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Abstract001

Time series Forecasting with large language002
models (LLMs) requires bridging numerical003
patterns and natural language. Effective fore-004
casting on LLM often relies on extensive pre-005
processing and fine-tuning. Recent studies006
show that a frozen LLM can rival special-007
ized forecasters when supplied with a care-008
fully engineered natural-language prompt, but009
crafting such a prompt for each task is it-010
self onerous and ad-hoc. We introduce011
FLAIRR-TS, a test-time prompt optimization012
framework that utilizes an agentic system: a013
Forecaster-agent generates forecasts using an014
initial prompt, which is then refined by a re-015
finer agent, informed by past outputs and re-016
trieved analogs. This adaptive prompting gen-017
eralizes across domains using creative prompt018
templates and generates high-quality forecasts019
without intermediate code generation. Exper-020
iments on benchmark datasets show FLAIRR-021
TS improves forecasting over static prompting022
and retrieval-augmented baselines, approach-023
ing the performance of specialized prompts.024
FLAIRR-TS provides a practical alternative to025
fine-tuning, achieving strong performance via026
its agentic approach to adaptive prompt refine-027
ment and retrieval.028

1 Introduction029

LLMs can, in principle, leverage their vast pre-030

trained knowledge for prediction tasks. Initial stud-031

ies demonstrated that direct prompting could en-032

able LLMs to achieve competitive zero-shot or few-033

shot forecasting performance compared to some034

specialized models, particularly in novel scenarios035

(Xue and Salim, 2023).036

However, the efficacy of LLMs in time series037

forecasting (TSF) is often stymied by the prompt038

engineering bottleneck. The performance of a039

frozen, pre-trained LLM is critically dependent040

on the precise natural language prompt it receives.041

Crafting optimal prompts is currently a laborious,042

ad-hoc process requiring significant domain ex- 043

pertise and iterative manual tuning for each new 044

dataset or scenario, thereby limiting scalability and 045

robust generalization((Niu et al., 2024)). This chal- 046

lenge has spurred research into more sophisticated 047

prompting strategies (Liu et al., 2024; Tang et al., 048

2024) and even methods to reprogram LLMs at 049

inference time without altering weights (Jin et al., 050

2024). 051

Given that LLMs can iteratively refine their out- 052

puts through feedback (as demonstrated by Madaan 053

et al. (2023) and Chen and others (2025)), we ex- 054

plore their capability to autonomously refineing 055

their prompts at test time to enhance time series 056

forecasts. 057

We introduce FLAIRR-TS - Forecasting LLM- 058

Agents with Iterative Refinement and Retrieval, a 059

framework designed to enhance TSF capabilities 060

of LLMs without any training. This approach aims 061

to mitigate the manual prompt engineering burden 062

while simultaneously improving prediction accu- 063

racy by grounding forecasts in relevant historical 064

context. FLAIRR-TS synergistically integrates a 065

Forecaster-agent (F) for initial predictions, a Re- 066

finer Agent for Iterative RefinementTuning (IRT), 067

and a Retrieval agent (R) that sources semanti- 068

cally similar historical time series segments, akin 069

to Retrieval Augmented Generation (RAG) princi- 070

ples adapted for TSF (Han et al., 2023). This entire 071

cycle of prompt adaptation and forecast refinement 072

occurs without any model weight updates, offering 073

a compelling alternative to costly fine-tuning. 074

Beyond the adaptive capabilities of FLAIRR-TS 075

for general applicability, we also investigate the up- 076

per bounds of performance achievable with highly 077

engineered instructions. To this end, we introduce 078

Architected Strategy Prompts (ASPs): a set of 079

specialized prompts, which include directives for 080

specific analytical procedures or induce particular 081

cognitive approaches. These are developed through 082

a Systematic Prompt Architecting process inspired 083
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Figure 1: Flowchart of the the proposed method framework, consisting Retrieval, Forecaster and Refiner agents.

by (Sahoo et al., 2025). While FLAIRR-TS excels084

at automated, test-time prompt refinement without085

prior domain-specific tuning, ASPs allow us to ex-086

plore the pinnacle of performance when such metic-087

ulous, strategy-driven design is employed. Our088

main contributions are summarized as:089

• We propose FLAIRR-TS, a novel prompting090

and test-time optimization framework for TSF091

with iterative refinement and retrieval.092

• We utilize retrieval augmentation for TSF093

with LLMs with the introduced Architected094

Strategy Prompts (ASPs), developed via a095

Systematic Prompt Architecting process, to096

reveal the significant impact of specialized,097

meticulously- engineered instructions and to098

serve as high-performance benchmarks.099

• We demonstrate that FLAIRR-TS consistently100

improves forecasting accuracy across diverse101

datasets without model fine-tuning, outper-102

forming static domain agnostic prompting and103

a non-iterative retrieval-augmented baseline104

2 Methodology105

2.1 Overall Agentic Architecture106

We propose FLAIRR-TS, a framework combin-107

ing test-time optimization for iterative refinement108

via prompting by an agentic system, and retrieval-109

augmented context to enhance TSF with pre-110

trained LLMs.111

It is illustrated in Figure 1 and formally detailed112

in Algorithm 1, operates as a multi-agent system.113

The Forecaster Agent generates predictions us-114

ing a prompt that is dynamically improved by the115

Refiner Agent during an Iterative Tuning phase.116

This process is enriched by the Retrieval Agent 117

that provides the relevant historical context and 118

augments it to the input provided to the forecaster. 119

The core iterative cycle (Alg. 1, lines 7-20) in- 120

volves forecasting, evaluating the forecast against 121

recent ground truth (e.g., via a metric like MSE), 122

and refining the prompt. The Refiner agent can 123

signal early termination if the forecasts are satis- 124

factory. Otherwise, if maximum iterations (Niter) 125

are reached, the system defaults to the prompt that 126

yielded the best observed MSE. This adaptive op- 127

timization occurs at test-time without any model 128

training. 129

2.2 Core Agent Descriptions 130

Retrieval Agent. Inspired by RAFT (Han et al., 131

2023), this agent (Alg. 1, line 8) enhances the 132

Forecaster Agent’s inputs by retrieving M histori- 133

cal time series segments (Sretr) that are most similar 134

to the current context window (XCtx). These seg- 135

ments, along with their actual outcomes, provide 136

illustrative examples of past pattern evolutions, di- 137

rectly augmenting the context (Caug) given to the 138

Forecaster-agent. 139

Refiner-agent (R). Functioning as a meta- 140

optimizer (Alg. 1, line 14), the Refiner Agent 141

analyzes the Forecaster Agent’s most recent output 142

(X̂cand), its calculated error (maecurr), the prompt 143

(Pcurr) that generated it, and other contextual infor- 144

mation. Based on this, it proposes a refined can- 145

didate prompt (Pnext) and provides a done_signal 146

if the current forecast quality meets termination 147

criteria. Its detailed reasoning, guided by a specific 148

prompt structure (see Appendix B), might yield 149

feedback such as, ‘Pay closer attention to 150

sudden changes in the last 10% of the 151

input sequence‘ 152
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Algorithm 1 FLAIRR-TS Algorithm

Require: Training data X , Historical series X1:t−1, Horizon H , Initial prompt P0, Context length L,
#Segments M , Max iterations Niter, Recent ground truth Xt:t+H

Ensure: Selected prompt Pout
1: Pcurr ← P0; Pbest ← P0; maemin ←∞; X̂best ← nil; teacher_stopped← false
2: XHistDB ← X1:t−L−1; XCtx ← Xt−L:t . Setup context and historical DB
3: for k ← 1 to Niter do
4: Sretr ← RETRIEVESEGMENTS(XHistDB, XCtx,M)
5: Caug ← AUGMENTCONTEXT(XCtx, Sretr)

6: X̂cand ← FORECASTERLLM(Pcurr, Caug, H)

7: maecurr ← CALCULATEMAE(X̂cand, Xt:t+H)
8: if maecurr < maemin then
9: maemin ← maecurr; Pbest ← Pcurr; X̂best ← X̂cand

10: end if
11: (Pnext, done_signal)← REFINERLLM(Pcurr, XCtx, Sretr, X̂cand,maecurr)
12: if done_signal then
13: Pout ← Pcurr; teacher_stopped← true; break
14: end if
15: Pcurr ← Pnext
16: end for
17: if not teacher_stopped then . Fallback to best MAE if max iterations reached
18: Pout ← Pbest
19: end if
20: return Pout

Forecaster-agent (F). This agent (Algorithm 1,153

line 10) is responsible for generating the time series154

forecast (X̂cand). It uses the current prompt (Pcurr)155

either the initial prompt P0 or the one refined by the156

Refiner Agent - along with the augmented context157

(Caug) provided by the Retriever Agent. FLAIRR-158

TS allows utilization of a potentially more compact159

LLMs as this agent, with the behaviors shaped by160

dynamically optimized prompts. The structure of161

the prompts are detailed in Appendix C.162

2.3 Architected Strategy Prompts (ASP)163

Analytical164

Deep STL analysis (inspired by (Zhou et al.,
2024)): perform an STL decomposition, fore-
cast each component, then recombine them via
STL addition.165

Thinking–Inductive166

Monte-Hall Prompting: frame forecasting as a
decision game so the model evaluates several
scenarios before committing.

167

Imaginative168

(a) Many-Worlds Reasoning: simulate multiple
plausible futures and aggregate them.
(b) D&D Dungeon-Master: forecast a character’s
hit-point trajectory over upcoming turns.

169

3 Experiments 170

Experiments utilized Informer (Zhou et al., 2021) 171

benchmark datasets1: ETT (ETTh1, ETTh2, 172

ETTm1, ETTm2); Electricity; Traffic. We also 173

benchmark some newer dataset ; Weather and 174

ILINet and we test on 2025 data after the knowl- 175

edge cutoff date of Gemini. More details in Ap- 176

pendix - F. All dataset characteristics (domains, 177

frequencies, evaluated horizons H) and Data in- 178

tegrity are detailed in Section F. 179

LLM Backbone: FLAIRR was run on Gemini- 180

2.5-Pro and ASP was run on Gemini-2.5-Pro and 181

Gemini-2-Flash, both frozen. For ablation, we also 182

ran the same experiments on DeepSeek-V3 183

Data & Execution: Inputs normalized via stan- 184

dard scaling; prompt numerical precision con- 185

trolled. Results are median of p ≈ 5 runs per 186

experiment for robustness. 187

1Full experimental parameters and any dataset-specific
preprocessing are in Appendix or supplementary material.
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Dataset Horizon
Supervised PTMs Prompt

Informer DLinear FEDformer PatchTST TTM Time-LLM LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)

ETTh1
96 0.76 0.39 0.58 0.41 0.36 0.46 0.15 0.101 0.078 0.118
192 0.78 0.41 0.64 0.49 0.39 0.54 0.22 0.246 0.208 0.223

ETTh2
96 1.94 0.35 0.67 0.28 0.26 0.40 0.42 0.156 0.154 0.197
192 2.02 0.41 0.82 0.68 0.32 0.42 0.48 0.439 0.332 0.416

ETTm1
96 0.71 0.34 0.41 0.33 0.32 0.38 0.10 0.068 0.043 0.042
192 0.68 0.36 0.49 0.31 0.35 0.46 0.21 0.083 0.081 0.099

ETTm2
96 0.36 0.26 0.20 0.26 0.17 0.25 0.25 0.108 0.096 0.093
192 0.52 0.30 0.25 0.29 0.22 0.29 0.54 0.370 0.255 0.257

electricity
96 0.53 0.24 0.42 0.22 0.15 0.22 0.41 0.250 0.245 0.321
192 0.62 0.25 0.47 0.24 0.18 0.24 0.55 0.263 0.259 0.308

traffic
96 0.69 0.28 0.56 0.25 0.46 0.25 0.32 0.145 0.143 0.184
192 0.58 0.28 0.58 0.26 0.49 0.25 0.31 0.326 0.324 0.296

Table 1: Performance comparison (MAE) of supervised models and zero-shot methods on benchmark datasets. FLAIRR (Ours), ASP(G2.5P) (Ours), and
ASP(G2.0F) (Ours) are our proposed/evaluated methods.

Dataset Horizon Supervised Prompt
Informer AutoFormer FedFormer PatchTST LSTP FLAIRR (Ours) ASP(G2.5P) (Ours) ASP(G2.0F) (Ours)

ILI

4 1.54 1.24 2.54 0.43 0.38 0.271 0.264 0.189
12 2.33 1.82 2.67 0.43 0.39 0.249 0.183 0.197
20 2.12 1.90 1.75 1.26 0.73 0.589 0.564 0.867
24 3.99 1.79 1.50 1.72 1.55 0.724 0.722 1.004

Weather

24 1.45 1.38 1.95 1.55 0.17 0.110 0.084 0.125
48 1.57 1.43 1.67 1.56 0.24 0.160 0.142 0.238
96 1.48 1.67 1.96 1.12 0.39 0.29 0.257 0.243
120 1.90 1.74 2.02 1.31 0.51 0.383 0.309 0.369

Table 2: Performance comparison (MAE) on datasets whose test periods post-date the Gemini 2.5 Pro knowledge cut-off. FLAIRR and both ASP variants are ours;
Informer–PatchTST are supervised baselines; LSTP is a prior prompt-based method.

Results are in Table 1 - which is the evaluation of188

long horizon datasets Figure 2 - short horizon. We189

use Mean Absolute error (MAE) as the main met-190

ric. We compare with most recent prompt method191

of LSTPrompt (Liu et al., 2024)(Frozen Gemini192

as backbone) and two best PTM methods - TTM193

(Ekambaram et al., 2024) and Time-LLM (Jin et al.,194

2024). We also compare against non LLM super-195

vised methods like DLinear (Zeng et al., 2022).196

Analysis: Our method (FLAIRR and ASP) per-197

formed better than LSTP in all of the datasets used,198

it performed best among all the models in 14 out of199

20 times with performing best in all of the smaller200

horizon cases.201

3.1 Ablations202

We disentangle the impact of Retrieval and Iter-203

ative Refinement (IR) by successively activating204

them on top of a Simple Prompt. Fig 2 reports205

mean absolute error (↓) on ETTM2 for Gemini 2.5206

Pro, Gemini 2 Flash, and open-source DeepSeek-207

V3.208

Observations: Retrieval alone lowers error by209

grounding forecasts in analogous history, while210

IT alone refines outputs through on-the-fly prompt211

correction. Their combination (FLAIRR-TS) de-212

livers the lowest MAE across all three backbones.213

Crucially, the same trend holds for DeepSeek-214

V3, demonstrating that our gains are architecture-215

agnostic and not specific to the Gemini family of216

models.217

0.0

0.1

0.2

0.3

0.4

0.5

Gemini 2.5 Pro DeepSeek-V3 Gemini 2 Flash

BaseLine(BL) BL + Retrieval BL + Iterative Refinement FLAIRR (Both)

Figure 2: Ablation results, average MAE. Lower MAE is better.

4 Conclusion 218

The value proposition of FLAIRR-TS lies not nec- 219

essarily in always surpassing the absolute best, po- 220

tentially laboriously hand-tuned prompt for every 221

single scenario, but in its ability to automate the 222

refinement process and consistently achieve strong 223

performance starting from generic or moderately 224

good prompts. By iteratively improving instruc- 225

tions based on feedback, FLAIRR-TS aims to el- 226

evate the performance baseline achievable with 227

LLMs for TSF without requiring exhaustive man- 228

ual search for the "perfect" prompt for each new 229

dataset or horizon. The framework offers a path- 230

way to robust performance by adapting the prompt 231

to the task at hand through its agentic interactions. 232

4.1 Limitations 233

• Benchmark coverage. Empirical validation 234

spans only a handful of public, mostly regular- 235
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interval datasets; robustness to irregular sam-236

pling, regime shifts, or domain drift remains237

untested.238

• Analogue-retrieval assumption. FLAIRR-TS239

presumes the presence of semantically similar240

historical segments; when none exist (e.g. novel241

events), the refinement loop can compound error242

rather than correct it.243

• Numerical fidelity of LLMs. Gemini-class244

models exhibit limited precision on long or out-245

of-range sequences, and may hallucinate trends246

under noise or scale shifts, constraining reliabil-247

ity.248

• Inference cost. Iterative prompting adds multi-249

ple LLM calls per forecast; while cheaper than250

fine-tuning, latency and energy consumption may251

be prohibitive for real-time, high-frequency set-252

tings.253
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A Related Work369

Time Series Forecasting with LLMs: Tradi-370

tional time series forecasting has relied on models371

explicitly trained for the task, from statistical meth-372

ods to deep architectures like RNN variants and373

temporal CNNs, up through recent Transformer-374

based models (e.g. FEDformer (Zhou et al., 2022)375

and PatchTST ((Nie et al., 2023))) tailored for long-376

range sequences. These approaches require sub-377

stantial training on each target dataset. In con-378

trast, emerging research explores using pre-trained379

LLMs as general-purpose forecasters via prompt-380

ing at inference time only, without gradient-based381

fine-tuning. Xue and Salim (2023) pioneered this382

direction with PromptCast, formulating forecast-383

ing as a prompt–completion task: historical val-384

ues are encoded into a textual prompt (possibly385

with instructions) and the LLM’s next-token pre-386

dictions are decoded as forecasts. Gruver et al.387

(2023) similarly represent numerical time series388

as token sequences and treat extrapolation as lan-389

guage modeling, finding that GPT-3 and LLaMA-2390

can zero-shot extrapolate time series with accu-391

racy comparable to or exceeding specialized trained392

models. TNotably, these LLM-based approaches393

leverage the models’ strong sequence modeling394

and few-shot generalization for competitive bench-395

mark results, without requiringabilities to achieve396

competitive results on standard benchmarks with-397

out any task-specific training data. Nevertheless,398

naive prompt formulations might overlook impor-399

tant temporal dynamics and patterns. Recent works400

therefore propose more advanced test-time prompt-401

ing strategies. Liu et al. (2024) introduce LST-402

Prompt, which splits the prediction into short- and403

long-term sub-tasks and guides the LLM through404

a chain-of-thought reasoning process; this method405

outperforms earlier prompt baselines and even ap-406

proaches the accuracy of dedicated TS models.407

Tang et al. (2024) report that enriching prompts408

with external knowledge (e.g. known seasonal peri-409

ods or contextual clues) and using natural language410

rephrasings of the input can significantly improve411

an LLM’s forecasting accuracy. Another technique,412

Time-LLM (Jin et al., 2024), reprograms a frozen413

LLM by mapping time-series data into textual414

“patches” and prepending learned prompt tokens,415

allowing the model to output forecasts that outper-416

form state-of-the-art specialized forecasters with-417

out any fine-tuning of the LLM’s weights. On the418

other hand, Tan and others offer a cautionary per-419

spective: through extensive ablations, they found 420

that removing the LLM or replacing it with a sim- 421

ple attention-based network in these pipelines of- 422

ten does not hurt performance (and sometimes im- 423

proves it), calling into question how much current 424

LLM-for-TS methods truly benefit from the pre- 425

trained language model. To push LLM-based fore- 426

casting further, researchers are drawing on insights 427

from prompt optimization and test-time reasoning. 428

For example, Wan et al. (2024) show that intelli- 429

gently selecting and reusing in-context exemplars 430

can yield larger gains than optimizing instructions 431

alone, suggesting that careful few-shot prompt de- 432

sign is crucial. Chen and others (2025) propose 433

a self-verification and self-correction framework 434

(SETS) that lets the model iteratively refine its out- 435

puts at inference, achieving better accuracy scaling 436

on complex reasoning tasks. Incorporating such 437

techniques into zero-shot forecasting prompts is 438

an exciting direction. In summary, the literature 439

demonstrates a nascent but growing paradigm of us- 440

ing pre-trained LLMs directly for time series fore- 441

casting, with multiple studies showing that, given 442

the right prompts, foundation models can attain 443

forecast accuracy rivaling traditional specialized 444

models. While these methods demonstrate progress 445

in leveraging LLMs for forecasting, the dynamic 446

and optimal design of prompts—especially those 447

needing to integrate complex reasoning, external 448

knowledge, and iterative feedback—remains a key 449

challenge. Our work, FLAIRR-TS, aims to address 450

this by structuring the forecasting process around 451

specialized agents for dynamic prompt adaptation 452

and refinement. 453

Agentic Frameworks with Iterative Refinement 454

The concept of employing multiple interacting 455

agents or distinct processing roles for complex 456

problem-solving has gained traction in AI. Such 457

agentic systems can distribute tasks, specialize 458

functionalities, and enable more sophisticated rea- 459

soning or generation processes. Iterative refine- 460

ment, where an output is progressively improved 461

through feedback loops, is a common characteristic 462

of these systems and is also seen in self-correction 463

mechanisms within single LLMs (e.g., Self-Refine 464

by Madaan et al. (2023)). For instance, systems 465

might involve a generator agent and a critic agent, 466

or distinct agents for planning, execution, and veri- 467

fication. FLAIRR-TS draws inspiration from these 468

paradigms by structuring its operation around spe- 469

cialized agents: a Forecaster-agent for initial pre- 470
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diction, a retriever agent for sourcing relevant con-471

text, and a refiner agent for iterative prompt refine-472

ment. This agentic decomposition facilitates more473

targeted and adaptable modifications to distinct as-474

pects of the forecasting prompt through these spe-475

cialized roles. Crucially, unlike traditional multi-476

agent systems where agents might be independently477

trained or involve complex coordination protocols,478

FLAIRR-TS implements these roles using LLMs479

at test time to dynamically adapt the prompting480

strategy itself. The "refinement" occurs in the tex-481

tual instructions and contextual information fed482

to the LLM, rather than through updates to model483

weights, distinguishing it from model distillation or484

training paradigms. This focus on inference-time485

prompt adaptation through an agentic perspective486

is a key aspect of our approach. This structured487

approach also aims to ensure that the LLM’s rea-488

soning and generative capabilities are a core com-489

ponent of the forecasting process, addressing con-490

cerns about their actual contribution in some prior491

LLM-for-TS pipelines.492

Retrieval Augmented Generation: Retrieval493

Augmented Generation (RAG) (Lewis et al., 2020)494

has become a standard technique for enhancing495

LLMs in knowledge-intensive NLP tasks. RAG496

systems retrieve relevant documents or passages497

from an external corpus and provide them as ad-498

ditional context to the LLM, improving factual499

grounding and reducing hallucination. Recently,500

Han et al. (2023) adapted this concept to time se-501

ries forecasting with their Retrieval Augmented502

Time Series Forecasting (RAFT) approach. RAFT503

retrieves historical time series segments similar to504

the current input window and uses them to augment505

the context provided to a forecasting model (in their506

case, an LLM). Our work directly builds upon and507

integrates the RAFT principle within the Retrieval508

agent component of FLAIRR-TS. We hypothesize509

that the effectiveness of RAFT can be further en-510

hanced by optimizing the prompt that instructs the511

LLM on how to utilize the retrieved historical con-512

text, which is precisely what the agentic interaction513

within FLAIRR-TS aims to achieve.514

B Refiner Agent515

You are an expert Time-Series-Forecasting Prompt En-
gineer acting as a “Teacher LLM”. Your goal is to anal-
yse a set of forecasting attempts made by a “Student
LLM” and provide specific, actionable “Teacher Learn-
ings” on how to improve the initial forecasting prompt

516

used by the Student. The Student uses a base prompt
and adds forecasting instructions to it based on your
learnings.

Key Information for Your Analysis for this Itera-
tion {it + 1}:

1. Current Forecasting Instructions Under Review:
{current_instructions_under_review"}

2. Overall Mean Absolute Error (MAE) for this batch
of samples: {mae_to_report_to_teacher}

You will also be given a batch of individual samples,
where each sample includes:

1. The full Prompt the Student LLM used (includes
the instructions above).

2. The Student LLM’s Predictions for the OT vari-
able.

3. The Ground-Truth OT values.

Your Analysis Task:

1. Identify error patterns. Compare Predictions
with Ground Truths. Look for systematic er-
rors (over/under-prediction, lagging, volatility mis-
handling, etc.).

2. Correlate errors with prompts and instructions.
Check whether the current instructions are ambigu-
ous, misleading, too complex, or otherwise harmful.

3. Formulate “Teacher Learnings”. Give concrete,
generalisable improvements (e.g. adjust look-back
horizon, drop STL decomposition, add weekday
feature).

4. Determine “Done” status.
• If the MAE {mae_to_report_to_teacher} is

low and stable, or no samples were supplied, out-
put Done: True.

• Otherwise output Done: False.

Output Format—exactly this template
Teacher Learnings: <your concise, actionable
suggestions here>
Done: <True or False>
Confidence in output: <High | Medium | Low> –
one-line rationale.

517

C Forecaster Agent 518

Prompt-Synthesis Instructions 519

Example: Forecasting-Instruction Refinement 520

You are an intelligent "Student LLM" that refines
forecasting prompts based on expert feedback. You will
receive Teacher Learnings that suggest improvements
to an initial time-series forecasting prompt. Your task
is to turn these learnings into concise and effective
prompt-forecasting instructions. These instructions will
be appended to a base forecasting prompt to guide the

521
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forecasting LLM.

The forecasting instructions should:

• Be a short set of guiding principles (max. 3 actionable
items).

• Directly address the issues and suggestions in the
Teacher Learnings.

• Be clearly phrased for another LLM to follow.

• **Do not include placeholders such as
{previous_data} or {prediction_data}.

• **Do not change the output format or the forecasting
task itself.

• If no actionable learnings exist, output a safe generic
set—or state:

No specific new instructions generated due to lack of
actionable learnings.

Example (teacher said “focus on recent volatility”):

Teacher Learnings: The model often misses sudden
spikes; the prompt should ask the forecaster to pay
more attention to recent volatility and its effect on the
next step.

Your Output (forecasting instructions): “Critically
assess the volatility in the most recent data points. Your
forecast for the next step should reflect whether this
volatility is expected to continue, increase, or decrease.
Explain this assumption in your reasoning.”

Teacher Learnings you received:
{current_learnings}

Based on these learnings, generate only the refined
prompt-forecasting instructions below (no extra com-
mentary).

Refined Prompt Forecasting Instructions:
<model prediction here>

522

D Prompt template523

Thinking Inducting Prompts524

Example: Monte Hall Prompting525

Objective
Provide a well-reasoned forecast for the
{target_variable} value in the next row of
the dataset, given the historical data.

Dataset Instructions

• Dataset: data_name, data_description

• Variable to Predict: {target_variable}.

• Task: Predict the {target_variable} values for
the next {prediction_length} steps using the his-
torical data.

• Constraints:
526

– Adhere strictly to the specified output format.

If instructions:
Forecasting Instructions: {instructions}

If raft_context:
{raft_context}

Input Data

• Historical Data:
{previous_sequence_length_data}

Output Format — exactly this
Predicted Values: [predicted_value_1, ...]
Reasoning: [Your detailed reasoning ]
Certainty Estimate: [Percentage certainty]
Certainty Reasoning: [reasoning]

527

E Prompt Library 528

These are the remaining prompts in the prompt 529

library. 530

teacher-student-loop 531

ACT I — TEACHER Propose a first-pass forecast
for the next {sequence_length} steps.
ACT II — STUDENT Evaluate teacher’s forecast
against the most recent known data and
suggest corrections.
ACT III — TEACHER Incorporate feedback and
provide the refined forecast.

532

self-verification-sets 533

Step 1 – Generate candidate forecast A for
{sequence_length} steps. Step 2 – Generate
independent candidate forecast B. Step 3
– For each horizon h, if the two differ
beyond an acceptable tolerance, reconcile
them (e.g., by averaging). Provide only the
reconciled forecast.

534

meta-prompt-conf-bands 535

Forecast {sequence_length} steps and include
68 % and 95 % confidence bands. Briefly
explain the uncertainty assumptions before
the numbers.

536

imaginary-python-repl 537

You are ForecastPy, a mental Python
REPL. Think then “run code in your head”
that derives the forecast for the next
{sequence_length} steps.

538
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synesthetic-soundtrack539

540

Interpret the past sequence as MIDI
velocity (0–127) and compose the next
{sequence_length} beats that extend the
melody. Provide both the MIDI integers and
the values rescaled to original units.

541

color-gradient-canvas542

Map each value to an RGB triplet on
a blue-to-red gradient. Produce a grid
of HEX colours that encodes the next
{sequence_length} points.

543

dungeon-master544

You are a D&D Dungeon Master. The party’s HP
over the last turns is shown. Forecast HP for
the next {sequence_length} turns, assuming
no boss fights and only mild potion use.

545

micro-essay-poisson546

Write a ≤60-word micro-abstract describing
the generative mechanism, then list
{sequence_length} λ parameters for a Poisson
baseline.

547

reverse-sudoku548

Think of the next {sequence_length} points
as filling a 9 × 11 Sudoku-like grid whose
row sums match the recent history. Provide
the grid and a flattened list.

549

many-worlds-ensemble550

Create forecasts for four parallel universes
(A–D) shifted by −2σ, −1σ, +1σ, +2σ, each
{sequence_length} steps long, then provide a
consensus median forecast.

551

haiku-seeded552

Compose a three-line haiku that
metaphorically describes the upcoming
pattern, then list the {sequence_length}
numeric forecasts, one per line.

553

F Datasets554

Experiments were performed on a diverse set of555

widely-used time-series-forecasting (TSF) bench-556

mark datasets spanning multiple domains, sam-557

pling frequencies, and statistical characteristics558

(e.g., seasonality, trend, noise levels). All datasets559

are normalized with StandardScaling from sklearn 560

package. The datasets are: 561

• ETT (ETTh1, ETTh2, ETTm1, ETTm2) – Electricity 562

Transformer Temperature data recorded at hourly 563

(h) or 15-minute (m) intervals; widely used for 564

long-sequence forecasting with OT as target vari- 565

able (ETTh: 17,420 total data points, ETTm: 566

69,680 total data points) 567

• Electricity – Hourly household electricity data 568

of customers with electricity comsumption as 569

target variable (26,304 total data points) 570

• Traffic – Hourly occupancy rates from California 571

road-traffic sensors (2021-2025 March) with traf- 572

fic volume as target variable (17,544 data points) 573

• ILINet – Weekly Influenza-Like-Illness counts 574

from the CDC (2002-2025 April) with total 575

ILI patients as target variable (1,441 total data 576

points)2 577

• Weather - Hourly weather data from Chicago 578

with temperature as target variable (35,052 total 579

data points)3 580

F.1 Data Integrity 581

A significant consideration when utilizing Large 582

Language Models (LLMs) for time series forecast- 583

ing is the potential for the model’s pre-training data 584

to inadvertently include samples from the test set, 585

which could lead to an overestimation of predictive 586

performance. To rigorously uphold data integrity 587

in this study, we employed ILINet and weather 588

datasets as benchmarks, with a specific focus on 589

temporal data separation. Our experimental design 590

ensures that all data samples within the test set orig- 591

inate from dates strictly subsequent to the known 592

training data cut-off date of the LLM employed 593

for inference. This chronological separation miti- 594

gates the risk of test data contamination, providing 595

a robust and fair evaluation of the LLM’s ability 596

to generalize and forecast genuinely unseen future 597

values. 598

F.2 Evaluation Metrics 599

Forecasting performance was assessed with two 600

standard error metrics: 601

2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
3https://www.kaggle.com/datasets/curiel/chicago-

weather-database
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MAE =
1

H

H∑
i=1

∣∣∣X̂t+i −Xt+i

∣∣∣ , (1)602

Where H is the prediction horizon, X̂t+i is the603

predicted value, and Xt+i is the ground-truth value.604

Lower values indicate better performance for both605

metrics. These metrics were computed directly606

from the experimental results.607

G Future directions608

There are several avenues for future work. One609

direction is to incorporate quantitative validation610

in the loop: currently, the Refiner-agent’s feedback611

quality is not directly measured. If we had a small612

hold-out set or could use the model’s own likeli-613

hood of the data, we might select or weight feed-614

back. This leans towards techniques in automatic615

prompt optimization where a reward is defined. Ad-616

ditionally, while FLAIRR-TS currently uses natu-617

ral language for feedback from the Refiner-agent,618

one could imagine hybrid approaches where the619

Refiner-agent suggests pseudo-code or formulaic620

adjustments (if the LLM agents are equipped with621

a calculator tool). That could improve handling of622

scale and magnitude issues. On the retrieval side,623

exploring more advanced analog search (perhaps624

using learned embeddings or matching not just on625

raw values but pattern descriptors) might yield even626

more relevant cases to show the Refiner-agent, es-627

pecially for complex multivariate data.628

From an application perspective, deploying629

FLAIRR-TS in an interactive forecasting system630

would be very interesting. Because FLAIRR-631

TS’s intermediate steps (the prompts, the retrieved632

analogs, the feedback) are human-readable, a hu-633

man analyst could intervene in the loop – agreeing634

or disagreeing with the Refiner-agent’s critique, or635

adding their own feedback. This could turn fore-636

casting into a collaborative dialog between human,637

Forecaster-agent, and Refiner-agent. In settings638

like supply chain or epidemiology forecasting, such639

a system could help build trust as well, since each640

refinement step can be scrutinized.641

H Potential Risks642

• Decision-critical misuse. Deployment in safety-643

or finance-critical contexts without rigorous cali-644

bration could propagate spurious forecasts, lead-645

ing to systemic harm.646

• Bias amplification. Retrieval from historical 647

data can embed and magnify demographic or 648

regional skews, potentially disadvantaging under- 649

represented groups. 650

• Privacy leakage. Sending raw time-series to 651

external LLM APIs risks exposing sensitive pat- 652

terns; secure on-prem or encrypted inference is 653

required for confidential data. 654

• Environmental footprint. Although we avoid 655

training, repeated large-model inference still in- 656

curs non-trivial energy costs; batching and lighter 657

models are possible mitigations. 658
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