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Abstract

Pretrained language models have significantly001
improved the performance of downstream lan-002
guage understanding tasks, including extractive003
question answering, by providing high-quality004
contextualized word embeddings. However,005
training question answering models still re-006
quires large amounts of annotated data for spe-007
cific domains. In this work, we propose a coop-008
erative self-training framework, RGX, for auto-009
matically generating more non-trivial question-010
answer pairs to improve model performance.011
RGX is built upon a masked answer extraction012
task with an interactive learning environment013
containing an answer entity Recognizer, a ques-014
tion Generator, and an answer eXtractor. Given015
a passage with a masked entity, the generator016
generates a question around the entity, and the017
extractor is trained to extract the masked entity018
with the generated question and raw texts. The019
framework allows the training of question gen-020
eration and answering models on any text cor-021
pora without annotation. We further leverage a022
reinforcement learning technique to reward gen-023
erating high-quality questions and to improve024
the answer extraction model’s performance. Ex-025
periment results show that RGX outperforms026
the state-of-the-art (SOTA) pretrained language027
models and transfer learning approaches on028
standard question-answering benchmarks, and029
yields the new SOTA performance under given030
model size and transfer learning settings.031

1 Introduction032

Recent studies have shown that language model pre-033

training provides high-quality text representations034

and significantly improves neural networks’ perfor-035

mance on a variety of natural language processing036

(NLP) tasks (Peters et al., 2018). Based on the037

popular Transformer architecture (Vaswani et al.,038

2017), various language models have been pro-039

posed (Devlin et al., 2018; Liu et al., 2019; Clark040

et al., 2020). These models are pretrained to pre-041

dict a masked word in a given context from large042

Knowledge
Base

Tang Dynasty … Chengdu became 
nationally known as a supplier of armies and 
the home of Du Fu, who is sometimes called 
China’s greatest poet.

AER Agent

a supplier of armies and the home of Du Fu

QG Agent

What was Sichuan known for in the 
ancient world before 957?

QAE Agent
A supplier of armies

Figure 1: The pipeline of semi-supervised question an-
swering (machine reading comprehension) by RGX.
AER (answer entity Recognition) agent recognizes
answer entity from a given passage; QG (question
Generation) generates a question based on the passage
and entity; QAE (question-answering eXtractor) ex-
tracts answer from the question and passage.

corpora, and generate a contextual representation 043

that encodes semantic and syntactic information. 044

After finetuning, these representations significantly 045

improve performance on downstream NLP tasks. 046

Although masked language modeling is a powerful 047

self-supervised learning technique, annotation on 048

large-scaled data is still necessary for finetuning 049

on difficult downstream tasks, including extractive 050

question answering (QA)1 where a large number 051

of labeled question-answer pairs are required as a 052

training corpora. 053

Previous studies showed that the QA models 054

can be improved by training on synthetic question- 055

answer pairs, namely self-training (Sachan and 056

Xing, 2018; Puri et al., 2020; Shakeri et al., 2020; 057

Bartolo et al., 2021). The core step of these work is 058

pretraining a question-answer pair synthesis model 059

on a seed corpus, and apply the generator on target 060

domains to obtain synthetic training data. The QA 061

model learns domain knowledge after finetuning on 062

1Also referred to as machine reading comprehension. The
two terms are used interchangeably in this paper.
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the synthetic data, and thus the domain adaptation063

is improved. However, the gap between the pre-064

training (i.e., seed) and the target corpus still exists,065

in terms of domain knowledge, question difficulty,066

and language style. The gap affects the quality of067

the synthetic training data.068

We thus propose a framework that allows coop-069

erative self-training for both QA pair synthesis and070

question answering to better adapt the synthesis071

models to the target domain and improve the learn-072

ing of the QA models. In the framework, we con-073

struct a cooperative environment where a question074

generator and an answer extractor work together to075

solve a masked entity prediction problem. We first076

leverage an entity recognizer to mask out an en-077

tity in a provided passage. The question generator078

then outputs a question based on the masked pas-079

sage. With the generated question and the original,080

unmasked passage, we train the answer extractor081

to select the correct answer spans, which are the082

masked entity. The extractor is also the final model083

used for extractive QA. To extract the spans accu-084

rately, the generator has to provide a good question,085

and the extractor should select the most likely to-086

kens. We design the reward function such that it087

favors the questions leading to correct answers. We088

also gradually increase the difficulty of generated089

questions (Karpukhin et al., 2020) by rewarding the090

questions that are not answered correctly but with091

low extraction losses via a stochastic expectation-092

maximization technique. The technique allows us093

to train the extractor with challenging examples094

incrementally. We call our algorithm RGX since it095

incorporates an answer entity Recognizer, a ques-096

tion Generator, and an answer eXtractor. The RGX097

pipeline is illustrated in Figure 1.098

With RGX, we can train a QA model for any099

unlabeled target domain given the corresponding100

text corpora and a labeled QA corpus in a seed do-101

main (either the same or different from the target).102

We show that RGX outperforms SOTA approaches103

in QA benchmark datasets when domain specific104

human labels are not available during finetuning.105

In this work, we make the following contributions:106

1. We propose a cooperative self-training frame-107

work, RGX, which contains an answer entity108

recognition, question generation, and answer109

span extraction to automatically generate non-110

trivial QA pairs on unlabeled corpora.111

2. We design a expectation-maximization syn-112

thetic QA selection that identifies difficult but113

answerable questions without supervision to 114

incrementally train the QA model with chal- 115

lenging examples, and a AER-based maxi- 116

mum mutual information inference method 117

for question answering. 118

3. Experiments show that our method signifi- 119

cantly outperforms SOTA pretrained QA mod- 120

els and self-training QA baselines. 121

2 Related Work 122

Reinforcement learning and self-training have 123

emerged recently for learning language genera- 124

tion in addition to maximum likelihood training. 125

To optimize text generation models directly with 126

non-differentiable objective functions, Rennie et al. 127

(2017) proposed self-critical sequence training 128

(SCST) using a policy gradient (Kakade, 2001; Sil- 129

ver et al., 2014). On the other hand, self-training 130

has been shown to be effective in many tasks, such 131

as machine translation (He et al., 2019), image clas- 132

sification (Xie et al., 2020), and structured database- 133

grounded question answering (Xu et al., 2020). 134

In the domain of question answering, a question 135

generator can be used for joint answer prediction 136

(Tang et al., 2017; Duan et al., 2017), and synthetic 137

QA data are used for in-domain data augmenta- 138

tion (Sachan and Xing, 2018; Puri et al., 2020; 139

Liu et al., 2020; Klein and Nabi, 2019) and out- 140

of-domain adaptation. Lewis et al. (2019b) and 141

Lee et al. (2020) introduced models for question 142

answering under unsupervised/zero-shot settings. 143

Shakeri et al. (2020) proposed generating synthetic 144

question-answer pairs with an end-to-end model 145

simultaneously. Bartolo et al. (2021) improved 146

the question synthesis by training with difficult 147

QA cases from the AdversarialQA corpus (Bar- 148

tolo et al., 2020) and fine-grained answer synthesis 149

by multi-model voting. We include more related 150

studies in Appendix A. 151

In this work, we mainly compare our method 152

with latest baselines, Shakeri et al. (2020) and 153

Bartolo et al. (2021) that reported results on out- 154

of-domain adaptation. Besides improved QA per- 155

formance, our framework, RGX, differs from the 156

previous work in the following aspects: (1). Our 157

method features reinforced finetuning of the QA 158

Synthesizer, (2). Our framework supports and im- 159

proves maximize mutual information inference in 160

test time, and (3). Our work did not use compli- 161

cated data annotation, e.g. AdversarialQA. 162
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Figure 2: The cooperative learning pipeline for question answering. The pipeline starts from a passage and follows
the steps: (1) recognizing a potential answer entity, (2) generating a question asking about the answer entity, and
(3) answering the question by extracting the answer span in the passage.

3 RGX Framework163

In this section, we first introduce (1). the QA syn-164

thesis pipeline, (2). cooperative self-training for165

both QA synthesis and question answering, and (3).166

an improved maximum mutual information infer-167

ence strategy. The self-training pipeline of RGX is168

shown in Figure 2.169

3.1 Data Synthesis170

Given a passage p, our goal is generating a set of171

questions q and answers a for the self-training of172

the QA model. The RGX model first recognize173

potential answer entities (AE) in p with an answer174

entity recognition (AER) model, and then gener-175

ate question based on the recognized AEs with a176

question generation (QG) model, and fine-grain the177

AEs with a pretrained question answer extraction178

(QAE) model.179

3.1.1 Answer Entity Recognition (AER)180

Latest QA synthesis models, QAGen2S (Shakeri181

et al., 2020) and SynQA (Bartolo et al., 2021), di-182

rectly generate questions from passages by model-183

ing Pqg(q|p). In RGX, we first recognize all poten-184

tial answer entities in a passage before generating185

questions for (1). increasing question diversity and186

coverage, and (2). modeling the mutual informa-187

tion between question generation and answering188

models in test time. The AER model in trained on189

the seed QA corpus.190

We found that using an off-the-shelf named en-191

tity recognition (NER) model pretrained on the192

CONLL 2003 shared task (Bender et al., 2003)193

performs poorly as a AER model (shown in our ex-194

periments). To learn an effective recognizer, given195

a passage p and an annotated answer entity e, we196

select the sentence s containing e from p and train 197

language models to recognize e in s. We tried two 198

models for this task: a BIO sequence tagging model 199

(AER-Tag) and a extractive AER model, which is 200

similar to an extractive question answering model, 201

for easier decoding. The model predicts the start 202

and end positions of the answer entity e. With 203

this method, we get potential answer entities by 204

probabilities of all candidate spans. 205

3.1.2 Masked Question Generation 206

With AER, we replace the answer entity e in the 207

passage p with a [MASK] token and obtain the 208

masked passage p∗. We then build a question gen- 209

erator Q (denoted as QG interchangeably) that out- 210

puts answerable questions q in natural language 211

with the concatenation of p∗ and e as input, i.e., 212

q = Q([p∗, e]). We adopt the BART sequence-to- 213

sequence model (Lewis et al., 2019a) as the archi- 214

tecture of Q in our implementation, and we train Q 215

on the question-answer pairs in the seed corpus by 216

maximizing the likelihood of annotated questions. 217

3.1.3 Answer Extraction as Fine-grained AER 218

The answer extraction model A (denoted as QAE, 219

question answering extractor) takes generated ques- 220

tion q and the original passage p as inputs. Follow- 221

ing the standard extractive QA method, we predict 222

the answers by 223

Ist, Ied = A([q, p]) (1) 224

where Ist and Ied stand for the start and end po- 225

sitions of e in p, respectively. We train the QAE 226

model to predict Ist and Ied separately with cross 227

entropy losses. 228

Besides being trained with synthetic QA pairs 229

and evaluated for the final QA performance, the 230
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QAE model is also a part of the data synthesis231

pipeline. After generating questions with the QG232

model, we use a pretrained QAE model to answer233

the generated questions. The final synthetic dataset234

is constructed by selecting generated questions and235

their corresponding QAE outputs.236

3.2 Cooperative Self-training237

Although the pretrained models can generate syn-238

thetic QA pairs from corpora in unseen domains,239

there is always a domain shift from the seed QA240

corpus for pretraining to the target. To efficiently241

adapt the pretrained models to the new domains,242

we propose a cooperative self-training algorithm243

that allows finetuning on the target corpora without244

additional annotations. The finetuning is based on245

a three-agent (AER, QG, QAE) cooperative frame-246

work, RGX. The pipeline is illustrated in Figure 2247

and comprises the following steps:248

1. Produce a masked passage by replacing an answer entity249
selected by AER with the ‘[MASK]’ token.250

2. Generate a question asking about the masked entity.251

3. Feed the generated question and the original passage252
into the QAE to predict an answer span.253

4. Optimize the QAE model with selected QA pairs.254

5. Optimize the QG model with selected QA pairs.255

In the proposed pipeline, all the AER, QG, and256

QAE models need pretraining to provide a reason-257

able start point for the cooperative self-training.258

However, the domain gap between the pretraining259

and the target corpus causes performance degra-260

dation. To mitigate the gap, we propose to mea-261

sure the quality of generated questions and incor-262

porate the measurement in loss functions. The263

quality is defined in two folds, correctness and264

difficulty. Firstly, the question should be fluent265

and answerable, and secondly, it should not be266

too trivial. To automatically select high-quality267

generated QA pairs, we introduce a expectation-268

maximization (EM) method based on QAE losses269

that learns the question quality without supervision.270

3.2.1 Synthetic QA Selection with EM271

To select synthetic QA pairs for finetuning, we272

first divide the generated questions based on the273

QAE loss for each question into three groups: low-,274

medium-, and high- loss questions. We can inter-275

pret questions with low loss as simple ones that276

the QAE model can easily answer. Medium-loss277

questions are challenging for the QAE, while those278

with high loss usually contain noise (e.g., contain-279

ing grammatical errors or asking about incorrect280

answers). If we train the answering model with all 281

questions, the training signal would be very noisy 282

due to the high-loss questions. If we only reward 283

questions that are correctly answered, the generator 284

will converge to a trivial local optima. Thus, we 285

train the QG and QAE model with the low- and 286

medium- loss questions, namely simple and chal- 287

lenging questions. For the entire pipeline to be 288

fully-automatic, we classify a given QA pair into 289

one of the three types described above. Note that 290

simply setting the thresholds as hyper-parameters 291

is difficult since the loss decreases as the QAE 292

model varies with different passages and domains. 293

In order to find the thresholds adaptively, we apply 294

an expectation-maximization (EM) algorithm to 295

cluster synthetic QA pairs for each passage. 296

We finetune both QG and QAE models with the 297

selected simple and challenging QA pairs. After 298

the training, re-running the RGX pipeline with the 299

finetuned question generation model leads to im- 300

proved data synthesis. Training the QAE model on 301

the updated synthetic dataset can significant outper- 302

form the previous finetuned QAE model. 303

3.2.2 Maximum Mutual Information QA 304

Li and Jurafsky (2016) proposed a maximum mu- 305

tual information (MMI) decoding method for ma- 306

chine translation, and Tang et al. (2017) proposed 307

a MMI method for jointly learning question gener- 308

ation and answering models. There is no previous 309

study to our knowledge that applies MMI inference 310

in test time of question answering that improves the 311

final performance, because (1). modeling P (q|p, a) 312

for all possible answers (spans) a is too inefficient, 313

and (2). Unlike the QAE model that receives loss 314

signals from all words in a given passage, the QG 315

model does not receive loss signal from the pas- 316

sage directly, so Pqg(q|p, a) it is less accurate for 317

ranking answer spans. 318

However, the AER and self-training strategy en- 319

able efficient MMI inference for QA, 320

a = argmax
a

[α logPqg(q|p, a)+β logPqa(a|p, q)] 321

In test time, we run the RGX pipeline for each pas- 322

sage without additional training to get fine-grained 323

AEs and corresponding questions. On the other 324

hand, we take the top-k spans predicted by the 325

QAE model, and only keep the top prediction and 326

those which also appears in the fine-grained AE 327

set. The filtering strategy dramatically reduces the 328

number of potential answer spans, and removes 329

unreasonable spans predicted by the QAE model. 330
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4 Experiments331

4.1 Modules332

In this work, we train three modules for building333

the cooperative self-training environment RGX,334

i.e., the answer entity recognizer (AER), the ques-335

tion generator (QG), and the question-answering336

extractor (QAE). We used a BERT (Devlin et al.,337

2018) model for AER, a BART (Lewis et al., 2019a)338

model for QG, and an ELECTRA (Clark et al.,339

2020) model for AER and QAE. To compare with340

the results reported in Shakeri et al. (2020) and341

Bartolo et al. (2021), we also evaluate the perfor-342

mance of training BERT (Devlin et al., 2018) and343

RoBERTa (Liu et al., 2019) models on the synthetic344

QA data generated by RGX.345

4.2 Data346

In our experiment work, we leveraged Natural347

Questions (Kwiatkowski et al., 2019) and SQuAD348

v1.1 (Rajpurkar et al., 2016) as the seed corpora for349

pretraining all modules introduced above. To evalu-350

ate the performance of the proposed RGX on ques-351

tion answering tasks with different difficulty levels,352

we conduct experiments on both SQuAD v1.1 (Ra-353

jpurkar et al., 2016) and MRQA (Fisch et al., 2019)354

out-of-domains (BioASQ, TextbookQA, RACE,355

RelationExtraction, DuoRC, and DROP). In the356

following sections, we use the term SQuAD to rep-357

resent the SQuAD v1.1 corpus. For self-training,358

we sample 3000 passages from the training set of359

each corpus for data synthesis. More details about360

the data are provided in Appendix C361

4.3 Implementation Details362

Pretraining We pretrain the AER, QG, and QAE363

models on NaturalQuestions and SQuAD (i.e., the364

seed) corpora. For NaturalQuestions, we only use365

the data points containing a short answer. For Co-366

operative training, we follow the steps described in367

Section 3.2 for the cooperative training phase.368

Self-training We apply self-training for QG and369

QAE by finetuning the models on selected syn-370

thetic QA pairs using the same method as pretrain-371

ing. The AER model is fixed after pretraining. The372

QAE model is finetuned using the official Hugging-373

face (Wolf et al., 2019) training scripts for question374

answering. We will open-source the RGX frame-375

work if the submission is accepted. More details376

about the hyperparameters we use in different train-377

ing phases are shown in Appendix B.378

4.4 Experiment Results 379

We assess the performance of RGX with both semi- 380

annotated and zero-annotated evaluation on unseen 381

domains. In our semi-annotated setting, we use 382

the annotated answer entities in the target corpora 383

but utilize QG to generate questions for obtaining 384

the training question-answer pairs. The labeled 385

questions are not used. We employ no annotation 386

from the target corpora for the out-of-domain task 387

but automatically construct the question-answer 388

training pairs with entities and questions inferred 389

by AER and QG on the corpora. 390

4.4.1 Semi-annotated Evaluation 391

The model performance with the pretrained 392

QA model, RGX, and SOTA trained with full- 393

supervision is shown in Table 1. 394

Models EM F1

Source domain: NQ, Target domain: SQuAD
ELECTRA-large (NaturalQuestions) 67.8 80.3
RGX 83.1 90.7

–w/o Coop. ST 81.2 89.1
ELECTRA-large (SQuAD) 89.7 94.9

Table 1: The performance of the question answering
models in the semi-annotated setting. RGX stands for
our cooperative training approach, and Coop. ST stands
for cooperative self-training.

Table 1 shows that RGX yields improvement 395

over the pretrained model, approaching the SOTA 396

performance of the fully trained ELECTRA-large- 397

discriminator model. The experiment result sug- 398

gests that the cooperative learning strategy im- 399

proves the question generation model. 400

4.4.2 Out-of-domain Evaluation 401

We also evaluate the models in unseen domains, 402

where we do not use any annotated QA for fine- 403

tuning. We train the QAE models based on the 404

synthetic training data and evaluate the models on 405

the target domains. We compare RGX with latest 406

self-trainig QA methods, QAGen2S (Shakeri et al., 407

2020) and SynQA (Bartolo et al., 2021). Since 408

QAGen2S did not report full MRQA results, we 409

implemented our own version. We first present 410

the RGX performance and the results reported by 411

the authors QAGen2S and SynQA, and then con- 412

duct ablation study by training different language 413

models on RGX synthetic QA data. 414

The full evaluation results on MRQA out-of- 415

domains are shown in Table 2, and the experiment 416
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Model
Domain

BioASQ
Bio

TextbookQA
Book

RACE
Exam

RelExt.
Wiki

DuoRC
Movie

DROP
Wiki

Avg

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Source Domain: NaturalQuestionswiki, Method: Extraction

ELECTRA-large 41.9 59.0 31.9 41.5 32.4 43.4 67.7 81.8 40.0 48.5 39.3 51.1 42.2 54.2
QAGen2S 43.2 64.1 39.9 51.7 33.7 45.5 71.6 84.4 43.8 53.2 24.2 37.1 42.7 56.0
RGX (Ours) 50.3 70.1 49.9 60.9 40.3 52.4 76.1 87.2 47.8 58.4 27.6 42.1 48.7 61.9

– w/o MMI 49.7 69.1 49.4 60.6 39.7 51.5 75.4 86.7 46.9 57.5 27.1 41.7 46.8 61.2
– w/o EM 48.2 67.9 47.4 59.8 38.3 50.5 74.1 86.2 46.6 56.9 26.1 40.9 46.8 60.4
– w/o Coop. ST 45.4 66.4 41.9 53.8 35.1 47.2 72.7 85.4 45.5 54.9 24.6 37.9 44.2 57.6

Source Domain: SQuADwiki (SQuAD+AQA+Wiki for SynQA), Method: Extraction
ELECTRA-large 58.7 73.1 43.0 53.6 38.3 52.5 79.0 88.4 53.1 64.2 48.3 60.8 53.4 65.4
QAGen2S 56.8 71.7 48.0 56.5 43.4 54.9 73.4 84.8 53.3 64.6 42.2 54.5 52.8 64.5
SynQA (extra data) 55.1 68.7 41.4 50.2 40.2 54.2 78.9 88.6 51.7 62.1 64.9 73.0 55.3 66.1
RGX (Ours) 60.3 74.8 51.2 61.2 44.9 58.7 79.2 88.6 57.4 66.2 47.6 60.9 56.8 68.4

– w/o MMI 59.2 73.6 50.1 60.4 46.3 57.6 78.9 88.5 56.2 65.7 46.9 60.6 56.3 67.7
– w/o EM 52.1 64.0 50.6 58.9 35.4 48.3 75.6 85.9 55.6 64.9 40.7 53.2 51.7 62.5
– w/o Coop. ST 57.5 72.1 48.6 57.0 43.8 55.2 74.3 85.3 53.9 65.3 43.0 55.1 53.5 65.0

Source Domain: SQuADwiki, Method: Prompt Tuning + Seq2seq Generation
T5-large 54.6 71.1 37.9 61.9 15.0 53.1 74.5 86.5 48.2 65.2 40.4 51.9 45.1 64.9
T5-large + RGX 55.1 71.6 41.1 64.2 15.5 55.1 75.9 87.1 49.5 66.2 42.9 53.8 46.7 66.3

Table 2: The QA performance evaluation on the out-of-domains of the MRQA benchmark.

QAGen2S SynQA RGX

Pretraining XQ SQ+AQA XQ
Synthesis Target Wikipedia Target
Finetuning XQ+Syn SQ+AQA+Syn XQ+Syn
AER Model None None ELECTRA
Coop. ST No No Yes
QA Num. 1M 1.5M 0.3M

Table 3: Comparison of different self-training methods.
XQ stands for “NaturalQuestions or SQuAD”.

setting comparison is shown in table 3. The re-417

sults show that the models trained with the RGX418

framework achieve significantly higher EM and F1419

scores on most domains, comparing to both pre-420

trained QA models and self-training baselines. The421

results showed that the RGX model achieves 7.7422

and 3.0 average F1 improvement over ELECTRA,423

the SOTA pretrained language model for QA, by424

pretraining on NQ and SQuAD respectively. The425

improvement over previous SOTA self-training QA426

methods, QAGen2S and SynQA, is also significant427

on both pretraining corpora, although SynQA ap-428

plies complicated adversarial QA annotation. The429

largest gain we got is adapting NQ model to Text-430

bookQA domain, increasing 18.0 EM and 19.4431

F1 scores. Note that our model still outperforms432

all baselines without MMI. The performance on433

the DROP benchmark drops since DROP requires434

multi-step reasoning, but the synthetic generation435

model tends to generate safe question-answer pairs.436

We also found that without selecting harder ques-437

Models EM F1

Source domain: NQ, Target domain: SQuAD
Pretrained NQ 67.8 80.3
RGX + NER 27.4 35.4
RGX + AER-Tag 71.4 82.4
RGX + AER-LM 72.7 85.9
RGX + AER-EM 79.2 89.4
Supervised ELECTRA-large 89.7 94.9

Table 4: Comparison of different AER strategies. NER
stands for the BERT named entity recognition model
trained on the CONLL 2003 shared task.

tions with SEM in RGX, the performance is sig- 438

nificantly lower. These facts indicate that the QA 439

model needs hard training examples for better per- 440

formance, and explains the good performance of 441

SynQA on DROP. For the same reason, the per- 442

formance drop led by removing EM from RGX 443

is significantly larger when the QG model is pre- 444

trained on SQuAD, since SQuAD questions are 445

more coherent with the context than NQ, and se- 446

lecting simple questions for RGX training will en- 447

courage the model to generate trivial questions, 448

which is harmful for the QA training. 449

4.5 Analysis 450

4.5.1 Answer Entity Recognition 451

We first compare the performance of different AER 452

models and strategies by setting NQ as the source 453

domain and SQuAD 1.1 as the target domain in 454

Table 4. The results showed that the choice of 455

AER model and strategy significantly influences 456

6



ELECTRA Top-k+MMI AER+MMI

EM F1 EM F1 EM F1
BioASQ 58.7 73.1 57.8 72.9 59.9 74.0
TextbookQA 43.0 54.6 44.6 54.9 45.3 55.4
RACE 38.3 52.5 38.1 52.4 39.7 54.1
RelExt 79.0 88.4 78.6 88.3 79.2 88.6
DuoRC 53.1 64.2 52.6 64.3 53.8 65.1
DROP 48.3 60.8 46.7 60.8 49.7 61.5

Table 5: Comparison between maximum mutual infor-
mation inference performance grounded on AER results
and top-k (k = 20) predictions of the QA model.

Models Mean Len. Std Len. Vocab

Ground-truth 11.29 3.72 988703
Semi-anno. RGX 10.54 1.91 923191

–w/o Coop. ST 10.49 2.48 919105
Zero-anno. RGX 10.53 1.94 873300

–w/o Coop. ST 10.57 2.63 789924
–w/o AER 10.60 1.87 743454
–w/o EM 10.18 1.62 692301

Table 6: The vocabulary sizes and lengths of Annotated
and generated questions on SQuAD under both semi-
and zero-annotated settings in unseen domains

the final QA performance. The low performance457

of the NER model trained on CONLL shared task458

suggests the importance of our AER module. We459

notice that the improvement from the cooperative460

learning over the pretrained models is higher in461

the zero-annotation setting than the semi-annotated462

task. The observation indicates that the model463

trained with RGX is more robust against the auto-464

matically recognized answer entities. More details465

about the AER methods are shown in Appendix D.466

The AER method also enables and improves the467

maximum mutual information (MMI) inference in468

test time. Table 2 shows that MMI achieves the469

best performance, and we also show that the MMI470

accuracy is hurt without AER. Table 5 shows that471

MMI grounded on AER constantly outperform the472

ELECTRA model, but grounding on top-k seri-473

ously hurts the EM scores. Some invalid answer474

Domain RGX w/o Coop. ST RGX

Hit BLEU Hit BLEU
BioASQ 68.1 5.9 75.8 12.7
TextbookQA 43.7 7.5 58.2 13.2
RACE 8.3 5.2 12.3 6.8
RelExt. 47.4 2.8 54.2 3.3
DuoRC 53.5 6.7 60.0 7.5
DROP 73.5 12.3 75.3 9.3

Table 7: Evaluation of the answer hit rates and question
BLEU scores of the synthetic data.

Context: Despite differences in the spectrum of mutations in CN or CyN,
type or localization of mutation only partially determine the clinical phenotype.

Q1: What determines the clinical phenotype of a person with a mutation?
Q2: What determines the clinical phenotype of a mutation?
Q3: What is the only way to determine the clinical phenotype of a mutation?

Q1_loss = 1.37

Q2_loss = 4.38

Q3_loss = 10.72

Figure 3: Generated questions about the same answer
entity classified into different types by EM.

predictions leads to low question generation per- 475

plexities, which makes MMI inference noisy. Ta- 476

ble 6 shows that the QG model generated more 477

diversed questions based on the AER outputs. 478

4.5.2 Synthetic QA Selection with EM 479

Previous experiments showed that selecting non- 480

trivial synthetic QA pairs is essential for RGX to 481

achieve high performance. Table 2 shows that the 482

performance of cooperative self-trained RGX is 483

much lower than the pretrained baseline without 484

EM. If selecting QA pairs with low perplexities 485

instead of EM, the QA diversity is significantly 486

lower as shown in Table 6, thus makes the QAE 487

model overfit to simple training cases and hurts 488

the QA accuracy. We show questions about the 489

same answer entity being classified into simple, 490

challenging, and difficult types by EM in figure 491

3. The data points in the plot represents the losses 492

of synthetic QA pairs and the predicted QA type. 493

Based on the highlighted answer entity, question 494

1 and 2 are predicted as correct questions, while 495

question 3, which has a relatively high QAE loss, 496

is regarded as a wrong question. Note that we only 497

generate one question for each span recognized by 498

the AER model, but different questions might be 499

re-directed to the same AE after QAE fine-graining. 500

4.5.3 Cooperative Self-training 501

We found that the cooperative self-training method 502

improves domain adaptation ability of self-trained 503

QA models by increasing both accuracy and diver- 504

sity of QA synthesis. 505
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Architecturally, the school has a Catholic character. Atop the Main Building’s gold dome is a golden statue of the Virgin
Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the
legend ”Venite Ad Me Omnes”. Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the
basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the
Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line
that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.

Annotated Pretrained RGX

Saint Bernadette Soubirous a Marian place of
prayer and reflection

a Marian place of
prayer and reflection

To whom did the Virgin Mary allegedly
appear in 1858 in Lourdes France? what is the grotto at st bernadette’s? what is the grotto in st bernadette

school?

a copper statue of Christ the grotto at Lourdes,
France Venite Ad Me Omnes

What is in front of the Notre Dame
Main Building?

where is the grotto located at st
bernadette school?

what is the message on the statue in
front of st bernadette school?

the Main Building Immediately behind the
basilica is the Grotto 1858

The Basilica of the Sacred heart at
Notre Dame is beside to which structure? what is the grotto in st peter’s school? when was the grotto at lourdes built?

a Marian place of
prayer and reflection

copper statue of Christ
with arms upraised

a simple, modern
stone statue of Mary

What is the Grotto at Notre Dame? what is it a statue of christ? what is the statue at st bernadette
school?

a golden statue of
the Virgin Mary a replica the grotto at Lourdes,

France

What sits on top of the Main
Building at Notre Dame?

is the grotto at st bernadette school
in paris a replica of which European
landmark?

what is the replica of st bernadette’s
school in paris?

Table 8: An example of a passage in the training set of the SQuAD corpus. We list the annotated question-answer
pairs, and the question-answer pairs generated by the models pretrained on NQ and finetuned by RGX. The bold
texts are annotated or recognized answer entities. Adapting from NQ is difficult since the questions in NQ do not
strictly coherent with a given context. More generation examples are shown in Appendix E.

Accuracy. We also evaluate the quality of the gen-506

erated QA pairs without a downstream task by as-507

sessing the answer entity hit rate and the BLEU508

scores of generated questions using the evaluation509

sets of each domain. The results are shown in510

Table 7, indicating that RGX find mores human-511

annotated answer entities, and the generated ques-512

tions have higher BLEU scores on all domains. The513

evaluation results show that the synthetic QA pars514

generated by RGX covers more human annotated515

answer entities, and the generated questions are516

more similar to human annotations than the pre-517

trained question generation model.518

Diversity We compare the lengths and vocabulary519

sizes of the questions and summarize the statistics520

in Table 6, which shows that the ground-truth ques-521

tions are longer and more diverse in vocabulary522

than the generated ones. However, the cooperative523

self-training, together with AER and EM, improves524

the vocabulary diversity. We observe a correlation525

between the vocabulary size and the QA perfor-526

mance reported in Table 1 and 4, presumably be-527

cause the QAE model requires diverse knowledge528

for training. Thus, we believe generating more di-529

verse QA pairs with good quality will be a critical 530

next step to improve RGX. 531

Case Study. An example of a SQuAD passage is 532

shown in Table 8. We list the annotated and gen- 533

erated question-answer pairs by different models. 534

The table shows that the models can recognize rea- 535

sonable answer entities other than the annotated 536

ones, and RGX generates more natural QAs. 537

5 Conclusion 538

We propose a cooperative self-training frame- 539

work, RGX, consisting of an answer entity Rec- 540

ognizer, a question Generator, and an answer eX- 541

tractor, for question generation and answering. We 542

also introduce in the framework an expectation- 543

maximization method that measures the quality of 544

generated questions for reinforced finetuning of 545

the question generation models. Experiments show 546

that RGX significantly outperforms pretrained and 547

self-trained model baselines while adapted to un- 548

seen domains, suggesting that RGX is a promising 549

framework for making extractive question answer- 550

ing methods more scalable and less dependent on 551

human annotation. 552
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A More Related Work 776

Representation learning has been an important 777

topic in NLP area since neural language models 778

were proposed (Bengio et al., 2003). Based on 779

word co-occurrence, Mikolov et al. (2013) and Pen- 780

nington et al. (2014) proposed language embedding 781

algorithms to model word-level semantics. Recent 782

studies have focused on pretraining contextualized 783

word representations with large-scaled corpora (Pe- 784

ters et al., 2018). State-of-the-art representation 785

models are pretrained with the masked language 786

modeling task (Devlin et al., 2018; Liu et al., 2019; 787

Clark et al., 2020) using the Transformer architec- 788

ture (Vaswani et al., 2017). 789

Different variants of masked language models 790

have been investigated to improve performance in 791

downstream tasks. Joshi et al. (2020) leveraged a 792

masked span generation task instead of word pre- 793

diction. Fei et al. (2020) and Shen et al. (2020) 794

proposed models that learns better syntax knowl- 795

edge with syntactic distances (Shen et al., 2018) 796

and heights (Luo et al., 2019). Henderson et al. 797

(2019) and Humeau et al. (2019) showed that pre- 798

training language models on dialog corpora per- 799

form better on dialog-related downstream tasks, as 800

compared to pretraining on Wikipedia. A span se- 801

lection pretraining objective is proposed in Glass 802

et al. (2019) to reduce the gap between the pre- 803

training and downstream finetuning stages and to 804

improve the performance on the QA task. Some 805

applications of generated questions are shown in 806

(Lewis et al., 2021; Jia et al., 2021). 807

In contrast to self-training methods that usually 808

adopt a teacher-student learning strategy, coopera- 809

tive learning pipelines contain several agents work- 810

ing together to learn as much knowledge as pos- 811

sible. A typical cooperative learning framework 812

is generative adversarial networks (GAN) (Good- 813

fellow, 2016; Goodfellow et al., 2014), where a 814

generator is optimized to confuse a discriminator, 815

and a discriminator is trained to distinguish real 816

examples from generated ones. Sequence GAN 817

is further designed for learning diverse text gen- 818

eration (Yu et al., 2017). Unlike the adversarial 819

learning method where two networks work for 820

opposite goals, other studies proposed learning 821

environments in which different agents learn the 822

same objective functions for language emergence 823

(Lazaridou et al., 2016; Mordatch and Abbeel, 824

2018; Havrylov and Titov, 2017), including sim- 825

ple natural language, compositional language, and 826
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symbolic language.827

B Hyper-parameters828

There are three phases of model training in this829

work: pretraining on the Natural Question cor-830

pus, cooperative adaptation with reinforcement831

learning on the target corpora, and final fine-832

tuning on the target corpora. We adopt most833

of the hyper-parameters reported in the original834

BERT (Devlin et al., 2018), BART (Lewis et al.,835

2019a), and ELECTRA (Clark et al., 2020) pa-836

pers. We select the final finetuning learning rates837

from {3e− 5, 4e− 5, 5e− 5} and report the high-838

est performance. All the other hyper-parameters839

are the same as reported in the corresponding pa-840

pers. For all the phases, we fix eps = 1e− 6 and841

sw = 2000, where sw is the number of warm-up842

steps, and we apply no weight decays. In the fol-843

lowing sections, we describe the details of each844

training phase. We use BART-large (406M parame-845

ters) and ELECTRA-large (335M parameters) mod-846

els for our experiments. We run our experiments847

on 2 Tesla V100 GPUs. Training the QAE models848

on augmented data takes around 4 hours.849

For maximum mutual information inference pro-850

cess shown in the equation below,851

a = argmax
a

[α logPqg(q|p, a)+β logPqa(a|p, q)]852

we fix β = 1. We used an adaptive α value by853

comparing the synthetic question generated by the854

QG model and the input question. For each answer855

entity a, we calculate856

α = max(1− abs(
qinput
qgen

− 1), 0.1)857

This value normalizes the question probability858

p(q|p, a) estimated by the QG model, since gener-859

ated questions from some answer entities is easier860

than other spans in the same passage, which makes861

the QG model assign all natural questions a relative862

low perplexity.863

C Data864

The SQuAD v1.1 is the easiest QA corpus used in865

this paper. The dataset contains 107, 785 question-866

answer pairs on 536 articles, which are split into867

passages. Each question is labeled with an answer868

that can be extracted from the given passage.869

The Natural Questions dataset is a large-scale870

corpus designed for open-domain question answer-871

ing. The dataset is more challenging than SQuAD.872

Dataset Num. Synthetic QA

BioASQ 123121
TextbookQA 133773
RACE 115847
RelExt. 52142
DuoRC 250698
DROP 100394

Table 9: Number of synthetic QA of each MRQA do-
main.

All questions are collected from human search 873

queries and are annotated with long and abstractive 874

answers. Some of the questions are also labeled 875

with a short answer for learning answer-span ex- 876

traction or reading comprehension. Focusing on 877

the machine reading comprehension task, we select 878

106, 926 questions labeled with both long and short 879

answers from the dataset for experiments. 880

For each target domain in MRQA, we collect the 881

corresponding training data and sample 3000 pas- 882

sages for QA synthesis. The number of synthetic 883

QAs varies based on the length of input passages, 884

and is shown in Table 9. 885

D Answer Entity Recognition Details 886

In this section, we describe details of the AER 887

methods, which are not covered in detail in previ- 888

ous sections. All AER models are pretrained on 889

the Natural Questions corpus. To solve the sparsity 890

problem, in other words, the passages are long but 891

not all potential question-answer pairs are anno- 892

tated, we train all following AER models by using 893

the sentence containing the annotated answer en- 894

tities as inputs, instead of the whole passage. If a 895

sentence in the passage does not contain an anno- 896

tated answer entity, we do not use it for training. 897

In this work, we introduce two types of AER 898

methods, tagging based AER (AER-tag) and extrac- 899

tion based AER (AER-Search and AER-Coop). We 900

describe their training and how we use the trained 901

model to recognize answer entities in our experi- 902

ments. 903

D.1 AER-Tag 904

D.1.1 Training 905

We apply a BIO tagging model for answer entity 906

recognition in the AER-Tab method. We train the 907

model to classify all tokens in the input sentence 908

into three classes, 909
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• B(egin) - the first token of the annotated an-910

swer entity911

• I(nsize) - other tokens of the annotated answer912

entity913

• O(utside) - tokens that are not a part of the914

annotated answer entity915

D.1.2 Evaluation916

Given an input passage, we run the trained BIO917

tagging model on each of its sentences and greed-918

ily predict answer entities. There might be more919

than one answer entities predicted in each sentence,920

and we only use the answer entities start with a921

predicted B tag.922

D.2 AER-LM923

D.2.1 Training924

For AER-LM method, we need to pretrain an925

extraction-based AER model. We also take a sen-926

tence of L tokens containing an annotated answer927

entity as an example. Using an extraction model,928

which is similar as our question answering model,929

we train the model to predict the start and end loca-930

tion of the annotated answer entity. The model out-931

puts a start score and an end score for each token,932

and predicts the start/end locations by selecting the933

tokens that are assigned with highest scores. The934

model is trained with cross-entropy loss, by regard-935

ing the extraction task as two L-class classification936

tasks.937

D.2.2 Evaluation938

In evalution, we first run the model on each sen-939

tence of the input passages and calculate the start940

and end scores for each token. For each span941

(xi, xi+1, . . . , xj) that is not longer than Lspan to-942

kens, we calculate the span score with943

sij = sist + sjed (2)944

where sist is the start score of the first token of span945

(i, j), and sjed is the end score of the last token of946

the span. In practice, we set Lspan = 10.947

To re-rank all possible answer entities, we select948

top N0 = 40 spans according to sij for each pas-949

sage. For all selected answer entities, we generated950

questions with a pretrained question generator and951

collect the generation perplexity of the questions.952

We select Nsearch = 5 question-answer pairs with953

lowest perplexities for the final question-answering954

finetuning.955

D.3 AER-Coop 956

In AER-Coop, we use the same extraction training 957

method applied in AER-Search, and we also use 958

the sij scores to select the top N0 = 40 preliminary 959

answer entities for further search. The difference 960

is that we search for final answer entities cooper- 961

atively with the pretrained question generator and 962

question answering extractor. 963

With the question generator and question answer- 964

ing extractor, we re-rank the recognized answer 965

entities with the following score 966

scij = γ · Ic − p (3) 967

where γ is a large, positive coefficient, p is the per- 968

plexity of generated question based on span (i, j), 969

and Ic = 1 if the generated question is correctly 970

answered, and otherwise Ic = 0. 971

D.4 Answer Entity Overlapping 972

We found the extraction-based AER model leads 973

to overlapping problems, since a large start or end 974

score assigned to a token leads to many candidate 975

answer entities start or end at the token. In practice, 976

if an answer entity is selected by the AER-Search 977

and AER-Coop method, we no longer consider any 978

other answer entities that overlap with the selected 979

ones. 980

E RGX Examples 981

In this section, we show some examples of our full 982

model. The examples are contained in Table 10. 983
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The National History Museum of Montevideo is located in the historical residence of General Fructuoso Rivera. It exhi-
bits artifacts related to the history of Uruguay. In a process begun in 1998, the National Museum of Natural History (1837)
and the National Museum of Anthropology (1981), merged in 2001, becoming the National Museum of Natural History
and Anthropology. In July 2009, the two institutions again became independent. The Historical Museum has annexed eight
historical houses in the city, five of which are located in the Ciudad Vieja. One of them, on the same block with the main
building, is the historic residence of Antonio Montero, which houses the Museo Romantico.
When was the national history museum of montevideo founded?

In the 1920s, John Maynard Keynes prompted a division between microeconomics and macroeconomics. Under Keynesian
economics macroeconomic trends can overwhelm economic choices made by individuals. Governments should promote
aggregate demand for goods as a means to encourage economic expansion. Following World War II, Milton Friedman
created the concept of monetarism. Monetarism focuses on using the supply and demand of money as a method for con-
trolling economic activity. In the 1970s, monetarism has adapted into supply-side economics which advocates reducing
taxes as a means to increase the amount of money available for economic expansion.
Monarism focuses on the relationship between the?

Starting in 2006, Apple’s industrial design shifted to favor aluminum, which was used in the construction of the first Mac-
Book Pro. Glass was added in 2008 with the introduction of the unibody MacBook Pro. These materials are billed as env-
ironmentally friendly. The iMac, MacBook Pro, MacBook Air, and Mac Mini lines currently all use aluminum enclosures,
and are now made of a single unibody. Chief designer Jonathan Ive continues to guide products towards a minimalist and
simple feel, including eliminating of replaceable batteries in notebooks. Multi-touch gestures from the iPhone’s interface
have been applied to the Mac line in the form of touch pads on notebooks and the Magic Mouse and Magic Trackpad for
desktops.
Who is the designer of the macbook pro?

The city’s total area is 468.9 square miles (1,214 km2). 164.1 sq mi (425 km2) of this is water and 304.8 sq mi (789 km2) is
land. The highest point in the city is Todt Hill on Staten Island, which, at 409.8 feet (124.9 m) above sea level, is the
highest point on the Eastern Seaboard south of Maine. The summit of the ridge is mostly covered in woodlands as part
of the Staten Island Greenbelt.
Where is the highest point in new york city?

In 1922, the number of supporters had surpassed 20,000 and by lending money to the club, Barça was able to build the
larger Camp de Les Corts, which had an initial capacity of 20,000 spectators. After the Spanish Civil War the club started
attracting more members and a larger number of spectators at matches. This led to several expansion projects: the
grandstand in 1944, the southern stand in 1946, and finally the northern stand in 1950. After the last expansion, Les Corts
could hold 60,000 spectators.
What is the capacity of barcelona’s stadium?

On 1 November 2013, international postal services for Somalia officially resumed. The Universal Postal Union is now
assisting the Somali Postal Service to develop its capacity, including providing technical assistance and basic mail
processing equipment.
Who is responsible for supporting the somali postal service?

In addition to membership, as of 2010[update] there are 1,335 officially registered fan clubs, called penyes, around the
world. The fan clubs promote Barcelona in their locality and receive beneficial offers when visiting Barcelona. Among
the best supported teams globally, Barcelona has the highest social media following in the world among sports teams,
with over 90 million Facebook fans as of February 2016. The club has had many prominent people among its support-
ers, including Pope John Paul II, who was an honorary member, and former prime minister of Spain José Luis
Rodrı́guez Zapatero. FC Barcelona has the second highest average attendance of European football clubs only behind
Borussia Dortmund.
Who was an honorary member of barcelona football club?

In April 1758, the British concluded the Anglo-Prussian Convention with Frederick in which they committed to pay him
an annual subsidy of £670,000. Britain also dispatched 9,000 troops to reinforce Ferdinand’s Hanoverian army, the first
British troop commitment on the continent and a reversal in the policy of Pitt. Ferdinand had succeeded in driving the
French from Hanover and Westphalia and re-captured the port of Emden in March 1758 before crossing the Rhine with
his own forces, which caused alarm in France. Despite Ferdinand’s victory over the French at the Battle of Krefeld and
the brief occupation of Düsseldorf, he was compelled by the successful manoeuvering of larger French forces to with-
draw across the Rhine.
What did france pay to the prussian monarchy?

Executives at Trump Entertainment Resorts, whose sole remaining property will be the Trump Taj Mahal, said in 2013
that they were considering the option of selling the Taj and winding down and exiting the gaming and hotel business.
What is the future of the trump taj mahal?

Vehicles typically include headlamps and tail lights. Headlamps are white or selective yellow lights placed in the front of
the vehicle, designed to illuminate the upcoming road and to make the vehicle more visible. Many manufactures are turn-
ing to LED headlights as an energy-efficient alternative to traditional headlamps. Tail and brake lights are red and emit
light to the rear so as to reveal the vehicle’s direction of travel to following drivers. White rear-facing reversing lamps in-
dicate that the vehicle’s transmission has been placed in the reverse gear, warning anyone behind the vehicle that it is
moving backwards, or about to do so. Flashing turn signals on the front, side, and rear of the vehicle indicate an intended
change of position or direction. In the late 1950s, some automakers began to use electroluminescent technology to back-
light their cars’ speedometers and other gauges or to draw attention to logos or other decorative elements.
When did they start putting back up lights in cars?

Table 10: Examples of recognized answer entities and generated questions with the full RGX model14


