresponds to perpendicular movements to the satellite image, scaling represents horizon-
tal (front-back) movements within the satellite image, and the projection transformation signifies
changes in yaw angle.
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Figure 10: The Homography Adjustment operation in the DDIM process. The visual results of each step stem
from D(zt,0)

.

Due to variations in initial noise and uncertainties in the implicit learning of features, diffusion does
not always yield favorable outcomes. As depicted in Fig. 6, many ground images may become dis-
torted, indicating a displacement in the corresponding satellite image coordinates. Motivated by this,
we employ satellite image-guided supervision in the DDIM generation process. Within the DDIM
process, we utilize satellite image conditions, the result zt−1 at step t, and the expected location R,
T of the ground image in the satellite image. We supervise the positioning algorithm illustrated in
Fig. 3 to adjust the location of the generated zt−1 based on the Homography matrix for the ground
image. Given the substantial difficulty in achieving correct results through a single Homography Ad-
justment, we adopt an iterative approach, progressively executing Algorithm 1 to guide the ground
image pixels toward the correct coordinates. In Fig. 10, we illustrate the intermediate results and
step-by-step changes in the denoising process using IHA.
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Table 6: The analysis of computational efficiency of IHA.

Memory Time Cost

Wo.IHA 20126MB 5.406s
W.IHA 21022MB 5.513s

A.3.2 THE COMPUTATIONAL WORKLOAD IN IHA

The IHA operates in the latent space using low-resolution feature maps. Since the IHA calculation 
relies on the pixel coordinates, it does not impose a significant computational increase. We conduct 
the efficiency tests with a batch size of 1, and the results are presented in Table 6. When comparing 
memory usage, the baseline model without IHA (Wo.IHA) requires 20,126MB, while the inclusion 
of IHA (W.IHA) increases memory usage slightly to 21,022MB (896MB increase) due to the ad-
dition of a lightweight localization network. In terms of time cost, the baseline model (Wo.IHA) 
requires 5.406 seconds per image, while the model with IHA (W.IHA) increases this slightly to 
5.513 seconds per image—an additional cost of only 0.107 seconds per image. We believe that IHA 
strikes a favorable balance between performance and computational efficiency, offering promising 
practical value.

A.4 DERIVATION OF FORMULAE.

Based on the score-based formulation of a diffusion modelSong et al. (2020), and the introduction 
of conditional guidance gpose, gtext, our objective is to learn

ϵ̂t = −
√
1− ᾱt∇zt log p(zt|gpose, gtext) (9)

Using the Bayes’ formula, we obtain:

p(zt|gpose, gtext) =
p(gpose, gtext|zt)p(zt)

p(gpose, gtext)
(10)

In the formula, p(gpose, gtext) can be considered a constant, and we denote it as C. Utilizing the
independence of environmental and positional conditions, we express the formula as:

p(zt−1|gpose, gtext) = Cp(gpose, gtext|zt)p(zt)
= Cp(gpose|zt)p(gtext|zt)p(zt)

(11)

We substitute Eq.11 into Eq.9 to obtain:

ϵ̂t = −
√
1− ᾱt∇zt log p(zt|, gpose, gtext)

= −
√
1− ᾱt(∇zt log p(zt) +∇zt log p(gpose|zt) +∇zt log p(gtext|zt))

(12)

From the score-based formula ϵt = −
√
1− ᾱt∇zt log p(zt), we can derive:

ϵ̂t = ϵt −
√
1− ᾱt∇zt log p(gpose|zt)−

√
1− ᾱt∇zt log p(gtext|zt) (13)

Substituting the new ϵ̂t into Eq. 3 in place of ϵθ(zt, t, c), we obtain:

zt−1 = µθ(zt, t, c) + γ∇zt log p(gtext|zt) + λ∇zt log p(gpose|zt) + σtε (14)

The hyperparameters γ and λ control the influence of pose and environmental conditioning, where 
higher values strengthen the alignment with desired conditions.

A.5 QUALITATIVE ANALYSIS OF RURAL SCENES PERTAINING TO CVUSA.

Fig. 11 presents additional visual results using the CVUSA dataset, mostly collected in rural ar-
eas. Notably, S2S and Sat2Den struggle to capture the geometric features of rural scenes, produc-
ing blurry and indistinct images. ControlNet also shows noticeable geometric misalignments. In 
contrast, our method, leveraging the proposed Geometric Cross-Attention (GCA) mechanism and 
Iterative Homography Adjustment (IHA), demonstrates superior recovery of road structures.

For the CVUSA dataset, another characteristic is that buildings often occupy only a small region in 
the target ground-view images. The latent embedding of conditioning satellite images can hardly
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(a) Sat (b) S2S (c) Sat2Den (d) ControlNet (e) Ours (f) GT

Figure 11: Qualitative visualization for generated images using different methods in complex scenes.

encode the buildings due to few occupant pixels. Owing to the geometric reasoning capabilities of
GCA and IHA, our method excels at mining deep semantic features at the correct coordinates. As a
result, it accurately reconstructs buildings in the appropriate regions of the ground-view images and
synthesizes realistic facade appearances, as illustrated in the third example.

In summary, our method not only retains strong structural consistency but also exhibits a promising
ability to generate small elements in satellite images.

A.6 MORE ANALYSIS OF THE GCA.

A.6.1 VISUAL ANALYSIS OF THE GCA MECHANISM.

Sat map Sat feature (V) GT

Step1 Step2

Height candidate 1 Height candidate 2 Height candidate 3 Height candidate 4

Before step2 After step2

Ours

Sampled feature maps according to different height candidates

Attention map for each candidate height map

Sampled feature maps according to height candidate 2 Generating ground feature

Figure 12: Visualization results of the GCA mechanism. The feature maps are visualized using PCA, while
the attention maps are displayed with a jet color mapping. In the middle row, we present ground feature maps
sampled from satellite features according to four candidate height map candidates alongside their corresponding
attention maps. On the bottom left, we illustrate ground feature maps sampled from satellite features according
to the same height plane but at different GCA steps, with feature map differences reflecting variations in height
information. The bottom right shows the aggregated features obtained from the learned height candidates across
different GCA steps, demonstrating the progressive refinement achieved by the GCA mechanism.
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N

In this section, we present visualizations of intermediate features of satellite images under varying 
height assumptions and the corresponding attention maps Ai. The progressive ground features using 
the GCA mechanism are also revealed.

During the GCA process, the inputs include the current ground map features (Q), satellite 
map features (V ), and the relative poses R and T . We set eight height assumptions (h ∈ 
{−3, −2, −1, 1, 2, 3, 4, 5} in experiments. Here, h represents the relative height of the satellite im-
age to the camera. When the scene lies below the camera, the lower part of the camera captures the 
scene while the camera’s upper part works for scenes above the camera. This behavior is illustrated 
in the second row of Fig. 12.

As defined in Eq. 5, the GCA mechanism infers offsets ∆hi and attention weights A i for each height 
candidate based on the current ground map features (Q). The attention weights Ai are normalized 
via a softmax function across the eight height planes, determining the confidence associated with 
each plane.

In the middle of Fig. 12, the top row shows the ground feature maps sampled from satellite features at 
different candidate heights (hi + ∆hi), while the bottom row visualizes the corresponding attention 
maps {A}i=1. In the first GCA iteration (step 1), the projection plane samples features based on the 
initial height assumption, and the attention is evenly distributed across various regions, providing a 
baseline solution. By the second GCA iteration (step 2), the inferred offsets ∆hi introduce positional 
shifts in the projection plane, as highlighted in the red box. These shifts enable the projection to 
capture more details of ground images, such as pathways. The GCA iteration also gradually refines 
the representations of other scene elements.

As the GCA iterations progress, the attention maps evolve to focus on salient regions. For planes 
where h < 0, the attention primarily targets the ground, while for planes where h > 0, it shifts 
towards elevated elements like trees. The attention shifting illustrates that GCA effectively enhances 
feature representations of the entire scene in a progressive manner.

A.6.2 COMPARISON WITH NAIVE CROSS-ATTENTION.

The proposed GCA module offers the following advantages over a naive cross-attention mechanism.

1. Flexibility in view-related image generation. By leveraging the relative pose between satellite and
ground images, the proposed GCA enables the generation of ground images at arbitrary locations and
from arbitrary views on the same satellite map. In contrast, the simple cross-attention mechanism
cannot handle view changes and requires additional modules to process the relative pose information
(e.g., Zero-1-to-3 Liu et al. (2023)). Our method is more flexible and can handle various relative
pose differences.

2. Avoid redundancy information. The proposed GCA limits attention to regions likely to corre-
spond geometrically. Each ground-view pixel only attends to satellite image areas along its camera
ray. This focused attention minimizes noise from irrelevant regions, unlike naive cross-attention,
which indiscriminately considers the entire image.

3. Improved computational efficiency and reduced GPU memory usage. GCA achieves significant
reductions in computational complexity by employing sparse sampling. For satellite image features
of size S ∗ S and ground image features of size H ∗W , the complexity of naive cross-attention is
O(S ∗ S ∗ H ∗ W ). In contrast, our algorithm samples N planes (N=8), with the complexity of
sampling being O(N ∗H ∗W ), computing horizontal and vertical coordinate offsets at O(2N ∗H ∗
W ), and attention calculation at O(N ∗H ∗W ). Overall, our complexity is significantly reduced to
O(4 ∗N ∗H ∗W ) compared to naive cross-attention. In practical experiments, for inference on one
example, native cross-attention consumes 250MB of GPU memory, whereas using GCA reduces
this to only 184MB.

A.7 DISCUSSING THE REASONS FOR THE FAILURE OF THE CFG SCHEME IN CONTROLLING
THE ENVIRONMENT.

In Tab 4, we employ the LDM and ControlNet models using a Classifier-Free Guidance (CFG) ap-
proach for multi-condition generation. Both LDM and ControlNet take two conditions as inputs: 
satellite images and image descriptions generated by LLAVA. Through training, we observed that
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The image captures a scenic view of a two-lane road with trees on 

both sides. The road is surrounded by a forest, giving it a serene 

and peaceful atmosphere. The road appears to be empty, with no 

cars or people visible in the scene. The sky can be seen in the 

background, adding to the picturesque setting.

LLAVA

Prompt: “Describe the 

contents of the image”

One to many

One to one

Figure 13: Using LLAVA-generated text for ground images can correspond to multiple ground pictures, while
satellite images correspond one-to-one with ground images.

the weight assigned to the satellite image condition far exceeded that of the environmental descrip-
tion condition. Furthermore, as depicted in Fig. 13, one image description generated by LLAVA
could correspond to multiple ground images, and text captions significantly lack geometric informa-
tion. Each ground image corresponds specifically to a satellite image, which not only encapsulates
geometric descriptions but also texture representations. Consequently, the LDM and ControlNet
tend to prioritize the satellite images over the ground image descriptions, leading to the degraded
control of environmental conditions.

A.8 THE PERFORMANCE OF TEXT-GUIDED ZERO-SHOT ENVIRONMENTAL CONTROL IN A
MULTILINGUAL SETTING.

“在冬季”

“在秋季”

“在春季”

Figure 14: Controllable generation in the Chinese context. This figure displays generated images of spring,
autumn, and winter from top to bottom.

In order to ensure compatibility across linguistic contexts, our framework provides a flexible inter-
face that can integrate with various multimodal large language models. In the paper implementation,
we utilize a frozen CLIP model to extract textual and visual features and compute losses. This ap-
proach eliminates additional training and enables straightforward adaptation to other multimodal
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LLMs. For instance, to support Chinese text prompts, Chinese-CLIP (Yang et al. (2022)) is incorpo-
rated. By computing losses between Chinese text and image features, the image-generating process
can be effectively guided to align with the input language.

A.9 DISCUSSION AND LIMITATIONS

The primary issue revolves around the accurate restoration of building details, which is a common
limitation in the task of ground image generation from satellite data. Due to the significant discrep-
ancy between satellite and ground views, satellite images lack the texture details of building facades.
Therefore, it is difficult to faithfully reconstruct the building details from the ground view. The other
limitation is the lane marking generation. There are inconsistencies between the generated lanes
and the real-world lanes. These differences arise largely due to misalignment of the capture time
between the satellite maps and ground images. Despite these limitations, our method demonstrates
significant improvements in terms of geometric alignment and environmental control in generating
diverse ground-view images.

A.10 THE RESULTS OF TEXT-GUIDED ZERO-SHOT ENVIRONMENTAL CONTROL.

(a) No text prompt (b) Spring (c) Summer (d) Autumn (e) Winter
Figure 15: Generating under different textual conditions to obtain text-guided image results while maintaining
the structure of the images

A.11 MORE RESULTS FROM POSE ALIGNMENT.
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(a) Sat (b) LDM (c) GT (d) LDM W. IHA
Figure 16: Results of IHA on the KITTI dataset.
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(a) Sat (b) LDM (c) GT (d) LDM W. IHA
Figure 17: Results of IHA on the CVUSA dataset.
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