
Published as a conference paper at ICLR 2025

NOT ALL LLM-GENERATED DATA ARE EQUAL:
RETHINKING DATA WEIGHTING IN TEXT CLASSIFICA-
TION

Hsun-Yu Kuo∗1,2,3,†, Yin-Hsiang Liao∗1,2,†, Yu-Chieh Chao1, Wei-Yun Ma1,†,‡, Pu-Jen Cheng2,†
1Academia Sinica 2National Taiwan University
3Swiss Federal Institute of Technology in Lausanne (EPFL)
hsun-yu.kuo@epfl.ch,
{zenonliao, vpj870331, ma}@iis.sinica.edu.tw,
pjcheng@csie.ntu.edu.tw

ABSTRACT

Synthetic data augmentation via Large Language Models (LLMs) allows re-
searchers to leverage additional training data, thus enhancing the performance of
downstream tasks, especially when real-world data is scarce. However, the gen-
erated data can deviate from the real-world data, and this misalignment can bring
about deficient results while applying the trained model to applications. There-
fore, we proposed efficient weighted-loss approaches to align synthetic data with
real-world distribution by emphasizing high-quality and diversified data generated
by LLMs using merely a tiny amount of real-world data. We empirically assessed
the effectiveness of our methods on multiple text classification tasks, and the re-
sults showed that leveraging our approaches on a BERT-level model robustly out-
performed standard cross-entropy and other data weighting approaches, providing
potential solutions to effectively leveraging synthetic data from any suitable data
generator.

1 INTRODUCTION

The quantity and quality of data play a significant role in many tasks of Natural Language Processing
(NLP). However, due to the scarcity of data in a particular domain for a specific task, we may need
expertise to collect such data, resulting in budget limitations. Fortunately, Large Language Models
(LLMs) provide a practical solution to this problem. LLMs, such as GPT series (Brown et al.,
2020; OpenAI, 2022; OpenAI et al., 2024), can be leveraged to generate synthetic data that mimics
real-world examples, thereby enriching the training set (Wang et al., 2023). Taori et al. (2023), and
other works (Ye et al., 2022; West et al., 2022; Li et al., 2023) have shown the capability of using
LLM-generated data for the downstream tasks, and it seems to be a new cut-in solution to any NLP
downstream tasks. However, training models with LLM-generated data can lead to drawbacks such
as model collapse (Shumailov et al., 2023; Dohmatob et al., 2024), tail phenomena, reinforcing LM
biases (Wang et al., 2023). Moreover, based on our empirical study, the performance of models
trained on synthetic data without proper processing can be lower than models trained on much
smaller real-world data (Sec. 3.1), highlighting the uncertainty of using LLM-generated data.

Previous works took filtering strategy to get high quality or variant data (Dubey et al., 2024; MetaAI,
2024; Chiang et al., 2023; West et al., 2022; Meng et al., 2022; 2023). Still, this strategy was mostly
human-crafted or needed efforts to train a judge model, and most importantly, filtering strategies
abandoned the potential of the filtered data that may contribute to the final performance. In contrast,
data weighting approaches leverage all the training data, including augmented and biased data, but
prioritize data by giving nonuniform weights to the loss of each data point. For example, Focal-Loss
(Lin et al., 2017) prioritized more diverse data; Hu et al. (2019) and SunGen (Gao et al., 2023)
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optimized the weights of training samples so that the model performs best on a small real-world
dataset. It is worth noting that while Hu et al. (2019) and SunGen steered the training toward higher
performance, using these methods in a large-scale scenario seems infeasible because the weights are
regarded as learnable parameters, the number of which increases as the training set grows.

Thus, inspired by the objective of Hu et al. (2019), we introduce two novel, efficient, automatic
weighted-loss approaches: Importance Loss (IMP-Loss) and Dynamic Importance Loss (DIMP-
Loss), which are designed to closely align the distribution of synthetic data with that of real-world
data. Furthermore, both IMP-Loss and DIMP-Loss incorporate mechanisms as quality-checkers and
diversity-checkers, assigning higher quality and more diverse data points with greater weight. In
other words, these methods prioritize data points that are more relevant and more informative to
target downstream tasks, thereby reducing the impact of less valuable data on the fine-tuning model.

To validate our approaches, we conduct comprehensive empirical studies focusing on various text
classification tasks by comparing the performance of models trained with our novel weighted-loss
objectives under different conditions: 1) models trained exclusively on LLM-generated datasets
using few-shot prompts from a limited real-world dataset (Sec. 5.1); 2) models trained on large, real-
world datasets (Sec. 5.2); and 3) models trained on noisy datasets (Sec. G). Our findings indicate that
using a small real-world dataset to build the quality checkers and incorporating diversity checkers
highly enhances performance, even surpasses the few-shot prediction accuracy of the tremendous
data generator (Sec. 5.1). This demonstrates the efficacy of our methods in leveraging little real-
world data to improve models trained on LLM-generated datasets. Notably, DIMP-Loss is efficient
in terms of model size (Sec. 5.1), data requirements (Sec. 5.1), and computational resources (Sec.
4.4), making it a practical solution to enhance downstream performance.

2 PRELIMINARIES

2.1 CROSS ENTROPY LOSS ON REAL-WORLD DATASET

In supervised learning for text classification tasks, we consider a real-world dataset DP =
{(xi, yi)}Mi=1 comprising M samples. Each pair (xi, yi) is drawn independently and identically
distributed (i.i.d.) from the joint distribution P (X ,Y), where xi represents the input sample and
yi ∈ Y = {1, 2, . . . , C} is the corresponding class label. This setup forms the basis for training
models using the empirical cross-entropy loss (CE-Loss), a standard loss function in such tasks.
The CE-Loss over the entire dataset DP is calculated as follows:

LCE(θ,DP ) = −
1

M

M∑
i=1

log P̂ (yi|xi; θ)
p→ EP

[
− log P̂ (y|x; θ)

]
(1)

where P̂ (yi|xi; θ) is the predicted probability of the model with parameters θ for the true class label
yi given input xi. The CE-Loss converges in probability to the expected version of conditional cross-
entropy under the true joint distribution P (X ,Y) by the law of large numbers. This convergence
is crucial because the minimizer of the CE-Loss occurs if and only if the predicted distribution
P̂ (y|x; θ) matches the true distribution P (y|x).

2.2 WEIGHTED CROSS ENTROPY LOSS (WCE-LOSS)

WCE-Loss is a modification of the standard CE-Loss that assigns different weights to each data
point. It is defined as:

LWCE(θ,DP , w) = −
1

N

N∑
i=1

wi log P̂ (yi|xi; θ) (2)

Here, wi represents the weight assigned to the i-th data point (xi, yi). A higher weight wi assigned
to a data point (xi, yi) indicates the data point has a greater influence on the model’s learning or
adjustment of parameters, thereby being considered more important for the training process.

There have been several variants of the weight function, such as Focal Loss LFL (Lin et al., 2017). It
addressed class imbalance and reduced the impact of easily classified examples as its weight function
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was defined as wi = (1 − P̂ (yi|xi; θ))
γ , where γ ≥ 1 was a focusing parameter that adjusted the

rate at which easy examples were down-weighted. Research has shown that models trained with
Focal Loss were better calibrated under the i.i.d. assumption and performed well under distribution
shifts (Mukhoti et al., 2020). This made Focal Loss a promising baseline for evaluating our proposed
weight function in the context of LLM-generated synthetic data training.

Additionally, a series of meta-learning approaches addressed these challenges by leveraging bi-level
optimization to dynamically adjust weights based on each instance’s contribution to the meta-set
from the real world. These methods handled class imbalance, noisy labels, and augmented data by
reweighting these instances based on their gradient direction or model outputs, providing a flexible
mechanism for weighting data points (Ren et al., 2018; Hu et al., 2019; Gao et al., 2023). While
effective, meta-learning-based approaches were computationally expensive, making them difficult
to scale up to larger datasets or complex models. In contrast, our methods share the same objective
of optimizing performance on real-world data but achieve it without meta-learning. This makes it
more computationally efficient and scalable while still maintaining high performance.

3 OPTIMIZATION ON LLM-GENERATED DATASET

LLMs are capable of generating synthetic datasets (Lu et al., 2023; West et al., 2022; Li et al.,
2023), denoted as DQ = {(xi, yi)}Ni=1, sourced from the distribution Q(X ,Y). This distribution is
shaped by specific prompts comprising instruction prompts, system prompts, and few-shot examples
that guide the LLM’s output. This method offers a valuable alternative for acquiring training data,
especially when access to real-world data is limited. Moreover, the relevance of Q can be further
refined by incorporating few-shot examples from a small real-world dataset DP ′ , enhancing the
utility and applicability of the synthetic data (Li et al., 2023).

The CE-Loss on the LLM-generated dataset converges to the expected cross-entropy under Q:

LCE(θ,DQ)
p→ EQ

[
− log P̂ (y|x; θ)

]
(3)

A significant distributional shift between Q and P may lead to suboptimal predictive performance
on real-world data.

3.1 UNCERTAINTY OF LLM-GENERATED DATA PERFORMANCE

Our empirical study, shown in Table 1, demonstrates notable variability in the performance of CE-
Loss on LLM-generated datasets. Specifically, on the Financial (Malo et al., 2014) and MRPC
(Wang et al., 2018) benchmarks, CE-Loss on large LLM-generated datasets (> 3k samples) per-
forms worse than training on small real-world datasets, which contain only around 200-400 sam-
ples. In contrast, CE-Loss in LLM-generated data improves accuracy for the Twitter Irony (Van Hee
et al., 2018) benchmark. This variability underscores the uncertainty associated with using CE-Loss
on LLM-generated data. These findings are consistent with another research (West et al., 2022),
showing that when using CE-Loss, without proper filtering, LLM-generated data may lead to decent
results on downstream tasks, even though its size is considerably larger than that of real-world data.

3.2 POTENTIAL OF LLM-GENERATED DATA: MODEL-BASED INFORMATION
MEASUREMENT

We employ information-theoretic metrics to evaluate the uncertainty within the conditional distribu-
tions of real-world data and LLM-generated data. A higher conditional entropy indicates a more
significant uncertainty given an input x, suggesting various outcomes. We estimate this by sepa-
rately fine-tuning a BERT model (Devlin et al., 2019) on both datasets. Higher conditional entropy
is often associated with greater diversity within the dataset, reflecting a broader range of informa-
tion that the model must learn to predict accurately. The conditional KL divergence1 quantifies the
difference between two conditional distributions, P (y|x) and Q(y|x), showing how well a model
trained on one dataset describes another.

1It is also called conditional divergence or conditional relative entropy.
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We show these metrics for a financial benchmark scenario. The real-world dataset DP exhibits
significantly lower conditional entropy (HP (y|x) = 0.0365) compared with the LLM-generated
dataset Q (HQ(y|x) = 0.2299), indicating that DQ is more diverse. Furthermore, the condi-
tional KL divergence from P to Q (DKL(Q||P ) = 1.8781) is much greater than it from Q to
P (DKL(P ||Q) = 0.444), suggesting that models trained on real-world data struggle to capture
the complexity of the synthetic dataset. Those models trained on the synthetic dataset are rela-
tively efficient, requiring fewer additional nits on average to encode samples from the real-world
distribution P . This difference, along with the results from Sec. 3.1 highlights that, although the
synthetic dataset contains some points that are less representative of the real-world distribution, it
still includes a substantial proportion of relevant data points. This analysis indicates the potential to
improve modeling techniques to utilize LLM-generated data’s rich, informative content.

3.3 PROBLEM FORMULATION

In this study, we devise a weighted loss function that transforms CE-Loss from an LLM-generated
data distribution Q to match the real-world data distribution P . We assumed the dataset DQ is i.i.d.
and the LLM can approximate the real-world input distribution P (x) through strategic prompting,
effectively simulating Q(x) ≈ P (x). For example, by using system prompts like ”Now you are a
journalist writing news articles,” it can produce synthetic texts that closely mimic authentic news
articles. Lastly, we use a small set DP ′ , approximately 200-400 samples from real-world datasets,
to facilitate the alignment process. These samples are i.i.d. from the distribution P . We use P ′ as
the probability function representing this small real-world dataset.

This approach leverages the rich diversity of LLM-generated data to bridge the distributional gap
between Q and P . By creating an effective weighted loss function, we aim to enhance model
performance on real-world tasks by better aligning synthetic data with real-world distributions.

4 METHODOLOGIES

In this section, we present our Importance Loss (IMP-Loss) and Dynamic Importance Loss (DIMP-
Loss) methods, which transform the CE-Loss to align with the real-world distribution P from the
LLM-generated distribution Q.

4.1 IMP-LOSS: TRANSFORMATION FROM Q TO P

To achieve convergence to the real-world data distribution P , we applied WCE-loss. Inspired by
the Monte Carlo method of Importance Sampling (Hesterberg, 1995), used to estimate expectation
values from a source distribution to a target distribution, we design the weight function as follows:

wi =
P (y|xi)

Q(y|xi)
(4)

By applying this weight function to WCE-Loss, the asymptotic convergence is approximately the
expectation under P (details in Appendix B):

EQ

[
−P (y|x)
Q(y|x)

log P̂ (y|x; θ)
]

= −
∑
x∈X

Q(x)
∑
y∈Y

P (y|x) log P̂ (y|x; θ)

≈ −
∑
x∈X

P (x)
∑
y∈Y

P (y|x) log P̂ (y|x; θ)

= EP

[
− log P̂ (y|x; θ)

]
(5)

The approximation in the penultimate step is based on the assumption stated in Sec. 3.3: the LLM
can simulate the real-world input distribution through careful and appropriate prompting. This trans-
formation ensures that the WCE-Loss effectively aligns Q with P .

Further, Q can be estimated by fitting a neural model Q̂, such as BERT, on the LLM-generated
dataset DQ using the CE-Loss; however, estimating the weight function is challenging because the
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real-world distribution P is unknown. To address this, we fit a model P̂ ′ on small real-world dataset
DP ′ . Using P̂ ′ and Q̂, we define the Importance Loss LIMP(θ,DQ) as follows:

LIMP(θ,DQ) = −
1

N

N∑
i=1

Quality Checker︷ ︸︸ ︷
P̂ ′(yi|xi)

Q̂(yi|xi)︸ ︷︷ ︸
Diversity Checker

log P̂ (yi|xi; θ) (6)

Algorithm 1 outlines how we use IMP-Loss.

Algorithm 1 Training with Importance Loss

Require: Small real-world dataset DP ′ , synthetic dataset DQ, model P̂ , initial parameters θ
Step 1: P̂ ′ ← Estimation of P ′ by fitting a model with CE-Loss on DP ′

Step 2: Q̂← Estimation of Q by fitting a model with CE-Loss on DQ

Step 3: Compute the weights wi =
P̂ ′(y|x)
Q̂(y|x) for each training sample (x, y) ∈ DQ

Step 4: Optimize model parameters θ to minimize LIMP(θ,DQ) by SGD

4.2 DIMP-LOSS: WHICH DATA POINT CAUSES THE MODEL TO BE CLOSEST TO P ?

In this section, drawing inspiration from online batch selection methods (Deng et al., 2023; Min-
dermann et al., 2022), we investigate which data point in DQ, when used for training, will most
effectively bring the distribution of the model closer to P in the subsequent optimization step. In
optimization formulation, this can be expressed as:

(x∗, y∗) = argmin
(x′,y′)∈DQ

EP

[
− log P̂ (y|x; θt, {(x′, y′)})

]
, (7)

where θt represents the model parameters at optimization step t. Consider a one-step optimization
algorithm f (e.g. SGD), where θt+1 ← f(θt, {(x′, y′)}). The algorithm updates the model param-
eters θt using (x′, y′) to obtain the new parameters θt+1 after one optimization step. The Eq. 7
means the data point (x∗, y∗) is the optimal data point in DQ that leads to the lowest conditional
cross-entropy after one update step. Specifically, it identifies which data point is used for training
results in the model parameters that yield the model closest to the real-world distribution P .

In empirical settings, we may not have access to the complete real-world distribution P , but we can
approximate it by a small real-world dataset DP ′ , also denoted as (yP ′ ,XP ′) in the perspective of
labels and inputs. This allows us to rewrite the objective as maximizing the probability:

argmax
(x,y)∈DQ

P̂ (yP ′ |XP ′ ; θt, {(x, y)}) = argmax
(x,y)∈DQ

P̂ (y|x; θt, DP ′)

P̂ (y|x; θt)
(8)

Eq. 8 aims to maximize the joint likelihood of all data points in DP ′ . The joint likelihood involves
inferring all data points in DP ′ and multiplying their prediction probabilities (due to the i.i.d. as-
sumption). However, this optimization is infeasible, as it requires updating the model for each data
point in DQ, resulting in |DQ| models, and each needs evaluation on the whole DP ′ .

Notably, by applying Bayes’ rule, we derive the right-hand side of Eq. 8 (see Appendix C for
details), showing a more feasible calculation approach. This requires evaluating only two models
for each data point in DQ: the denominator P̂ (y|x; θt) is the current model in step t, and the nu-
merator P̂ (y|x; θt, DP ′) would require additional training on DP ′ . To simplify, we approximate
P̂ (y|x; θt, DP ′) with P̂ ′(y|x), the probability estimated from DP ′ as in Deng et al. (2023).

The approximation of Eq. 8 is then utilized as the weight in our loss function. Consequently, if a
data point brings the model closer to the real-world distribution P , its corresponding weight will be
higher, thus having a greater impact on training. Thus, we define the Dynamic Importance Loss
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(DIMP-Loss) LDIMP(θt, DQ) as:

LDIMP(θt, DQ) = −
1

N

N∑
i=1

Quality Checker︷ ︸︸ ︷
P̂ ′(yi|xi)

P̂ (yi|xi; θt)︸ ︷︷ ︸
Diversity Checker

log P̂ (yi|xi; θt) (9)

The approximation of Eq. 8 simplifies the calculation of the weight function, making the implemen-
tation of DIMP-Loss practical. We can observe this weight function dynamically changes at each
optimization step and adjust the weights based on the current parameters θt, thereby continually
refining the alignment between the model P̂θ and the real-world data distribution P . Algorithm 2
outlines how DIMP-Loss is used in training a model.

Algorithm 2 Training with DIMP-Loss

Require: Small real-world dataset DP ′ , synthetic dataset DQ, model P̂ , initial parameters θ
Step 1: P̂ ′ ← Estimation P ′(y|x) by fitting a model with CE-Loss on DP ′

Step 2: Compute the P̂ ′(y|x) for each training sample (x, y) ∈ DQ

Step 3: Optimize model parameters θ to minimize LDIMP(θ,DQ) by SGD

To better understand the properties of DIMP-Loss, we derived a lower bound for it (details can be
found in Appendix D). Precisely, we have:

LDIMP(θt, DQ) ≥ −
2

N

N∑
i=1

P̂ ′(yi|xi) log P̂ (yi|xi; θt)︸ ︷︷ ︸
Empirical distilled cross-entropy loss

+
1

N

N∑
i=1

P̂ (yi|xi; θt) log P̂ (yi|xi; θt)︸ ︷︷ ︸
Maximum entropy regularizer

(10)

DIMP-Loss can be interpreted as an upper bound on the regularized empirical distilled risk (Menon
et al., 2021; Wang et al., 2022), where the ”teacher” model is the quality checker. The regularizer is
a maximum entropy term designed to prevent overconfidence in output distribution (Pereyra et al.,
2017). In this context, DIMP-Loss can also be viewed as a form of knowledge distillation, where
the knowledge from a model is trained on a small amount of real-world data. The objective is to
align the predicted distribution P̂θ with P ′ while promoting higher entropy in P̂θ to avoid overly
confident predictions.

4.3 QUALITY AND DIVERSITY CHECKERS IN IMP-LOSS AND DIMP-LOSS

According to both Eq. 6 and 9, a high weight means the data point significantly influences the
model. The Quality Checker (P̂ ′(yi|xi)) assesses the likelihood of a data point sampled from the
real-world distribution P . Higher values indicate the data point is, highly relevant, and unambiguous
for the real-world distribution P .

The Diversity Checker differs in the two losses, Q̂(yi|xi) for IMP-Loss, and P̂ (yi|xi; θt) for
DIMP-Loss. In the context of IMP-Loss, a low Diversity Checker value Q̂(yi|xi) suggests the
data point contains a high amount of information within the LLM-generated dataset DQ, because a
redundant data point in DQ will have a high probability, indicating less diversity. Hence, it serves
as an indicator of diversity from the perspective of the LLM-generated distribution. In contrast, for
DIMP-Loss, a low Diversity Checker value P̂ (yi|xi; θt) implies the data point is challenging to be
learned in previous steps, departing from the data points the model has already learned. Thus, Di-
versity Checker of DIMP-Loss reflects diversity from the perspective of a model. This distinction
highlights how each loss function prioritizes different aspects of data diversity during training. We
simulated defect and redundant situations for further exploration in the Appendix. G.3.

4.4 COMPUTATIONAL COST OF TRAINING WITH IMP-LOSS AND DIMP-LOSS

The analysis covers computational requirements and practical run-time detailed in Appendix E.
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IMP-Loss. According to Algorithm 1, the computational cost of training with IMP-Loss is approx-
imately (ignore the cost on DP ′ ) twice training plus twice forward pass on DQ. First, we estimate
P ′(y|x) by fitting a model on DP ′ , and Q(y|x) by fitting a model on DQ, respectively. Second, we
compute the weights for each sample in DQ by Q̂(y|x) and P̂ ′(y|x). Although the estimation of
P ′(y|x) incurs minimal cost due to the small size of DP ′ , the primary additional overhead comes
from the repeated training on DQ and the additional forward passes needed to compute the weights.

DIMP-Loss. According to Algorithm 2, the computational cost of training with DIMP-Loss is
approximately (ignore the cost on DP ′ ) one training plus one forward pass on DQ. On the one hand,
we need to fit a model on the small real-world DP ′ to estimate P ′(y|x), the numerator of the weight
coefficient, for each data point in DQ. On the other hand, we compute the weights for each sample
in DQ using the DIMP-Loss formulation, which involves evaluating the computed log P̂ (yi|xi; θt)

and hence getting P̂ (yi|xi; θt). Without the estimation to Q(y|x), DIMP-Loss is more efficient than
IMP-Loss. The computational overhead is only slightly higher than that of CE-Loss, because of the
additional step of estimating P ′ from the small dataset DP ′ and performing a single inference pass
on DQ, as the values of the quality checker for each data point remain constant in training.

5 EXPERIMENTS

Dataset Method Financial Tweet Irony MRPC
Acc F1 Acc F1 Acc F1

GPT-3.5 few-shot 79.46 81.6 63.39 69.39 69.28 71.75

Small real world
CE-Loss (quality checker) 78.05 75.26 62.5 62.38 73.16 68.69
Focal-Loss 78.47 76.2 67.73 62.32 73.10 66.64
DIMP-Loss (Ours) 79.87 77.05 69.01 67.05 74.84 66.80

GPT-3.5 generated

CE-Loss 77.39 74.01 76.91 76.8 72 65.47
Focal-Loss 79.29 75.32 74.87 74.82 72.17 62.77
Hu et al.’s 71.7 61.93 71.42 70.18 67.13 50.08
SunGen 80.45 76.87 78.96 75.06 71.65 66.08
IMP-Loss (Ours) 82.09 79.40 81.89 81.71 75.83 70.52
DIMP-Loss (Ours) 82.67 79.53 78.44 78.14 75.83 70.04
- w/o diversity checker 81.35 77.94 77.68 77.62 74.72 69.34

Large real world

CE-Loss 84.74 82.69 68.75 68.41 80.92 77.73
Focal-Loss 84.98 81.98 67.6 67.19 80.35 76.28
Hu et al.’s 80.19 76.58 60.33 37.63 71.36 67.78
SunGen 84.65 82.51 63.9 62.66 80.81 78.78
IMP-Loss (Ours) 85.3 83.27 70.15 70.08 81.33 78.3
DIMP-Loss (Ours) 85.4 82.79 69 68.78 82.84 80.49

Table 1: Performance metrics across datasets and methods. The table showcases each combination’s
accuracy (Acc) and macro F1 score (F1). The methods include GPT-3.5 few-shot, CE-Loss, Focal-
Loss, Hu et al.’s method, SunGen, IMP-Loss, and DIMP-Loss. Bold entries denote the performance
within 0.5%, compared to the best performance of each training source.

We assessed our proposed methods by comparing them with standard loss functions across several
text classification benchmarks, including Financial Phrasebank (Financial) (Malo et al., 2014), irony
detection (Tweet Irony) (Van Hee et al., 2018), and the MRPC dataset from GLUE (Wang et al.,
2018). Detailed descriptions and specifications are provided in Appendix H. In our experiments,
we referred the large real-world data DP to the original training set from each benchmark and the
small real-world data DP ′ to the original development set, with the sizes from approximately 200
to 400, as shown in Table 5. Our experiments explored three different scenarios: training solely on
synthetic data (Sec. 5.1), real-world data (Sec. 5.2), and noisy data (Sec. G). We evaluated Accuracy
(Acc) and Macro F1 score (F1) for every benchmark. These metrics were computed by comparing
the model’s predictions with the gold labels provided in the test sets. We used a BERT-based model
for fine-tuning and building the checkers. The Appendix F details the configurations.

Baselines. CE-Loss, Focal Loss, SunGen and Hu et al. (2019) are our baselines, detailed in
Sec. 2.1 and Sec. 2.2. Focal Loss addressed class imbalance and mitigated easily classified
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data’s impact, preventing overconfidence. The weight function for Focal Loss was defined as
wi = (1 − P̂ (yi|xi; θ))

γ where γ controled the downweighting of easy examples. Mukhoti et al.
(2020) showed models trained with Focal Loss exhibited better calibration under the i.i.d. assump-
tion and performed robustly under distribution shifts. This made Focal Loss a strong baseline for
evaluating our proposed approaches. Both SunGen and Hu et al. (2019) are bilevel optimization
methods but differ in their weight update mechanisms and the objective functions of their outer
loops. They used meta-learning to dynamically adjust weights training data by maximizing the like-
lihood on a small real-world dataset, similar to IMP-Loss and DIMP-Loss; however, our methods
directly adjust weights based on quality and diversity checkers, while Hu et al.’s method and SunGen
relied on meta-learning to optimize weights indirectly 2.

5.1 TRAINING ON LLM-GENERATED DATA

We compared our proposed methods with standard loss functions on LLM-generated data.

Data Generation. We used GPT-3.5-turbo-1106 (OpenAI, 2022), given a system prompt, 8-shot
examples from the development set DP ′ , and the corresponding labels to generate the input text. For
the Financial and Tweet Irony, our generation prompt based on previous research (Li et al., 2023).
Similarly, for the MRPC benchmark, the prompt included pairs of sentences with answers, which
automatically guided the LLM in generating the answers. See Appendix I.1 for details.

IMP-Loss and DIMP-Loss Outperform on LLM-Generated Data. As shown in Table 1, our
methods outperformed all baselines in all benchmarks. For instance, in Financial Phrasebank, IMP-
Loss achieved 82.09% in accuracy and 79.40% in F1 score, and DIMP-Loss reached 82.67% and
79.53% respectively, while the CE-Loss reached 77.39% / 74.01%. The result showed if we use
the baselines, CE-Loss, Focal-Loss, SunGen and Hu et al. (2019) to train a classifier on DQ, the
performance could be worse than that of using CE-Loss on much smaller DP ′ (quality checker). In
contrast, our methods consistently outperformed the small quality checker, encouraging the usage
of abundant LLM-generated data. Notably, even when the quality checker performs poorly, such
as on the Tweet Irony dataset, where the accuracy was 62.5%, which was lower than the 76.9%
achieved by directly training on generated data using CE-Loss, our methods still delivered strong
performance. This suggested that a high-performance quality checker was not a prerequisite for
the effectiveness of our methods. Although the performance of the meta-learning-based SunGen
method was, in some cases, close to that of our methods (though still slightly below), our approaches
have significant advantages in computational efficiency, making them more practical for large-scale
applications. Further details on computational efficiency are shown in the Appendix E.

IMP-Loss and DIMP-Loss Surpass the Accuracy of the Data Generator. The GPT-3.5 few-
shot predictor generated predictions using 8 examples from the small real-world dataset in the input
prompt. GPT-3.5 achieved 79.46% in the Financial dataset and 68.82% in the MRPC dataset. Our
approaches consistently surpassed the GPT-3.5 few-shot prediction in accuracy. The parameter size
of the fine-tuned models using our methods was significantly lower than that of the GPT-3.5 data
generator, yet they delivered higher performance.

Superior and Robust Accuracy Across Epochs. The training dynamics in Figure 1 revealed our
methods outperformed CE-Loss and Focal-Loss across all benchmarks. Notably, both IMP-Loss and
DIMP-Loss achieved low variation by the end of training, indicating stable performance. Moreover,
DIMP-Loss showed higher variation in the initial epochs compared with IMP-Loss. This increased
variability could be attributed to the order of sampled data, which caused initial fluctuations. Nev-
ertheless, the Acc ultimately converged at a higher value than the baselines.

Quality Checkers are Data Efficient. Figure 2 illustrates the test accuracy on the Financial
benchmark with quality checkers trained on various proportions of the original training set. As
seen in this figure, even a small number of data points, e.g., 10%, was sufficient to enhance the
performance of both IMP-Loss and DIMP-Loss. This suggested that a small amount of real-world
data was effective for building a quality checker, making our approach efficient and practical.

2We implemented Focal-Loss, SunGen and Hu et al. (2019) by using their official code.
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Figure 1: Training dynamics shows the testing accuracy over five epochs for benchmarks. This chart
displays the minimum, maximum, and average accuracy observed across four runs with different
random seeds, comparing our proposed methods with the standard CE-Loss and Focal-Loss.

Model Size Method Financial Tweet irony MRPC
Base Quality checker 78.05 62.5 73.16

Large

CE-Loss 80.45 78.83 74.2
IMP-Loss (base DC) 80.94 74.23 75.36
IMP-Loss (large DC) 81.93 78.83 76.41
DIMP-Loss 83.25 81.25 77.04

Table 2: Accuracy of methods on benchmarks when training a larger model with smaller Quality
Checkers. ”base DC” and ”large DC” denote smaller and larger Diversity Checkers, respectively.
Bold entries highlight the top value of metrics within each dataset.

Diversity Checkers are Important. The results in Table 1 highlighted the importance of Diversity
Checkers in our proposed methods. When training on GPT-3.5 generated data, the performance of
the model trained with IMP-Loss without Diversity Checkers dropped compared with IMP-Loss
with Diversity Checkers. For instance, in the Financial dataset, the accuracy drops from 82.09%
to 81.35% and the F1 score from 79.40% to 77.94%. These results indicated that incorporating
Diversity Checkers helped effectively use LLM-generated data.

Smaller Quality Checker Still Enhances Performance by DIMP-Loss. The results in Table
2 illustrated the performance of each method on the benchmarks when training a larger classifier
(BERT-large) with smaller Quality Checkers (BERT-base). Notably, DIMP-Loss consistently per-
formed well even when the Quality Checker was small. This demonstrated the robustness of DIMP-
Loss in adapting to different model sizes for Quality Checkers. In contrast, IMP-Loss showed
inconsistent performance when using a smaller Diversity Checker compared with its training model,
indicating the choice of the Diversity Checker in size significantly impacted its efficacy. In short,
using a smaller Quality Checkers to guide the model was efficient in terms of both space and time.

5.2 TRAINING ON REAL WORLD DATA

Robust Performance of IMP-Loss and DIMP-Loss on Real-World Data. As shown in Table 1,
IMP-Loss and DIMP-Loss outperformed other baselines even when applied directly to real-world
data. Although the performance improvements are less than that of using GPT-3.5-generated data,
the results indicated our methods were versatile and able to handle multiple sources of training data
effectively. Specifically, in the Financial dataset, IMP-Loss achieved 85.3% Acc and 83.27% F1
score, while DIMP-Loss reached 85.4% Acc and 82.79% F1 score, surpassing CE-Loss, Focal-Loss,
and (Hu et al., 2019). From our perspective, the reduced improvement in this scenario was due to
the lack of a requirement to shift the training data distribution. Regarding the asymptotic viewpoint,
the optimal solution of cross-entropy is already the best solution when training on real-world data.
Nonetheless, our methods demonstrated robust performance across various conditions.

6 RELATED WORKS

We list some essential related works in this section and others in A.
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Figure 2: Test accuracy on the Financial with varying percentages of the training set for the quality
checker. The graph shows the performance of each loss and the Quality Checker.

Weighting for Misalignment Data Importance weighting (IW) serves as a classical strategy for
addressing the issue of shifts between data distributions (Hesterberg, 1995). In traditional applica-
tions of IW, weights are derived by evaluating the degree of similarity between training and testing
distributions through various statistical techniques. These techniques include maximum mean dis-
crepancy (Schölkopf et al., 2007) and the estimation of KL divergence (Sugiyama et al., 2007).
Although effective in linear model contexts, the efficacy of these methods seems to significantly
diminish when applying IW to more complex deep learning frameworks (Byrd & Lipton, 2019).
Besides traditional methods, recent studies have explored approaches such as Focal Loss (Lin et al.,
2017) and meta-learning techniques (Hu et al., 2019; Meng et al., 2023; Gao et al., 2023), which
take the weights of samples as trainable hyperparameters as discussed in Sec. 2.2.

Synthetic Data Generation from LMs Recent advancements in generative AI have spurred inter-
est in using LMs to generate synthetic data for specific tasks, particularly in low-resource settings.
Studies have explored zero-shot and few-shot settings for data generation, where LMs directly gen-
erate instances with distinct labels or use little real-world data as examples to create relevant and
diverse data (Li et al., 2023; West et al., 2022; Ye et al., 2022; Wang et al., 2023; Taori et al., 2023).
LMs have the unique ability to generate both labels and diverse input instances, significantly en-
hancing the variety and quality of synthetic datasets. Approaches like ZEROGEN synthesized data
by pre-trained LMs to train smaller task models, achieving competitive performance in NLP tasks,
such as text classification (Ye et al., 2022).

LM-Generated Data for Training Text Classifier Several studies have investigated leveraging
LM-generated data for text classification. Some works maintain data quality by filtering strategy
(Stylianou et al., 2023; Meng et al., 2022; 2023; Li et al., 2023; West et al., 2022; Ye et al., 2022).
Another common approach is data reweighting. For example, SunGen (Gao et al., 2023) adopted a
bilevel optimization approach to learn weights for synthetic data, incorporating a noise-robust loss
in the outer loop to improve the reliability, and this benefited SunGen to outperform counterparts
using meta-learning for data reweighting, such as Hu et al. (2019). Despite its advantages, the
bilevel optimization process remains computationally expensive, making our approaches outstand
by their efficiency. Moreover, there exists novel research further enhancing the use of synthetic data.
For instance, UniGen (Choi et al., 2024) utilized contrastive learning to improve generalization
capabilities, but required a open-source pretrained LM, while FuseGen (Zou et al., 2024) combined
synthetic data from multiple LLMs to enhance performance. It is worth noting our approaches are
compatible with UniGen or FuseGen, and a potential complement and enhancement of these works.

7 CONCLUSIONS AND DISCUSSIONS

IMP-Loss and DIMP-Loss are novel weighted-loss objectives that further enhance the performance
of models trained on LLM-generated data. Our empirical results demonstrated that both methods
outperformed traditional loss functions across various benchmarks. Notably, DIMP-Loss was partic-
ularly computationally efficient, requiring subtly additional resources while increasing performance.
These findings emphasized the potential of IMP-Loss and DIMP-Loss in effectively leveraging syn-
thetic data for training machine learning models. In the future, we will extend our methods on
question answering, text generation, LLM pretraining, and other potential tasks, further exploring
how quality and diversity matter for learning.
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provided the source code and generated dataset in supplementary
materials, prompts used for generation in I.1, hyper-parameters and other training details in F, testing
datasets’ descriptions in H, and theoretical results in B, C, D. In addition, for the baselines, we
implemented the Focal Loss as in the source code and used the publicly available code provided by
Hu et al. (2019) but replaced the input data. We hope one can smoothly reproduce our results via
these materials.
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APPENDICES

A OTHER RELATED WORK

Online Batch Selection Online batch selection (Loshchilov & Hutter, 2015; Katharopoulos &
Fleuret, 2018; Mindermann et al., 2022; Deng et al., 2023) is a method to speed up training conver-
gence by dynamically prioritizing the most informative data points, from the perspective of the min-
imizing loss function. This technique evaluates how informative a data point is and selects a batch
Bt of informative data during each training step. Unlike online batch selection methods substituting
uniformly sampled batches during training, this paper focused on developing a weight function to
enhance performance on downstream tasks by aligning the LLM-generated data distribution with
real-world data distribution.

Data Pruning. Data pruning approaches filter out noisy text data. Traditional methods took rule-
based filtering for high-quality data (Bane et al., 2022; Wenzek et al., 2020), while recent approaches
focused on diversification (Marion et al., 2023; Ankner et al., 2024), which used perplexity to build
a diverse dataset. In advance, our methods considered both quality and diversity, and this dual
focus made our weighting mechanism a possible pruning scorer. Our methods did not conflict with
existing pruning methods, thus becoming a potential complement.
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B ASYMPTOTIC CONVERGENCE OF IMP-LOSS

In this section, we provide the formal proof of the asymptotic convergence of IMP-Loss using
Chebyshev’s inequality. Specifically, we show that this approximately converges in probability to
the expected conditional cross-entropy under P .

Definition B.1 (Convergence in Probability) A sequence of random variables {Xn} converges in
probability to a random variable X , denoted as {Xn}

p→ X , if for any ϵ > 0,

lim
n→∞

P (|Xn −X| ≥ ϵ) = 0 (11)

Theorem B.1 (Chebyshev’s Inequality) Let X be a random variable with finite expected value
E[X] and variance Var(X). For any ϵ > 0,

P (|X − E[X]| ≥ ϵ) ≤ Var(X)

ϵ2
(12)

APPLYING CHEBYSHEV’S INEQUALITY TO IMP-LOSS

Following the definition of IMP-Loss from Eq. 6 and considering the situation without using small
real-world data to approximate. Let

LIMP(θ,DQ) = −
1

N

N∑
i=1

P (yi|xi)

Q(yi|xi)
log P̂ (yi|xi; θ) (13)

Assume that all data points (xi, yi) are i.i.d. samples from the joint distribution Q(X ,Y). Define

Zi = −
P (yi|xi)

Q(yi|xi)
log P̂ (yi|xi; θ) (14)

The empirical mean of Zi over N samples is given by:

Z =
1

N

N∑
i=1

Zi = LIMP(θ,DQ) (15)

The expected value of Zi under the distribution Q is:

EQ[Z] = EQ

[
−P (y|x)
Q(y|x)

log P̂ (y|x; θ)
]

(16)

Applying Chebyshev’s inequality to the sequence Z:

P
(∣∣Z − EQ[Z]

∣∣ ≥ ϵ
)
≤ VarQ(Z)

ϵ2
=

VarQ(Z1)

Nϵ2
(17)

As N grows large, the right-hand side converges to zero, implying that Z converges in probability
to EQ[Z].

Therefore,

LIMP(θ,DQ)
p→ EQ

[
−P (y|x)
Q(y|x)

log P̂ (y|x; θ)
]

(18)
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TRANSFORMING FROM Q TO P

Next, we show that:

EQ

[
−P (y|x)
Q(y|x)

log P̂ (y|x; θ)
]

= −
∑
x∈X

∑
y∈Y

Q(x, y)
P (y|x)
Q(y|x)

log P̂ (y|x; θ)

= −
∑
x∈X

Q(x)
∑
y∈Y

P (y|x) log P̂ (y|x; θ)

≈ −
∑
x∈X

P (x)
∑
y∈Y

P (y|x) log P̂ (y|x; θ)

= EP

[
− log P̂ (y|x; θ)

]

(19)

Given that Q(x) ≈ P (x) by the assumption that the LLM is capable of simulating the real-world
input distribution through careful and appropriate prompting, we have:

LIMP(θ,DQ)

p→ EQ

[
−P (y|x)
Q(y|x)

log P̂ (y|x; θ)
]

≈ EP

[
− log P̂ (y|x; θ)

] (20)

Thus, the asymptotic convergence of IMP-Loss ensures that the weighted loss function effectively
aligns the LLM-generated data distribution Q with the real-world data distribution P .

C DERIVATION OF DIMP-LOSS

In this section, we provide the formal derivation to address the question: Which data point in DQ,
when used for training, will most effectively bring the model distribution closest to P? Following
the optimization formulation in Eq. 7, we can empirically apply Monte Carlo estimation using a
small real-world dataset DP ′ , denoted as (yP ′ ,XP ′). This allows us to reformulate the problem by
maximizing the joint probability of the data points in DP ′ , which leads to the following optimization
problem. This derivation is similar to the online batch selection techniques discussed in previous
research (Deng et al., 2023).

argmax
(x,y)∈DQ

P̂ (yP ′ |XP ′ ; θt, {(x, y)}) = argmax
(x,y)∈DQ

∏
(x′,y′)∈DP ′

P̂ (y′|x′; θt, {(x, y)}) (21)

This formulation leverages the joint probability of the dataset DP ′ , ensuring that the selected data
points in DQ are those that, when used for training, most effectively align the model’s distribution
with the small real-world distribution P ′. This also implies that the chosen data point leads the
model to perform well on DP ′ , enhancing the likelihood of better generalization to real-world data.

APPLYING BAYES RULE

By applying Bayes’ rule to the joint probability of the dataset DP ′ , we obtain:
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P̂ (yP ′ |XP ′ ; θt, {(x, y)})

=
P̂ (DP ′ ,x, y, θt)

P̂ (XP ′ ,x, y, θt)

=
P̂ (yP ′ |XP ′ ,x, θt)P̂ (y|x, DP ′ , θt)

P̂ (y|x,XP ′
, θt)

=
P̂ (yP ′ |XP ′ , θt)P̂ (y|x;DP ′ , θt)

P̂ (y|x; θt)

(22)

The final equality holds because x alone cannot perform a model update, leading to the conditional
independence assumption. Since P̂ (yP ′ |xP ′ ,x, θt) is a constant for this optimization problem and
does not influence the result, we can further simplify the optimization as follows:

argmax
(x,y)∈DQ

P̂ (yP ′ |XP ′ ; θt, {(x, y)}) =

argmax
(x,y)∈DQ

P̂ (y|x; θt, DP ′)

P̂ (y|x; θt)

(23)

Similar to the online batch selection work, we use P ′(y|x) to approximate P̂ (y|x; θt, DP ′). This
approximation is then utilized as the weight in our loss function. Consequently, if a data point
brings the model closer to the real-world distribution P , its corresponding weight will be higher,
thus impacting the model’s training.

D LOWER BOUND OF DIMP-LOSS

The Lower Bound

NLDIMP(θt, DQ) = −
N∑
i=1

P̂ ′(yi|xi)

P̂ (yi|xi; θt)
log P̂ (yi|xi; θt)

(By *AM-GM inequality:
1

a
≥ 2− a for a = P̂ (yi|xi; θt))

≥ −
N∑
i=1

P̂ ′(yi|xi)
(
2− P̂ (yi|xi; θt)

)
log P̂ (yi|xi; θt)

= −2
N∑
i=1

P̂ ′(yi|xi) log P̂ (yi|xi; θt)−

∣∣∣∣∣
N∑
i=1

P̂ ′(yi|xi)P̂ (yi|xi; θt) log P̂ (yi|xi; θt)

∣∣∣∣∣
(By Hölder’s Inequality ∥fg∥1 ≤ ∥f∥∞ ∥g∥1)

≥ −2
N∑
i=1

P̂ ′(yi|xi) log P̂ (yi|xi; θt)−max
i

P̂ ′(yi|xi)

N∑
i=1

∣∣∣P̂ (yi|xi; θt) log P̂ (yi|xi; θt)
∣∣∣

≥ −
N∑
i=1

P̂ ′(yi|xi) log P̂ (yi|xi; θt)︸ ︷︷ ︸
Empirical distilled cross-entropy loss

+

N∑
i=1

P̂ (yi|xi; θt) log P̂ (yi|xi; θt)︸ ︷︷ ︸
Maximum entropy regularizer

(24)

*AM-GM Inequality The derivation shown illustrates the application of the Arithmetic Mean -
Geometric Mean (AM-GM) inequality, which states that for any two positive numbers x and y,
the arithmetic mean is greater than or equal to the geometric mean, i.e., a+b

2 ≥
√
ab, ∀a, b > 0.

In this specific case, b is set to 1
a , simplifying the inequality to:

a+ 1
a

2
≥
√
1 = 1.
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Multiplying both sides by 2 yields:

a+
1

a
≥ 2,

and rearranging the inequality gives:
1

a
≥ 2− a.

This result is a classic application of the AM-GM inequality, demonstrating that the sum of a number
and its reciprocal is always greater than or equal to 2 for any positive x.

E COMPUTATIONAL TIME COMPARISON

Figure 3: Total running time (in seconds) for CE-Loss, IMP-Loss, and DIMP-Loss on the LLM-
generated Financial benchmark.

Method Build QC Build DC Precalculate weights Training Total
CE-Loss - - - 333.242s 333.242s
SunGen - - - 2680s 2680s
IMP-Loss 8.824s 333.516s 57.695s 333.328s 733.363s
DIMP-Loss 8.824s - 29.274s 333.426s 371.524s

Table 3: Total running time of each component (in seconds) for CE-Loss, SunGen, IMP-Loss,
and DIMP-Loss on the LLM-generated financial benchmark. The table breaks down the time spent
building the Quality Checker (QC), building the Diversity Checker (DC), precalculating weights,
and training. The total time combines all these components.

In this computational time experiment, we evaluated the running times on the LLM-generated Finan-
cial benchmark dataset, which includes 10,012 training samples (DQ) and 242 development samples
(small real-world data, DP ′). Our comparison focused on four methods: CE-Loss, SunGen, IMP-
Loss, and DIMP-Loss. We have broken down the total process into four components: building the
Quality Checker (QC), building the Diversity Checker (DC), precalculating constant weights, and
the actual training time for each respective loss function. For all experiments, the downstream mod-
els and checkers were trained for 5 epochs with a batch size of 32. The batch size was set to 64
during the precalculating constant weights phase. The inner loop epochs were set to 1 for SunGen.
The results of this breakdown are presented in Table 3, and the total time is in Figure 3. The results
indicate that IMP-Loss requires approximately 2.2 times the running time of CE-Loss. In contrast,
This demonstrates that DIMP-Loss is highly efficient, requiring only a slight overhead compared to
CE-Loss, while SunGen’s computational time is approximately 7 times higher, further underscoring
the efficiency of our methods for large-scale applications.

F TRAINING DETAILS AND HYPERPARAMETERS

For our experiments, we used a pre-trained BERT-base model (Devlin et al., 2019) from Hugging-
face’s transformers library (Wolf et al., 2020) as the encoder, utilizing the representation embedding
from the last layer as input to our classification models. We fine-tuned the model with hyperparam-
eters selected from the following ranges: learning rate {6e-6, 6e-5}, epochs {5, 7}, and batch size
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{32, 64}. Other hyperparameters were set to the default values provided by Huggingface’s trainer
for text classification. The best checkpoint was selected based on the accuracy of the development
set. We repeated each experiment with four random seeds. We reported the best accuracy run on
tables (Table 1), while also providing the minimum, maximum, and average in the training dynamics
section (Sec. 5.1). To train the quality checker, we used the small real-world dataset (development
split) not included in the training data and trained the quality checker for five epochs. Similarly,
the diversity checker of IMP-Loss was also trained for five epochs. This approach aligns with our
setup, where access to real-world data is limited, and thus, we reuse the development set to build
the quality checker and perform model selection. All experiments were conducted using PyTorch
(Paszke et al., 2019) and Huggingface (for models and datasets) on V100 GPUs with 32GB memory.

G TRAINING ON NOISY DATA

Dataset Method Financial Tweet Irony MRPC
Acc F1 Acc F1 Acc F1

GPT-3.5 few-shot 79.46 81.6 63.39 69.39 69.28 71.75
Small real world CE-Loss (quality checker) 78.05 75.26 62.5 62.38 73.16 68.69

Noisy Data

CE-Loss 78.38 73.44 60.46 60.14 74.03 67.5
Focal-Loss 78.55 74.97 62.11 61.12 74.72 69.59
IMP-Loss (Ours) 81.6 78.24 64.8 64.51 76 70.46
DIMP-Loss (Ours) 82.59 80.28 64.16 64.09 76.58 71.32

Table 4: Performance metrics on the noisy data. The table showcases the accuracy (Acc) and macro
F1 score (F1) for each method applied on three distinct datasets: Financial, Tweet Irony, and MRPC.
The methods include CE-Loss, GPT-3.5 few-shot, Focal-Loss, IMP-Loss, and DIMP-Loss. Notably,
bold entries indicate the best-performing metrics within each training dataset category.

In this section, we evaluate the robustness of our proposed methods, IMP-Loss and DIMP-Loss, by
training on noisy datasets. We aim to simulate real-world scenarios where LLM-generated data may
be imperfect due to labeling errors (low quality), duplicate entries (low diversity), and unrelated
inputs (low quality). This allows us to analyze the effects of the Quality Checker and Diversity
Checker in IMP-Loss and DIMP-Loss.

G.1 EXPERIMENTAL SETUP

To create noisy datasets, we start with the original training set from each benchmark (Financial,
Tweet Irony, and MRPC) and split it into three parts:

1. Original Data: This part remains unchanged and serves as the control set.

2. Random Swapped Label Noise: In this part, the labels are randomly altered, introducing
label noise and reducing data quality.

3. Duplicated Data: In this part, each data point is duplicated once, introducing redundancy
and reducing data diversity.

4. Unrelated Input Data (Only for Financial): For the financial benchmark, we introduce
out-of-domain input noise by randomly selecting 452 data points from the Tweet Senti-
ment Extraction benchmark (Maggie et al., 2020). While this dataset is also a sentiment
classification task, it is unrelated to the financial domain.

G.2 PERFORMANCE RESULTS

The results in Tabel 4 indicated that our proposed methods, IMP-Loss and DIMP-Loss, consistently
outperform the baselines across all benchmarks, even when the training data is noisy. Specifically,
in the Financial dataset, IMP-Loss achieves 81.6% Acc and 78.24% F1 score, while DIMP-Loss
reaches 82.59% Acc and 80.28% F1 score, surpassing the CE-Loss and Focal-Loss baselines. In the
Tweet Irony dataset, the performance improvement is more pronounced, with IMP-Loss achieving
64.8% Acc and 64.51% F1 score, and DIMP-Loss achieving 64.16% Acc and 64.09% F1 score,
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significantly higher than CE-Loss and Focal-Loss. For the MRPC dataset, IMP-Loss and DIMP-
Loss show robust performance with 76% Acc and 70.46% F1 score and 76.58% Acc and 71.32% F1
score, respectively, outperforming the GPT-3.5 few-shot approach, which achieves 69.28% Acc and
71.75% F1 score.

G.3 ANALYSIS OF CHECKER SCORES AND WEIGHTS

IMP-Loss Figure 4 and Figure 5 illustrate the Quality Checker Score P ′(y|x), Diversity Checker
Score Q(y|x), and the corresponding weights of the IMP-Loss for the Financial and the Tweet Irony
dataset, across three different data conditions: original, swapped labels, and duplicated entries.

The Quality Checker Score is highest for the original data and significantly lower for the swapped
label data, indicating that the model correctly identifies the labels as lower quality. The Diversity
Checker Score (where lower values are better) is lower for the original data than the duplicated data,
indicating the impact of duplication on diversity. Additionally, the swapped label data achieves the
highest diversity because the altered labels create data points that are substantially distinct from the
rest of the dataset. Similarly, the unrelated input data exhibits relatively high diversity due to its
out-of-domain nature. However, data points from both the swapped label and unrelated input cate-
gories have low Quality Checker Scores, resulting in their lower assigned weights. Consequently, the
weights assigned to the original data are higher compared to the swapped label data and the dupli-
cated data, demonstrating the effectiveness of IMP-Loss in recognizing and appropriately weighting
high-quality, diverse data.

Figure 4: Average Quality Checker Score, Diversity Checker Score, and Weights of IMP-Loss for
Financial Dataset: Comparison between Original, Swapped Label, Duplicated Data and Unrelated
Input Data.

Figure 5: Average Quality Checker Score, Diversity Checker Score, and Weights of IMP-Loss for
Tweet Irony Dataset: Comparison between Original, Swapped Label, and Duplicated Data

DIMP-Loss In contrast, Figure 6 shows the diversity scores P̂ (y|x; θt) and the weights for the
DIMP-Loss method on Financial benchmark across epoch, where the diversity checker is the training
model itself. The Diversity Checker Score (lower is better) is also lower for the original data than
the duplicated data and Unrelated input data. In the end, The weights (Figure 7) assigned by the
DIMP-Loss method are consistently higher for the original data than the swapped label, Unrelated
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Figure 6: Average Diversity Checker Score of DIMP-Loss for Original, Swapped label, Unrelated
input data, and Duplicated data on the Financial Dataset across Epoch.

Figure 7: DIMP-Loss Weight for Original, Swapped label, Unrelated input data, and Duplicated
Data on the Financial Dataset across Epoch.

input data, and duplicated data across epochs. This pattern aligns with the results observed for the
IMP-Loss method.

H DATASET DESCRIPTIONS

The size of each split and the generated data in Table 5.

Financial Tweet Irony MRPC
Train 3392 2862 3668
Dev 242 200 408
Test 1212 784 1,725
Generated 10012 3000 3005

Table 5: Data size of each split

The description of each dataset is following:

Financial Phrasebank: This benchmark involves categorizing finance-related sentences into pos-
itive, negative, or neutral sentiment categories. These sentences, numbering 4,840, are extracted
from financial news articles. Since the dataset does not come with predefined training, validation,
and testing splits, we randomly divided it into training (70%), validation (5%), and testing (25%)
sets like the previous work (Li et al., 2023).

Tweet Irony: This task requires sorting tweets into two groups: ironic and non-ironic. The dataset
containing tweets in English has been explicitly annotated for these categories. It comprises 2,862
instances for training and 784 instances for testing. Initially, there were 955 instances in the valida-
tion set, but due to limited access to real-world data in our scenario, we have randomly selected 200
instances for our validation sets.
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Task Prompt

Tweet irony

System Prompt: Now you are a person using Twitter. You are asked to write an irony or non-irony
tweet to express your feelings. Your writing style must be consistent with the texts in the tweet. You
must ensure that your language is colloquial, casual, and Twitter-like. You are given a length require-
ment. You must ensure your tweet meets the length requirement.

Data Generation Prompt: Write a tweet expressing {label} feeling and ensure that the length of the
tweet is about {num of words} words. Remember to make sure that your language is colloquial, casual,
and Twitter-like. Be creative and write unique tweets.
For example:
{Examples of the label from small-real world dataset}...
Can you provide something more diverse than the previously generated data?

Financial

Context Prompt: You are now a journalist writing financial news. You need to write some financial
news that expresses polar sentiments. The financial news you generate needs to be considered from
an investor’s viewpoint only, i.e., whether the news may have a positive, negative, or neutral influence
on the stock price. As a result, sentences with a sentiment irrelevant from an economic or financial
perspective are considered neutral. You are given one of the polar sentiments and a length requirement.
You must write financial news that expresses the corresponding sentiment and meets the length require-
ment.

Data Generation Prompt: Write financial news with {label} sentiment and ensure that the length of
the financial news is about {num of words} words. Be creative and write unique financial news.
For example:
{Examples of the label from small-real world dataset}...
Can you provide something more diverse than the previously generated data?

MRPC

Context Prompt: Generate {num of examples} data points like the following examples. A label of 1
means they are semantically similar, and a label of 0 means they are not. Try to balance the number
of each category (Please just output the format like what I provide, and the output MUST be different
from input):

Data Generation Prompt:
For example:
sentence1: Amrozi accused his brother, wh—om he called ” the witness ”, of deliberately distorting
his evidence .—— sentence2: Referring to him as only ” the witness ”, Amrozi accused his brother of
deliberately distorting his evidence .—— label: 1
sentence1: They had published an advertisement on the Internet on June 10, offering the cargo for
sale, he added .—— sentence2: On June 10, the ship’s owners had published an advertisement on the
Internet, offering the explosives for sale. —— label: 1
{Other examples from small-real world dataset}...
Can you provide something more diverse than the previously generated data?

Table 6: Detailed prompts for each task for data generation.

MRPC: The Microsoft Research Paraphrase Corpus (MRPC) consists of 5,801 sentence pairs
sourced from news articles. Human annotators manually labeled each pair to determine whether
the sentences were paraphrased from each other. We employ the official MRPC dataset available
through Huggingface’s datasets library, segmented into training, validation, and testing sets contain-
ing 3,668, 408, and 1,725 instances, respectively.

I DATA GENERATION

I.1 PROMPT

The prompts used for data generation across different benchmarks are provided in Table 6. The
prompts for Tweet Irony and Financial datasets are based on those used in previous work (Li et al.,
2023).

I.2 DATA GENERATION BUDGET

We used OpenAI GPT-3.5-turbo-1106 (OpenAI, 2022) to generate a dataset for the three bench-
marks, adhering to OpenAI’s terms of service and usage policies. The total cost is $38.74.
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