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Abstract

Operational Numerical Weather Prediction (NWP) precipitation nowcasting usually con-
siders forecast reliability by utilizing an ensemble of model forecasts. Existing data-driven
methods often optimize MSE deterministically or resort to probabilistic forecasting with
generative models. However, they only emphasize the optimization of the point forecast
metrics, which makes it challenging to balance the trade-off between the optimization of
accuracy and uncertainty. Human experts can hardly make an appropriate decision with
an ensemble forecast when forecast calibration and sharpness are not considered. In this
paper, we propose EnsDiff, which models the probability distribution to produce ensemble
diffusion predictions. Not only does it outperform the existing models on a proper scoring
rule, Continuous Ranked Probability Score (CRPS), but it also outperforms others on the
deterministic metrics. Extensive experiments show that EnsDiff can enhance probabilistic,
deterministic skills, and perceptual quality, outperforming state-of-the-art models.

1 Introduction

Heavy precipitation is one of the extreme events that can cause severe damage, such as flooding, in urban
areas. Extreme rainfall can evolve from hours to minutes. Thus, an alert system aided by accurate and
timely weather forecasts is crucial for the public to react to such high-risk events. Our study focuses on
this precipitation nowcasting problem, where a high-resolution prediction of up to two hours ahead (Schmid
et al., 2019) is required to inform the public to take the necessary actions for their safety. Traditional
Numerical Weather Prediction (NWP), based on modeling the dynamics of atmospheric processes using
differential equations, runs ensemble prediction to obtain state and uncertainty estimation that leads to
significant computational and energy costs (Bauer et al., 2021). Thus, data-driven models that use abundant
observation data to train can shorten the inference time of the model over the 0-2 hour lead time for
precipitation nowcasting (Zhang et al., 2023).

Most data-driven approaches for precipitation nowcasting utilize radar imagery data available every several
minutes and formulate radar prediction as a spatio-temporal deterministic forecast task. In particular,
models are trained with some input frames to predict some future output frames that minimize losses such
as the mean squared error (MSE). Although a deterministic forecast can be quickly computed to provide a
good reference for the meteorologist, these precipitation field forecasts become blurry at longer lead times,
corresponding to their uncertainty, which lacks representation of some small-scale convective patterns (Shi
et al., 2015). On the other hand, ensemble forecast offers more economic value to decision makers than
point forecast, when the model can recognize whether its forecast might be incorrect and express confidence
when it is likely to be accurate (Zhu et al., 2002). Providing information about what might happen and
how possible it is to happen allows a wide range of users, from emergency responders to everyday citizens,
to take appropriate actions based on their risk tolerance and needs.

Although existing models produce realistic precipitation forecasts, they cannot yield high probabilistic skills
when probabilistic forecasting has to maximize the sharpness of the predictive distributions, subject to
calibration. Sharpness refers to how tightly the predictive distributions are concentrated, meaning that the
distribution forecast is as precise as possible for people to refer to. Then, calibration describes the statistical
alignment between probabilistic forecasts and actual observations. In essence, the observed outcomes should
appear as random draws from the predicted distributions (Gneiting & Katzfuss, 2014). For example, a
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forecast issues a 70% chance of rain. Then, it should rain approximately 70% of the time. A well-calibrated
forecast enables decision-makers to adjust their decisions based on the forecast’s confidence level. (Price et al.,
2023). Existing models utilizing deterministic and probabilistic frameworks have poor ensemble calibration
(Pathak et al., 2024). They train the forecast and diffusion models to optimize MSE and noise-prediction
diffusion loss, which are not the objectives of optimizing calibration and sharpness. This is undesirable
for modeling the uncertainty that aligns with the actual observations. Therefore, for the probabilistic
precipitation nowcasting task, we propose a probabilistic model, that considers calibration and sharpness.

In this paper, we propose EnsDiff to produce ensemble forecasts with better calibration and sharpness by
utilizing the equivalence of the Proper Scoring rule (Gneiting & Raftery, 2007) and the maximum likelihood
estimation. Then, we utilize a deterministic model as a condition for the diffusion model to learn the forecast
distribution effectively. It is observed that the deterministic model output the mean approximation when
adding the mean prediction constraint. Conditioning on this mean prediction can enhance the deterministic
skills of the final diffusion output, such as MSE and Critical Success Index (CSI), with a better location
and shape precipitation prediction. EnsDiff enhances the sample quality while maintaining the probabilistic
and deterministic skills by defining the task as a conditional forecasting task with the mean predictor being
the condition model. This fully utilizes the mean predictor by increasing the likelihood of the samples
conditioned on the mean predictor. Additionally, we propose to use EDM (Karras et al., 2022) in training a
Latent Diffusion Model (LDM) (Rombach et al., 2022) that allows for a shorter sampling time, which favors
the use of sampling ensembles.

The contribution of this work is summarized as follows:

• An ensemble forecasting diffusion model trained with the monotonic weighted diffusion objective
corresponds to optimizing the ELBO of the output frame distribution with additive Gaussian noise.
This can favor modeling the forecast distribution, which means better calibration and sharpness
than merely emphasizing sample quality. Extensive studies have shown that the proposed method
has beaten the SOTA results regarding the probabilistic skill - CRPS.

• We utilize a mean predictor model as a conditional model with an MSE constraint to guarantee its
intermediate output quality. This, in turn, enhances the final diffusion model output in terms of
deterministic skills.

• We propose incorporating classifier-free guidance to increase the likelihood of sampling under the
mean predictor condition, which improves the sample quality by retaining the deterministic and
probabilistic skill performance.

• To the best of our knowledge, we are the first to apply a continuous-time diffusion model on the
precipitation nowcasting task that enables more efficient deployment of diffusion models in opera-
tional settings. Our model shortens the inference time and retains the probabilistic and deterministic
performance on different datasets.

2 Related Work

We categorize precipitation nowcasting models into mean predictor models and generative models. The
former uses mean squared error (MSE) as the loss, and the latter can learn the underlying distribution of
training data to generate new samples, such as generative adversarial networks (GANs) and diffusion models.

2.1 Mean Predictor Models

Some earlier works (Shi et al., 2015; 2017; Wang et al., 2017) mainly adopt autoregressive methods that
predict the output frames iteratively within a forecast window. However, one of the setbacks is that they
optimize MSE loss, so it causes the model to tend to predict a blurry result (i.e., neighboring pixels have
similar pixel values). Assume that we have x as the input sequence and y as the output sequence; the
model is denoted as Mθ with parameters θ. The model is trained to minimize the pixel-wise MSE loss,
θ∗ = arg minθ ||y − Mθ(x)||22, to obtain the optimized θ∗ parameters for inference. More blurriness in longer
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lead-time prediction shows that the more uncertain the future frames are, the fewer details these models
can predict. Meanwhile, it can be observed that the deterministic forecast is blurry, as if it is similar to the
ensemble mean of an ensemble forecast. This shows the forecast uncertainty contributes to a blurry average
state prediction (Price et al., 2023). In light of a similar magnitude of blurriness with the ensemble mean,
we term these deterministic models "mean predictors".

These mean predictors adopt different architectural designs to strive for better modeling of the spatio-
temporal dynamics. ConvLSTM (Shi et al., 2015) is the first to propose the integration of Convolutional
layers to LSTM cells for modeling space and time relationships simultaneously. PredRNN (Wang et al.,
2017) has a zigzag memory flow, when the memory is propagated to the horizontal and vertical stacked
recurrent layers that can learn distributed representations capturing various aspects of the spatiotemporal
dynamics. Earthformer (Gao et al., 2022b) applies cuboid attention to model local dynamics and global
vectors to attend to these cuboids, which helps to represent the overall dynamics of the earth system.

2.2 Generative Models

With the deterministic models, though we can add noise to the initial input to run the model multiple times
for an ensemble of forecasts (Sønderby et al., 2020), the resulting ensemble can only represent the initial
condition uncertainty, but not the model uncertainty, as the model is deterministic. Also, the efficiency is low
to run forward pass multiple times for the ensemble. Given the lack of model uncertainty representation and
poor efficiency, it motivates more generative models widely applied in precipitation probabilistic nowcasting.
In general, a generative framework predicts a distribution over possible future precipitation states, rather
than a single deterministic forecast. This is achieved by modeling the conditional probability distribution
with a generative model P (Xt+1:T | Xt−τ :t) where Xt−τ :t represents the sequence of observed radar maps
from time t − τ to t, Xt+1:T denotes the sequence of future radar maps to be predicted from time t + 1 to T .

We introduce two main formulations for probabilistic forecasting with generative models: direct forecasting
and residual forecasting.

2.2.1 Direct Forecasting

One of the first representative works is DGMR (Ravuri et al., 2021), which uses a conditional GAN condi-
tioned on the input frames to generate the output frames, while regularization is also performed to minimize
the differences between the generated and the true radar images, which can provide a highly skilled proba-
bilistic forecast.

Another line of work using diffusion models offers a more stable training and mode coverage. Prediff (Gao
et al., 2024) incorporates the Earthformer (Gao et al., 2022b) forecasting model into the UNet denoiser to
denoise the output frames, allowing the denoiser to learn the mapping from the inputs to the output frames
in the latent space. However, more parameters in the denoiser may be needed to correctly forecast and
denoise the output frames simultaneously, and so it may converge slowly.

GenCast (Price et al., 2023) applies EDM (Karras et al., 2022) with the denoiser being GraphCast (Lam
et al., 2023) on medium-range forecasting. The diffusion module models a different conditional distribution
from other works, which is p (yt+1 | yt, yt−1) of the future state yt+1 conditioning on the current and previous
states. Then, it autoregressively samples from the conditional distribution to get the final joint distribution
(i.e. p (y1:T | y0, y−1) =

∏T −1
t=0 p (yt+1 | yt, yt−1)). LDCast (Leinonen et al., 2023) learns a Latent Diffusion

Model (LDM) that produces diverse predictions, having good calibration and sharpness. CasCast (Gong
et al., 2024) similarly train a LDM, but it uses DiT (Peebles & Xie, 2023) to learn the cascaded representation
of the precipitation that can successfully model both the deterministic part and stochastic components.

2.2.2 Residual Forecasting

It was shown that the prediction of a deterministic mean predictor model is similar to the mean of the
ensemble from a diffusion model (Price et al., 2023). This observation is consistent with the models, in
general, learning a deterministic regression to estimate the conditional mean and a stochastic diffusion
model to correct the mean prediction by modeling the stochastic dynamics. DiffCast (Yu et al., 2024) carries
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out an end-to-end training of the deterministic and stochastic diffusion models by constraining the global
temporal consistency with an additional UNet. Once the regression model is trained, the residuals between
the deterministic model output and the ground truth are learnt by the diffusion model. It outperforms some
strong baselines, and has been proven to be a model-agnostic framework that can be applied to most of the
SOTA mean predictors.

Stormcast (Pathak et al., 2024) has a similar framework to DiffCast, but instead they train the deterministic
regression and stochastic diffusion in two stages. It needs more time to converge for each individual trained
component, but the benefit is that the residual t − 1 conditioned by the diffusion is more accurate when it
is trained in the first stage. And so, the residual t denoised can be accurate. However, these methods have
a poor calibration even though they can achieve competitive deterministic skills.

3 Methods

3.1 Task Formulation: Probabilistic Precipitation Forecasting

Precipitation nowcasting can be formulated as a spatio-temporal radar sequence forecasting task. Assume
we can sample discrete-time sequences of images with length M +K from a complete radar sequence that has
observation data every several minutes in operation. The sequence can be segregated into M input frames
and K sequentially following output frames, and each frame has dimensions C × H × W , corresponding to
the number of channels, height, and width, respectively. In the case of a radar sequence forecasting task, the
channel C = 1, as we have only one modality. Therefore, the task is to utilize the inputs x ∈ RM×C×H×W

to predict the outputs y ∈ RK×C×H×W .

Probabilistic forecasting refers to modeling the predictive conditional probability distribution p(y|x), where
it aims to maximize the sharpness subject to calibration. When considering a probabilistic distributional
forecast, the prediction space is [F (y), y], where F (·) is the cumulative distribution function (CDF) of p(y|x),
and y is the observed value. We can represent the cumulative distribution function as a probability integral
transform random variable, ZF = F (y) (Gneiting & Katzfuss, 2014). Then, the distribution is said to be
well calibrated when ZF ∼ Uniform(0, 1) is close to a uniform distribution, indicating that the observation
is indistinguishable from the ensemble members which forms the forecast distribution.

On the other hand, sharpness corresponds to the concentration of the predictive distribution p(y|x), when
it does not depend on observation y (Gneiting & Katzfuss, 2014). As our task is to predict a real-valued
precipitation intensity, we opt to minimize the mean width of the prediction interval, meaning the sharpness
is maximized. Then, the ultimate goal of a probabilistic forecasting task is to constrain this minimization
subject to the calibration matching the observation data distribution. Ensembles are the sample estimate of
the full distribution by sampling from it to utilize this learned predictive distribution.

3.2 EnsDiff

We propose EnsDiff, which is an LDM (Rombach et al., 2022) that targets ensemble quality. First, we
introduce the model architecture and training. Then, we discuss how to effectively model the forecast
distribution with the Evidence Lower Bound (ELBO) objective, and thus the use of the EDM-monotonic
objective. Finally, we further investigate the conditional generation for ensemble forecasting.

3.2.1 Model Architecture and Training

With an LDM (Rombach et al., 2022) formulation, we first train a variational autoencoder (VAE) with 3D
convolution layers. We label the encoder E(x) and decoder D(x). E projects the radar frames x to the latent
space, where the mean predictor and diffusion model are trained. We apply SimVP (Gao et al., 2022a) as the
mean predictor Ψ to get the intermediate output frames in latent space, Ψ(E(x)). Then, EDM is adopted to
learn the probabilistic distribution conditioned on the predicted output frames Ψ(E(x)) (or predicted mean).
They are trained end-to-end with the EDM-monotonic objective. We explain in Section 3.2.3 the necessity
of adding an MSE loss to constrain the mean predictor. The training pipeline is illustrated in Figure 1.
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Figure 1: Overview of the EnsDiff pipeline: (a) illustrates the VAE training: E and D are first trained to
learn the latent z; (b) shows the LDM training: Ψθ is trained with the MSE constraint L2. Then, classifier-
free guidance has E(x1:M ) and zµ (i.e. Ψθ(E(x1:M ))) as the unconditional and conditional signal respectively.
The true residual zr

0 is computed by E(x1:M ) − zµ. Dθ is trained with the EDM-monotonic objective by
denoising zr

0; (c) shows the inference workflow: The input sequence, x1:M is encoded by the Encoder, E into
E(x1:M ). The mean predictor, Ψθ predicts the conditional latent variable, zµ, while the denoiser UNet, Dθ

predicts the residual, ẑr
0 from Gaussian Noise, zr

T with the classifier-free guidance. Then, D decodes to get
the final prediction ŷ1:K ;

Finally, during the sampling phase, we can obtain the ensemble forecast by sampling the diffusion model
multiple times.

3.2.2 Probabilistic Forecasting with Diffusion

To utilize diffusion in probabilistic forecasting, we first understand the equivalence between diffusion objective
and proper scoring rule (Gneiting & Raftery, 2007). Logarithmic score LS(pθ(Y ), y) = − log pθ(y) is a local
proper scoring rule (Parry et al., 2012), where pθ(Y ) is the density forecast of the weather random variable Y
following the unknown true distribution p, and y is the observed value. Logarithmic score gives the negative
log probability of the observed sample. Therefore, if we treat this score as a loss, we can minimize

L = −Ey∼p[log pθ (y)] (1)

This is equivalent to maximizing log-likelihood that can be derived from maximum likelihood estimation
(Shao et al., 2024). Therefore, maximum likelihood estimation is a proper scoring rule, estimating parameters
that minimizes the difference between the model pθ (y) and true data p (y) distribution.

Existing latent-diffusion forecasting models (Gao et al., 2024; Leinonen et al., 2023) learns with the simple
diffusion noise prediction objective (Ho et al., 2020)

LLDM = Ex,y,t,ϵ∼N (0,I)

[
∥ϵ − ϵθ (zt, t, zcond)∥2

2

]
(2)
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where ϵ is random noise added to the clean sample, t is the denoising step of the reverse process, zt are the
noisy latent-space output frames at denoising step t. zcond is the latent-space condition, where the model
uses the latent-space input frames E(x) (Gao et al., 2024), or the mean-predictor Ψθ(E(x)) (Leinonen et al.,
2023). ϵθ is the denoiser and θ represents the trainable parameters of the networks.

The above noise prediction objective for diffusion is derived from training a VAE with the variational upper
bound (negative ELBO).

− log pθ(y) ≤ − ELBO(y) = DKL (q (z1 | y) ∥p (z1))︸ ︷︷ ︸
Prior loss

+Eq(z0|y) [− log p (y | z0)]︸ ︷︷ ︸
Reconstruction loss

+ LT (y)︸ ︷︷ ︸
Diffusion loss

(3)

where
LT (y) = DKL (q (zt,...,1 | y) ∥p (zt,...,1)) (4)

setting λ = log
(
α2

t /σ2
t

)
to be the log signal-to-noise (SNR) ratio of diffusion timestep t, evidence lower

bound (ELBO) of continuous-time diffusion models is simplified to (Kingma et al., 2021; Song et al., 2020):

− ELBO(y) = LT (y) + c = 1
2Et∼U(0,1),ϵ∼N (0,I)

[
−dλ

dt
· ∥ϵθ (zt; λt) − ϵ∥2

2

]
+ c (5)

Since the loss weighting term is omitted from the simple diffusion loss (Equation 2)(Kingma et al., 2021),
it does not equate to an ELBO objective. Thus, the simple diffusion objective favors sample quality
over likelihood. While negative ELBO is an upper bound of the negative log-likelihood and negative log-
likelihood is a proper scoring rule, the negative ELBO can be treated as another proper scoring rule. When
LS(pθ(Y ), y) = − log pθ(y), negative ELBO satisfies the proper scoring rule conditions (more details of the
conditions in Appendix A.1.1)

EP [S(P, Y )] ≤ EP [S(Pθ, Y )] (6)
− log p(y) ≤ − log pθ(y) ≤ − ELBO(y) (7)

Thereafter, the probabilistic forecasting distribution trained with the simple diffusion objective is unlikely
to reconstruct the true data distribution.

To address this issue, a straightforward way is to multiply a weight in front of the simple diffusion objective
(Kingma et al., 2021) with − dλ

dt , where λ and t are the log signal-to-noise (SNR) ratio and the diffusion
step, respectively. We can denote the weight as w(λ), as it depends on the λ. This methodology may trade
too much sample quality for the likelihood, which may generate blurry results like the deterministic models,
which is undesirable for forecaster reference.

We propose to use a monotonic decreasing function, EDM-monotonic (Kingma & Gao, 2024) that makes
the diffusion objective as the ELBO on data augmented (i.e. additive noise) output frames. This objective
simulates the modeling of some Gaussian noise-perturbed output frames, which forces the model not only
reconstruct according to the observed output frames, but also allows the model to be robust enough to
predict some perturbed outputs. Following the derivation on ELBO as a proper scoring rule, it means
that the weighted diffusion objective represents a weighted proper scoring rule on different Gaussian noise-
perturbed output frames. It can thus force the model to maximize the proximity to different noisy output
frame distributions P t

θ by minimizing the weighted proper scoring rule for different noisy diffusion timesteps
t.

w(λ)S(P t
θ , zt) = w(λ)Ezt∼P t [S(P t

θ , zt)] (8)

By minimizing such a weighted scoring rule, the model can be more robust to different possible trajectories
within a slight perturbation. The probabilistic forecast can achieve a nice calibration and sharpness, repre-
senting the uncertainty of the true observation while exploring the potential output trajectories. This has a
similar benefit of data augmentation.

6



Under review as submission to TMLR

3.2.3 Diffusion Conditioned on Mean Predictor

From the perspective of a proper scoring rule, it is easier to learn the denoising forecast distribution with
the mean statistics. Although the mean predictor has yet to be converged to the true mean, it acts as a
useful information for learning the true forecast distribution P .

Similar to a downscaling task, learning the distribution of the residual between the predicted mean and
ground truth is easier than learning that of the output frames directly due to a smaller variance in the
residual (Mardani et al., 2023). The diffusion model can then denoise it with a more stable training. Thus,
we adopt the residual forecasting framework with a mean predictor, and we condition the predicted mean
to learn the output frame distribution with EDM.

Our deterministic and stochastic components are trained end-to-end. It is necessary to add a constraint to
make the mean prediction closer to the ground truth, or else the intermediate mean prediction error as a
condition will be propagated to the diffusion model.

Mean prediction The first step involves learning a deterministic forecasting model, Ψθ(·) on the latent
to estimate the conditional mean:

Ψθ(E(x)) = E[E(y)|E(x)] = µ (9)

This is achieved by training a gSTA module of SimVP (Cheng Tan & Li, 2022) as a mean predictor, Ψθ

using paired data samples {xi, yi}N
i=0 and optimizing the parameters θ with the Mean Squared Error (MSE)

in the pixel space:

min
θ

1
N

N∑
i=1

∥y − D[Ψθ(E(x))]∥2
2 (10)

Squared error loss is a consistent scoring function to help converge to the mean of the forecast distribution
(more details of consistent scoring function in Appendix A.1.2). This objective guarantees that the deter-
ministic regression approximates the mean as close as possible. Thus, the intermediate mean prediction error
as a condition propagated to the diffusion generation is minimized.

Conditional Diffusion A diffusion model is trained to capture the conditional distribution p(y | µ, x) We
use p(y0) as the conditional distribution in the following formulations, omitting the conditions. Unlike other
previous work (Gao et al., 2024; Yu et al., 2024; Gong et al., 2024), we utilize the continuous-time diffusion
formulation (Song et al., 2020) since it allows more flexible and efficient sampling strategies. First, we have
the forward process that adds i.i.d. Gaussian noise with variance σ2 to the data distribution p(y0) and
gets p(y; σ). Then, for large enough σmax, the distribution p(y; σ2

max) ≈ N (0, σ2
max). Then, in the reverse

process, it iteratively denoises towards σ0 = 0. This denoising process can be implemented via the numerical
simulation of the Probability Flow ODE (Song et al., 2020):

dy = −σ̇(t)σ(t)∇y log p(y; σ(t))dt (11)

Here, ∇y log p(y; σ) is the score function (Hyvärinen & Dayan, 2005). Therefore, a model is trained to learn
sθ(y; σ) that approximates the score function. This score function can be parameterized as ∇y log p(y; σ) ≈
sθ(y; σ) = Dθ(y;σ)−y

σ2 (Ho et al., 2020), where Dθ is a denoiser network that predicts the clean output frames
y0. It is similar to minimizing the proper scoring rule with respect to different noise levels added to the
clean data.

After the change of variable with λ = −2 log σ, the denoiser Dθ is trained using the denoising score matching
objective (Karras et al., 2022; Kingma & Gao, 2024):

E(y0,x)∼pdata(y0,x),λ∼p(λ)[w(λ)∥Dθ(yλ; λ, Ψθ(E(x))) − y0∥2
2] (12)

where p(λ) = N (λ; 2.4, 2.42) and w(λ) is the weighting function. Ψθ(E(x)) is the mean prediction conditional
signal, and y0 is the clean output frames.
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3.2.4 Mean Predictor-Free Guided Forecasting

EnsDiff uses classifier-free guidance (Ho & Salimans, 2022) to treat the mean prediction as a condition. It
guides the denoising process towards the mean prediction conditioning signal. Then, we set the forecasting
task as a conditional generation task based on the mean prediction, while the unconditional generation is
still given the input frames to retain temporal consistency.

The unconditional model can be trained alongside the conditional one by randomly dropping the conditioning
signal mean prediction Ψ(x1:M ) (i.e. 15% of the time during training). Then, the unconditional signal is
the input frames x1:M . This design allows the diffusion model to do direct and residual forecasting, which
is predicting the output from input and mean prediction, respectively.

Then, during sampling, with the guidance scale s ≥ 0 controlling the guidance strength, we calculate the
predicted score function from

Dθ(y; σ, x) = sDθ(y; σ, Ψ(x1:M )) − (s − 1)Dθ(y; σ, x1:M ) (13)

Thus, with updating the score, it decreases the unconditional likelihood of generating the output frames with
direct forecasting while increasing the conditional likelihood of generating the output frames with residual
forecasting. It reduces sample diversity in a way having a similar objective to increase the sharpness of the
forecast distribution.

4 Experiments

4.1 Datasets

• SEVIR dataset (Veillette et al., 2020) covers 10,000 weather events in a 384km × 384km region in
the US spanning a period of four hours with a 5-minute interval from 2017 to 2019. We extract
the NEXRAD Vertically Integrated Liquid (VIL) data product from the five channels provided for
precipitation nowcasting. Following previous works (Gao et al., 2022b; Seo et al., 2023), we predict
the future VIL up to 60 minutes (12 frames) from 65 minutes of input frames (13 frames). We
sample the test set from June 2019 to December 2019, leaving the remaining as the training set.

• HKO-7 dataset (Shi et al., 2015) is a collection of radar echo data with 6-minute intervals, collected
from 2009 to 2015 by the Hong Kong Observatory (HKO). It covers the region centered on Hong
Kong with a radius of 256 km. We formulate the prediction task for up to the next 2 hours (20
frames) using a 30-minute observation period (5 frames). Data from 2009 to 2014 are used for
training, while the test set consists of data collected in 2015.

Due to resource constraints, we configure the experiments on 128x128 resolution on all datasets by using
bilinear interpolation to downsample the datasets from their original resolution. The dataset settings are
summarized in Table 1.

Table 1: SEVIR and HKO-7 dataset settings
Dataset resolution image size interval Lin Lout

SEVIR 1 km 128 5 min 13 12
HKO-7 2 km 128 6 min 5 20

4.2 Comparisons with State-of-the-Art Methods

To begin with, we observed that our proposed EnsDiff behaves differently on different datasets. Therefore,
we argue that different components contribute to balancing the tradeoff between performance in different
datasets. Thus, our proposed method is a more generalized framework compared to other SOTA models
(more evaluation details in Appendix A.3). In addition, we only compared the inference time on the SEVIR
and HKO-7 datasets, which is shown in Table 5. In general, the probabilistic models have multiple orders of
magnitude longer inference time than the deterministic models. However, EnsDiff can manage to have a fast
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Table 2: Performance comparison on SEVIR and HKO7 dataset. Both MAE and CRPS metrics are in the
scale of 10−3. The best score among all models is highlighted in bold, while the best score among the
probabilistic models, including ours, is underlined.

Dataset Model Metrics
MAE↓ SSIM↑ LPIPS↓ FVD↓ CSI-m↑ CSI4-m↑ CSI16-m↑ FSS-m↑ CRPS↓

SE
V

IR

ConvLSTM 28.39 0.7216 0.3763 517.1 0.3458 0.3411 0.3607 0.6050 -
PredRNN 28.91 0.7238 0.3572 528.8 0.3553 0.3702 0.4153 0.6286 -

SimVP 27.75 0.7209 0.3673 413.1 0.3788 0.3803 0.4160 0.6452 -
Earthformer 29.13 0.7102 0.3952 581.0 0.3556 0.3533 0.3838 0.6296 -

LDCast 46.98 0.5772 0.3771 138.4 0.2193 0.2898 0.4598 0.4945 26.00
PreDiff 41.44 0.6279 0.3047 35.40 0.3276 0.4271 0.6096 0.6483 30.34
DiffCast 35.83 0.6410 0.3456 53.36 0.3305 0.4018 0.5504 0.6454 22.40
EnsDiff 31.85 0.7117 0.3123 89.37 0.3602 0.4378 0.5927 0.6693 20.09

H
K

O
-7

ConvLSTM 40.11 0.5987 0.3679 768.9 0.2905 0.2628 0.2774 0.4084 -
PredRNN 42.23 0.5785 0.3693 674.4 0.2857 0.2872 0.3263 0.4502 -

SimVP 40.15 0.6039 0.3652 654.7 0.3020 0.2852 0.3115 0.4280 -
Earthformer 41.67 0.5864 0.3839 815.0 0.2817 0.2532 0.2704 0.4014 -

LDCast 109.14 0.2639 0.5622 1106 0.0260 0.0779 0.2939 0.1000 66.56
PreDiff 48.01 0.5922 0.2672 107.0 0.2799 0.3787 0.5081 0.5093 42.39
DiffCast 42.69 0.6198 0.2364 27.78 0.3013 0.4084 0.6084 0.5974 25.29
EnsDiff 42.32 0.6101 0.2450 116.3 0.3025 0.4139 0.6019 0.5863 26.93

inference time among the probabilistic models, which is slightly slower than LDCast in both datasets. We
will show in the later parts that our model also outperforms LDCast significantly, which means our model
is a more viable choice.

SEVIR From a probabilistic perspective, Table 2 shows that EnsDiff achieves the lowest CRPS among all
models. Compared to other diffusion models, it has a lower CRPS by 10 % even from the strongest baseline
DiffCast. This observation aligns with the MAE which has a 11% lower CRPS than DiffCast, where CRPS
degenerates to MAE when evaluating a point forecast. It proves that our model is more preferrable to apply
on both probabilistic and point forecasting tasks. EnsDiff, LDCast, and DiffCast are models that consist of
a mean predictor and conditional diffusion in either latent or pixel space. Compared to the baseline having
a similar architecture, our proposed EnsDiff achieves significant improvement across all metrics.

Additionally, it is noteworthy that while all probabilistic models perform worse in terms of MAE and SSIM,
our proposed EnsDiff eliminates this degradation, achieving results comparable to those deterministic models.
Compared to the best results achieved by probabilistic baselines, EnsDiff improves both MAE and SSIM by
11%. Furthermore, EnsDiff demonstrates similar performance in perceptual metrics, which are LPIPS and
FVD, where deterministic models struggle due to blurriness at longer lead time. This indicates that EnsDiff
not only enhances pixel-wise score and structural fidelity but also attains good perceptual quality as other
probabilistic models.

In terms of the skill score, EnsDiff is able to predict different rainfall events more accurately than other
probabilistic models, especially with the spatial tolerances of 4 and 8 pixels. Compared to probabilistic
baselines, EnsDiff achieves the best CSI-m score, which considers pixel-wise accuracy, with a marginal
improvement of 9%. It even outperforms most deterministic models, except for SimVP, which is only 5%
lower. Moreover, EnsDiff improves the CSI4-m and FSS-m metrics, which account for the medium spatial
deviation of 4 and 8 pixels, by 2.5% and 3.2% respectively. However, its performance on CSI16-m, which
tolerates a larger spatial deviation, is slightly 2.7% lower than the best baseline, PreDiff. In summary,
EnsDiff demonstrates the highest accuracy at medium scales (pool sizes of 4 and 8), and delivers comparable
performance for both pixel-wise CSI and large pool sizes of 16.

In terms of qualitative comparisons, EnsDiff reconstructs the first few frames the best, which means that
the short-term motion is well-captured. Interestingly, the accurate forecast can extend to a longer lead
time where other models cannot, proving that temporal consistency and long temporal dependency are
emphasized. In addition, from Figure 2, EnsDiff reconstruct the location and shape of the precipitation
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Figure 2: Visual results by state-of-the-art methods on samples from the SEVIR dataset.

cloud better compared to LDCast and DiffCast, where they underestimated some areas of the yellow regions.
From Figure 5, it is obvious to see that our model can capture higher intensity precipitation from the shorter
to the longer lead time.
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HKO-7 In CSI and CSI-pool 4 × 4, EnsDiff outperforms all the baselines. This signifies that it better
captures the formation and movement of precipitation with different thresholds in 1 × 1 and 4 × 4 scale.
The two visualizations (Figures 7 and 8) clearly show that the shape and location are predicted correctly
compared to other models.

However, it is observed that DiffCast, a pixel diffusion model, outperforms other latent diffusion models
(LDM) with a huge gap in perceptual quality by looking at FVD, LPIPS, and SSIM. Meanwhile, EnsDiff
has the smallest difference on the perceptual metrics with DiffCast. HKO-7 is a noisy dataset with scattered
clouds. If a LDM projects these images to the latent, the scattered cloud has a high chance of being smoothed
in the latent. Then, the LDM is trained with a less noisy version in the latent. Then, the prediction samples
projected back to the pixel space would indeed lose details of those scattered behaviours. It results in a
smoother or blurrier version in longer lead time, as shown in Figure 7 (during earlier training iterations).
This lowers the sample quality as it cannot represent the scattered details similar to the ground truth.

With the loss of scattered details observation, the MAE and CRPS may result in a higher value. Despite that,
by training for a sufficient of iterations, EnsDiff can lower the MAE and MSE to be smaller than all other
probabilistic models (including DiffCast), and achieve a comparable CRPS with DiffCast (visualizations
in Figures 6 and 8) Thus, we believe that LDM has to be trained for more iterations to achieve a higher
pixel-wise accuracy MAE and probabilistic skill CRPS. EnsDiff has the best capability among all LDMs to
overcome such sample quality degradation.

Interestingly, there is a significant tradeoff between CSI and other metrics on the HKO-7 dataset only. When
we compare several checkpoints saved during training, we find that we can get better perceptual metrics
(FVD, LPIPS, and SSIM) and probabilistic skill (CRPS) with a lowered CSI. For example, there is a model
evaluated to have a higher CSI (0.3185) and CSI-pool 4×4 (0.4216) but a significantly higher CRPS (36.01).
This is not desirable, so it requires more iterations of training to get a balance between CSI and CRPS.
The tradeoff can be due to the loss of scattered details where the high-intensity areas are predicted in a
patch shape, like in Figure 7. This kind of prediction can result in higher CSI, but lower in CRPS and other
perceptual metrics.

4.3 Ablation Study

We study the effectiveness for each component contributing to the performance in the probabilistic and
deterministic skills. Due to resource limitations, the ablation study is only performed on the SEVIR dataset.
The result is reported in Table 3.

Table 3: Performance of different variants of EnsDiff on SEVIR dataset. The variants on the last row is
the one reported in Table 2. Both MAE and CRPS metrics are in the scale of 10−3. CFG and CMP stand
for classifier-free guidance and MSE-constraint applied on Mean Predictor, respectively. The best score is
highlighted in bold, while the 2nd best score is underlined.

CMP CFG Mean
Predictor

Monotonic
Weighting

Metrics
MAE↓ SSIM↑ LPIPS↓ FVD↓ CSI-m↑ CSI4-m↑ CSI16-m↑ FSS-m↑ CRPS↓

✓ gSTA ✓ 31.66 0.7112 0.3167 94.83 0.3603 0.4324 0.5775 0.6663 20.08
✓ gSTA ✓ 33.44 0.7051 0.3148 95.20 0.3481 0.4303 0.5967 0.6565 20.24

✓ ✓ AFNO ✓ 41.38 0.6715 0.3307 109.3 0.3129 0.3997 0.5662 0.5760 23.59
✓ ✓ gSTA 31.74 0.7108 0.3090 80.93 0.3703 0.4532 0.6138 0.6867 21.56
✓ ✓ gSTA ✓ 31.85 0.7117 0.3123 89.37 0.3602 0.4378 0.5927 0.6693 20.09

Constraint on Mean Prediction Comparing the CFG and CMP+CFG variants, in most metrics (except
CSI16-m), CMP+CFG is better. This proves that adding a mean prediction constraint is crucial for the final
forecast performance. There is a significant decrease in FVD which shows that the constraint can enhance the
sample quality. Qualitatively, we observe that CFG has a poor long-range forecast capability in high intensity
cases (Figure 9), where it has a similar prediction to ground truth in the first few frames. Meanwhile, the
prediction is fair at most of the lead time in some smaller intensity cases (Figure 10). This can be reasoned
by the fact that mean predictor can accurately forecast those low intensity precipitation with or without the
constraint, while the constraint helps improve the mean prediction in those high intensity cases. Thus, the
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final forecast from the diffusion can spend more its representation power in learning the residual that comes
from the local stochastic dynamics.

Mean Predictor-Free Guided Forecasting CMP and CMP+CFG variants have similar CRPS scores,
and the FVD improves with the addition of CFG, which means that calibration and sharpness are not
sacrificed when the sample quality is enhanced. Qualitatively, it is observed that each member of CMP+CFG
aligns better with the ground truth, and so does the ensemble mean. The model without CFG tends to
mispredict in some early frames t + 3, for example, the intensity of the yellow region is overpredicted to
have a larger area in Figure 9, and the shape of the precipitation at t + 3 in the right-middle of Figure 10 is
slightly dissimilar from the ground truth. The difference from ground truth is more obvious in a longer lead
time. Thus, with CFG, EnsDiff achieves better temporal consistency and retains the capability to model the
probabilistic distribution.

Mean Predictor Ψθ model architecture In addition to the gSTA module (Cheng Tan & Li, 2022), we
conducted an experiment where Ψθ is replaced with AFNO (Guibas et al., 2021), as suggested in LDCast
(Leinonen et al., 2023). It is evident that using gSTA for Ψθ better captures spatiotemporal features in the
latent space, resulting in the significant improvements across all metrics as shown in Table 3. The choice of the
mean predictor is important, where it can be decided by comparing the performance of the mean prediction,
like how we conduct experiment on the deterministic model. If we compare the general architecture between
convolution (SimVP) and transformer (Earthformer) layers, SimVP outperforms Earthformer in all of the
deterministic metrics. Thus, it is reasonable that EnsDiff using gsTA as a mean predictor outperforms that
using AFNO.

Monotonic Weighting We experiment with the gsTA without monotonic weighting. It is observed that
its deterministic scores almost achieved the best among all variants but the probabilistic score CRPS has been
reduced significantly. It proves that the model with monotonic weighting can indeed make the model train
towards minimizing the proper scoring rule for different Gaussian-perturbed output. This in turn enhances
the probabilistic skill of the ensemble forecast. Qualitatively, in Figure 9 and 10, comparing the variant
CMP+CFG (gsTA) with and without monotonic weighting, it is observed that the one with the monotonic
weighting has the precipitation predicted correctly in location and intensity from shorter to longer lead time.

5 Conclusion

To effectively apply a probabilistic forecasting model to precipitation nowcasting, the key is to have high
probabilistic skills and retain high deterministic skills, perceptual quality, and inference speed. The mono-
tonic weighting makes the diffusion objectives the ELBO on Gaussian-noised output frames, which helps gain
calibration and sharpness. We frame the mean predictor as a condition for the diffusion model to learn the
forecast distribution effectively with the mean approximation when deterministic skills are enhanced along
with the mean prediction constraint. Then, we employ Mean Predictor-Free Guided Forecasting to fully
utilize the mean predictor in a conditional forecasting way. Sample quality is improved when the likelihood
or the probabilistic skill is not diminished.
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A Appendix

A.1 Additional Preliminary

A.1.1 Proper Scoring Rule for Probabilistic Forecast

Let Pθ be the probabilistic forecast (a predictive distribution) provided for a random variable Y following
the unknown true distribution P , and let y be the observed outcome. A scoring rule is a function:

S(Pθ, y) = EY ∼P [S(Pθ, Y )] (14)

The score S depends on both the forecast Pθ and the observed outcome y, which is the expected score
computed under the true distribution P of Y :

A scoring rule S(Pθ, y) is proper if the expected score is minimized when the forecast Pθ matches the true
distribution P for all possible forecasts Pθ:

EP [S(P, Y )] ≤ EP [S(Pθ, Y )] (15)

If equality holds only when Pθ = P , the scoring rule is called strictly proper.

A.1.2 Consistent Scoring Function for Point Forecast

Apart from obtaining a probabilistic forecast, practitioners sometimes prefer a point forecast for decision-
making and easier communication (Gneiting & Katzfuss, 2014). When x is the point forecast and y is the
observation, we compare competing model forecasts with a scoring function s(x, y). In other words, the
optimal point forecast is obtained by

x̂ = arg min
x∈R

EP [s(x, Y )] (16)

when we minimize the expected scoring function s under the distribution P of the random variable future
state Y .

As a special case of a proper scoring rule, a scoring function is consistent for a functional if the forecaster
minimizes the expected score by forecasting the correct value of the functional, where a functional is a
summary statistic derived from a probability distribution. (Gneiting & Katzfuss, 2014). Formally, let Pθ be
a predictive distribution, s(x, y) be the scoring function, and T (Pθ) be the functional of Pθ (e.g., the mean
or median). The scoring function s is consistent for T if:

EP [s(T (Pθ), Y )] ≤ EP [s(x, Y )] (17)

for all possible forecasts x. If equality holds only when x = T (Pθ), the scoring function is strictly consistent.
A functional is elicitable if there exists a strictly consistent scoring function for it. In the precipitation
nowcasting task, deterministic models commonly use mean square error (MSE) to train. The mean statistic
of the distribution Pθ is elicitable with squared error loss, a strictly consistent scoring function. T

s(x, y) = (x − y)2 (18)

Thus, it is not surprising the deterministic forecast approximates the mean of the true distribution P . That
is close to the ensemble mean of the predictive distribution P .

A.2 Implementation Details

SEVIR In general, SEVIR is an easier dataset than the other two, where there are clear patches and the
movement or evolution of the cloud is more stable. Therefore, it does not need much special handling when
applying EnsDiff on it. We utilize the reduced on plateau learning rate scheduler with early stopping. The
model usually stops at epoch 50-60.
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HKO-7 Due to its geographical location in the Asia-Pacific, the observed rainfall is more scattered than
in the SEVIR data, which has clear patches of precipitation. Therefore, when we apply diffusion to HKO-7,
we must pay special attention to the latent shape and noise distribution.

The latent shape (height and width) plays a role when using our LDM for HKO-7. We experiment our
model on the resolution of 128x128 and 256x256. We found that our model cannot converge on the 128x128
resolution data with latent shape 32x32 when the loss decreases, but the forecast is very poor that the
precipitation intensity is always overestimated. However, the model trained on 256x256 with latent shape
64x64 can produce realistic forecast. Therefore, we speculate that EnsDiff is sensitive to the resolution and
the detail of the signal. Insufficient information may cause the diffusion model difficult to converge. In view
of this observation, we construct our model to have a larger latent height and width shape of 64x64 which
can encapsulate more information from the original 128x128 signal.

For the noise distribution, the model is designed to be first trained with a noisier distribution and shifted
to a less noisy distribution in a later stage. This echoes the training strategy that when the diffusion model
starts training, we want the model to first learn the local stochasticities correctly, similar to the Numerical
Weather Prediction (Bauer et al., 2015) when they discretize the grid to solve the partial differential equation
and integrate over time. In fact, modeling the local dynamics is important since the chaotic behavior of the
system (i.e., the sensitivity of the initial condition from a local point) may greatly affect the global dynamics
in the long run. This is the exact opposite to training diffusion model on high-resolution natural images (like
in ImageNet), where we first train on a smaller noise schedule with a smaller noise value, and then shift the
noise schedule to a higher noise value (Hoogeboom et al., 2023).

Following EDM, our model has a noise distribution of log σ ∼ N
(
Pmean , P 2

std
)
. Pmean (default is -1.2)

can be used to control the distribution shifted to high or small noise. We set the standard deviation to be
the default Pstd = 1.2 which gives a suitable range of noise levels. First, we start with a noise distribution
in the higher noise region, where Pmean = 0. The training is more stable where the noise can be denoise
gradually throughout several epochs. The intensity will not be overestimated when compared to starting
with the smaller noise region. After training for 50 epochs, it is shifted towards a noise distribution with
smaller noise by setting Pmean = −1.2. And further trained with 50 more epochs, it is further shifted to
a less noise region by setting Pmean = −2.4. With this design, our model can learn well from the local to
global dynamics.

A.3 Evaluation

Besides the diffusion-based probabilistic models (i.e. LDCast (Leinonen et al., 2023), PreDiff (Gao et al.,
2024) and DiffCast (Yu et al., 2024)), we also compare the performance of our proposed EnsDiff with several
deterministic models: ConvLSTM (Shi et al., 2015), PredRNN (Wang et al., 2017), SimVP (Gao et al.,
2022a) and Earthformer (Gao et al., 2022b). All probabilistic models are evaluated across 10 ensemble
members.

A.3.1 Probabilistic Skills

To evaluate probabilistic skills, the Continuous Ranked Probability Score (CRPS) is one of the Proper Scoring
Rules (Gneiting & Raftery, 2007), which is widely used by the weather community to assess the accuracy and
uncertainty of probabilistic forecasts for continuous variables. It provides a penalty for both overconfident
and underconfident forecasts, quantifying both calibration and sharpness. A lower CRPS indicates a better
forecast, with 0 being perfect.

CRPS(F, y) =
∫ ∞

−∞
(F (x) − I(x ≥ y))2

dx (19)

where F (x) is the cumulative distribution function (CDF) of the forecasted distribution, y is the observed
value, I(x ≥ y) is the indicator function, which equals 1 if x ≥ y, otherwise 0. When evaluating a point
forecast, it reduces to a Mean Absolute Error (MAE), where ŷ is the predicted deterministic value.

CRPS = |y − ŷ| (20)
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Also, rank distribution is used to evaluate how well the ensemble forecasts cover the observations. A uni-
form rank histogram implies good calibration, while U-shaped or domed histograms indicate issues with
overconfidence or excessive uncertainty, respectively.

A.3.2 Deterministic Skills

For deterministic skills, following previous works, Mean Absolute Error (MAE) and Structural Similarity
Index (SSIM) are reported as the models’ pixel-wise score and structural accuracy, respectively. In addition,
the average Critical Success Index (CSI) measures the models’ capability for predicting different rainfall
events with the corresponding threshold values (Shi et al., 2015; Gao et al., 2022b). Aside from pixel-wise
metrics, we also report the average CSI scores at the spatial pooling scales of 4 × 4 and 16 × 16, and the
Fractional Skill Score (FSS) with a pool size of 8. These pooled metrics evaluate the models’ accuracy within
a local region rather than pixel-wise.

Additionally, LPIPS and Fréchet Video Distance (FVD) assess the visual quality of the model predictions.
FVD measures the similarity between the learned data distribution and the true data distribution via encoded
video latent features with a pre-trained model.

A.4 In-depth Discussion

Proper Scoring Rule: CRPS We study CRPS with spatial pooling by combining forecasts and observa-
tions before calculating CRPS. We applied the pooling on the scale of 4 × 4 and 16 × 16 pixels, similar to the
CSI-pool. The CRPS with pooling reflects the average performance of the probabilistic forecast across the
region. Table 4 shows the CRPS scores for all 3 datasets. For SEVIR, we can see that EnsDiff outperforms
the other diffusion models in most of the CRPS with or without pooling. And for HKO-7, EnsDiff performs
slightly worse than DiffCast. This shows that EnsDiff not only has accurate probabilistic distributed forecast
pixel-wise, but it also captures the spatial patterns well in the scale of 4 × 4 and 16 × 16.

Table 4: CRPS comparison on SEVIR and HKO-7 dataset. All are in the scale of 10−3. The best score
among all models is highlighted in bold, while the 2nd best score is underlined.

Dataset Model Metrics
CRPS↓ CRPS4↓ CRPS16↓

SE
V

IR

LDCast 26.00 22.80 17.98
PreDiff 30.34 25.62 18.62
DiffCast 22.40 17.98 11.09
EnsDiff 20.09 16.24 10.24

H
K

O
-7

LDCast 66.56 64.07 61.74
PreDiff 42.39 37.09 27.92
DiffCast 25.29 20.04 12.68
EnsDiff 26.93 21.91 14.74

Ensemble mean comparison Apart from examining the quantitative probabilistic skill scores, it is useful
to check the ensemble mean visualizations. In this way, we can verify whether the ensemble members can
contribute to reconstructing the true forecast distribution.

Calibration refers to how well the predicted probabilities (or distributions) match the observed outcomes. A
well-calibrated ensemble forecast means that the ensemble predictions are statistically consistent with the
observations. The ensemble mean itself cannot fully assess calibration because calibration is about the entire
distribution, not just its average. However, if the ensemble mean is systematically biased compared to the
observed outcomes (e.g., consistently overpredicts or underpredicts), it indicates bias in the forecast, which
is a component of miscalibration. For example, in SEVIR (Figure 3 and 4), we observe that Prediff has
consistently higher intensity in its ensemble mean than the ground truth. Meanwhile, EnsDiff and DiffCast
both have similar intensity values with the ground truth, which means they do not consist of a significant
bias.
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B Inference Time Comparison

Table 5: Inference time comparison on SEVIR and HKO7 dataset. All values are in seconds. ’/’ indicates
it is out-of-memory for the model with the specific batch size. The best among all models is highlighted in
bold, while the best among the probabilistic models, including ours, is underlined.

Dataset Model Batch Size
1 2 4 8 16 32

SE
V

IR
ConvLSTM 0.1265 0.0695 0.0436 0.0302 0.0191 0.0171
PredRNN 0.2608 0.1432 0.0868 0.0543 0.0406 0.0214

SimVP 0.1114 0.0597 0.0333 0.0236 0.0239 0.0224
Earthformer 0.1602 0.0651 0.0376 0.0209 0.0131 0.0094

LDCast 4.4744 3.0824 2.3811 1.991 1.7998 1.7517
PreDiff 73.0939 66.7454 60.5865 58.4567 56.6579 /
DiffCast 13.9273 8.8283 12.1663 14.9587 11.7392 11.6339
EnsDiff 3.7287 3.1714 2.7292 2.5782 2.4828 2.4304

H
K

O
-7

ConvLSTM 0.1231 0.0666 0.0427 0.0324 0.0203 0.0183
PredRNN 0.2616 0.1536 0.0897 0.0547 0.0438 0.023

SimVP 0.1247 0.0664 0.0403 0.0289 0.027 0.0274
Earthformer 0.1187 0.0611 0.0333 0.0196 0.0134 0.0099

LDCast 10.3323 3.415 2.7867 2.5037 2.3738 2.314
PreDiff 70.797 65.4263 59.2361 59.2361 55.4093 /
DiffCast 55.4445 33.8662 34.1664 45.9586 33.3385 31.4788
EnsDiff 7.8582 7.5986 7.4277 7.3929 7.298 /

C More Qualitative Results

Figure 3: Visualization of the ensemble mean on the SEVIR dataset (Sample 1)
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Figure 4: Visualization of the ensemble mean on the SEVIR dataset (Sample 2)
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Figure 5: Visualization of all the models on the SEVIR dataset (Sample 2)
20
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Figure 6: Visualization of all the models on the HKO-7 dataset (Sample 1)
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Figure 7: Visualization of all the models on the HKO-7 dataset (Sample 1)
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Figure 8: Visualization of all the models on the HKO-7 dataset (Sample 2)
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D More Ablation Study Qualitative Results

Figure 9: Visualization Sample 1 of the model variants in Ablation Study. (Mean Predictor) is indicated in
the brackets. "w/o Mon" refers to without Monotonic Weighting, while it means with Monotonic Weighting
for other without specified.

24



Under review as submission to TMLR

Figure 10: Visualization Sample 2 of the model variants in Ablation Study. (Mean Predictor) is indicated in
the brackets. "w/o Mon" refers to without Monotonic Weighting, while it means with Monotonic Weighting
for other without specified.
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