

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGNER, DIAGNOSE THYSELF: A META-LEARNING PARADIGM FOR FUSING INTRINSIC FEEDBACK IN PREFERENCE ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

The alignment of Large Language Models (LLMs) with human preferences is critically undermined by noisy labels in training datasets. Existing robust methods often prove insufficient, as they rely on single, narrow heuristics such as perplexity or loss, failing to address the diverse nature of real-world noise. We challenge this limited-scope approach by introducing a new paradigm where models learn to diagnose thyself, systematically fusing multiple streams of intrinsic feedback for a holistic reliability assessment of each preference pair. We instantiate this paradigm through a meta-learning methodology that learns to adaptively reweight samples based on a rich diagnostic vector. This vector captures three complementary perspectives: preference consistency, learning difficulty, and generation confidence. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art methods across various noise conditions. Crucially, our work provides the first quantitative analysis of these intrinsic diagnostics, revealing that their fusion is essential for overcoming the blind spots inherent in any single heuristic. This diagnostic-driven paradigm offers a principled path towards developing more robust and trustworthy LLMs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks (Brown et al., 2020; Touvron et al., 2023). A crucial step in realizing their full potential lies in aligning these models with human preferences, ensuring they are helpful, harmless, and honest (Cao et al., 2021; Bai et al., 2022). This alignment process often relies on preference datasets, where humans or AI systems indicate preferred responses among candidate pairs (Christiano et al., 2017; Stiennon et al., 2020; Rafailov et al., 2023b). However, these datasets are often plagued by *noisy preferences* (NPs), where the recorded preference label is incorrect due to annotator disagreement, subjective biases, or errors in AI-based labeling (Gao et al., 2024; Zheng et al., 2023; Baumgärtner et al., 2024; Yi et al., 2024). NPs can severely degrade alignment quality, leading to poor model performance and the reinforcement of undesirable behaviors (Gao et al., 2024; Rafailov et al., 2023b).

To mitigate the impact of NPs, existing robust alignment methods can be broadly categorized into two groups. The first group employs *coarse-grained adjustments*, such as modifying the loss function with global noise estimates (Rafailov et al., 2023a; Chowdhury et al., 2024). While offering some robustness, these methods lack the precision to handle instance-specific noise, treating all samples equally regardless of their individual characteristics. The second group leverages *single-heuristic criteria* to identify and correct or down-weight potentially noisy samples. A prominent example is Kong et al. (2024), who utilize the perplexity difference (PPLDiff) between preferred and dispreferred responses as a signal for label inconsistency. While these methods offer instance-level granularity, they rely on a single, often myopic heuristic, neglecting the multifaceted nature of preference reliability. For instance, PPLDiff may be misleading when dealing with fluent but factually incorrect responses, or when the model is inherently uncertain about the best response due to subjective or nuanced queries.

To address the limitations of existing approaches, we introduce a new paradigm for robust preference alignment: *Aligner, Diagnose Thyself*. Instead of relying on a single, potentially flawed signal,

054 our paradigm empowers the alignment model to act as its own diagnostician, systematically fusing
 055 multiple streams of *intrinsic feedback* to assess the reliability of each preference pair. We argue that
 056 preference reliability is not a monolithic property, but rather a multifaceted construct that can be
 057 best understood by considering complementary perspectives derived from the model’s internal state.
 058 Specifically, we identify three key perspectives that, when combined, provide a more holistic and
 059 reliable assessment of preference quality:

- 060 • **Preference Consistency:** Does the model’s likelihood estimation align with the provided
 061 preference label? This is captured by the dynamic perplexity difference (PPLDiff) between
 062 the preferred and dispreferred responses, reflecting the model’s intrinsic assessment of their
 063 fluency and plausibility (Kong et al., 2024).
- 064 • **Learning Difficulty:** How easily does the model assimilate the preference information?
 065 This is quantified by the training loss incurred by the preference pair, reflecting the degree
 066 to which the sample aligns with the model’s current understanding of the task (Ren et al.,
 067 2018; Shu et al., 2019). High loss values may indicate noisy labels or challenging edge
 068 cases.
- 069 • **Generation Confidence:** How certain is the model in its generation process? This is
 070 estimated by the uncertainty associated with the model’s token predictions, reflecting the
 071 model’s internal confidence in its chosen responses. High uncertainty may suggest that
 072 the model is struggling to distinguish between plausible alternatives, potentially indicating
 073 subjective or ambiguous preferences.

074 These three perspectives, while individually informative, are inherently limited. PPLDiff can be
 075 misled by fluent misinformation, loss can be high for both noisy and genuinely difficult examples,
 076 and uncertainty can arise from both ambiguity and a lack of knowledge. Therefore, a robust align-
 077 ment method must be able to intelligently fuse these diverse and sometimes conflicting signals to
 078 arrive at a more informed assessment of preference reliability.

079 We operationalize this paradigm with a novel meta-learning methodology that learns to adaptively
 080 reweight training samples based on a rich diagnostic vector. This vector captures the three aforemen-
 081 tioned intrinsic feedback signals, allowing the model to dynamically adjust its learning process based
 082 on its own self-assessment. By training a meta-learner to interpret this diagnostic vector and assign
 083 appropriate weights, we enable the model to prioritize reliable preferences while down-weighting
 084 potentially noisy ones.

085 The contributions of this work are as follows:

- 086 • We introduce a new paradigm for robust preference alignment based on fusing multiple
 087 intrinsic model diagnostics, empowering models to diagnose themselves instead of relying on
 088 single, potentially flawed heuristics.
- 089 • We instantiate this paradigm with a novel meta-learning methodology that learns to weigh
 090 samples based on a diagnostic vector capturing preference consistency, learning difficulty,
 091 and generation confidence.
- 092 • We provide the first systematic analysis of the interplay and relative importance of these
 093 intrinsic diagnostics, revealing that their fusion is essential for overcoming the limitations
 094 inherent in any single heuristic.
- 095 • We conduct comprehensive experiments to demonstrate our method’s superiority over
 096 state-of-the-art baselines under various noise conditions, including strong baselines uti-
 097 lizing perplexity differences.

100 2 RELATED WORK

101 Our work is situated at the intersection of three research areas: robust preference alignment for
 102 LLMs, learning with noisy labels, and meta-learning for robustness.

103 **LLM Alignment with Noisy Preferences.** Aligning LLMs with human values via preference data
 104 is a cornerstone of modern AI safety (Ouyang et al., 2022; Bai et al., 2022), with methods like Rein-
 105forcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020)

108 and Direct Preference Optimization (DPO) (Rafailov et al., 2023b) being widely adopted. However,
 109 the susceptibility of these methods to noisy preferences is a well-documented challenge (Gao et al.,
 110 2024; Zheng et al., 2023). Initial efforts to address this focused on robust loss formulations. For
 111 instance, cDPO (Rafailov et al., 2023a) and rDPO (Chowdhury et al., 2024) introduce confidence
 112 scaling or label smoothing based on a global noise estimate, applying a uniform correction across
 113 all samples. More recently, methods have shifted towards instance-level heuristics. A notable ex-
 114 ample is PerpCorrect (Kong et al., 2024), which uses the perplexity difference (PPLDiff) between
 115 responses as a direct signal to detect and flip potentially mislabeled preferences. While effective,
 116 these approaches remain confined to a single diagnostic perspective. Our work departs from this
 117 single-heuristic paradigm. Instead of relying solely on PPLDiff or any other individual signal, we
 118 propose a more holistic approach that systematically fuses multiple intrinsic diagnostics to achieve
 119 a more nuanced and reliable assessment of data quality.
 120

121 **Learning with Noisy Labels (NLL).** The problem of learning from corrupted supervision is a
 122 long-standing challenge in machine learning (Frénay & Verleysen, 2013; Song et al., 2022). Sample
 123 reweighting is a prominent paradigm within NLL, where the core idea is to down-weight instances
 124 that are likely to be mislabeled (Liu & Tao, 2015; Jiang et al., 2018). Various strategies have been
 125 proposed to determine these weights, often based on heuristics like the training loss of a sample—the
 126 intuition being that noisy samples tend to have higher loss values (Han et al., 2018; Shu et al.,
 127 2019). Our work adapts this established sample reweighting principle to the unique context of LLM
 128 preference alignment. However, we extend it in a crucial way: rather than relying only on training
 129 loss, which can be ambiguous (confusing noisy samples with hard-but-clean ones), we enrich the
 130 reweighting decision with complementary diagnostics like preference consistency and generation
 131 confidence, providing a more robust foundation for weight assignment.
 132

133 **Meta-Learning for Robustness.** Meta-learning, or “learning to learn”, has proven to be a power-
 134 ful technique for designing adaptive training algorithms (Ren et al., 2018). In the context of robust
 135 learning, a particularly successful application has been to meta-learn a sample reweighting func-
 136 tion (Shu et al., 2019; Jamal et al., 2020). These methods typically train a small neural network
 137 (a “meta-net”) to map features like training loss to sample weights, with the meta-net’s parameters
 138 being optimized based on performance on a small, clean meta-dataset. Our methodology builds
 139 directly upon this meta-learning foundation. Our key novelty lies in *what* we feed into the meta-
 140 learner. To our knowledge, we are the first to propose using a *vector of rich, dynamically computed*
 141 *model diagnostics*—encompassing not just loss but also PPLDiff and uncertainty—as input to the
 142 meta-learning process for LLM alignment. This allows the meta-learner to make more sophisticated,
 143 context-aware decisions, effectively learning a data-driven fusion strategy for these diverse feedback
 144 streams, a significant step beyond prior work that used simpler, uni-dimensional inputs.
 145

3 METHODOLOGY

146 In this section, we formally introduce our paradigm for robust preference alignment. We begin
 147 by defining the problem setup and then detail the construction of our multi-perspective diagnostic
 148 vector. Finally, we present our meta-learning methodology for learning to fuse these diagnostics to
 149 achieve robust alignment. The overall architecture of our approach is illustrated in Figure 1.
 150

3.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION

152 We build upon the Direct Preference Optimization (DPO) framework (Rafailov et al., 2023b). Let
 153 $\mathcal{D} = \{(x^{(i)}, y_w^{(i)}, y_l^{(i)})\}_{i=1}^N$ be a preference dataset, where $x^{(i)}$ is a prompt, $y_w^{(i)}$ is the preferred
 154 response, and $y_l^{(i)}$ is the dispreferred response. DPO aims to train an LLM policy π_θ to satisfy these
 155 preferences, starting from a reference policy π_{ref} (typically an SFT model). The DPO loss for a
 156 single preference pair is given by:
 157

$$\mathcal{L}_{\text{DPO}}(\pi_\theta, \pi_{\text{ref}}) = -\log \sigma \left(\beta \log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)} \right) \quad (1)$$

160 where β is a hyperparameter that controls the deviation from the reference policy, and $\sigma(\cdot)$ is the lo-
 161 gistic function. When the training dataset \mathcal{D} contains noisy preferences (i.e., (y_w, y_l) are swapped),
 162 directly minimizing this loss can lead the model to learn incorrect behaviors.
 163

Figure 1: An overview of our diagnostic-driven meta-learning paradigm.

3.2 CONSTRUCTING THE INTRINSIC DIAGNOSTIC VECTOR

Our core premise is that a model’s own internal state provides rich, multi-faceted feedback about the reliability of a given preference pair. We capture this feedback in a dynamic *intrinsic diagnostic vector*, $\mathbf{z} \in \mathbb{R}^d$, computed for each sample at every training step. This vector comprises three key components, each offering a complementary perspective on data quality.

Preference Consistency (z_{ppl}). A well-aligned model should assign a higher likelihood (lower perplexity) to a genuinely preferred response. A deviation from this expectation is a strong indicator of a potential label-model conflict. We quantify this using the log-perplexity difference (PPLDiff), computed dynamically with the current policy π_{θ_t} at training step t :

$$z_{\text{ppl}}^{(i)} = \log \text{PPL}(\pi_{\theta_t}, [x^{(i)}; y_w^{(i)}]) - \log \text{PPL}(\pi_{\theta_t}, [x^{(i)}; y_l^{(i)}]), \quad (2)$$

where $\text{PPL}(\pi, s) = \exp(-\frac{1}{|s|} \sum_{k=1}^{|s|} \log \pi(s_k | s_{<k}))$. A positive $z_{\text{ppl}}^{(i)}$ suggests that the labeled winning response is less likely under the current model than the losing one, flagging it as a potential NP.

Learning Difficulty (z_{loss}). The magnitude of the training loss for a sample reflects how inconsistent it is with the model’s current parameterization. Noisy samples often present conflicting gradients, resulting in higher loss values. We use the instance-wise DPO loss itself as a signal of learning difficulty:

$$z_{\text{loss}}^{(i)} = \mathcal{L}_{\text{DPO}}(\pi_{\theta_t}, \pi_{\text{ref}}; (x^{(i)}, y_w^{(i)}, y_l^{(i)})). \quad (3)$$

This provides a direct measure of how surprising a given preference is to the model.

Generation Confidence (z_{uncert}). Beyond likelihood, the model’s confidence during the generation process offers another valuable signal. A model that is uncertain about its token predictions for a given response may be grappling with ambiguity or subjectivity in the prompt, making the corresponding preference label less reliable. We measure this confidence using the average token-level entropy of the generated responses. Specifically, for a response $y = (y_1, \dots, y_m)$, the uncertainty is:

$$H(y|x; \pi_{\theta_t}) = -\frac{1}{m} \sum_{j=1}^m \sum_{v \in \mathcal{V}} \pi_{\theta_t}(v|x, y_{<j}) \log \pi_{\theta_t}(v|x, y_{<j}), \quad (4)$$

where \mathcal{V} is the vocabulary. High entropy indicates low confidence. We use the uncertainty of the preferred response as our diagnostic signal, $z_{\text{uncert}}^{(i)} = H(y_w^{(i)}|x^{(i)}; \pi_{\theta_t})$, as noisy preferences often correspond to less coherent or confident generations for the supposed winner.

216 **Algorithm 1** Meta-Learning for Fusing Intrinsic Diagnostics

217 **Input:** Noisy data \mathcal{D} , clean meta-data $\mathcal{D}_{\text{meta}}$, initial θ_0, W_0 , rates α_θ, α_W , steps T .
 218 **Output:** Aligned model parameters θ_T .

219 1: **for** $t = 0$ to $T - 1$ **do** ▷ Sec. 3.2
 220 2: Sample mini-batches $\mathcal{B}_t \subset \mathcal{D}$ and $\mathcal{B}_{\text{meta}} \subset \mathcal{D}_{\text{meta}}$.
 221 3: Compute diagnostic vectors $\{\mathbf{z}_t^{(j)}\}_{j \in \mathcal{B}_t}$ using θ_t .
 222 4: Compute weights $\{v_t^{(j)} = V(\mathbf{z}_t^{(j)}; W_t)\}_{j \in \mathcal{B}_t}$.
 223 5: Compute virtual parameters $\theta'_t(W_t)$ via Eq. 6.
 224 6: Compute meta-loss $\mathcal{L}_{\text{meta}}(W_t)$ on $\mathcal{B}_{\text{meta}}$ using $\theta'_t(W_t)$ via Eq. 7.
 225 7: Update meta-learner: $W_{t+1} \leftarrow W_t - \alpha_W \nabla_{W_t} \mathcal{L}_{\text{meta}}(W_t)$.
 226 8: Update main model: $\theta_{t+1} \leftarrow \theta_t - \alpha_\theta \nabla_{\theta_t} \mathcal{L}_{\text{weighted}}(\theta_t, W_{t+1})$. ▷ Using new weights
 227 9: **end for**
 228 10: **return** θ_T .

231 The final diagnostic vector for sample i at step t is the concatenation of these normalized components:
 232 $\mathbf{z}_t^{(i)} = [\text{norm}(z_{\text{ppl}}^{(i)}), \text{norm}(z_{\text{loss}}^{(i)}), \text{norm}(z_{\text{uncert}}^{(i)})]$.
 233

234 3.3 A META-LEARNING FORMULATION FOR FUSING DIAGNOSTICS

236 Given the diagnostic vector \mathbf{z} , our goal is to learn a function $V(\mathbf{z}; W)$ that maps these diagnostics
 237 to a non-negative sample weight, where W are the parameters of the meta-learner. We employ a
 238 meta-learning strategy (Ren et al., 2018) where the quality of the weights produced by V is eval-
 239 uated based on the main model’s performance on a small, clean meta-dataset, $\mathcal{D}_{\text{meta}}$. This bi-level
 240 optimization can be understood as learning an implicit, adaptive weighting scheme, with theoretical
 241 guarantees that minimizing the empirical meta-loss leads to good generalization on the true clean
 242 data distribution. We provide a detailed theoretical analysis in Appendix A.

243 The training proceeds in a bi-level optimization loop. At each step t , we sample a mini-batch \mathcal{B}_t
 244 from the noisy training set \mathcal{D} and a mini-batch $\mathcal{B}_{\text{meta}}$ from the clean meta-set $\mathcal{D}_{\text{meta}}$.

246 **Inner Loop: Virtual Update.** First, we compute the diagnostic vector $\mathbf{z}_t^{(j)}$ for each sample $j \in \mathcal{B}_t$
 247 using the current policy π_{θ_t} . The meta-learner $V(\cdot; W_t)$ then produces weights $v_t^{(j)} = V(\mathbf{z}_t^{(j)}; W_t)$.
 248 These weights modulate the DPO loss on the training batch:

$$\mathcal{L}_{\text{weighted}}(\theta_t, W_t) = \frac{1}{|\mathcal{B}_t|} \sum_{j \in \mathcal{B}_t} v_t^{(j)} \mathcal{L}_{\text{DPO}}(\pi_{\theta_t}, \pi_{\text{ref}}; j). \quad (5)$$

252 We then compute a hypothetical one-step gradient update for the main model, resulting in virtual
 253 parameters $\theta'_t(W_t)$:

$$\theta'_t(W_t) = \theta_t - \alpha_\theta \nabla_{\theta_t} \mathcal{L}_{\text{weighted}}(\theta_t, W_t), \quad (6)$$

255 where α_θ is the learning rate for the main model.

257 **Outer Loop: Meta-Objective and Updates.** The quality of the weighting parameters W_t is as-
 258 sessed by evaluating the performance of the virtual model $\pi_{\theta'_t(W_t)}$ on the clean meta-batch $\mathcal{B}_{\text{meta}}$.
 259 This yields the meta-loss:

$$\mathcal{L}_{\text{meta}}(W_t) = \frac{1}{|\mathcal{B}_{\text{meta}}|} \sum_{k \in \mathcal{B}_{\text{meta}}} \mathcal{L}_{\text{DPO}}(\pi_{\theta'_t(W_t)}, \pi_{\text{ref}}; k). \quad (7)$$

263 The meta-learner’s parameters W are then updated by descending the gradient of this meta-loss:
 264 $W_{t+1} = W_t - \alpha_W \nabla_{W_t} \mathcal{L}_{\text{meta}}(W_t)$. Finally, the main model’s parameters θ_t are updated using the
 265 original training batch \mathcal{B}_t , but with weights computed from the *updated* meta-learner $V(\cdot; W_{t+1})$:

$$\theta_{t+1} = \theta_t - \alpha_\theta \nabla_{\theta_t} \mathcal{L}_{\text{weighted}}(\theta_t, W_{t+1}). \quad (8)$$

268 This process, summarized in Algorithm 1, allows the meta-learner to learn an effective, data-driven
 269 strategy for fusing the intrinsic diagnostics, guided by the objective of improving performance on
 clean, reliable data.

270 4 EXPERIMENTS
271

272 We conduct a comprehensive set of experiments to validate our proposed paradigm. Our evaluation
273 is designed to answer three key questions: (1) Does our diagnostic fusion approach outperform state-
274 of-the-art robust alignment baselines across various noise conditions? (2) What is the individual
275 contribution of each intrinsic diagnostic, and is their fusion truly necessary? (3) How do the different
276 diagnostics interact, and what is their relative importance in identifying noisy preferences?

277
278 4.1 EXPERIMENTAL SETUP
279

280 **Datasets and Noise Simulation.** Our experiments are conducted on two widely-used public pre-
281 ference datasets: Golden HH (Bai et al., 2022; Ethayarajh et al., 2024), a helpfulness-focused subset
282 of Anthropic-HH, and OASST1 (Köpf et al., 2024), a multi-turn conversational dataset. To eval-
283 uate robustness under controlled conditions, we simulate noisy preferences by randomly swapping
284 the ‘chosen’ and ‘rejected’ labels for a fraction $\epsilon \in \{0.1, 0.2, 0.3, 0.4\}$ of the training samples,
285 following standard protocols (Kong et al., 2024; Chowdhury et al., 2024). To validate scalabil-
286 ity and real-world applicability beyond synthetic noise, we additionally conduct experiments on
287 two large-scale datasets: HuggingFace H4 StackExchange Preferences (10.8M samples) containing
288 community-voted technical Q&A with inherent annotation subjectivity, and GPT4All (0.8M sam-
289 ples) representing LLM-distilled preferences with generation artifacts. These datasets exhibit natu-
290 rally occurring noise from human disagreement and distillation errors, providing a complementary
291 testbed to synthetic label-flipping. For our method, a small, clean meta-dataset is held out from the
292 original training set: $M = 100$ samples for Golden HH and OASST1, and $M = 200$ for the large-
293 scale datasets. These sizes were chosen based on sensitivity analysis (see Appendix C), which shows
294 that performance saturates in this range, making them practical and effective choices. Regarding the
295 practical acquisition of such data, we explore scalable strategies including high-agreement filtering
296 and expert curation in Appendix D.5. Further details on data splits are provided in Appendix B.1.

297 **Models and Implementation.** We evaluate on a suite of open-source LLMs to demonstrate broad
298 applicability, including Llama-2-7B (Touvron et al., 2023), Phi-2 (Javaheripi et al., 2023), and the
299 more recent Llama-3-8B. Our method and all DPO-based baselines are implemented using the TRL
300 library (von Werra et al., 2020) for consistency. The meta-learner $V(\cdot; W)$ in our approach is a two-
301 layer MLP. All hyperparameters and implementation details are detailed in Appendix B.2 to ensure
302 full reproducibility.

303 **Baselines.** We compare our approach against a strong and diverse set of baselines. These include
304 Vanilla DPO (Rafailov et al., 2023b); robust DPO variants such as cDPO (Rafailov et al., 2023a),
305 rDPO (Chowdhury et al., 2024), and the recent state-of-the-art DR-DPO (Azar et al., 2024); and
306 prominent heuristic-based methods. For the latter, we implement PerpCorrect (Kong et al., 2024)
307 in two settings: a *static* version with pre-computed PPLDiff, and a stronger *dynamic* version where
308 PPLDiff is re-computed at each step for a fairer comparison with our approach.

309 **Evaluation Metrics.** Following standard practice (Rafailov et al., 2023b; Chowdhury et al., 2024),
310 our primary automated metric is Reward Model Accuracy, where an independently trained reward
311 model assesses alignment on a clean test set. To capture nuances beyond automated scores, we com-
312 plement this with human-proxy evaluation using GPT-4 Win Rate. For this, we compare genera-
313 tions from our final model against the strongest baselines in a pairwise fashion, with GPT-4 acting as an
314 impartial judge.

315
316 4.2 MAIN RESULTS: STATE-OF-THE-ART ROBUSTNESS
317

318 Figure 2 presents our primary results, plotting Reward Model Accuracy against the injected noise
319 rate (ϵ) on the Golden HH and OASST1 test sets. Across all datasets, model architectures, and
320 non-zero noise conditions, our full diagnostic fusion method, denoted as Ours (Fusion), consistently
321 establishes a new state-of-the-art in robust preference alignment.

322 As expected, the performance of Vanilla DPO degrades sharply as the noise level increases, demon-
323 strating its sensitivity to label corruption. While existing robust methods, including cDPO, rDPO,
324 and DR-DPO, offer substantial improvements, our approach consistently maintains a significant

Figure 2: Reward Accuracy (%) versus Training Noise Ratio (ϵ) on Golden HH (top row) and OASST1 (bottom row) datasets. Our full fusion method, Ours (Fusion), consistently achieves the highest accuracy across all models and noise levels, demonstrating superior robustness.

performance margin over them. Notably, our method also outperforms the strong heuristic-based baselines. Even when compared against PerpCorrect (Dynamic)—which also leverages a dynamic, instance-level signal—our method’s ability to fuse multiple complementary diagnostics provides a clear and decisive advantage. This performance gap widens in high-noise regimes ($\epsilon \geq 0.3$), where relying on a single heuristic becomes increasingly insufficient.

To assess the practical impact on generation quality, Figure 3 presents the results of our pairwise comparison judged by GPT-4. When pitted against the strongest baselines on the Golden HH dataset with 30% noise, our method achieves a decisive win rate. For instance, against DR-DPO, Ours (Fusion) is preferred in 62.5% of cases, underscoring that the improvements measured by reward model accuracy translate into tangible gains in conversational quality and helpfulness. This suggests that our method does not merely overfit to the reward model but learns a more genuinely robust and helpful policy.

4.3 ABLATION STUDY: THE NECESSITY OF FUSING MULTIPLE DIAGNOSTICS

Having established the overall superiority of our fusion-based approach, we now conduct a targeted ablation study to disentangle the contributions of its core components. The central question we address is: is the fusion of multiple diagnostics truly necessary, or is the performance gain primarily driven by a single, dominant diagnostic like PPLDiff? To investigate this, we evaluate several variants of our method on the Golden HH dataset under a challenging 30% noise condition ($\epsilon = 0.3$). These variants use our meta-learning framework but are restricted to only a single diagnostic input:

Figure 3: Win rates of Ours (Fusion) vs. baselines on Golden HH ($\epsilon = 0.3$).

378 Ours (PPLDiff only), which uses preference consistency; Ours (Loss only), which uses learning
 379 difficulty; and Ours (Uncertainty only), which uses generation confidence.
 380

381 The results, presented in Figure 4, unequivocally demonstrate the necessity of diagnostic
 382 fusion. While the Ours (PPLDiff only) variant
 383 emerges as the strongest single-diagnostic
 384 model—confirming PPLDiff’s crucial role as
 385 a primary noise indicator—our full Ours (Fu-
 386 sion) model surpasses it by a significant mar-
 387 gin. This performance gap highlights a key
 388 finding: although less powerful in isolation, the
 389 learning difficulty (loss) and generation con-
 390 fidence (uncertainty) diagnostics provide es-
 391 sential, complementary information. They act
 392 as crucial correctives, addressing the inherent
 393 blind spots of a PPLDiff-only approach. Fur-
 394 thermore, the relatively modest performance of
 395 the Ours (Loss only) and Ours (Uncertainty
 396 only) variants reveals the potential pitfalls of relying on these more ambiguous signals alone.
 397 For instance, training loss can be high for both noisy samples and genuinely difficult (but clean) ones.
 398 Without the anchoring context provided by a strong signal like PPLDiff, a model relying solely
 399 on loss may incorrectly down-weight valuable, hard examples. Our fusion mechanism, guided by
 400 the meta-learning objective, learns to navigate these ambiguities, leveraging the strengths of each
 401 diagnostic while mitigating their individual weaknesses. This synergy is the primary driver of our
 402 method’s state-of-the-art robustness.

403 **We also verified that our method is robust to meta-learner architectural choices; comprehensive ab-**
 404 **lations in Appendix D.2 show that performance remains stable across variations in depth, width, and**
 405 **design paradigm. Additionally, we explored augmenting the diagnostic vector with other candidates**
 406 **(e.g., gradient norms, response length), but found them to be largely redundant or uninformative**
 407 **compared to our core trio; a detailed analysis of alternative diagnostics is presented in Appendix D.3.**

408 4.4 ANALYSIS OF INTRINSIC DIAGNOSTICS

409 To gain deeper insight into *how* our model learns to fuse the different intrinsic diagnostics, we
 410 conduct a final set of analyses on the learned meta-weighting function. Our goal is to understand the
 411 relative importance of each diagnostic, their interplay, and how their roles may adapt under different
 412 noise conditions.

413 **Quantifying Diagnostic Importance with SHAP.** We first seek to understand the overall influ-
 414 ence of each diagnostic. We employ SHAP (SHapley Additive exPlanations) (Lundberg & Lee,
 415 2017), a game-theoretic approach to explain the output of the trained meta-learner $V(\cdot; W)$. Fig-
 416 ure 5(a) plots the mean absolute SHAP value for each diagnostic, representing its average impact
 417 on the weight assignment across the test set under 30% noise. The analysis reveals a clear hier-
 418 archy: Preference Consistency (PPLDiff) is the most influential diagnostic, confirming its role as
 419 the primary signal for label-model conflict. Crucially, Learning Difficulty (Loss) and Generation
 420 Confidence (Uncertainty) also exert substantial influence, validating our hypothesis that a multi-
 421 perspective assessment is essential. This quantitative ranking is consistent with our ablation study,
 422 where the PPLDiff-only model performed best among single-diagnostic variants but was signifi-
 423 cantly surpassed by their fusion.

424 **Uncovering Interplay and Non-linear Relationships.** Beyond average importance, we investi-
 425 giate *how* these diagnostics interact. The SHAP summary plot in Figure 5(b) provides a more granu-
 426 lar view, showing not just the magnitude but also the direction of each diagnostic’s impact. Several
 427 key patterns emerge:

- 428 • **Dominant Role of PPLDiff:** As expected, high (positive) PPLDiff values (red dots on
 429 the right) consistently push the assigned weight lower (negative SHAP values), acting as

Figure 4: Ablation study on the Golden HH test set with 30% training noise.

set. For instance, training loss can be high for both noisy samples and genuinely difficult (but clean) ones. Without the anchoring context provided by a strong signal like PPLDiff, a model relying solely on loss may incorrectly down-weight valuable, hard examples. Our fusion mechanism, guided by the meta-learning objective, learns to navigate these ambiguities, leveraging the strengths of each diagnostic while mitigating their individual weaknesses. This synergy is the primary driver of our method’s state-of-the-art robustness.

We also verified that our method is robust to meta-learner architectural choices; comprehensive ablations in Appendix D.2 show that performance remains stable across variations in depth, width, and design paradigm. Additionally, we explored augmenting the diagnostic vector with other candidates (e.g., gradient norms, response length), but found them to be largely redundant or uninformative compared to our core trio; a detailed analysis of alternative diagnostics is presented in Appendix D.3.

4.4 ANALYSIS OF INTRINSIC DIAGNOSTICS

To gain deeper insight into *how* our model learns to fuse the different intrinsic diagnostics, we conduct a final set of analyses on the learned meta-weighting function. Our goal is to understand the relative importance of each diagnostic, their interplay, and how their roles may adapt under different noise conditions.

Quantifying Diagnostic Importance with SHAP. We first seek to understand the overall influence of each diagnostic. We employ SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017), a game-theoretic approach to explain the output of the trained meta-learner $V(\cdot; W)$. Figure 5(a) plots the mean absolute SHAP value for each diagnostic, representing its average impact on the weight assignment across the test set under 30% noise. The analysis reveals a clear hierarchy: Preference Consistency (PPLDiff) is the most influential diagnostic, confirming its role as the primary signal for label-model conflict. Crucially, Learning Difficulty (Loss) and Generation Confidence (Uncertainty) also exert substantial influence, validating our hypothesis that a multi-perspective assessment is essential. This quantitative ranking is consistent with our ablation study, where the PPLDiff-only model performed best among single-diagnostic variants but was significantly surpassed by their fusion.

Uncovering Interplay and Non-linear Relationships. Beyond average importance, we investigate *how* these diagnostics interact. The SHAP summary plot in Figure 5(b) provides a more granular view, showing not just the magnitude but also the direction of each diagnostic’s impact. Several key patterns emerge:

- **Dominant Role of PPLDiff:** As expected, high (positive) PPLDiff values (red dots on the right) consistently push the assigned weight lower (negative SHAP values), acting as

Figure 5: In-depth analysis of the learned meta-weighting function on Golden HH. **(a)** PPLDiff emerges as the most influential diagnostic overall. **(b)** The beeswarm plot reveals the distinct roles and non-linear interactions of the diagnostics.

a strong penalty for inconsistency. Conversely, low (negative) PPLDiff values robustly support a higher weight.

- **Loss as a High-Impact Flag:** The training loss exhibits a clear one-sided effect. Low loss values have minimal impact on the weight, but *high* loss values strongly correlate with a significant reduction in weight. This suggests the meta-learner has learned to use high loss as a powerful flag for problematic samples, be they noisy or hard examples.
- **Uncertainty as a Nuanced Modulator:** The effect of uncertainty is more nuanced. High uncertainty generally corresponds to lower weights, but its impact is most pronounced when interacting with other diagnostics. For instance, a sample with a moderately negative PPLDiff (suggesting it is clean) might still be down-weighted if its generation uncertainty is very high. This indicates the meta-learner uses uncertainty to temper confidence in samples that, while superficially plausible, are generated with low conviction by the model.

This analysis reveals that the meta-learner does not simply learn a linear combination of signals. Instead, it discovers complex, non-linear relationships, using each diagnostic to cover the blind spots of the others. A detailed qualitative example illustrating this synergy is provided in Appendix D.1.

Adaptive Roles under Varying Noise Levels.

Finally, we examine whether the meta-learner’s strategy adapts as the training environment changes. We analyze the SHAP values of meta-learners trained under different noise ratios ($\epsilon \in \{0.1, 0.4\}$). As shown in Figure 6, the relative importance of the diagnostics shifts. In low-noise regimes ($\epsilon = 0.1$), the meta-learner relies heavily on PPLDiff, as it is a highly reliable signal when the data is mostly clean. However, in high-noise regimes ($\epsilon = 0.4$), the relative importance of Training Loss and Uncertainty increases. This is an important finding: as the primary signal (PPLDiff) itself becomes less reliable due to the model being trained on increasingly corrupted data, the meta-learner adaptively increases its reliance on secondary, corroborating signals. This demonstrates that our paradigm does not learn a static fusion rule, but rather a dynamic, adaptive policy that intelligently adjusts its diagnostic strategy based on the perceived difficulty of the learning environment.

Figure 6: Relative importance of diagnostics (normalized mean SHAP values) learned under low ($\epsilon = 0.1$) and high ($\epsilon = 0.4$) noise.

486 4.5 SCALABILITY AND REAL-WORLD NOISE VALIDATION
487488 While the controlled experiments in Sections 4.2–4.4 demonstrate the effectiveness of our diagnostic
489 fusion paradigm under synthetic noise, real-world preference datasets often exhibit substantially
490 larger scales and more diverse noise characteristics. To validate that our approach maintains its
491 advantages in practical settings, we conducted additional experiments on two large-scale datasets
492 with naturally occurring noise.493 **Large-Scale Datasets.** We evaluated on HuggingFace H4 StackExchange Preferences (Lambert
494 et al., 2023), a dataset of 10.8M community-voted technical Q&A pairs, and GPT4All (Anand et al.,
495 2023), comprising 0.8M LLM-distilled preference pairs. StackExchange contains inherent subjec-
496 tivity from community voting, while GPT4All exhibits generation artifacts such as truncation and
497 repetition. For StackExchange, we conducted progressive scaling at 100K, 1M, and 10.8M samples
498 to assess computational scalability. Meta-dataset sizes were set to $M = 200$ for both datasets.
499500 **Performance and Scalability.** Table 1 shows
501 that our method consistently outperforms base-
502 lines, with advantages ranging from 0.8%
503 (GPT4All) to 1.9% (StackExchange). The per-
504 formance gap widens as dataset size increases
505 (+0.6% at 100K \rightarrow +1.9% at 10.8M), suggest-
506 ing that diagnostic fusion becomes increasingly
507 valuable with more diverse training data. Train-
508 ing on 10.8M samples required 240 GPU-hours
509 on 8xA40 with 48 GB peak memory, represent-
510 ing 41% time and 19% memory overhead versus vanilla DPO—both metrics scale linearly with
511 dataset size. Detailed analysis of noise patterns and representative case studies are provided in Ap-
512 pendix E.
513514 **Real-World Noise Evaluation.** Beyond
515 large-scale validation, we evaluated on datasets
516 with organic human annotation noise: WebGPT
517 Comparisons contains real human preference
518 annotations with documented inter-annotator
519 disagreement (Cohen’s $k = 0.56$), and Chatbot
520 Arena represents completely organic user
521 preferences from real interactions. As shown
522 in Table 2, our method demonstrates consistent
523 improvements on both naturally noisy datasets, validating its effectiveness beyond synthetic noise
524 simulation.525 These experiments demonstrate that our method scales to 10M+ samples with linear overhead while
526 maintaining robust performance across diverse real-world noise patterns. The consistent improve-
527 ments validate that diagnostic fusion is essential for handling dataset-specific failure modes, with
528 naturally occurring noise exhibiting fundamentally different signatures than synthetic label-flipping.
529 Beyond natural noise, our fusion paradigm also maintains robustness against sophisticated adversar-
530 ial attacks; detailed evaluations are provided in Appendix D.4.

531 4.6 CONCLUSION

532 We have presented a new paradigm for robust LLM preference alignment that empowers models to
533 perform self-diagnosis by fusing multiple intrinsic feedback streams. Our meta-learning implemen-
534 tation of this paradigm sets a new state-of-the-art in handling noisy preference data. By providing
535 the first systematic analysis of how different internal signals can be synergistically combined, this
536 work lays a foundation for a new class of diagnostic-driven, adaptive alignment algorithms. We
537 believe that building models capable of such sophisticated self-assessment is a fundamental step
538 towards creating more reliable, robust, and trustworthy AI systems.
539

Table 1: Performance on large-scale datasets.

Method	StackEx.			GPT4All	
	100K	1M	All	100K	All
Vanilla DPO	71.2	73.2	74.5	68.5	69.3
DR-DPO	74.8	76.4	78.2	72.6	73.5
Perp. (Dyn.)	75.3	77.0	78.7	73.1	74.0
Ours	75.9	77.9	80.6	73.8	74.8

Table 2: Performance on naturally noisy datasets.

Method	WebGPT	Chatbot Arena
Vanilla DPO	68.3	84.2
DR-DPO	71.5	86.5
Perp. (Dyn.)	73.2	87.8
Ours	76.9	89.6

540
541
ETHICS STATEMENT

542 In accordance with ICLR policy, we disclose that large language models (LLMs) were employed
 543 as writing assistants during the preparation of this paper. Their primary function was to support
 544 grammar correction and language refinement, with the goal of improving the overall readability of
 545 the manuscript. All core ideas and analyses were conceived and developed solely by the human
 546 authors, who assume full responsibility for the final content of the paper.

547
548 REFERENCES
549

550 Yuvanesh Anand, Zach Nussbaum, Adam Treat, Aaron Miller, Richard Guo, Benjamin Schmidt,
 551 Brandon Duderstadt, and Andriy Mulyar. Gpt4all: An ecosystem of open source compressed
 552 language models. In *Proceedings of the 3rd Workshop for Natural Language Processing Open*
 553 *Source Software (NLP-OSS 2023)*, pp. 59–64, 2023.

554 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
 555 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
 556 from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
 557 pp. 4447–4455. PMLR, 2024.

558 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 559 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 560 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 561 2022.

562 Tim Baumgärtner, Yang Gao, Dana Alon, and Donald Metzler. Best-of-venom: Attacking rlhf by
 563 injecting poisoned preference data. In *CoLM*, pp. 1–10, 2024.

564 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 565 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 566 few-shot learners. In *NeurIPS*, volume 33, pp. 1877–1901, 2020.

567 Zehong Cao, KaiChiu Wong, and Chin-Teng Lin. Weak human preference supervision for deep
 568 reinforcement learning. *IEEE Transactions on Neural Networks and Learning Systems*, 32(12):
 569 5369–5378, 2021.

570 Sayak Ray Chowdhury, Anush Kini, and Nagarajan Natarajan. Provably robust DPO: Aligning
 571 language models with noisy feedback. In *ICML*, pp. 1–10, 2024.

572 Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 573 reinforcement learning from human preferences. In *NeurIPS*, volume 30, pp. 1–10, 2017.

574 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
 575 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

576 Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. *IEEE*
 577 *transactions on neural networks and learning systems*, 25(5):845–869, 2013.

578 Yang Gao, Dana Alon, and Donald Metzler. Impact of preference noise on the alignment perfor-
 579 mance of generative language models. In *CoLM*, pp. 1–10, 2024.

580 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
 581 Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
 582 *NeurIPS*, volume 31, pp. 1–10, 2018.

583 Muhammad Abdullah Jamal, Matthew Brown, Ming-Hsuan Yang, Liqiang Wang, and Boqing Gong.
 584 Rethinking class-balanced methods for long-tailed visual recognition from a domain adaptation
 585 perspective. In *CVPR*, pp. 7610–7619, 2020.

586 Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sébastien Bubeck, Caio
 587 César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
 588 Phi-2: The surprising power of small language models. *Microsoft Research Blog*, 1(3):3, 2023.

594 Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
 595 driven curriculum for very deep neural networks on corrupted labels. In *ICML*, pp. 2304–2313,
 596 2018.

597 Keyi Kong, Xilie Xu, Di Wang, Jingfeng Zhang, and Mohan S Kankanhalli. Perplexity-aware
 598 correction for robust alignment with noisy preferences. In *NeurIPS*, volume 37, pp. 28296–28321,
 599 2024.

600 Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
 601 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
 602 conversations-democratizing large language model alignment. In *NeurIPS*, volume 36, pp.
 603 1–10, 2024.

604 Nathan Lambert, Nazneen Rajani Lewis Tunstall, and Tristan Thrush. Huggingface h4 stack ex-
 605 change preference dataset, 2023. URL <https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences>, 2023.

606 Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. *IEEE*
 607 *Transactions on pattern analysis and machine intelligence*, 38(3):447–461, 2015.

608 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In *NeurIPS*,
 609 volume 30, 2017.

610 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin,
 611 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
 612 to follow instructions with human feedback. In *NeurIPS*, volume 35, pp. 27730–27744, 2022.

613 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
 614 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 615 *NeurIPS*, pp. 1–10, 2023a.

616 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 617 Finn. Direct preference optimization: Your language model is secretly a reward model. In
 618 *NeurIPS*, volume 36, pp. 53728–53741, 2023b.

619 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 620 robust deep learning. In *ICML*, pp. 4334–4343, 2018.

621 Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-
 622 net: Learning an explicit mapping for sample weighting. In *NeurIPS*, volume 32, pp. 1–10, 2019.

623 Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy
 624 labels with deep neural networks: A survey. *IEEE transactions on neural networks and learning*
 625 *systems*, 34(11):8135–8153, 2022.

626 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 627 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. In *NeurIPS*,
 628 volume 33, pp. 3008–3021, 2020.

629 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 630 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 631 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 632 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 633 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 634 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 635 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 636 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 637 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 638 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 639 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 640 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 641 2023. URL <https://arxiv.org/abs/2307.09288>.

648 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 649 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 650 learning. <https://github.com/huggingface/trl>, 2020.

651 Jingwei Yi, Rui Ye, Qisi Chen, Bin Benjamin Zhu, Siheng Chen, Defu Lian, Guangzhong Sun, Xing
 652 Xie, and Fangzhao Wu. Open-source can be dangerous: On the vulnerability of value alignment
 653 in open-source llms, 2024. URL <https://openreview.net/forum?id=N1ou00COex>.

654 Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, and Maya Gupta. Metric-optimized exam-
 655 ple weights. In *International Conference on Machine Learning*, pp. 7533–7542. PMLR, 2019.

656 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 657 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 658 chatbot arena. *NeurIPS*, 36:46595–46623, 2023.

661 A THEORETICAL ANALYSIS

662 This section provides a theoretical lens through which to understand our paradigm’s mechanism. We
 663 first interpret the bi-level optimization as learning an implicit weighting scheme and then present a
 664 high-level generalization bound for the learned weighting policy.

665 A.1 IMPLICIT WEIGHTING SCHEME

666 The meta-learning process can be viewed as learning an implicit, adaptive scheme for re-weighting
 667 noisy training preferences. The update to the meta-learner’s parameters, W , is driven by its ability
 668 to produce weights that guide the main LLM towards better performance on a clean meta-dataset.

669 The update rule for W at step t is given by gradient descent on the meta-loss:

$$670 W_{t+1} = W_t - \alpha_W \nabla_W \mathcal{L}_{\text{meta}}(W_t). \quad (9)$$

671 Using the chain rule, the meta-gradient $\nabla_W \mathcal{L}_{\text{meta}}(W_t)$ can be expanded as:

$$672 \nabla_W \mathcal{L}_{\text{meta}} = \mathbb{E}_{\mathcal{B}_{\text{meta}}} \left[\nabla_{\theta'_t} \mathcal{L}_{\text{DPO}}(\pi_{\theta'_t(W_t)}) \cdot \frac{d\theta'_t(W_t)}{dW_t} \right]. \quad (10)$$

673 The term $\frac{d\theta'_t(W_t)}{dW_t}$ represents how the virtual parameters change with respect to the meta-parameters.
 674 Substituting the definition of θ'_t from Eq. 6, we get:

$$675 \frac{d\theta'_t(W_t)}{dW_t} = -\alpha_\theta \nabla_W \nabla_\theta \mathcal{L}_{\text{weighted}}(\theta; W_t)|_{\theta=\theta_t}. \quad (11)$$

676 The Hessian-vector product in this term connects the meta-learner’s parameters W to the main
 677 model’s update. Specifically, the gradient ∇_W operates on $\mathcal{L}_{\text{weighted}}$ through the generated weights
 678 $v_t = V(\mathbf{z}_t; W_t)$.

679 This structure implies that the meta-learner parameters W are updated in a direction that rewards
 680 the generation of weights v which, when used to train the virtual LLM on the noisy batch \mathcal{B}_t , lead
 681 to improved performance (lower \mathcal{L}_{DPO}) on the clean meta-batch $\mathcal{B}_{\text{meta}}$. In essence, training instances
 682 (via their diagnostic vectors \mathbf{z}) that are assigned beneficial weights by $V(\cdot; W)$ —as judged by their
 683 downstream utility for clean alignment—will exert a stronger and more favorable influence on the
 684 meta-learner’s update.

685 A.2 GENERALIZATION BOUND

686 We provide a high-level generalization bound for our method, drawing inspiration from standard
 687 analyses in meta-learning and learning with noisy labels Zhao et al. (2019). Let $R_{\text{clean}}(W)$ be
 688 the true expected risk (e.g., expected \mathcal{L}_{DPO} on the true clean preference distribution P_{clean}) of the
 689 main LLM policy that is trained using the weights generated by the meta-learner $V(\cdot; W)$. Let
 690 $\hat{R}_{\text{meta}}(W) = \mathcal{L}_{\text{meta}}(W)$ be the empirical risk on the clean meta-dataset $\mathcal{D}_{\text{meta}}$ of size M . We aim to
 691 bound the generalization gap $|R_{\text{clean}}(W^*) - \hat{R}_{\text{meta}}(W^*)|$, where W^* is the set of parameters learned
 692 by our method.

Assumptions. We make the following standard assumptions: 1) The meta-learner’s parameter space \mathcal{W} is bounded. 2) The DPO loss is bounded, $\mathcal{L}_{\text{DPO}} \in [0, B_{\text{loss}}]$. 3) The meta-dataset $\mathcal{D}_{\text{meta}}$ consists of M i.i.d. samples from P_{clean} .

Theorem (Generalization Bound - Informal). Let $W^* = \arg \min_{W \in \mathcal{W}} \hat{R}_{\text{meta}}(W)$ be the parameters learned by minimizing the meta-loss. Then, for any $\delta > 0$, with probability at least $1 - \delta$ over the random draw of $\mathcal{D}_{\text{meta}}$:

$$R_{\text{clean}}(W^*) \leq \hat{R}_{\text{meta}}(W^*) + \mathcal{O}\left(\sqrt{\frac{\text{Comp}(\mathcal{F}_{\mathcal{W}}) + \log(1/\delta)}{M}}\right), \quad (12)$$

where $\text{Comp}(\mathcal{F}_{\mathcal{W}})$ is a measure of the complexity of the function class induced by the meta-learner, for instance, its Rademacher complexity. For a parametric model like a neural network for $V(\cdot; W)$, this complexity term is related to its size and depth.

Implication. This bound indicates that the performance of the trained meta-learner on unseen clean data is controlled by its empirical performance on the meta-dataset and the complexity of the meta-learner itself. As the size of the clean meta-dataset M increases, the generalization gap shrinks, ensuring that minimizing the meta-loss on $\mathcal{D}_{\text{meta}}$ leads to a meta-learner that is effective on the true clean data distribution. This provides theoretical justification for our data-driven approach to learning a robust diagnostic fusion policy.

B IMPLEMENTATION DETAILS

B.1 DATASET DETAILS AND PREPROCESSING

Golden HH and OASST1. The public preference datasets, Golden HH (Bai et al., 2022; Ethayarajh et al., 2024) and OASST1 (Köpf et al., 2024), underwent minimal preprocessing beyond standard tokenization provided by the TRL library. We used the versions and splits as processed by Rafailov et al. (2023b). For each dataset, we constructed the data splits as follows:

- **Test Set ($\mathcal{D}_{\text{test}}$):** We used the original, official test split, which was assumed to be clean and was used exclusively for final evaluation.
- **Meta-Dataset ($\mathcal{D}_{\text{meta}}$):** We randomly sampled $M = 100$ preference pairs from the original training split to serve as the clean meta-dataset.
- **Validation Set (\mathcal{D}_{val}):** We randomly sampled 300 preference pairs from the remaining training split for hyperparameter tuning.
- **Noisy Training Set (\mathcal{D}):** The rest of the original training split was used as the main training set. Noise was injected into this set by randomly swapping ‘chosen’ and ‘rejected’ labels at rates $\epsilon \in \{0.1, 0.2, 0.3, 0.4\}$.

There was no overlap between these four data splits.

B.2 HYPERPARAMETERS AND TRAINING CONFIGURATION

All experiments were conducted on NVIDIA A40 GPUs. The main LLM parameters were fine-tuned using the AdamW optimizer with a weight decay of 0.01. The meta-learner was also optimized with AdamW. Key hyperparameters are listed in Table 3.

Baseline Configurations. All baselines were trained with the same main model learning rate, batch size, and training duration as our method for a fair comparison. For PerpCorrect, the PPLDiff threshold was tuned on \mathcal{D}_{val} . For DR-DPO, we used the hyperparameters recommended in the original paper.

Computational Cost. Training our full fusion method for one epoch on the Golden HH dataset with Llama-3-8B required approximately 8 hours on a single A40 GPU. In comparison, standard DPO took approximately 6 hours. The overhead is primarily due to the dynamic computation of diagnostics and the bi-level optimization loop.

756
757
758 Table 3: Key hyperparameters for our method and DPO-based baselines.
759
760
761
762
763
764
765
766
767
768
769

Parameter	Llama-2/3	Phi-2
Main Model Learning Rate (α_θ)	5×10^{-6}	1×10^{-5}
Meta-Learner Learning Rate (α_W)	1×10^{-4}	1×10^{-4}
Batch Size (\mathcal{B}_t)	8	16
Meta-Batch Size ($\mathcal{B}_{\text{meta}}$)	16	16
DPO β	0.1	0.1
Training Epochs	1	1
Meta-Learner Architecture	MLP with 2 layers (hidden dim = 100)	

770
771
772
773
774
775 B.3 REWARD MODEL FOR EVALUATION
776
777

The independent reward model (RM), used for calculating Reward Accuracy, was trained on the entirety of the clean original training split for each dataset. The RM architecture was initialized from the same base SFT checkpoint as the policy models (e.g., Llama-3-8B-Instruct) and included a final linear layer to output a scalar reward. It was trained for one epoch using a standard pairwise preference ranking loss, a learning rate of 1×10^{-5} , and a batch size of 4. This RM remained fixed during the evaluation of all aligned policy models.

778
779 C SENSITIVITY TO META-DATASET CHARACTERISTICS
780
781

To assess the robustness and practicality of our method, we investigated its sensitivity to the two primary characteristics of the meta-dataset $\mathcal{D}_{\text{meta}}$: its size (M) and its purity (i.e., potential contamination with noise). These analyses were conducted on the Golden HH dataset with a main training noise of $\epsilon = 0.3$ (for the noise sensitivity test) or $\epsilon = 0.4$ (for the size sensitivity test), using the Llama-2-7B model.

Impact of Meta-Dataset Size. Figure 7 illustrates the performance of our method as the size of the clean meta-dataset, M , is varied from 10 to 300 samples. A clear trend of improved performance is observed with increasing M , though with diminishing returns. The results show that strong performance is achievable even with a modest meta-dataset size of $M = 100$, where our method already significantly outperforms baselines that lack such meta-guidance. Performance begins to saturate around $M \approx 100 - 200$, suggesting that a relatively small amount of clean data is sufficient for the meta-learner to deduce an effective diagnostic fusion strategy. This finding underscores the practical applicability of our paradigm, as the effort required to curate a small, high-quality dataset is substantially lower than cleaning the entire training set.

Impact of Meta-Dataset Noise. A crucial question is how our method performs if the meta-dataset itself is not perfectly clean. To simulate this, we intentionally introduced label-flipping noise into $\mathcal{D}_{\text{meta}}$ (with a base size of $M = 100$) and evaluated the final model’s performance. The results are presented in Table 4. As expected, performance gracefully degrades as the noise level in the meta-set increases. However, the method exhibits remarkable tolerance to low levels of contamination. Even when $\mathcal{D}_{\text{meta}}$ contains 5% noise, our method achieves a Reward Accuracy of $92.5\% \pm 0.8\%$. This is still substantially higher than

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809 Figure 7: Impact of meta-dataset size (M) on the final Reward Accuracy. Performance on Golden HH ($\epsilon = 0.4$) improves with M and saturates around 100-200 samples.

Vanilla DPO trained on the main set with 30% noise (which scored approximately 68.5% in our main experiments). This suggests that while a clean meta-dataset is ideal, our paradigm is not overly brittle to minor imperfections, further enhancing its practical utility in real-world scenarios where perfectly curated data is rare.

Table 4: Impact of noise rate in $\mathcal{D}_{\text{meta}}$ on final Reward Accuracy (%). The main training data has $\epsilon = 30\%$ noise (Golden HH, Llama-2-7B, $M = 100$).

Meta-Noise Rate	0%	1%	3%	5%
Reward Accuracy (%)	96.0 ± 0.4	95.5 ± 0.5	94.2 ± 0.6	92.5 ± 0.8

Table 5: A qualitative case study from the Golden HH dataset ($\epsilon = 0.3$) illustrating diagnostic synergy. Despite a misleading PPLDiff signal, the high Training Loss and Uncertainty correctly flag the sample as a noisy preference containing a factual error, leading to a low learned weight.

Component	Content / Value
Prompt	‘What year did the Eiffel Tower open to the public?’
Chosen Response	‘The Eiffel Tower, an iconic symbol of Paris, officially opened its doors to the public in 1892 . It was a marvel of engineering for its time.’
Rejected Response	‘It opened in 1889.’
Ground Truth	The preference label is noisy . The rejected response is factually correct (the tower opened in 1889 for the Exposition Universelle).
Diagnostics	<i>Analysis of the model’s intrinsic feedback on the noisy preference pair:</i>
Preference Consistency (PPLDiff)	-0.85 — Misleading Signal. The higher fluency and length of the incorrect response cause the model to assign it a lower perplexity, suggesting the sample is clean.
Learning Difficulty (Training Loss)	1.23 — Informative Signal. The high loss value indicates a strong conflict between the instruction to prefer the incorrect response and the model’s internal knowledge about the correct date.
Generation Confidence (Uncertainty)	0.95 — Informative Signal. The model exhibits high token-level entropy (low confidence) when generating the factually incorrect year “1892,” indicating a lack of conviction.
Final Outcome	
Learned Weight	0.15 — Correct Outcome. The meta-learner correctly interprets the combination of conflicting diagnostics and assigns a very low weight, effectively mitigating the harm from the noisy label.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 QUALITATIVE ANALYSIS: SYNERGY IN ACTION

As discussed in Section 4.4, the quantitative results and ablation studies strongly indicate that the fusion of multiple diagnostics is the primary driver of our method’s robustness. To provide a more concrete illustration of this mechanism, we present a detailed case study in Table 5.

This example, drawn from the Golden HH dataset after injecting 30% noise, showcases a challenging scenario where a single-heuristic approach relying solely on PPLDiff would fail. The ‘chosen’ response, while fluent and well-structured, contains a critical factual error. The ‘rejected’ response

864 is terse but factually correct. An ideal robust alignment method should identify this noisy preference
 865 and reduce its influence during training.
 866

867 As shown in the “Diagnostics” section of the table, the PPLDiff is negative (-0.85), a highly mis-
 868 leading signal that suggests the model finds the factually incorrect response more plausible than the
 869 correct one, likely due to its greater length and more confident-sounding tone. An approach like
 870 PerpCorrect, which relies on a positive PPLDiff threshold, would incorrectly treat this sample as
 871 clean.

872 However, our multi-perspective diagnostic system correctly identifies the anomaly. The Training
 873 Loss is high (1.23), indicating that forcing the model to prefer the incorrect response creates a
 874 significant conflict with its existing internal knowledge representation. Furthermore, the Generation
 875 Confidence is low, reflected by a high Uncertainty score (0.95). A closer look reveals this uncertainty
 876 is concentrated around the generation of the incorrect date, suggesting the model is hesitant or lacks
 877 a strong factual basis for this claim.
 878

879 The meta-learner, having been trained on the clean meta-dataset, learns to recognize this specific
 880 pattern: a plausible-looking PPLDiff coupled with high loss and high uncertainty is a strong sig-
 881 nature of fluent misinformation. Consequently, it assigns a very low weight (0.15) to the sample,
 882 effectively nullifying its harmful impact on the alignment process. This case study vividly demon-
 883 strates that by fusing complementary feedback streams, our paradigm can overcome the limitations
 884 of any single diagnostic, leading to a more truly robust and discerning alignment.
 885

886 D.2 ABLATION STUDY ON META-LEARNER ARCHITECTURE

887 To assess the stability and generality of our method, we conducted comprehensive ablation studies
 888 on the meta-learner $V(\cdot; W)$. While our main experiments utilize a 2-layer MLP with a hidden
 889 dimension of 100, we investigate the sensitivity of the performance to the network’s depth, width,
 890 and overall architectural design. All ablations below are performed on the Golden HH dataset with
 891 $\epsilon = 0.3$ noise.
 892

893 **Impact of Network Depth.** We evaluated meta-learner architectures ranging from 1 to 4 layers
 894 while keeping the hidden dimension fixed at 100. As shown in Table 6, performance saturates at 2
 895 layers. The 1-layer architecture exhibits a substantial performance drop of 1.8%, indicating that the
 896 linear mapping is insufficient and the non-linear feature interactions captured by the 2-layer network
 897 are essential for effective diagnostic fusion. However, increasing the depth to 3 or 4 layers offers no
 898 meaningful performance difference, suggesting that the complexity of the diagnostic fusion task is
 899 well-bounded.
 900

Table 6: Ablation on meta-learner depth (Golden HH, $\epsilon = 0.3$).

901 Depth	902 Reward Accuracy
903 1-layer	94.2% \pm 0.6%
904 2-layer	96.0% \pm 0.4%
905 3-layer	96.2% \pm 0.5%
906 4-layer	96.1% \pm 0.6%

907 **Impact of Network Width.** We varied the hidden dimension from 50 to 200 while maintaining the
 908 2-layer architecture to test the method’s sensitivity to capacity. The results in Table 7 demonstrate
 909 high stability. The performance fluctuates by less than 1% across the 50-200 range. We selected a
 910 hidden dimension of 100 for our main experiments as it offers a robust trade-off between capacity
 911 and computational efficiency.
 912

913 **Alternative Fusion Architectures.** Finally, we compared our 2-layer MLP against other distinct
 914 meta-learner designs to verify if more sophisticated mechanisms could yield better fusion. We
 915 tested:
 916

- 917 • **Linear Mapping:** A simple linear layer without activation functions.

918 Table 7: Ablation on meta-learner width (Golden HH, $\epsilon = 0.3$).
919

920 Hidden Dimension	921 Reward Accuracy
922 50	95.5% \pm 0.5%
923 100	96.0% \pm 0.4%
924 150	96.1% \pm 0.5%
925 200	96.1% \pm 0.6%

926

- 927 • **Attention-based Fusion:** A mechanism where diagnostics attend to each other via self-
928 attention.
- 929 • **Gated Fusion Network:** A Mixture-of-Experts style gating mechanism for the diagnostic
930 signals.

931 The results in Table 8 reinforce the findings from the depth ablation. The linear baseline suffers
932 a significant 4.5% drop, confirming that the relationship between diagnostics (e.g., how Uncer-
933 tainty modulates PPLDiff) is inherently non-linear. Notably, more complex models like Attention or
934 Gated networks did not outperform the simple 2-layer MLP. This suggests that the diagnostic signals
935 themselves are highly informative and orthogonal (as discussed in Appendix D.3), requiring only
936 moderate non-linearity to fuse effectively. The 2-layer MLP is thus justified as the optimal design
937 choice.

938 Table 8: Comparison of different fusion architectures (Golden HH, $\epsilon = 0.3$).
939

940 Architecture	941 Reward Accuracy
942 Linear mapping	91.5% \pm 0.8%
943 2-layer MLP	96.0% \pm 0.4%
944 Attention-based fusion	95.8% \pm 0.5%
945 Gated fusion network	95.6% \pm 0.6%

947 D.3 EXPLORATION OF ALTERNATIVE DIAGNOSTICS

948 We systematically explored eight candidate diagnostic signals beyond the three used in our main
949 approach.

950 **Candidate Diagnostics.** Table 9 summarizes the candidates, their motivation, and correlation with
951 our three core diagnostics.

952 Table 9: Alternative diagnostic candidates and their properties.
953

954 Diagnostic	955 Motivation	956 Corr. (PPL)	957 Corr. (Loss)	958 Corr. (Unc.)
959 Gradient Norm	960 Large gradients may indicate noisy samples	961 0.42	962 0.91	963 0.38
964 Token PPL Variance	965 High variance suggests inconsis- tent quality	966 0.61	967 0.47	968 0.73
969 Attention Entropy	970 Low entropy may indicate memorization	971 0.33	972 0.52	973 0.68
974 Reward Model Score	975 External signal from pre- trained RM	976 0.58	977 0.44	978 0.31
979 Response Length Ratio	980 Length bias in preferences	981 0.27	982 0.19	983 0.22
984 Embedding Distance	985 Semantic similarity of re- sponses	986 0.34	987 0.29	988 0.41
989 Margin (logit diff)	990 Confidence in DPO preference	991 0.82	992 0.67	993 0.45
994 Perplexity Rank	995 Ordinal ranking vs. raw value	996 0.95	997 0.39	998 0.28

970 **Redundancy Analysis.** Diagnostics with correlation > 0.7 (bolded) are largely redundant with
971 our existing signals:

- **Gradient Norm:** Nearly perfectly correlated with Training Loss ($\rho = 0.91$). This is expected as $\|\nabla_{\theta}\mathcal{L}\| \approx k \cdot \mathcal{L}$ for preference losses.
- **Token PPL Variance:** High correlation with Uncertainty ($\rho = 0.73$). Both capture generation quality degradation, but variance is less interpretable.
- **Margin (logit difference):** Strongly correlated with PPLDiff ($\rho = 0.82$). Margin measures the same signal in logit space.
- **Perplexity Rank:** Nearly redundant with PPLDiff ($\rho = 0.95$). Ordinal ranking loses fine-grained information.

Augmentation Experiments. We tested adding the least correlated diagnostics (Response Length Ratio, Embedding Distance) to our fusion:

- **PPL + Loss + Unc. + Length:** 96.1% ($\pm 0.5\%$) on Golden HH $\epsilon = 0.3$ —only +0.1% improvement with 33% more computation.
- **PPL + Loss + Unc. + Embedding:** 96.0% ($\pm 0.5\%$)—no significant improvement.

These results confirm our design principle: *the three diagnostics are maximally informative and minimally redundant*. Each captures a distinct failure mode (label inconsistency, learning difficulty, generation quality), and their low pairwise correlations ($\rho < 0.35$) ensure complementary coverage. Adding more diagnostics yields diminishing returns while increasing computational overhead and the risk of overfitting the meta-learner to the small $\mathcal{D}_{\text{meta}}$.

D.4 ROBUSTNESS TO ADVERSARIAL NOISE

While our main experiments focus on random and natural noise, we also evaluated robustness against three adversarial noise patterns designed to exploit weaknesses in diagnostic-based methods.

Adversarial Noise Scenarios.

1. **Targeted High-PPL Flipping:** An adversary with knowledge of our PPLDiff heuristic selectively flips labels where PPLDiff is already high (top 30% of samples), making detection harder.
2. **Strategic Annotation Targeting:** Noise is injected into high-impact samples—those with low initial loss (easy to learn) that would maximally mislead the model if corrupted.
3. **Adaptive Attack:** A white-box adversary with access to a surrogate meta-learner crafts noise to minimize the diagnostic signature (low PPLDiff, low Loss, low Uncertainty simultaneously).

Table 10: Robustness under adversarial noise (Golden HH, 30% noise rate).

Method	Targeted PPL	Strategic Target	Adaptive Attack
Vanilla DPO	68.9%	67.2%	69.5%
PerpCorrect (Dyn.)	83.4%	85.1%	78.6%
DR-DPO	85.1%	85.2%	84.8%
Ours (PPL only)	82.7%	88.3%	74.2%
Ours (Fusion)	92.3%	90.7%	89.4%

Key Findings. (1) **Single-heuristic vulnerability:** PerpCorrect and our PPLDiff-only variant are highly vulnerable to targeted attacks (78.6% and 74.2% under adaptive attack), confirming that relying on a single diagnostic creates an exploitable weakness. (2) **Fusion provides robustness:** Our full fusion method maintains strong performance even under white-box adaptive attacks (89.4%), degrading only 6.6% from the random-noise baseline (96.0%). This is because simultaneously fooling three orthogonal diagnostics is combinatorially difficult—crafting a sample with low PPLDiff, low Loss, and low Uncertainty while being genuinely noisy requires adversarial control over model

1026 internals beyond label manipulation alone. (3) **Complementary coverage:** The Targeted PPL at
 1027 tack harms PerpCorrect (-11.4%) but our fusion degrades only -3.7%, demonstrating that Loss and
 1028 Uncertainty provide critical backup when PPLDiff is compromised.

1029 This analysis validates that diagnostic fusion is not merely beneficial for benign noise but also pro-
 1030 vides inherent robustness against sophisticated adversarial corruption strategies.

1032 D.5 PRACTICAL STRATEGIES FOR META-DATASET CONSTRUCTION

1034 A practical concern is how to obtain the clean meta-dataset $\mathcal{D}_{\text{meta}}$ in real-world scenarios. We eval-
 1035 uated three strategies.

1037 **Strategy 1: High-Agreement Subset (Recommended).** When multi-annotator data is available,
 1039 select samples with strong inter-annotator agreement. We tested this on a subset of Anthropic-HH
 1040 with 3+ annotations per sample.

1042 Table 11: Meta-dataset construction strategies (Golden HH, $\epsilon = 0.3$).

1044 Strategy	1045 Meta-Set Size	1046 Est. Purity	1047 Final Reward Acc.
1045 Random sampling	100	70% (by assumption)	96.0% \pm 0.4%
1046 High agreement (Cohen's $\kappa > 0.8$)	50	94% (measured)	96.3% \pm 0.3%
1047 Expert curation	100	97% (measured)	96.8% \pm 0.3%
1048 Model-assisted filtering (ensemble RM)	150	88% (measured)	95.7% \pm 0.5%

1049 **Key Findings.** (1) **Quality over quantity:** High-agreement subsets achieve equivalent perfor-
 1050 mance with only 50 samples versus 100 random samples, confirming our theoretical analysis that
 1051 meta-set purity is critical. (2) **Expert curation is effective but costly:** Manual verification by do-
 1052 main experts yields the highest purity (97%) and best performance (+0.8%), but requires 2–3 hours
 1053 of expert time—acceptable for safety-critical applications. (3) **Model-assisted filtering is scalable:**
 1054 Using an ensemble of reward models to identify high-confidence samples achieves 88% purity and
 1055 only 0.3% performance drop, providing a practical middle ground.

1056 **Recommendation.** For practitioners: (1) If multi-annotator data exists, use high-agreement sam-
 1057 ples (zero additional cost). (2) For safety-critical deployments, invest in expert curation of 100–150
 1058 samples. (3) For large-scale production, use model-assisted filtering with ensemble reward models.

1063 D.6 SUMMARY OF ADDITIONAL ANALYSES

1064 The analyses in this appendix complement our main contributions in three ways:

1066 **Theoretical Grounding (E.1):** Our extended analysis provides problem-specific bounds for prefer-
 1067 ence corruption and formalizes why diagnostic fusion outperforms single heuristics under weakly-
 1068 correlated noise—a property we empirically observe across all real-world datasets.

1069 **Methodological Validation (E.2–E.3):** Extensive ablations confirm that (1) our 2-layer MLP fusion
 1070 architecture strikes an optimal balance between capacity and efficiency; (2) our three diagnostics
 1071 are maximally informative with minimal redundancy ($\rho < 0.35$ pairwise); and (3) more complex
 1072 architectures or additional diagnostics yield diminishing returns.

1073 **Practical Robustness (E.4–E.5):** Our method demonstrates resilience against adversarial noise
 1074 (maintaining 89.4% accuracy under white-box attacks) and provides actionable guidance for con-
 1075 structing clean meta-datasets in real-world settings (high-agreement sampling, expert curation, or
 1076 model-assisted filtering).

1077 Together with our main experiments (Sections 4.2–4.5), these analyses provide comprehensive evi-
 1078 dence that diagnostic fusion offers a principled, robust, and practical approach to preference align-
 1079 ment under noise.

1080 E LARGE-SCALE DATASET ANALYSIS AND CASE STUDIES 1081

1082 To understand how our diagnostic fusion adapts to real-world noise patterns in large-scale datasets,
1083 we provide detailed analysis of noise characteristics and representative qualitative examples from
1084 StackExchange (10.8M samples) and GPT4All (0.8M samples).
1085

1086 E.1 NOISE PROPORTION ANALYSIS FROM THREE DIAGNOSTIC DIMENSIONS 1087

1088 To systematically identify potentially noisy samples, we computed the 90th percentile threshold for
1089 each diagnostic dimension and flagged samples exceeding these values. In StackExchange, this cor-
1090 responds to $\text{PPLDiff} > 0.62$ (preference inconsistency), $\text{Loss} > 1.18$ (high learning difficulty), and
1091 $\text{Uncertainty} > 0.83$ (low generation confidence). For GPT4All, the thresholds are $\text{PPLDiff} > 0.71$,
1092 $\text{Loss} > 0.89$, and $\text{Uncertainty} > 0.79$. Applying these criteria reveals distinct noise distributions:
1093

1094 Table 12: Noise proportions in large-scale datasets by diagnostic dimension.
1095

Dataset	High Loss	High PPLDiff	High Uncertainty
StackExchange	16.8%	8.4%	3.2%
GPT4All	4.1%	9.7%	11.5%

1100 The noise distributions differ significantly between human-annotated (StackExchange) and LLM-
1101 distilled (GPT4All) data. StackExchange exhibits more label ambiguity (16.8% high loss) due to
1102 subjective human voting on similar-quality answers, while GPT4All shows more generation artifacts
1103 (11.5% high uncertainty) from truncation and degeneration issues common in distillation pipelines.
1104

1105 Our SHAP analysis reveals that the meta-learner automatically adapts its diagnostic importance
1106 based on these dataset-specific noise patterns. On StackExchange, PPLDiff importance decreases to
1107 0.712 (from 0.956 on synthetic noise) while Loss rises to 0.458, reflecting the prevalence of label
1108 ambiguity. On GPT4All, PPLDiff maintains 0.823 importance with Uncertainty at 0.382, reflecting
1109 the model’s ability to detect generation quality issues through token-level entropy.
1110

1111 Notably, 1.3% (StackExchange) and 0.9% (GPT4All) of samples exhibit simultaneous high values
1112 across all three diagnostics—“triple-noise” cases that represent the most challenging instances. Our
1113 fusion achieves 68.2% accuracy on these cases versus 52.7% for PPLDiff-only, demonstrating the
1114 critical value of multi-perspective assessment when all diagnostic signals indicate potential issues.
1115

1116 This analysis validates that our method adapts to dataset-specific noise patterns without manual
1117 intervention, with naturally occurring noise exhibiting fundamentally different diagnostic signatures
1118 compared to synthetic label-flipping.
1119

1120 E.2 QUALITATIVE CASE STUDIES 1121

1122 We now examine representative examples from StackExchange and GPT4All that illustrate how
1123 different diagnostic signals detect distinct types of noise in naturally occurring data.
1124

1125 E.3 QUALITATIVE CASE STUDIES 1126

1127 We now examine naturally occurring noise from StackExchange (10.8M samples) and GPT4All
1128 (0.8M samples). As reported in Section 4.5, these datasets exhibit distinct noise profiles: Stack-
1129 Exchange shows predominantly high-Loss samples (16.8%, reflecting subjective voting), while
1130 GPT4All shows high-Uncertainty samples (11.5%, reflecting generation artifacts).
1131

1132 Case A: Length Bias in Community Voting (StackExchange) 1133

1134 **Context.** StackExchange platforms exhibit systematic bias toward longer, more elaborate answers
1135 regardless of technical correctness. This creates noise detectable primarily through PPLDiff.
1136

1137 Case B: Label Ambiguity Between Similar Answers (StackExchange)

1134	Question	“How can I make the first layer after a raft print at first-layer speed in Slic3r?”
1135	Chosen (score +3)	Tormod: “Slic3r doesn’t provide this option directly, but you can use post-processing scripts to modify the G-code output...” [400+ words with code examples and detailed technical explanation]
1136	Rejected (score -1)	kareem: “You shouldn’t need to. The raft already provides bed adhesion, so the first layer of the actual print can go at regular speed.” [40 words, directly addresses the underlying misconception]
1137	Diagnostics	PPLDiff: 0.74 (high), Loss: 1.02 (moderate), Uncertainty: 0.38 (low)
1138	Analysis	The rejected answer has lower perplexity despite negative votes, indicating it’s more coherent. The high PPLDiff reveals StackExchange’s length bias. Loss is moderate (model somewhat confused by the preference), Uncertainty is low (both responses are fluent).
1139		
1140		
1141		
1142		
1143		
1144		
1145		
1146		
1147		
1148	Context. When multiple answers provide essentially identical advice with only stylistic differences, the preference label becomes arbitrary, creating high-Loss noise.	
1149		
1150		
1151	Question	“As a 3D printing newbie, how can I help the site during private beta?”
1152	Chosen (score +4)	Zizouz212: “Private betas love votes! If you have an easy question that’s specific and high-quality, go ahead and ask it. You can also suggest edits to posts and tag wikis...” [120 words, encouraging tone]
1153	Rejected (score +2)	kenorb: “That’s the goal of the site—learn, research, ask. You can improve posts via edits, be active in meta, review queues, propose tag descriptions, vote on questions...” [50 words, nearly identical advice]
1154	Diagnostics	PPLDiff: 0.28 (low), Loss: 1.42 (very high), Uncertainty: 0.64 (moderate)
1155	Analysis	Both answers have similar perplexity (PPLDiff near zero). The very high Loss indicates the model struggles to justify a strong preference when content is semantically equivalent. The vote differential likely reflects posting time rather than quality.
1156		
1157		
1158		
1159		
1160		
1161		
1162		
1163		
1164	Case C: Format Contamination (StackExchange)	
1165		
1166	Context. Raw HTML and broken URLs from data scraping create high token-level entropy, detectable primarily through Uncertainty.	
1167		
1168		
1169	Question	“Can we change our site’s default Stack Exchange logo?”
1170	Chosen (score +2)	Oscar: “Yes! From this Meta SE answer ‘What’s the process...’ we can read [URLs: https://meta.stackexchange.com/a/298341/ , multiple broken <code>a href</code> tags and HTML markup]... Feel free to add your thoughts.” [180 words with heavy markup contamination]
1171	Rejected (score +1)	darth pixel: “I’d like to remind my old suggestion :) [image link] here is the original post [link]” [20 words, casual but clean]
1172	Diagnostics	PPLDiff: -0.22 (slightly negative), Loss: 0.68 (moderate-low), Uncertainty: 0.91 (very high)
1173	Analysis	The chosen answer has acceptable perplexity when HTML is tokenized, and Loss is not elevated. However, Uncertainty spikes dramatically when generating URLs and malformed markup, indicating the model’s confusion about whether to output text or code.
1174		
1175		
1176		
1177		
1178		
1179		
1180		
1181		
1182		
1183		
1184		
1185		
1186		
1187		