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Abstract

Music-driven 3D dance generation has attracted increasing attention in recent
years, with promising applications in choreography, virtual reality, and creative
content creation. Previous research has generated promising realistic dance move-
ment from audio signals. However, traditional methods underutilize genre condi-
tioning, often treating it as auxiliary modifiers rather than core semantic drivers.
This oversight compromises music-motion synchronization and disrupts dance
genre continuity, particularly during complex rhythmic transitions, thereby lead-
ing to visually unsatisfactory effects. To address the challenge, we propose
MEGADance, a novel architecture for music-driven 3D dance generation. By
decoupling choreographic consistency into dance generality and genre specificity,
MEGADance demonstrates significant dance quality and strong genre controlla-
bility. It consists of two stages: (1) High-Fidelity Dance Quantization Stage
(HFDQ), which encodes dance motions into a latent representation by Finite
Scalar Quantization (FSQ) and reconstructs them with kinematic-dynamic con-
straints, and (2) Genre-Aware Dance Generation Stage (GADG), which maps mu-
sic into the latent representation by synergistic utilization of Mixture-of-Experts
(MoE) mechanism with Mamba-Transformer hybrid backbone. Extensive experi-
ments on the FineDance and AIST++ dataset demonstrate the state-of-the-art per-
formance of MEGADance both qualitatively and quantitatively. Code is available
at https://github.com/Xulong I/MEGADance.

1 Introduction

Music-to-dance generation is a crucial task that translates auditory input into dynamic motion, with
significant applications in virtual reality, choreography, and digital entertainment[, 2J]. By au-
tomating this process, it enables deeper exploration of the intrinsic relationship between music and
movement[B3], while expanding possibilities for creative content generation. Due to its broad impact,
music-to-dance generation has attracted increasing attention[d, 5, f].

Current music-to-dance generation approaches have witnessed rapid progress and can be broadly
categorized into two paradigms[@, [7]: (1) One-stage methods directly map musical features to human
motion[8, B, 9]. (2) Two-stage methods first construct choreographic units and then learn their
probability distributions conditioned on music [4, B, I0]. However, previous methods only treat
genre as a weak auxiliary bias rather than the core semantic driver[[I, 2, B], facing several essential
problems such as misaligned music-motion synchronization and disrupted dance genre continuity.
For example, A Uyghur movements clip is inappropriately mixed into the Popping routine, when a
typical Popping music exhibits complex transitions in rhythm and intensity, as shown in Fig. [l. This
oversight leads to unsatisfactory visual effects, and fails to meet genre-specific user demands.
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Figure 1: MEGADance enhances choreography consistency by decoupling it into dance generality
and genre specificity via the Mixture-of-Experts design. Compared to previous methods, it produces
synchronized dance with genre continuity, even under complex music conditions.

To address these limitations, we propose MEGADance, the first Mixture-of-Experts[I2] (MoE)
architecture for Genre-Aware 3D Dance Generation. By decoupling choreographic consistency
into dance generality, modeled by Universal Experts shared across all genres, and genre speci-
ficity, captured by Specialized Experts selected via genre-guided hard routing, MEGADance en-
ables robust musical alignment and fine-grained stylistic fidelity. Due to its structured inductive
bias, MEGADance exhibits strong genre control and remains robust even in the presence of modal-
ity conflicts, such as generating a Breaking dance for soft-paced Chinese music while preserving
rhythmic and dynamic alignment.

Specifically, MEGADance comprises two stages. (1) High-Fidelity Dance Quantization Stage
(HFDQ), which encodes dance motions into a latent representation. In the HFDQ stage, we intro-
duce Finite Scalar Quantization[I'3] (FSQ), which replaces traditional VQ-VAE codebooks to miti-
gate codebook collapse and enhance latent diversity. Additionally, we impose kinematic constraints
by simultaneously reconstructing 3D joints through Forward Kinematics[[[4] from SMPL[4], and
dynamic constraints by reconstructing dances while considering velocity and acceleration, to en-
hance spatio-temporal coherence. (2) Genre-Aware Dance Generation Stage (GADG), which maps
music into the latent representation. In the GADG, the Universal Experts and Specialized Ex-
perts work synergistically to jointly modeling dance generality and genre specificity. For genre-
disentangled expert design, Universal Experts model universal rthythmic and temporal structures
across all genres, enhancing robustness to diverse musical inputs and stabilizing cross-modal align-
ment; and Specialized Experts specialize in fine-grained stylistic variations unique to each genre,
guided by hard routing to effectively disentangle genre-dependent features from genre-invariant dy-
namics. For expert structure, each expert, whether Specialized or Universal, adopts an autoregressive
Mamba-Transformer hybrid backbone, combining Mamba’s efficient intra-modal local dependency
capture [I5] with the Transformer’s cross-modal global contextual understanding[T6], thereby en-
abling the generation of temporally coherent and musically aligned dance motions.

The contributions of our work can be summarized as: (1) We introduce MEGADance, the first
Mixture-of-Experts (MoE) architecture for music-to-dance generation, designed to enhance chore-
ographic consistency by decoupling it into dance generality and genre specificity. MEGADance
achieves state-of-the-art (SOTA) performance and demonstrates robust genre controllability, as
demonstrated through extensive qualitative and quantitative experiments on the AIST++[I] and
FineDance[] datasets. (2) We propose a High-Fidelity Dance Quantization framework that in-
troduces FSQ with kinematic-dynamic dual constraints, ensuring complete codebook utilization
(100% vs. VQ-VAE[IA]’s 75%) while achieving excellent reconstruction accuracy. (3) We design
a Mamba-Transformer hybrid backbone for music-to-dance generation, combining Mamba’s effi-
cient intra-modal local dependency capture with the Transformer’s cross-modal global contextual
understanding.

2 Related Work

2.1 One-Stage Music-to-Dance Generation

Music and dance are deeply interconnected, leading to significant advancements in the field of music-
driven 3D dance generation. Researchers utilize musical features extracted via tools like Librosa[l],



Jukebox[IR], and MERT[IY] to predict human motion, including SMPL[T4] parameters[I] and body
keypoints[d]. Early methods primarily employ encoder-decoder architectures to directly obtain en-
tire human motion sequence [20, 1, 27, 23, 0]. Recognizing the natural hierarchical structure of
human joints, some researchers introduced Graph Convolutional Networks (GCNs)[24, 5] to en-
hance interaction at the joint level, thereby improving the biomedical plausibility of the generated
motions. In AIGC, Generative Adversarial Networks (GANs) are widely applied, some researchers
introduced it in music-to-dance tasks[6, O, 71]. Specifically, GANs’ generators produce dance mo-
tions from music, with discriminators providing feedback to guide generated motions more natural.
Recently, Diffusion Models have shown remarkable success in various AIGC tasks, with notable
applications extending to the music-to-dance domain[IX, [, B, B, 28], but the computational cost of
the sampling process remains high, especially in long-sequence generation scenarios for the music-
to-dance task. However, the lack of explicit constraints to maintain the generated pose within proper
spatial boundaries often leads to nonstandard poses that extend beyond the dancing subspace during
inference, resulting in low dance quality in practical applications.

2.2 Two-Stage Music-to-Dance Generation

Leveraging the inherent periodicity of dance kinematics, researchers propose Two-Stage methods,
including (1) Dance Quantization stage: curating choreographic units from motion databases, and (2)
Dance Generation stage: learning music-conditioned probability distributions over these units. As
these choreographic units are derived from real human motion data, two-stage approaches naturally
benefit from a biomechanical plausibility prior, contributing to the realism of generated dances.

Dance Quantization Stage. Traditional methods [?Y, B0, BT, Z6] construct choreographic units
through uniform segmentation of motion sequence, incurring high computational overhead. Recent
works [32, 33] employ VQ-VAE for intelligent unit construction, significantly reducing time/space
complexity. Considering the relative independence of upper and lower body movements, [4, 5]
construct choreographic unit for lower and upper parts separately, improving motion reconstruction
through expanded unit capacity (L — L x L). However, above works predominantly operate on
3D human body keypoints, which lack expressiveness in capturing nuanced motion details. [5, &]
construct choreographic units in the SMPL pose space but apply uniform treatment across joints,
neglecting the body’s kinematic hierarchy, such as root errors propagate globally through kinematic
chains while hand errors remain localized.

Dance Generation Stage. To model choreographic unit distributions, Choreomaster [26] employs a
GRU-based backbone, while DanceRevolution [9] uses RNNs. Recent works like Bailando [4] and
Bailando++[8] adopt cross-modal Transformers for improved temporal modeling and music-motion
alignment. Moreover, Everything2Motion [B4] and TM2D [37] leverage pretrained models in text-
to-motion[33, B3] generation to improve motion quality, often at the expense of choreographic com-
plexity and creativity. To enrich input representations, [, 8, B1, ] introduce genre information via
shallow fusion, such as cross attention [B1] or feature addition [[Z]. However, these approaches re-
main insufficient for achieving robust genre controllability, particularly under cross-modal conflicts,
such as generating Breaking dances conditioned on slow-tempo traditional Chinese music.

In conclusion, existing methods face two key limitations: (1) VQ-VAE-based quantization suffers
from low codebook utilization; (2) Insufficient utilization of genre information results in poor music-
motion synchronization and disrupted dance genre continuity. Thus, we propose MEGADance, a
two-stage framework. The Dance Quantization stage employs FSQ with kinematic and dynamic
constraints to enhance codebook efficiency while preserving reconstruction fidelity. The Dance
Generation stage adopts an MoE architecture with a Mamba-Transformer backbone to jointly cap-
ture dance generality and genre specificity with efficiency.

3 Methodology

3.1 Problem Definition

Given a music sequence M = {mg,m1,...,mp} and a dance genre label g, our objective is to
synthesize the corresponding dance sequence S = {so, s1, ..., ST}, where m; and s; denotes the
music and dance feature at time step t. We define each music feature m; as a 35-dim vector[8]
extracted by Librosa[B6], including 20-dim MFCC, 12-dim Chroma, 1-dim Peak, 1-dim Beat and



Stagel: High-Fidelity Dance Quantization Stage (HFDQ)

Genre-Disentangled Experts Design xL
ag | a1 |ax| a3 a4 as =X >  Jazz Expert " ~
Popping Ballet H
Hard ”
- - - ===> Popping Expert cJazzo
Autoregressive Mixture-of-Experts Architecture
-X»|__Ballet Expert Note:Shared for all genre
Po||P1 || P2 P3| Ps|| D5 Specialized Expert Universal Expert
* ‘ Mamba-Transformer Hybrid Backbone
[ Librosa J Motion Tokenizer Tt (2 . v TN v
| = ' ®o > r >
i | > i =3 2 iz g 2| |2
. RN 4 ao_2_.§°.’_.w_._.g|_.n~_,
“%Mﬁﬂ wwimwlu-r.‘ W"Ml»““ 25 z g g z $ z
I 2 3 Se 3 5 3

Figure 2: Overview of MEGADance. Stage 1 (HFDQ) quantizes dance into upper/lower-body latent
codes using FSQs with kinematic and dynamic reconstruction constraints. Stage 2 (GADG) maps
music to codes via an L-layer Mixture-of-Experts architecture (blue: Specialized Experts, pink:
Universal Experts), where each expert is equipped with a Mamba-Transformer hybrid backbone

1-dim Envelope. We encode genre label g as a one-hot vector. We represent each dance feature
as a 147-dim vector s, = [1; 0], where 7 and 6 encapsulate the root translation and 6-dim rotation
representation[37] of the SMPL[I4] model, respectively. Furthermore, we synchronize the music
sequence with the dance sequence at a temporal granularity of 30 frames per second.

3.2 High-Fidelity Dance Quantization

Finite Scalar Quantization with Motion Decomposition. Choreographic units serve as the fun-
damental building blocks of dance composition, forming the basis for structuring and connecting
movements. Despite variations in style and tempo, dances across genres exhibit common underly-
ing units. Our objective is to unsupervisedly encapsulate these units into a versatile and reusable
codebook, enabling any dance sequence to be represented as a sequence of discrete codebook ele-
ments. To account for the relative independence between upper-body and lower-body movements
during dance, we maintain separate codebooks for the upper and lower Z = {Z}!, Z ,lc} body, where
k represent codebook size. Additionally, root translation velocities are associated with the lower
body to preserve natural motion dynamics. This decomposition allows the combination of different
code pairs to cover a wider array of choreographic units.

Our 3D motion reconstruction approach, illustrated in Fig. D, initiates with a Dance Encoder E (a
three-layer 1D-CNN for information aggregation and a two-layer MLP for dimension adjustment)
encoding the dance sequence S = {S%, S'} into context-aware features z = {z",z!'}. These fea-
tures are quantized using Finite Scalar Quantization (FSQ) to obtain z = {zA“7 z'}, which are then
decoded by Dance Decoder D (a two-layer MLP for dimension adjustment and a three-layer 1D
TransConv for information restoration) to reconstruct the dance movement S = {§“, St} To re-
solve the codebook collapse problem caused by the conventional VQ-VAE[BX] based quantization,
we adopt FSQ. By replacing the discrete "argmin" codebook selection with scalar quantization via
differentiable bounded rounding, FSQ enables balanced utilization and stable gradient propagation:

2= f(z) + sg [Round[f(2)] — [(2)], ()

where f(-) is the bounding function, setting as the sigmoid(-) function in our practice. Each channel
in z will be quantized into one of the unique L integers, therefore we have z € {1,..., L}%. The
codebook size is calculated as k = Hle L;, and L, d are super parameter. In conclusion, FSQ with
Motion Decomposition expands its effective motion representation capacity, thereby enhancing the
diversity of subsequent generated dance.



Motion Reconstruction with Kinematic-Dynamic Constraint. Unlike VQ-VAE requiring addi-
tional loss to update any extra lookup codebook, FSQ directly integrates numerical approximations
"round" within its workflow. The Dance encoder F and decoder D are simultaneously learned with
the codebook via the following loss function:

Lrsqg = Lsnp1(S,8) + Ligine(J, J). 2

The Lgmpi is the reconstruction loss that ensures the predicted 3D SMPL sequence closely aligns with
the ground truth. Simple reconstruction on SMPL parameters treats all joints equally, neglecting the
complex hierarchical tree structure of human body joints, different joints vary in their tolerance to
errors. For instance, errors at the root node propagate throughout all nodes, whereas errors at the
hand node primarily affect only itself. Thus, we execute Forward Kinematic[[[4] techniques to derive

3D joints and apply reconstruction constraints Ciine between J and J. Moreover, the reconstruction
loss accounts not only for the spatial positions but also for the velocities () and accelerations (c2)
of the movements, where " and ” correspond to the first- and second-order derivatives respectively:

Lomp(5,5) = |8 = Sl + 1|8 = 8'[|1 + 2|58 — 5”1,

. . . . 3)
Lioim (S, J) = |J = Tl + on | = J'lly + el J” = T

Through training, our method facilitates the interchangeability of orthographic memory codes, en-

abling the synthesis of new motions from existing choreographic units by recombining different

code elements.

3.3 Genre-Aware Dance Generation

With dance sequences represented as discrete latent codes, the music-to-dance generation task is
simplified from a regression problem into a classification problem, where the goal is to select appro-
priate pose codes from a codebook rather than predict continuous motion parameters.

3.3.1 Mixture-of-Experts Architecture

As illustrated in Fig. O, we perform cross-modal autoregressive generation. Given music fea-
tures m1.7 extracted using Librosa, dance genre label g, and the previous pose codes po.7—1 =
{ph. 1, Pir_1} encoded by the Motion Tokenization E in HFDQ, the GADG predicts action prob-
abilities ag.7—1 = {al.r_;,atp_,} of every z; € Z, using an L-layer MoE architecture. To align
the predicted action probabilities ag.7—1 with the next pose codes pi.7, we employ a supervised
Cross-Entropy[d] loss, where each predicted action a; is matched to its corresponding target pose
code py+1. The inference of GADG includes: 1) Short sequences (< 5.5s) via autoregressive gener-
ation, 2) Long sequences via sliding-window prediction with 5.5s overlap.

Specifically, each MoE layer contains a Specialized Expert and a Universal Expert, which jointly
model dance generality and genre specificity. Specialized Experts (e.g., Pop Expert, Jazz Expert) are
conditionally activated based on the genre label g, and input features are routed to the corresponding
expert via a hard routing mechanism. In parallel, features from all genres are processed by the shared
Universal Expert to capture genre-invariant dynamics. For expert structure, each expert, whether
Specialized or Universal, adopts an autoregressive Mamba-Transformer hybrid backbone: Mamba
captures intra-modal local dependencies, while Transformer encodes cross-modal global context,
thereby enabling the generation of temporally coherent and musically aligned dance motions.

3.3.2 Genre-Disentangled Experts Design

Specialized Experts. The Specialized Experts are designed to capture genre-specific stylistic pat-
terns, motivated by two core considerations: (1) Structural Inductive Bias: By isolating parame-
ters across experts, the model enforces separation of genre-specific motion motifs (e.g., Krump’s
grounded explosiveness vs. Contemporary’s fluid transitions), thereby preserving distinct stylistic
representations. This separation also introduces genre-aware control priors that mitigate cross-genre
interference, which is critical for genre-conditioned dance generation. (2) Computational Efficiency:
Leveraging sparse MoE design [39], each input is routed to a single expert, significantly reducing
parameter redundancy and computational cost.



Universal Experts. The Universal Expert learns generalizable representations to complement Spe-
cialized Experts through two key roles: (1) Fundamental Choreographic Prior: It learns shared
low-level patterns across genres (e.g. periodicity, beat synchronization, and biomechanical consis-
tency). In contrast, models relying solely on Specialized Experts often fail under modality mismatch
(e.g., producing static or repetitive movements when Ballet music is processed by a Popping Expert).
The Universal Expert provides a genre-agnostic prior that enhances stability and expressiveness
under complex input conditions. (2) Disentangled Representation: By disentangling shared and
genre-specific factors, the model allows each expert to specialize in distinct subspaces, enhancing
generation quality[&0].

3.3.3 Mamba-Transformer Hybrid Backbone

Cross-Modal Global-Context Modeling. Leveraging the Transformer’s global receptive field [I6],
we concatenate cross-modal features along the temporal axis and facilitate structured interactions
among music, upper-body, and lower-body representations, by a Attention layer and a Feed Forward
layer. The attention layer is the core component that defines the computational dependencies among
sequential data elements and is implemented as:

T
Attention(Q, K, V, M) = softmax (M) V, 4
Ve

where @, K,V denote the query, key, and value from input, and M is the mask, which determines
the type of attention layers. The two most common attention types are full attention [I6], which
enables global context exchange, and causal attention [A1], which restricts each position to attend
only to current and past inputs. Given that music-to-dance generation is typically applied to long
sequence while being constrained by limited computational resources, training is commonly con-
ducted on short clips. During inference, the sequence is first extended autoregressively up to the
training length (step 1), and then completed using a sliding window approach for the remaining part
(step 2). Training driven by standard causal attention only aligns with step 1 and fails to account for
the dominant step 2 during inference, thereby limiting generation performance. To better align train-
ing with inference, we introduce a sliding-window attention mechanism that mimics the generation
process. The attention mask M € R37 %37 s structured as a 3 x 3 block matrix, where each block
isa T x T sliding-window mask, enabling cross-modal global-context attention.

Intra-Modal Local-Dependency Modeling. While the Transformer excels at temporal modeling, it
is inherently position-invariant and captures sequence order only through positional encodings [T6],
which limits its deep understanding of local dependencies. In contrast, music-to-dance generation
demands strong local continuity between movements. Owing to its inherent sequential inductive
bias, Mamba [[9] has demonstrated strong performance in modeling fine-grained local dependen-
cies [A2, A3]. We therefore apply independent Mamba to the music, upper-body, and lower-body
features respectively, to model their intra-modal local dependencies. Specifically, Selective State
Space model (Mamba) incorporates a Selection mechanism and a Scan module (S6) [I3] to dy-
namically select salient input segments for efficient sequence modeling. Unlike the traditional S4
model [24] with fixed parameters A, B, C, and scalar A, Mamba adaptively learns these parameters
via fully-connected layers, enhancing generalization capabilities. Mamba employs structured state-
space matrices, imposing constraints that improve computational efficiency. For each time step ¢,
the input x;, hidden state h,, and output y; follow:

hi = Aihi—1 + Byay,

5
yr = Cihy, ©)

where A,, B,, C, are dynamically updated parameters. Through discretization with sampling inter-
val A, the state transitions become:

A =exp(AA),
B = (AA) " (exp(AA) —I)- AB, (6)
hy = Ahy_1 + By,

where (AA)~! is the inverse of AA, and I denotes the identity matrix. The scan module captures
temporal dependencies by applying trainable parameters across input segments.



Table 1: Comparison with SOTAs on the FineDance dataset.

‘ Quality ‘ Creativity ‘ Alignment ‘ User Study
| FID,| FID,| FID,| | DIV, DIV,t DIV,$| BASt |DQt DSt DCt
GT 0 0 0 1098 745  6.07 0.215 439 435 448

Bailando++[8] | 54.79 1629  8.42 6.18 5.98 4.73 0.213 3.85 3.50 3.82
FineNet[2] 65.15 2381 1322 | 5.84 5.19 4.29 0.219 3.62 3.65 3.47
Lodge[R] 55.03 1487 522 6.14 6.18 5.50 0.218 4.18 4.17 4.08
MEGADance | 50.00 13.02 2.52 6.23 6.27 5.78 0.226 425 430 4.23

4 Experiment

4.1 Dataset

1) FineDance. FineDance [2] is the largest public dataset for 3D music-to-dance generation, featur-
ing professionally performed dances captured via optical motion capture. It provides 7.7 hours of
motion data at 30 fps across 16 distinct dance genres. Following [B], we evaluate on test-set music
clips, generating 1024-frame (34.13s) dance sequences. 2) AIST++. AIST++ [[] is a widely used
benchmark comprising 5.2 hours of 60 fps street dance motion, covering 10 dance genres. Follow-
ing [[], we use test-set music clips to generate 1200-frame (20.00s) sequences.

4.2 Quantitative Evaluation

Comparison. We evaluate MEGADance against state-of-the-art (SOTA) baselines on both the
FineDance and AIST++ datasets using a comprehensive suite of metrics. For each generated se-
quence, we compute Fréchet Inception Distance (F'ID) and Diversity (DIV') across three feature
spaces: (1) Kinetic (k), capturing motion dynamics; (2) Geometric (g), encoding spatial joint rela-
tions; and (3) Style (s), extracted via a Transformer-based genre classifier. We also assess music-
motion synchronization using Beat Align Score (BAS), following [, 8]. All baseline results are
reproduced under our experimental setup to ensure fair comparison. On the FineDance dataset
(Tab. M), MEGADance outperforms all baselines, achieving the lowest FID in all three feature types
(F1D;=50.00, FID,=13.02, FID,=2.52), the highest motion diversity (DIV}=6.23, DIV =6.27,
DIV,=5.78), and the best BAS (0.226). On the AIST++ datasets (Tab. ), MEGADance again
ranks first in FID (F'1D;=25.89, FI1D,=12.62), and achieves strong performance in diversity
(D1Vy=5.84, DIV,=6.23) and BAS (0.238). These results underscore the effectiveness of our genre-
aware Mixture-of-Experts design in balancing motion quality, creativity, and synchronization across
diverse datasets. Performance efficiency analysis is provided in Appendix A.3.

User Study. Dances inherent subjectivity makes user feedback essential for evaluating generated
movements[#3] in the music-to-dance generation task. We select 30 in-the-wild music segments
(34 seconds each) and generate dance sequence using above models. These sequences are evaluated
through a double-blind questionnaire, by 30 participants with backgrounds in dance practice, in-
cluding undergraduate and graduate-level students. The questionnaires are based on a 5-point scale
(Great, Good, Fair, Bad, Terrible) and assess three aspects: Dance Synchronization (D.S, alignment
with rhythm and style), Dance Quality (D@, biomechanical plausibility and aesthetics), and Dance
Creativity (DC, originality and range). As shown in Tab. [, MEGADance significantly outperforms
all baselines across user-rated metrics (i.e., D.S = 4.30, DQ = 4.25, DC' = 4.23). Its high scores in
various aspects underscore its superiority in generating movements in terms of human preferences.

4.3 Qualitative Evaluation

To assess the visual quality of the generated dance sequences, we perform a qualitative comparison
between MEGADance and several existing baseline models, as depicted in Fig. B. In terms of ex-
pressiveness, MEGADance outperforms the competing methods in several key areas. For instance,
Lodge[8] struggles with stylistic consistency, often blending conflicting dance genres, such as in-
corporating Uyghur movements into a typical Breaking routine, leading to a disjointed aesthetic.
FineNet[], while capable of generating movement sequences, suffers from significant artifacts, in-
cluding unnatural sliding and teleportation, which detract from the fluidity and physical realism of
the motions. Additionally, Bailando++[5] demonstrates a lack of diversity, with movements fre-
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b) Lodge exhibits weaker expressiveness with inconsistent dance styles, such as mixing Uyghur into a Breaking routine.
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d) Bailando++ shows limited motion diversity, characterized by repetitive routines and excessive in-place movements.

Figure 3: Qualitative Analysis on a typical Breaking Battle music clip.

Table 2: Comparison on the AIST++ Dataset.

Breaking: K| R j\ ® «
\ ¢ | FID,| FID,l DIV,t DIV,t BASt
GT 0 0 9.04 7.52 0.232
s || o NNy FACTI[1] 3535 2211 594 618 0221
Dunhuang: Bailando++[B8] | 30.21 15.48 5.35 5.13 0.228
) ! EDGEJIX] 4216 2212 396 461 0233
( [ | Lodge[R] 3572 1792 572 591 0247
MEGADance | 25.89 12.62 584 623 0238
Locking: f \ ? 5 i \i
Table 3: Comparison for Genre Controllability.
j ﬁ 8 *\ ‘ J‘ | FID,| DIV,t | ACC? FIt
Uyghur: *
| ’ =) GT 0 6.07 7831 76.35
- ‘d‘ J‘h‘ B FineNet[P] 13.22 4.29 42.06 37.44
Lodge[E] 5.22 5.50 51.86 45.23

Figure 4: Visualization of Genre Controlla-

o . . . . MEGAD 2.52 5.78 75.64 70.81
bility on a representative Chinese music clip. GADance

quently repeating and a heavy reliance on static, in-place gestures, limiting the range of expressive
movement patterns. These findings underscore the superiority of MEGADance in generating diverse,
genre-consistent, and musically synchronized dance sequences.

4.4 Genre Controllability Evaluation

To quantitatively assess genre controllability, we compare MEGADance with Lodge [¥] and
FineNet []. Using ground-truth genre labels, we evaluate style alignment (F'I D) and style di-
versity (DIV;) on 20 test clips. We further assess genre classification accuracy (ACC) and F1
score (F'1), conditioned on the correct genre and four randomly sampled negative genres. As shown
in Tab. B, MEGADance achieves the best performance across all metrics. It significantly reduces
FID; (2.52) while improving diversity (D1Vs = 5.78). Despite potential cross-modal conflicts
(e.g., assigning a Popping genre to a typical Chinese music clip), MEGADance achieves high genre
discriminability (ACC =75.64, F'1 =70.81), closely approaching ground-truth performance. Com-
pared to FineNet and Lodge, our method produces motion sequences that are both more stylistically
coherent and genre-distinctive. Our MoE-based genre routing prevents cross-genre interference via
disentangled expert subspaces activated by discrete labels, whereas naive continuous fusion (e.g.
Feature Addition in [, 8] or Cross Attention in [B1]) inherently blurs stylistic boundaries.

To explore genre controllability from a visual perspective, we assign different dance genres (distal:
Breaking/Locking, proximal: Dunhuang/Uyghur) to a representative Chinese music clip. We recom-
mend watching the supplementary video for more details. As shown in Fig. B, the generated motions



Table 4: Ablation study of the two-stage MEGADance architecture on the FineDance dataset.

| FID,| FID,| FID.| BAST | SMPL | Joint
GT 0 0 0 0215 | MSE{ MAE| | MSE| MAE|
w/o SE 5305 19.26 795 0218 wioKin. Loss | 0.0238 0.0847 | 0.0089 0.0507
wio UE 54501552 291 0.223 wioDyn. Loss | 0.0201 0.0779 | 0.0073 0.0482
w/o Mamba | 3629 1451 267 0221 FSQ —» VQ-VAE | 0.0308 0.0984 | 0.0220 0.0842
Ours 5000 1302 252 0.226 Ours 0.0200 0.0770 | 0.0069 0.0469
(a) Genre-Aware Dance Generation Stage. (b) High-Fidelity Dance Quantization Stage.

exhibit both genre fidelity and music synchrony: (1) Breaking: agile footwork with rapid steps and
directional shifts, driven by percussive rhythms and dynamic weight transfers; (2) Locking: exag-
gerated arm swings and torso isolations, punctuated by syncopated, guitar-mimicking gestures; (3)
Dunhuang: fluid upper-body arcs with slow rotations and knee undulations, mirroring melodic phras-
ing and visual symmetry; (4) Uyghur: rapid spins with hand-to-face motifs, emphasizing rotational
clarity and rhythmic precision.

4.5 Ablation Study

4.5.1 Genre-Aware Dance Generation Stage

We conduct an ablation study to evaluate the contribution of three core components in the Genre-
Aware Dance Generation stage: Specialized Experts (SE), Universal Experts (UE), and the Intra-
Modal Local-Dependency Modeling (Mamba), with results summarized in Tab. Ed. We recom-
mend watching the supplementary video. (1) Specialized Experts (SE). Replacing the SE results
in substantial performance degradation across all metrics, especially on F'I D, (7.95 vs. 2.52), con-
firming its critical role in preserving stylistic fidelity across genres. (2) Universal Expert (UE).
Removing the UE leads to clear drops in F'1 Dy (54.50 50.00) and F'ID, (15.52 13.02), while
having only minor impact on F'1D, and BAS. This suggests the UEs effectiveness in providing
generalizable priors that enhance structural and dynamic consistency. (3) Mamba. Replacing the
Mamba in backbone results in moderate performance declines on all metrics (e.g., F'IDj from
50.00 to 56.29), demonstrating Mambas advantage in modeling fine-grained local dependencies and
improving overall motion quality.

4.5.2 High-Fidelity Dance Quantization Stage

We investigate the effectiveness of three key components in High-Fidelity Dance Quantization Stage:
Finite Scalar Quantization (FSQ), the Kinematic Loss (Lkiy.), and the Dynamic Loss (Lpyy.). Tab. ER
reports the M SE and M AE on both SMPL parameters and 3D joint positions. (1) FSQ. Replac-
ing FSQ with VQ-VAE leads to a significant performance drop in all metrics (e.g., Joint M SE
increases from 0.0069 to 0.0220), validating FSQs superiority. Moreover, replacing VQ-VAE with
FSQ achieves full codebook utilization (75% 100%). (2) Kinematic Loss. Removing the kinematic
loss notably increases errors in both SMPL (M S E: 0.0200 0.0238) and joint space (M AE: 0.0469
0.0507), highlighting its role in enforcing accurate structural constraints via forward kinematics. (3)
Dynamic Loss. Excluding the dynamic loss results in a moderate degradation in temporal fidelity
(e.g., Joint M SE: 0.0069 0.0073), demonstrating its contribution for temporal fidelity.

5 Conclusion

In this paper, we present MEGADance, a genre-aware MoE-based architecture for music-to-dance
generation. MEGADance enhances choreography consistency by decoupling it into dance general-
ity and genre specificity via an MoE design. Through the synergy of high-fidelity dance quantiza-
tion stage and genre-adaptive dance generation stage, MEGADance achieves state-of-the-art perfor-
mance and strong genre controllability. In future work, we plan to extend MEGADance with text
conditioning to enable more interactive and flexible dance generation.
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Appendix

A.1 Implementation Details

High-Fidelity Dance Quantization. In the High-Fidelity Dance Quantization Stage, we use a
shared codebook configuration for the upper and lower body branches. The model is trained on
8-second SMPL 6D rotation sequences sampled at 30fps, where S, 5 € RT*147 (e, T = 240).
For data construction, we augment the training set using a sliding window approach with a window
size of 240 and a stride of 16. A three-layer CNN encoder I performs temporal downsampling,
and a three-layer transposed convolution decoder D performs upsampling. The latent codes for the

lower and upper body are p!, p* € R, with 7’ = 30. In the Finite Scalar Quantization module,
the codebook size is 4375, with L = [7,5,5,5,5], and the feature dimension is set to 512. For
reconstruction, we use both SMPL-parameter loss Lsmp and joint-position loss Liein, With velocity
and acceleration terms weighted by oy = 0.5 and ae = 0.25, respectively. The model is trained for
200 epochs using the Adam optimizer, with exponential decay rates of 0.5 and 0.99 for the first and
second moment estimates. A fixed learning rate is used with a batch size of 32. The experimental
setup is consistent across FineDance and AIST++.

Genre-Aware Dance Generation. In the Genre-Aware Dance Generation Stage, we adopt a
Mamba-Transformer hybrid architecture, trained on latent codes p!, p* € R3C extracted from the
High-Fidelity Dance Quantization Stage, using 8-second dance sequences at 30fps. For data con-
struction, we augment the training set using a sliding window approach with a window size of 240
and a stride of 16. In MEGADance, the Music Encoder consists of L = 6 processing layers. The
Mamba block is configured with a model dimension of 512, state size of 16, convolution kernel size
of 4, and expansion factor of 2. The Transformer block uses a hidden size of 512, 8 attention heads, a
feedforward dimension of 2048, and a dropout rate of 0.25. For Slide Window Attention, we set the
autoregressive step to 22 and the sliding window step to 8 to construct the attention matrix. For in-
put representation, genre labels (16 classes from FineDance) are embedded using nn . Embedding to
match the 512-dimensional latent space, while music features extracted by Librosa (35 dimensions)
are projected to 512 dimensions via a two-layer MLP. For output, MEGADance predicts 4375-class
distributions via softmax for upper-body and lower-body codebook respectively. The model is op-
timized using Adam with exponential decay rates of 0.9 and 0.99 for the first and second moment
estimates, respectively, trained for 80 epochs with a fixed learning rate and a batch size of 64. The
experimental setup is consistent across FineDance and AIST++.

A.2 Qualitative Analysis for Ablation Study
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Figure 5: Qualitative Analysis for Ablation Study. MEGADance generates visually expressive dance
motions, outperforming others in terms of stylistic consistency and movement diversity.
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In this section, we conduct a qualitative analysis to evaluate the contribution of each component in
the Genre-Aware Dance Generation stage. As illustrated in Fig. B, the Specialized Experts (SE),
Universal Experts (UE), and the Mamba-enhanced backbone (Mamba) each play a crucial role in
shaping the quality of the generated dance motions.
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Removing SE, which is responsible for capturing genre-specific stylistic features, results in a sig-
nificant loss of genre identity. This removal leads to mismatches where, for example, soft or fluid
movements are applied to intense, percussive music, breaking the stylistic coherence expected for
the genre. In contrast, the exclusion of UE impacts the overall complexity of the generated motion.
Without UE, the generated sequences tend to be overly simplistic, often consisting of static poses or
repetitive, monotonous movements, such as constant hand-raising, which lack the dynamic variation
essential for engaging dance sequences. Furthermore, omitting the Mamba module, which enhances
the backbone with a selection mechanism and scan module, results in a significant decrease in both
movement diversity and alignment with the music. The generated dances become less responsive to
the rhythmic and dynamic changes in the music, leading to sequences that feel disjointed or fail to
reflect the musical structure accurately.

Collectively, these observations highlight the importance of each component in the overall frame-
work. The combination of SE, UE, and Mamba ensures that the generated dance is not only genre-
appropriate but also rich in motion variety and tightly aligned with the music.

A.3 Computational Analysis

Table 5: Comparison for Computational Analysis.

Model Parameters Run Time
Bailando++ 152M 5.46s
FineNet 94M 3.97s
Lodge 235M 4.57s
MEGADance 120M 4.31s

In this section, we present the computational analysis of our approach. Providing quantitative com-
parisons of parameters and runtime helps clarify the efficiency advantages of our design. We report
results for generating a 1024-frame (34.13s) dance sequence. Notably, MEGADance employs sparse
expert activation, where only one specialized expert is activated per input, substantially reducing the
effective computation during inference. "Parameters" are only calculated the activated parts. All
"Run Times" are conducted on an RTX 3090 GPU with an Intel Xeon Gold 5218 CPU. As shown
in Table 8, MEGADance exhibits slightly higher complexity than FineNet but delivers significantly
better generation quality (see Tables 13). Compared to Bailando++ and Lodge, it achieves lower
latency and requires fewer parameters while maintaining superior performance. These results high-
light MEGADances favorable balance between efficiency and quality.

A .4 Scalability Analysis

Table 6: Scalability Analysis of MEGADance.
Model FID; | FID, | FID, | DIV, 1 DIV, 1 DIV.{ BAS?t

MEGADance 50.00 13.02 252 6.23 6.27 578 0.226
MEGADance (-Dunhuang) 54.70 14.10  2.41 6.35 6.12 5.61 0.224
MEGADance (-Breaking) 51.90 13.30  2.60 6.18 6.24 594 0.211

In this section, we discuss the scalability of MEGADance. (1) The FSQsin the HFDQ stage op-
erates without retraining when new genres or samples are introduced. The motion patterns in the
FineDance dataset are sufficiently diverse and representative to support generalization. (2) As de-
scribed in Section 3.3.1, MEGADance employs a Mixture-of-Experts (MoE) design in which Spe-
cialized Experts are selected according to discrete genre labels. This modular architecture inherently
supports genre extension. Specifically: (i) the General Expert and existing Specialized Experts can
be preserved; (ii) a new Specialized Expert can be added and trained exclusively on a subset con-
taining the new genre; and (iii) only the genre-to-expert mapping in the routing policy needs to be
updated, without requiring structural modifications. (3) To verify this capability, we performed an
additional experiment in which the Dunhuang and Breaking genres are removed from the original
16-genre training set, and subsequently reintroduced following the above extension strategy. As
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shown in Tab. B, the performance degradation relative to full retraining is negligible, indicating that
MEGADance can efficiently incorporate new genres without complete retraining.

A.5 Mixed Genre Generation

Figure 6: Visualization. Figure 7: User Study.
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Note: Analysis for dance generation under mixed genre condition.

In this section, we evaluate the ability of MEGADance to generate dances under mixed-genre condi-
tions. Thanks to its autoregressive generation manner, MEGADance can maintain motion continuity
even when the accompanying music contains transitions between distinct genres. For example, in a
challenging case transitioning from HanTang to Breaking, MEGADance not only produces highly
coherent transitions but also preserves the distinctive stylistic characteristics of each genre before
and after the switch, as shown in Fig. B. To further assess this capability (an essential aspect of genre
controllability) we conducted an additional user study using the same music tracks and participant
setup as described in Section 4.2. In each test sequence, the first half is conditioned on genre I and
the second half on genre 2, with genre pairs randomly sampled. Participants rated the generated
dances on a 5-point scale for Style Quality (SQ: alignment with the target genre) and Motion Quality
(MQ: smoothness and naturalness). As summarized in Tab. [, MEGADance achieves high MQ
scores and clearly outperforms other methods in SQ for mixed-genre generation.

A.6 Questionnaire for User Study

User feedback is essential for evaluating generated dance movements in the music-to-dance gener-
ation task, due to the inherent subjectivity of dance [25]. We select 30 real-world music segments,
each lasting 34 seconds, and generated dance sequences using the models described above. These se-
quences are evaluated through a double-blind questionnaire completed by 30 participants with dance
backgrounds, including undergraduate and graduate students. Participants are compensated at a rate
exceeding the local average hourly wage. The questionnaires used a 5-point scale (Great, Good,
Fair, Bad, Terrible) to assess three aspects: Dance Synchronization (DS, alignment with rhythm and
style), Dance Quality (DQ, biomechanical plausibility and aesthetics), and Dance Creativity (DC,
originality and range). The screenshot of our user study website is shown in Fig. B, displaying the
template layout presented to the participants. In addition to the main trials, participants are also
subjected to several catch trials, which involved displaying Ground Truth videos and videos with
distorted motion. Participants who failed to rate the GT videos higher and the distorted motion
videos lower are considered unresponsive or inattentive, and their data are excluded from the final
evaluation.

A.7 Future Work

Customized Dance Generation While our current work successfully enables genre-aware control
in music-to-dance generation, genre labels inherently impose rigid constraints and offer limited flex-
ibility for user intent expression. Existing controllable generation approaches remain insufficiently
expressive for practical deployment [BT, I, 7]. In future work, we plan to extend control modali-
ties beyond predefined genre categories by incorporating free-form textual descriptions. Compared
to genre labels, text allows users to articulate choreography requirements in a more intuitive and
nuanced manner, facilitating personalized and expressive dance generation. This direction not only
enhances user interactivity and creativity but also opens up new opportunities for content-driven
applications in virtual performance and human-computer interaction.

Noise-Resistant Dance Generation 3D motion capture data often suffer from noise artifacts such as
sudden positional jumps or temporal discontinuities, as observed even in high-quality datasets like
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Rate your score on these videos.

In this task you are presented with mutilple videos of animated virtual characters.
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the best
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Figure 8: The screenshots of user study website for participants.

FineDance[]. Moreover, the limited scale of 3D dance datasets makes models prone to overfitting.
Future research should explore robust architectures and data augmentation strategies that maintain
motion plausibility and stylistic coherence under noisy or incomplete input, thereby improving the
reliability and generalization of music-to-dance generation systems.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Overall, the abstract and introduction provide a concise yet comprehensive
summary of the paper’s objectives, methods, and findings, accurately reflecting its contri-
butions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss the limitations in section App. 4.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

» The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: By adhering to the principles mentioned in the Guidelines, we ensures that
each theoretical result is underpinned by a full set of assumptions and complete, correct
proofs, thus reinforcing the credibility and reliability of the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In section Sec. 4 and App.1, we report all the experiments setting, implemen-
tation details and metrics, which disclose all the information needed to reproduce the main
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code is available.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In section Sec. 4 and App. 1, we report all the experiments setting and
implementation details, facilitating readers’ understanding of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: While extensive quantitative and user study results are provided in Sec. 4, the
paper does not report error bars, variance, or statistical tests for the quantitative metrics or
user study scores.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall

run with given experimental conditions).

The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)

The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We show model runtimes in detail in Section 4.1 Efficiency Analysis.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The work we perform makes no society impact. It is only an academic study.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly cite the original owners of code, data and models.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [Yes]
Justification: Yes, we provide the details in section App.3.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use it for writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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