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Abstract

Time series Forecasting with large language
models (LLMs) requires bridging numerical
patterns and natural language. Effective fore-
casting on LLM often relies on extensive pre-
processing and fine-tuning. Recent studies
show that a frozen LLM can rival special-
ized forecasters when supplied with a care-
fully engineered natural-language prompt, but
crafting such a prompt for each task is it-
self onerous and ad-hoc. = We introduce
FLAIRR-TS, a test-time prompt optimization
framework that utilizes an agentic system: a
Forecaster-agent generates forecasts using an
initial prompt, which is then refined by a re-
finer agent, informed by past outputs and re-
trieved analogs. This adaptive prompting gen-
eralizes across domains using creative prompt
templates and generates high-quality forecasts
without intermediate code generation. Exper-
iments on benchmark datasets show FLAIRR-
TS improves forecasting over static prompting
and retrieval-augmented baselines, approach-
ing the performance of specialized prompts.
FLAIRR-TS provides a practical alternative to
fine-tuning, achieving strong performance via
its agentic approach to adaptive prompt refine-
ment and retrieval.

1 Introduction

LLMs can, in principle, leverage their vast pre-
trained knowledge for prediction tasks. Initial stud-
ies demonstrated that direct prompting could en-
able LLMs to achieve competitive zero-shot or few-
shot forecasting performance compared to some
specialized models, particularly in novel scenarios
(Xue and Salim, 2023).

However, the efficacy of LLMs in time series
forecasting (TSF) is often stymied by the prompt
engineering bottleneck. The performance of a
frozen, pre-trained LLM is critically dependent
on the precise natural language prompt it receives.
Crafting optimal prompts is currently a laborious,

ad-hoc process requiring significant domain ex-
pertise and iterative manual tuning for each new
dataset or scenario, thereby limiting scalability and
robust generalization((Niu et al., 2024)). This chal-
lenge has spurred research into more sophisticated
prompting strategies (Liu et al., 2024; Tang et al.,
2024) and even methods to reprogram LLMs at
inference time without altering weights (Jin et al.,
2024).

Given that LLMs can iteratively refine their out-
puts through feedback (as demonstrated by Madaan
et al. (2023) and Chen and others (2025)), we ex-
plore their capability to autonomously refineing
their prompts at test time to enhance time series
forecasts.

We introduce FLAIRR-TS - Forecasting LLM-
Agents with Iterative Refinement and Retrieval, a
framework designed to enhance TSF capabilities
of LLMs without any training. This approach aims
to mitigate the manual prompt engineering burden
while simultaneously improving prediction accu-
racy by grounding forecasts in relevant historical
context. FLAIRR-TS synergistically integrates a
Forecaster-agent (F) for initial predictions, a Re-
finer Agent for Iterative RefinementTuning (IRT),
and a Retrieval agent (R) that sources semanti-
cally similar historical time series segments, akin
to Retrieval Augmented Generation (RAG) princi-
ples adapted for TSF (Han et al., 2023). This entire
cycle of prompt adaptation and forecast refinement
occurs without any model weight updates, offering
a compelling alternative to costly fine-tuning.

Beyond the adaptive capabilities of FLAIRR-TS
for general applicability, we also investigate the up-
per bounds of performance achievable with highly
engineered instructions. To this end, we introduce
Architected Strategy Prompts (ASPs): a set of
specialized prompts, which include directives for
specific analytical procedures or induce particular
cognitive approaches. These are developed through
a Systematic Prompt Architecting process inspired
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Figure 1: Flowchart of the the proposed method framework, consisting Retrieval, Forecaster and Refiner agents.

by (Sahoo et al., 2025). While FLAIRR-TS excels
at automated, test-time prompt refinement without
prior domain-specific tuning, ASPs allow us to ex-
plore the pinnacle of performance when such metic-
ulous, strategy-driven design is employed. Our
main contributions are summarized as:

* We propose FLAIRR-TS, a novel prompting
and test-time optimization framework for TSF
with iterative refinement and retrieval.

* We utilize retrieval augmentation for TSF
with LLMs with the introduced Architected
Strategy Prompts (ASPs), developed via a
Systematic Prompt Architecting process, to
reveal the significant impact of specialized,
meticulously- engineered instructions and to
serve as high-performance benchmarks.

* We demonstrate that FLAIRR-TS consistently
improves forecasting accuracy across diverse
datasets without model fine-tuning, outper-
forming static domain agnostic prompting and
a non-iterative retrieval-augmented baseline

2 Methodology

2.1 Overall Agentic Architecture

We propose FLAIRR-TS, a framework combin-
ing test-time optimization for iterative refinement
via prompting by an agentic system, and retrieval-
augmented context to enhance TSF with pre-
trained LLMs.

It is illustrated in Figure 1 and formally detailed
in Algorithm 1, operates as a multi-agent system.
The Forecaster Agent generates predictions us-
ing a prompt that is dynamically improved by the
Refiner Agent during an Iterative Tuning phase.

This process is enriched by the Retrieval Agent
that provides the relevant historical context and
augments it to the input provided to the forecaster.

The core iterative cycle (Alg. 1, lines 7-20) in-
volves forecasting, evaluating the forecast against
recent ground truth (e.g., via a metric like MSE),
and refining the prompt. The Refiner agent can
signal early termination if the forecasts are satis-
factory. Otherwise, if maximum iterations (Vi)
are reached, the system defaults to the prompt that
yielded the best observed MSE. This adaptive op-
timization occurs at test-time without any model
training.

2.2 Core Agent Descriptions

Retrieval Agent. Inspired by RAFT (Han et al.,
2023), this agent (Alg. 1, line 8) enhances the
Forecaster Agent’s inputs by retrieving M histori-
cal time series segments (Sye) that are most similar
to the current context window (Xc). These seg-
ments, along with their actual outcomes, provide
illustrative examples of past pattern evolutions, di-
rectly augmenting the context (Cyye) given to the
Forecaster-agent.

Refiner-agent (R). Functioning as a meta-
optimizer (Alg. 1, line 14), the Refiner Agent
analyzes the Forecaster Agent’s most recent output
(Xcand), its calculated error (mae.y,;), the prompt
(Peurr) that generated it, and other contextual infor-
mation. Based on this, it proposes a refined can-
didate prompt (Ppex) and provides a done_signal
if the current forecast quality meets termination
criteria. Its detailed reasoning, guided by a specific
prompt structure (see Appendix B), might yield
feedback such as, ‘Pay closer attention to
sudden changes in the last 10% of the
input sequence®



Algorithm 1 FLAIRR-TS Algorithm

Require: Training data X, Historical series X;.;—1, Horizon H, Initial prompt Py, Context length L,
#Segments M, Max iterations Njer, Recent ground truth X,y ;7

Ensure: Selected prompt Pyt
I Pourr < P05 Poest < P03 maepi < 00;
2: XpisoB < X1:4-r0-1:  Xow < Xp—pa
3: for k <+ 1 t0 N, do

Xpest < nil;

teacher_stopped <« false
> Setup context and historical DB

Sretr <~ RETRIEVESEGMENTS (Xyisins, Xcix, M)

Caug < AUGMENTCONTEXT(Xcx, Sretr)

maegyy ¢ CALCULATEMAE (Xcand, Xt:t4+-1)

if mae.,; < maey, then
: Maey;, < Maecyr;
10: end if

4
5
6: Xcand <~ FORECASTERLLM (Peysr;, Caug, H)
7
8
9

Pbest — Pcurr;

X best X, cand

11: (Phext, done_signal) <~ REFINERLLM (Preyrr, Xcix, Sretrs Xcand, maecyr)

12: if done_signal then

13: Pout < Peur;  teacher_stopped < true;  break

14: end if

15: Peurr < Phext

16: end for

17: if not teacher_stopped then > Fallback to best MAE if max iterations reached
18: Pout < Poest

19: end if

20: return P,y

Forecaster-agent (F). This agent (Algorithm 1,
line 10) is responsible for generating the time series
forecast (X cand)- It uses the current prompt (FPeyyy)
either the initial prompt Py or the one refined by the
Refiner Agent - along with the augmented context

(Caug) provided by the Retriever Agent. FLAIRR-

TS allows utilization of a potentially more compact
LLM:s as this agent, with the behaviors shaped by
dynamically optimized prompts. The structure of
the prompts are detailed in Appendix C.

2.3 Architected Strategy Prompts (ASP)

Analytical

Deep STL analysis (inspired by (Zhou et al.,
2024)): perform an STL decomposition, fore-
cast each component, then recombine them via
STL addition.

Thinking—Inductive

Monte-Hall Prompting: frame forecasting as a
decision game so the model evaluates several
scenarios before committing.

Imaginative

(a) Many-Worlds Reasoning: simulate multiple
plausible futures and aggregate them.

(b) D&D Dungeon-Master: forecast a character’s
hit-point trajectory over upcoming turns.

3 Experiments

Experiments utilized Informer (Zhou et al., 2021)
benchmark datasets': ETT (ETThl, ETTh2,
ETTml, ETTm?2); Electricity; Traffic. We also
benchmark some newer dataset ; Weather and
ILINet and we test on 2025 data after the knowl-
edge cutoff date of Gemini. More details in Ap-
pendix - F. All dataset characteristics (domains,
frequencies, evaluated horizons H) and Data in-
tegrity are detailed in Section F.

LLM Backbone: FLAIRR was run on Gemini-
2.5-Pro and ASP was run on Gemini-2.5-Pro and
Gemini-2-Flash, both frozen. For ablation, we also
ran the same experiments on DeepSeek-V3

Data & Execution: Inputs normalized via stan-
dard scaling; prompt numerical precision con-
trolled. Results are median of p ~ 5 runs per
experiment for robustness.

"Full experimental parameters and any dataset-specific
preprocessing are in Appendix or supplementary material.



Dataset  Horizon Supervised PTMs Prompt
Informer DLinear FEDformer PatchTST | TTM Time-LLM | LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)

ETThI 96 0.76 0.39 0.58 041 0.36 0.46 0.15 0.101 0.078 0.118
192 0.78 0.41 0.64 0.49 0.39 0.54 0.22 0.246 0.208 0.223
ETTh2 96 1.94 0.35 0.67 0.28 0.26 0.40 0.42 0.156 0.154 0.197
192 2.02 0.41 0.82 0.68 0.32 0.42 0.48 0.439 0.332 0.416
ETTml 96 0.71 0.34 0.41 0.33 0.32 0.38 0.10 0.068 0.043 0.042
192 0.68 0.36 0.49 0.31 0.35 0.46 0.21 0.083 0.081 0.099
ETTm2 96 0.36 0.26 0.20 0.26 0.17 0.25 0.25 0.108 0.096 0.093
192 0.52 0.30 0.25 0.29 0.22 0.29 0.54 0.370 0.255 0.257
electricity 96 0.53 0.24 0.42 0.22 0.15 0.22 0.41 0.250 0.245 0.321
192 0.62 0.25 0.47 0.24 0.18 0.24 0.55 0.263 0.259 0.308
wraffic 96 0.69 0.28 0.56 0.25 0.46 0.25 0.32 0.145 0.143 0.184
192 0.58 0.28 0.58 0.26 0.49 0.25 0.31 0.326 0.324 0.296

Table 1: Performance comparison (MAE) of supervised models and zero-shot

ASP(G2.0F) (Ours) are our proposed/evaluated methods.

methods on benchmark datasets. FLAIRR (Ours), ASP(G2.5P) (Ours), and

Dataset Horizon Supervised Prompt
Informer AutoFormer FedFormer PatchTST | LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)
4 1.54 1.24 2.54 0.43 0.38 0.271 0.264 0.189
ILI 12 2.33 1.82 2.67 0.43 0.39 0.249 0.183 0.197
20 2.12 1.90 1.75 1.26 0.73 0.589 0.564 0.867
24 3.99 1.79 1.50 1.72 1.55 0.724 0.722 1.004
24 1.45 1.38 1.95 1.55 0.17 0.110 0.084 0.125
Weather 48 1.57 1.43 1.67 1.56 0.24 0.160 0.142 0.238
96 1.48 1.67 1.96 1.12 0.39 0.29 0.257 0.243
120 1.90 1.74 2.02 1.31 0.51 0.383 0.309 0.369

Table 2: Performance comparison (MAE) on datasets whose test periods post-date the Gemini 2.5 Pro knowledge cut-off. FLAIRR and both ASP variants are ours;
Informer—PatchTST are supervised baselines; LSTP is a prior prompt-based method.

Results are in Table 1 - which is the evaluation of
long horizon datasets Figure 2 - short horizon. We
use Mean Absolute error (MAE) as the main met-
ric. We compare with most recent prompt method
of LSTPrompt (Liu et al., 2024)(Frozen Gemini
as backbone) and two best PTM methods - TTM
(Ekambaram et al., 2024) and Time-LLM (Jin et al.,
2024). We also compare against non LLM super-
vised methods like DLinear (Zeng et al., 2022).

Analysis: Our method (FLAIRR and ASP) per-
formed better than LSTP in all of the datasets used,
it performed best among all the models in 14 out of
20 times with performing best in all of the smaller
horizon cases.

3.1 Ablations

We disentangle the impact of Retrieval and Iter-
ative Refinement (IR) by successively activating
them on top of a Simple Prompt. Fig 2 reports
mean absolute error (|) on ETTM2 for Gemini 2.5
Pro, Gemini 2 Flash, and open-source DeepSeek-
V3.

Observations: Retrieval alone lowers error by
grounding forecasts in analogous history, while
IT alone refines outputs through on-the-fly prompt
correction. Their combination (FLAIRR-TS) de-
livers the lowest MAE across all three backbones.
Crucially, the same trend holds for DeepSeek-
V3, demonstrating that our gains are architecture-
agnostic and not specific to the Gemini family of
models.

B BascLine(BL) [l BL + Retrieval [l BL + Iterative Refinement  [l] FLAIRR (Both)

0.4

0.3
0.2
0.1

0.0

DeepSeek-V3

Gemini 2.5 Pro Gemini 2 Flash

Figure 2: Ablation results, average MAE. Lower MAE is better.

4 Conclusion

The value proposition of FLAIRR-TS lies not nec-
essarily in always surpassing the absolute best, po-
tentially laboriously hand-tuned prompt for every
single scenario, but in its ability to automate the
refinement process and consistently achieve strong
performance starting from generic or moderately
good prompts. By iteratively improving instruc-
tions based on feedback, FLAIRR-TS aims to el-
evate the performance baseline achievable with
LLMs for TSF without requiring exhaustive man-
ual search for the "perfect" prompt for each new
dataset or horizon. The framework offers a path-
way to robust performance by adapting the prompt
to the task at hand through its agentic interactions.

4.1 Limitations

* Benchmark coverage. Empirical validation
spans only a handful of public, mostly regular-



interval datasets; robustness to irregular sam-
pling, regime shifts, or domain drift remains
untested.

* Analogue-retrieval assumption. FLAIRR-TS
presumes the presence of semantically similar
historical segments; when none exist (e.g. novel
events), the refinement loop can compound error
rather than correct it.

* Numerical fidelity of LLMs. Gemini-class
models exhibit limited precision on long or out-
of-range sequences, and may hallucinate trends
under noise or scale shifts, constraining reliabil-

ity.

* Inference cost. Iterative prompting adds multi-
ple LLM calls per forecast; while cheaper than
fine-tuning, latency and energy consumption may
be prohibitive for real-time, high-frequency set-
tings.
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A Related Work

Time Series Forecasting with LLMs: Tradi-
tional time series forecasting has relied on models
explicitly trained for the task, from statistical meth-
ods to deep architectures like RNN variants and
temporal CNNs, up through recent Transformer-
based models (e.g. FEDformer (Zhou et al., 2022)
and PatchTST ((Nie et al., 2023))) tailored for long-
range sequences. These approaches require sub-
stantial training on each target dataset. In con-
trast, emerging research explores using pre-trained
LLMs as general-purpose forecasters via prompt-
ing at inference time only, without gradient-based
fine-tuning. Xue and Salim (2023) pioneered this
direction with PromptCast, formulating forecast-
ing as a prompt—completion task: historical val-
ues are encoded into a textual prompt (possibly
with instructions) and the LLM’s next-token pre-
dictions are decoded as forecasts. Gruver et al.
(2023) similarly represent numerical time series
as token sequences and treat extrapolation as lan-
guage modeling, finding that GPT-3 and LLaMA-2
can zero-shot extrapolate time series with accu-
racy comparable to or exceeding specialized trained
models. TNotably, these LLM-based approaches
leverage the models’ strong sequence modeling
and few-shot generalization for competitive bench-
mark results, without requiringabilities to achieve
competitive results on standard benchmarks with-
out any task-specific training data. Nevertheless,
naive prompt formulations might overlook impor-
tant temporal dynamics and patterns. Recent works
therefore propose more advanced test-time prompt-
ing strategies. Liu et al. (2024) introduce LST-
Prompt, which splits the prediction into short- and
long-term sub-tasks and guides the LLLM through
a chain-of-thought reasoning process; this method
outperforms earlier prompt baselines and even ap-
proaches the accuracy of dedicated TS models.
Tang et al. (2024) report that enriching prompts
with external knowledge (e.g. known seasonal peri-
ods or contextual clues) and using natural language
rephrasings of the input can significantly improve
an LLM’s forecasting accuracy. Another technique,
Time-LLM (Jin et al., 2024), reprograms a frozen
LLM by mapping time-series data into textual
“patches” and prepending learned prompt tokens,
allowing the model to output forecasts that outper-
form state-of-the-art specialized forecasters with-
out any fine-tuning of the LLM’s weights. On the
other hand, Tan and others offer a cautionary per-

spective: through extensive ablations, they found
that removing the LLM or replacing it with a sim-
ple attention-based network in these pipelines of-
ten does not hurt performance (and sometimes im-
proves it), calling into question how much current
LLM-for-TS methods truly benefit from the pre-
trained language model. To push LLM-based fore-
casting further, researchers are drawing on insights
from prompt optimization and test-time reasoning.
For example, Wan et al. (2024) show that intelli-
gently selecting and reusing in-context exemplars
can yield larger gains than optimizing instructions
alone, suggesting that careful few-shot prompt de-
sign is crucial. Chen and others (2025) propose
a self-verification and self-correction framework
(SETS) that lets the model iteratively refine its out-
puts at inference, achieving better accuracy scaling
on complex reasoning tasks. Incorporating such
techniques into zero-shot forecasting prompts is
an exciting direction. In summary, the literature
demonstrates a nascent but growing paradigm of us-
ing pre-trained LLMs directly for time series fore-
casting, with multiple studies showing that, given
the right prompts, foundation models can attain
forecast accuracy rivaling traditional specialized
models. While these methods demonstrate progress
in leveraging LL.Ms for forecasting, the dynamic
and optimal design of prompts—especially those
needing to integrate complex reasoning, external
knowledge, and iterative feedback—remains a key
challenge. Our work, FLAIRR-TS, aims to address
this by structuring the forecasting process around
specialized agents for dynamic prompt adaptation
and refinement.

Agentic Frameworks with Iterative Refinement
The concept of employing multiple interacting
agents or distinct processing roles for complex
problem-solving has gained traction in Al. Such
agentic systems can distribute tasks, specialize
functionalities, and enable more sophisticated rea-
soning or generation processes. Iterative refine-
ment, where an output is progressively improved
through feedback loops, is a common characteristic
of these systems and is also seen in self-correction
mechanisms within single LLMs (e.g., Self-Refine
by Madaan et al. (2023)). For instance, systems
might involve a generator agent and a critic agent,
or distinct agents for planning, execution, and veri-
fication. FLAIRR-TS draws inspiration from these
paradigms by structuring its operation around spe-
cialized agents: a Forecaster-agent for initial pre-



diction, a retriever agent for sourcing relevant con-
text, and a refiner agent for iterative prompt refine-
ment. This agentic decomposition facilitates more
targeted and adaptable modifications to distinct as-
pects of the forecasting prompt through these spe-
cialized roles. Crucially, unlike traditional multi-
agent systems where agents might be independently
trained or involve complex coordination protocols,
FLAIRR-TS implements these roles using LLMs
at test time to dynamically adapt the prompting
strategy itself. The "refinement" occurs in the tex-
tual instructions and contextual information fed
to the LLM, rather than through updates to model
weights, distinguishing it from model distillation or
training paradigms. This focus on inference-time
prompt adaptation through an agentic perspective
is a key aspect of our approach. This structured
approach also aims to ensure that the LLM’s rea-
soning and generative capabilities are a core com-
ponent of the forecasting process, addressing con-
cerns about their actual contribution in some prior
LLM-for-TS pipelines.

Retrieval Augmented Generation: Retrieval
Augmented Generation (RAG) (Lewis et al., 2020)
has become a standard technique for enhancing
LLMs in knowledge-intensive NLP tasks. RAG
systems retrieve relevant documents or passages
from an external corpus and provide them as ad-
ditional context to the LLM, improving factual
grounding and reducing hallucination. Recently,
Han et al. (2023) adapted this concept to time se-
ries forecasting with their Retrieval Augmented
Time Series Forecasting (RAFT) approach. RAFT
retrieves historical time series segments similar to
the current input window and uses them to augment
the context provided to a forecasting model (in their
case, an LL.M). Our work directly builds upon and
integrates the RAFT principle within the Retrieval
agent component of FLAIRR-TS. We hypothesize
that the effectiveness of RAFT can be further en-
hanced by optimizing the prompt that instructs the
LLM on how to utilize the retrieved historical con-
text, which is precisely what the agentic interaction
within FLAIRR-TS aims to achieve.

B Refiner Agent

You are an expert Time-Series-Forecasting Prompt En-
gineer acting as a “Teacher LLM”. Your goal is to anal-
yse a set of forecasting attempts made by a “Student
LLM” and provide specific, actionable “Teacher Learn-
ings” on how to improve the initial forecasting prompt

used by the Student. The Student uses a base prompt
and adds forecasting instructions to it based on your
learnings.

Key Information for Your Analysis for this Itera-
tion {it + 1}:

1. Current Forecasting Instructions Under Review:
{current_instructions_under_review"}

2. Overall Mean Absolute Error (MAE) for this batch
of samples: {mae_to_report_to_teacher}

You will also be given a batch of individual samples,
where each sample includes:

1. The full Prompt the Student LLM used (includes
the instructions above).

2. The Student LLLM’s Predictions for the OT vari-
able.

3. The Ground-Truth OT values.

Your Analysis Task:

1. Identify error patterns. Compare Predictions
with Ground Truths. Look for systematic er-
rors (over/under-prediction, lagging, volatility mis-
handling, etc.).

2. Correlate errors with prompts and instructions.
Check whether the current instructions are ambigu-
ous, misleading, too complex, or otherwise harmful.

3. Formulate “Teacher Learnings”. Give concrete,
generalisable improvements (e.g. adjust look-back
horizon, drop STL decomposition, add weekday
feature).

4. Determine ‘“Done” status.

¢ If the MAE {mae_to_report_to_teacher} is
low and stable, or no samples were supplied, out-
put Done: True.

¢ Otherwise output Done: False.

Output Format—exactly this template

Teacher Learnings: <your concise, actionable
suggestions here>

Done: <True or False>

Confidence in output: <High | Medium | Low> —
one-line rationale.

C Forecaster Agent

Prompt-Synthesis Instructions

Example: Forecasting-Instruction Refinement

You are an intelligent ''Student LLM"' that refines
forecasting prompts based on expert feedback. You will
receive Teacher Learnings that suggest improvements
to an initial time-series forecasting prompt. Your task
is to turn these learnings into concise and effective
prompt-forecasting instructions. These instructions will
be appended to a base forecasting prompt to guide the



forecasting LLM.

The forecasting instructions should:

* Be ashort set of guiding principles (max. 3 actionable
items).

* Directly address the issues and suggestions in the
Teacher Learnings.

* Be clearly phrased for another LLM to follow.

e **Do not include placeholders such as
{previous_data} or {prediction_data}.

* **Do not change the output format or the forecasting
task itself.

* If no actionable learnings exist, output a safe generic
set—or state:

No specific new instructions generated due to lack of
actionable learnings.

Example (teacher said “focus on recent volatility’):

Teacher Learnings: The model often misses sudden
spikes; the prompt should ask the forecaster to pay
more attention to recent volatility and its effect on the
next step.

Your Output (forecasting instructions): “Critically
assess the volatility in the most recent data points. Your
forecast for the next step should reflect whether this
volatility is expected to continue, increase, or decrease.
Explain this assumption in your reasoning.”

Teacher Learnings you received:
{current_learnings}

Based on these learnings, generate only the refined
prompt-forecasting instructions below (no extra com-
mentary).

Refined Prompt Forecasting Instructions:
<model prediction here>

D Prompt template

— Adhere strictly to the specified output format.
If instructions:
Forecasting Instructions: {instructions}

If raft_context:
{raft_context}

Input Data

¢ Historical Data:
{previous_sequence_length_data}

Output Format — exactly this

Predicted Values: [predicted_value_1, ...]
Reasoning: [Your detailed reasoning ]
Certainty Estimate: [Percentage certainty]
Certainty Reasoning: [reasoning]

E Prompt Library

These are the remaining prompts in the prompt

library.
teacher-student-loop

ACT I — TEACHER Propose a first-pass forecast
for the next {sequence_length} steps.

ACT II — STUDENT Evaluate teacher’s forecast
against the most recent known data and
suggest corrections.

ACT III — TEACHER Incorporate feedback and
provide the refined forecast.

self-verification-sets

Step 1 - Generate candidate forecast A for
{sequence_length} steps. Step 2 - Generate
independent candidate forecast B. Step 3
- For each horizon h, if the two differ
beyond an acceptable tolerance, reconcile
them (e.g., by averaging). Provide only the
reconciled forecast.

Thinking Inducting Prompts
Example: Monte Hall Prompting

Objective meta-prompt-conf-bands

Provide a well-reasoned forecast for the
{target_variable} value in the next row of
the dataset, given the historical data.

Dataset Instructions

* Dataset: data_name, data_description

¢ Variable to Predict: {target_variable}.

e Task: Predict the {target_variable} values for
the next {prediction_length} steps using the his-

torical data.

¢ Constraints:

Forecast {sequence_length} steps and include
68% and 95% confidence bands. Briefly
explain the uncertainty assumptions before
the numbers.

imaginary-python-repl

You are ForecastPy, a mental Python
REPL. Think then “run code in your head”
that derives the forecast for the next
{sequence_length} steps.



synesthetic-soundtrack

Interpret the past sequence as MIDI
velocity (0-127) and compose the next
{sequence_length} beats that extend the
melody. Provide both the MIDI integers and
the values rescaled to original units.

color-gradient-canvas

Map each value to an RGB triplet on
a blue-to-red gradient. Produce a grid
of HEX colours that encodes the next
{sequence_length} points.

dungeon-master

You are a D&D Dungeon Master. The party’s HP
over the last turns is shown. Forecast HP for
the next {sequence_length} turns, assuming
no boss fights and only mild potion use.

micro-essay-poisson

Write a <60-word micro-abstract describing
the generative mechanism, then list
{sequence_length} A\ parameters for a Poisson
baseline.

reverse-sudoku

Think of the next {sequence_length} points
as filling a 9 x 11 Sudoku-like grid whose
row sums match the recent history. Provide
the grid and a flattened list.

many-worlds-ensemble

Create forecasts for four parallel universes
(A-D) shifted by —20, —1o, +10, +20, each
{sequence_length} steps long, then provide a
consensus median forecast.

haiku-seeded

Compose a three-line haiku that
metaphorically  describes  the  upcoming
pattern, then 1list the {sequence_length}
numeric forecasts, one per line.

F Datasets

Experiments were performed on a diverse set of
widely-used time-series-forecasting (TSF) bench-
mark datasets spanning multiple domains, sam-
pling frequencies, and statistical characteristics
(e.g., seasonality, trend, noise levels). All datasets

are normalized with StandardScaling from sklearn
package. The datasets are:

e ETT (ETTh1,ETTh2, ETTm1, ETTm2) — Electricity
Transformer Temperature data recorded at hourly
(h) or 15-minute (m) intervals; widely used for
long-sequence forecasting with OT as target vari-
able (ETTh: 17,420 total data points, ETTm:
69,680 total data points)

* Electricity — Hourly household electricity data
of customers with electricity comsumption as
target variable (26,304 total data points)

* Traffic — Hourly occupancy rates from California
road-traffic sensors (2021-2025 March) with traf-
fic volume as target variable (17,544 data points)

* ILINet — Weekly Influenza-Like-Illness counts
from the CDC (2002-2025 April) with total
ILI patients as target variable (1,441 total data
points)?

* Weather - Hourly weather data from Chicago
with temperature as target variable (35,052 total
data points)®

F.1 Data Integrity

A significant consideration when utilizing Large
Language Models (LLMs) for time series forecast-
ing is the potential for the model’s pre-training data
to inadvertently include samples from the test set,
which could lead to an overestimation of predictive
performance. To rigorously uphold data integrity
in this study, we employed ILINet and weather
datasets as benchmarks, with a specific focus on
temporal data separation. Our experimental design
ensures that all data samples within the test set orig-
inate from dates strictly subsequent to the known
training data cut-off date of the LLM employed
for inference. This chronological separation miti-
gates the risk of test data contamination, providing
a robust and fair evaluation of the LLM’s ability
to generalize and forecast genuinely unseen future
values.

F.2 Evaluation Metrics

Forecasting performance was assessed with two
standard error metrics:

Zhttps://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
Shttps://www.kaggle.com/datasets/curiel/chicago-
weather-database
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Where H is the prediction horizon, XtH is the
predicted value, and X;; is the ground-truth value.
Lower values indicate better performance for both
metrics. These metrics were computed directly
from the experimental results.

G Future directions

There are several avenues for future work. One
direction is to incorporate quantitative validation
in the loop: currently, the Refiner-agent’s feedback
quality is not directly measured. If we had a small
hold-out set or could use the model’s own likeli-
hood of the data, we might select or weight feed-
back. This leans towards techniques in automatic
prompt optimization where a reward is defined. Ad-
ditionally, while FLAIRR-TS currently uses natu-
ral language for feedback from the Refiner-agent,
one could imagine hybrid approaches where the
Refiner-agent suggests pseudo-code or formulaic
adjustments (if the LLM agents are equipped with
a calculator tool). That could improve handling of
scale and magnitude issues. On the retrieval side,
exploring more advanced analog search (perhaps
using learned embeddings or matching not just on
raw values but pattern descriptors) might yield even
more relevant cases to show the Refiner-agent, es-
pecially for complex multivariate data.

From an application perspective, deploying
FLAIRR-TS in an interactive forecasting system
would be very interesting. Because FLAIRR-
TS’s intermediate steps (the prompts, the retrieved
analogs, the feedback) are human-readable, a hu-
man analyst could intervene in the loop — agreeing
or disagreeing with the Refiner-agent’s critique, or
adding their own feedback. This could turn fore-
casting into a collaborative dialog between human,
Forecaster-agent, and Refiner-agent. In settings
like supply chain or epidemiology forecasting, such
a system could help build trust as well, since each
refinement step can be scrutinized.

H Potential Risks

* Decision-critical misuse. Deployment in safety-
or finance-critical contexts without rigorous cali-
bration could propagate spurious forecasts, lead-
ing to systemic harm.
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« Bias amplification. Retrieval from historical
data can embed and magnify demographic or
regional skews, potentially disadvantaging under-
represented groups.

* Privacy leakage. Sending raw time-series to
external LLM APIs risks exposing sensitive pat-
terns; secure on-prem or encrypted inference is
required for confidential data.

* Environmental footprint. Although we avoid
training, repeated large-model inference still in-
curs non-trivial energy costs; batching and lighter
models are possible mitigations.
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