

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MNO: MULTISCALE NEURAL OPERATOR FOR COMPUTATIONAL FLUID DYNAMICS WITH 3D POINT CLOUD DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Neural operators have emerged as a powerful data-driven paradigm for solving Partial Differential Equations (PDEs), offering orders-of-magnitude acceleration over traditional solvers. However, existing approaches still suffer from limited accuracy and scalability, particularly on irregular domains where fluid flows exhibit rich multiscale structures. In this work, we introduce the Multiscale Neural Operator (MNO), a new architecture for Computational Fluid Dynamics (CFD) on three-dimensional (3D) unstructured point clouds. MNO explicitly decomposes information across three scales: a global dimension-shrinkage attention module for long-range dependencies, a local graph attention module for neighborhood-level interactions, and a micro point-wise attention module for fine-grained details. This design preserves multiscale inductive biases while remaining computationally efficient. We evaluate MNO on four diverse benchmarks, covering both steady-state and unsteady flow scenarios with up to 300K points. Across all tasks, MNO consistently outperforms state-of-the-art baselines, reducing prediction errors by 5% to 40% and demonstrating improved robustness in challenging 3D CFD problems. Our results highlight the importance of explicit multiscale design for neural operators and establish MNO as a scalable framework for learning complex fluid dynamics on irregular domains.

1 INTRODUCTION

Neural operators (Lu et al., 2021), as a data-driven approach for solving Partial Differential Equations (PDEs), have attracted increasing attention in accelerating Computational Fluid Dynamics (CFD) (Lin et al., 2009). They provide approximate solutions within seconds (Sun et al., 2024), achieving inference speeds orders of magnitude faster than traditional numerical methods, e.g., FEM or FVM, enabling real-time computation and design exploration for complex fluid dynamics tasks.

Despite this remarkable efficiency, neural operators still fall short of traditional solvers in accuracy (typically 10^{-3} versus 10^{-7} relative error). Recent works have sought to close this gap through carefully-designed feature transformations, including spectral mappings FNO (Li et al., 2021), global latent space learning LNO (Wang & Wang, 2024), and Transformer-stacked approach with multiple physical space transformations Transolver (Wu et al., 2024), etc. Yet the intrinsic multiscale nature of fluid flow remains (Rahman et al., 2023; Wen et al., 2022) largely underexplored in architectural design, particularly on irregular and unstructured domains. In addition, sole reliance on global modeling often sacrifices local details, while fine-grained attention mechanisms incur prohibitive computational costs. These challenges highlight the need for architectures that explicitly disentangle and integrate information across multiple spatial scales.

In this work, we propose a Multiscale Neural Operator (MNO) to tackle typical CFD tasks on irregular domains. The motivation stems from the observation that physical quantities in flow fields exhibit strong multiscale effects: large-scale global trends, localized interactions near object surfaces, and fine-grained pointwise variations. Our goal is to develop a general framework that can faithfully represent objects in three-dimensional (3D) flow fields and accurately predict critical physical quantities such as pressure and velocity.

At the core of MNO is a sequence of three-scale blocks, each combining three complementary, parallel modules: (1) a **Global Dimension-Shrinkage Attention** module, which projects N points into a compact set of M modes to capture long-range dependencies; (2) a **Local Graph Attention** module, which encodes k -nearest-neighbor interactions to model mid-scale neighborhood dynamics; and (3) a **Micro Point-wise Attention** module, which evolves each point’s features independently to retain high-frequency variations. The outputs of these modules are fused after each block, enabling MNO to integrate receptive fields across scales and capture a broad spectrum of physical phenomena. Built directly on 3D point clouds, this design avoids mesh constraints and provides a unified framework for extracting global, local, and fine-grained flow representations.

We validate MNO across multiple benchmarks, spanning both steady-state and unsteady flow tasks with point resolutions ranging from 15K to 300K. Compared to state-of-the-art methods, MNO reduces prediction errors by 5% to 40%, demonstrating consistent improvements in accuracy and robustness on challenging 3D CFD problems.

In summary, the main contributions of this paper are as follows:

- We **propose a Multiscale Neural Operator (MNO)** for CFD on unstructured point clouds. Unlike prior multiscale methods restricted to regular grids, MNO directly processes 3D point data, removing mesh constraints and enabling flexible modeling of complex geometries and dynamic domains.
- We **introduce an explicit multiscale decomposition** with three complementary modules: global dimension-reduction attention for long-range dependencies, local graph attention for neighborhood interactions, and micro point-wise attention for fine-grained details, ensuring balanced representation across scales.
- We evaluate MNO on four diverse datasets, covering both steady and unsteady CFD tasks, and show that it consistently outperforms state-of-the-art baselines, reducing prediction errors by 5% to 40%.

2 RELATED WORK

Deep learning for PDEs has mainly progressed along two paths: physics-informed networks that enforce PDE constraints during training, and neural operators that learn solution mappings directly from data. We briefly review both directions, emphasizing their use in fluid dynamics and their limitations in modeling multiscale predictions on irregular domains.

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) embed PDE constraints into the loss function, enabling solution learning without labeled data. Despite inspiring many extensions (Wang et al., 2021; 2022; Karlbauer et al., 2022; Rao et al., 2023), PINNs require task-specific loss design, struggle with unstructured point clouds, and is hard to scale to high-dimensional or stiff PDEs, limiting their applicability to complex CFD tasks.

2.2 NEURAL OPERATORS

Neural operators learn mappings from initial or boundary conditions, or equation parameters, to PDE solutions in a data-driven manner. Depending on the data representation, existing approaches can be broadly divided into regular-domain (Li et al., 2021) and irregular-domain methods (Zeng et al., 2025a; Bryutkin et al., 2024; Li et al., 2020).

Regular Domain Neural Operators CNO (Raonic et al., 2023) approximates integral operators with convolutional layers, enabling function-to-function mappings on regular grids. FNO (Li et al., 2021) extends this idea by learning PDE operators in Fourier space, efficiently capturing long-range dependencies. AM-FNO (Xiao et al., 2024) further reduces FNO’s parameter cost through an amortized kernel that adapts to varying frequency modes. While effective, these models are restricted to structured geometries (e.g., rectangles or cubes) and is hard to transfer to domains with complex or varying shapes.

108 **Irregular Domain Neural Operators** PointNet (Qi et al., 2017a) and PointNet++ (Qi et al.,
 109 2017b) introduce point-based learning with global pooling and hierarchical neighbor search, respec-
 110 tively, though the latter often incurs high cost and may lose fine-scale details. Geo-FNO (Li et al.,
 111 2023a) maps irregular meshes into a uniform latent space for FFT-based FNO operations. LNO
 112 (Wang & Wang, 2024) encodes point clouds into compact latent tokens and applies Transformer lay-
 113 ers for global modeling, while Transolver (Wu et al., 2024) compresses tokens into physical slices
 114 for Transformer-based feature extraction. PCNO (Zeng et al., 2025b) combines FNO-style global
 115 features with residual and gradient-based local features. Despite these advances, most irregular-
 116 domain operators emphasize global features, paying limited attention to the coupling between local
 117 and global scales.

118 **Multiscale Neural Operators** U-NO (Rahman et al., 2023) integrates U-Net with neural opera-
 119 tors, enabling multiscale PDE mapping. U-FNO (Wen et al., 2022) enhances FNO with local convo-
 120 lutions, while MscaleFNO (You et al., 2024) employs multiple FNO branches to extract features at
 121 different scales. These methods improve multiscale representation but remain tied to regular grids,
 122 limiting their ability to handle geometric deformations and dynamic flow fields. This motivates the
 123 development of multiscale neural operators tailored to point clouds, where scale interactions can be
 124 explicitly modeled in unstructured domains.

126 3 METHOD

128 The proposed Multiscale Neural Operator (MNO) is designed to solve CFD problems directly on
 129 unstructured point clouds by integrating global, local, and micro-scale feature learning. The overall
 130 architecture follows an Encoder–MNO–Decoder pipeline: the Encoder embeds spatial coordinates
 131 and associated attributes of the input points into latent tokens, a sequence of MNO blocks pro-
 132 gressively enriches these representations through multiscale attention mechanisms, and the Decoder
 133 maps the processed features back to the target physical quantities. This design allows MNO to
 134 capture long-range dependencies, neighborhood-level interactions, and fine-grained details simulta-
 135 neously, providing an efficient and accurate framework for modeling complex fluid dynamics.

136 In what follows, we first describe the overall model and the input–output format, then introduce the
 137 global, local, and micro modules in detail. Finally, we discuss the differences between MNO and
 138 existing multiscale approaches for point cloud learning.

140 3.1 OVERVIEW OF THE MNO MODEL

142 The proposed MNO model, illustrated in Figure 1, is composed of an Encoder, a sequence of MNO
 143 blocks, and a Decoder. The input is represented as an array of points, where each point is described
 144 by its 3D spatial coordinates and task-specific auxiliary attributes.

145 The Encoder, implemented as an MLP, embeds these inputs into a latent token space,

$$146 \quad X = \text{Encoder}(\text{concat}(pos_{in}, feature_{in})), \quad (1)$$

148 where $pos_{in} \in \mathbb{R}^{N \times 3}$ denotes the 3D coordinates, $feature_{in}$ represents auxiliary features, and
 149 $X \in \mathbb{R}^{N \times D}$ are the latent tokens, with $D = 128$ by default. Since the positional information is
 150 explicitly included, no additional positional encoding is required.

151 The latent tokens are then processed by a sequence of MNO blocks, which form the core of the
 152 architecture. Each block integrates global, local, and point-wise attention modules to capture mul-
 153 tiscale dynamics, progressively enriching the latent representations with hierarchical flow features.
 154 Finally, the Decoder, which is the MLP by default, maps the enriched latent features back to the
 155 target physical quantities

$$156 \quad \begin{aligned} X_p &= \text{MNO}(X), \\ 157 \quad X_{out} &= \text{Decoder}(X_p), \end{aligned} \quad (2)$$

158 where $X_p \in \mathbb{R}^{N \times D}$ denotes the processed latent features and $X_{out} \in \mathbb{R}^{N \times O}$ represents the pre-
 159 dicted outputs, with O the number of physical variables.

161 As a concrete example, in the ShapeNet Car benchmark, after preprocessing (Deng et al., 2024; Wu
 et al., 2024), the input consists of N points with 3D coordinates pos_{in} and features $feature_{in}$ that

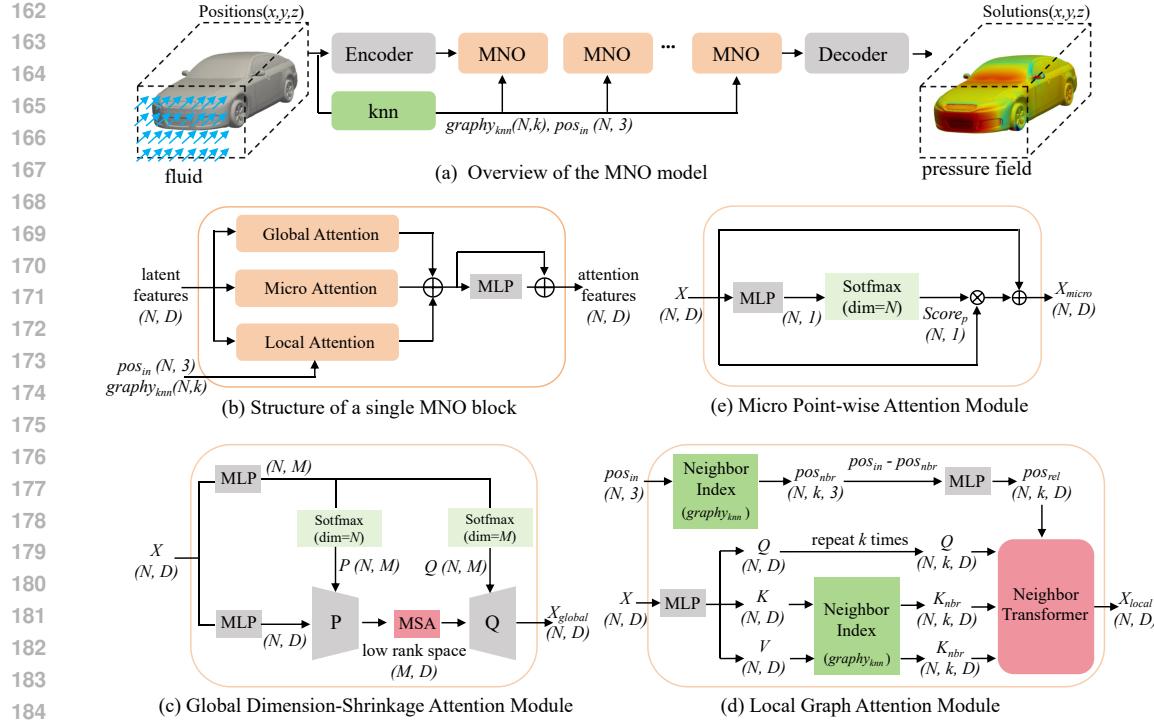


Figure 1: (a) The overview of the proposed MNO model with a sequence of three-scale blocks, and (b) each block combines three complementary, parallel modules: (c) a global dimension-shrinkage attention module for long-range dependencies, (d) a local graph attention module for neighborhood-level interactions, and (e) a micro point-wise attention module for fine-grained details.

include surface normals and signed distance values (Euclidean distance from each air point to the nearest surface point, positive outside the car). This results in an input dimension of $\mathbb{R}^{N \times 7}$. The output X_{out} includes the velocity vector field in the air region and the pressure scalar field on the car surface, with an output dimension of $\mathbb{R}^{N \times 4}$.

3.2 GLOBAL DIMENSION-SHRINKAGE ATTENTION MODULE

The global module captures long-range dependencies in the point cloud, enabling the model to extract global patterns such as overall shape and large-scale flow trends.

To force this module capture long-range, low-frequency feature, and to address the quadratic computational cost of applying attention on all tokens, we introduce a low rank projection strategy similar to Transolver (Wu et al., 2024) and LNO (Wang & Wang, 2024). Specifically, the latent features $X \in \mathbb{R}^{N \times D}$ are projected into a compact M -dimensional subspace ($M \ll N$) using a learnable projector P , then the feature is processed by a multi-head self-attention (MSA) in the reduced space $\mathbb{R}^{M \times D}$, and finally recover to the point feature space $\mathbb{R}^{N \times D}$ via the inverse projection Q . Formally, the global feature $X_{global} \in \mathbb{R}^{N \times D}$ is computed by

$$P = \text{Softmax}_N(\text{MLP}(X)), \\ Q = \text{Softmax}_M(\text{MLP}(X)), \quad (3)$$

$$X_{global} = Q \cdot Z_{lr} = Q \cdot \text{MSA}(P^T \cdot X),$$

where $P, Q \in \mathbb{R}^{N \times M}$ are the projection and inverse-projection matrices with $M = 256$ by default, and $\text{Softmax}_N(\cdot)$ and $\text{Softmax}_M(\cdot)$ denote the Softmax function along the N and M dimensions, respectively.

This mechanism removes redundant information while preserving low-frequency global components. In the reduced space, attention weights can be computed efficiently at complexity $O(M^2D)$ instead of $O(N^2D)$, and the overall cost is dominated by the projection step $O(MND)$.

216 3.3 LOCAL GRAPH ATTENTION MODULE
217

218 The Local Attention module is designed to restrict interactions to geographically nearby points,
219 ensuring that local geometric structures are explicitly preserved. Specifically, a k -nearest neighbor
220 (knn) graph is first constructed using the Euclidean distance of the input 3D coordinates. Each
221 spatial point serves as a graph node, and its k nearest neighbors define the local connectivity.

222 **Compared to fixed radius neighborhoods, knn can ensure predictable linear memory growth (Table**
223 **9) to avoid memory overflow. Furthermore, traditional graph-based models frequently calculate**
224 **adjacency relationships, while our knn graph are shared among all depth blocks in MNO. Thus, it**
225 **only needs to be calculated once in the input stage, reducing computation time.**

226 Inspired by the Point Transformer (Zhao et al., 2021), originally developed for point cloud segmen-
227 tation, the Local Graph Attention computes neighborhood features for each node by attending only
228 to its k nearest neighbors. The structure of the Local Attention module is illustrated in Figure 1 (d).
229 The local features between the node and its neighboring nodes is computed following
230

$$231 X_{local} = \text{Sum}(\text{Softmax}(\text{MLP}(Q - K_{nbr} + pos_{rel})) \odot (V_{nbr} + pos_{rel})), \quad (4)$$

232 where $Q \in \mathbb{R}^{N \times k \times D}$ denotes the replicated features of the center node (k identical features vectors);
233 $K_{nbr}, V_{nbr} \in \mathbb{R}^{N \times k \times D}$ are the features of neighboring nodes, and $pos_{rel} \in \mathbb{R}^{N \times k \times D}$ encodes
234 relative positional offsets. The symbol \odot indicates element-wise multiplication. The similarity
235 kernel is parameterized by an MLP, and the weighted neighbor features are aggregated by summation
236 along the dimension k , yielding $X_{local} \in \mathbb{R}^{N \times D}$. The computational complexity is dominated by
237 matrix multiplication in the MLP, yielding $O(NkD^2)$.
238

239 This formulation enforces that only spatially adjacent tokens interact directly, embedding locality
240 into the feature learning process, which ensures that fine-scale geometric and physical properties are
241 preserved across deeper layers. In contrast, the Global Attention module complements this design by
242 capturing long-range dependencies, and together they enable MNO to achieve both local accuracy
243 and global coherence in flow prediction.
244

245 3.4 MICRO POINT-WISE ATTENTION MODULE

246 Micro-scale features correspond to the intrinsic attributes of individual spatial points. Since the
247 Local Module primarily extracts features by the feature differences (subtraction) between the central
248 node and its neighboring nodes, as shown in Equation (4), it overlooking the analysis of the central
249 node’s own characteristics. To address this issue, we design the Micro Point-wise Attention Module,
250 which specifically focuses on the token features of each spatial point itself. Additionally, the Micro
251 Module can also assist the Global Module in supplementing spatial details to some extent.
252

253 This module implements a point-wise self-attention mechanism, where each token is reweighted
254 solely based on its own feature vector. As illustrated in Figure 1 (e), token features from the previous
255 block are processed through an MLP followed by a softmax operation to produce point-specific
256 weights, which indicate the relative importance of each token. The scaled features are then combined
257 with the original input via a residual connection
258

$$259 X_{micro} = X + Score_p \odot X, \text{ with } Score_p = \text{Softmax}(\text{MLP}(X), \text{ dim} = N), \quad (5)$$

260 where $X \in \mathbb{R}^{N \times D}$ denotes the input token features, $Score_p \in \mathbb{R}^{N \times 1}$ represents the point-wise
261 attention weights, and $X_{micro} \in \mathbb{R}^{N \times D}$ is the resulting micro-scale representation. The symbol \odot
262 indicates element-wise multiplication with broadcasting rule across feature dimensions.
263

264 Because each token is reweighted independently of others, this module emphasizes point-specific
265 high-frequency variations while remaining computationally efficient, with complexity $O(ND^2)$. In
266 combination with the global and local attentions, it ensures that MNO simultaneously preserves
267 fine-grained details, local neighborhood patterns, and long-range flow coherence.
268

269 **Remarks on other multiscale models** Existing multiscale methods for point clouds primarily
270 focus on multi-level sampling operation. (Li et al., 2020; 2025; Qi et al., 2017b; Hu et al., 2020).

270 These approaches typically rely on repeated downsampling and upsampling, which can discard fine-
 271 grained information and lead to suboptimal accuracy when applied to flow field prediction.
 272

273 In contrast, our design introduces distinct mechanisms tailored to each scale without resampling.
 274 At the global scale, a low rank projection enforces attention to long-range dependencies and low-
 275 frequency structures while reducing computational cost. At the local scale, a restricted receptive
 276 field ensures that each point interacts only with its nearest neighbors, capturing mid-frequency
 277 interactions tied to geometric adjacency. At the micro scale, point-wise modulation refines the
 278 representation by recovering high-frequency details. Together, these complementary modules provide
 279 a balanced decomposition of global, local, and fine-scale features, enabling accurate and efficient
 280 modeling of multiscale dynamics in CFD.

281 4 EXPERIMENTS

282 4.1 BENCHMARKS

283 We evaluate the model performance on four 3D CFD benchmarks, including steady-state flow field
 284 benchmarks, Ahmed body (Ahmed et al., 1984; Li et al., 2023b), ShapeNet Car (Umetani & Bickel,
 285 2018), DrivAerNet++ (Elrefaei et al., 2024), and the unsteady flow field benchmark, Parachute
 286 dynamics (Zeng et al., 2025b).

287 **Ahmed body** (100k/sample): A vehicle wind tunnel dataset with a bluff-body structure. Inputs
 288 consist of the vehicle surface point cloud and auxiliary conditions such as freestream velocity and
 289 Reynolds number. The output is the pressure field on the vehicle surface. **Parachute dynamics**
 290 (15k/sample): A time-dependent dataset capturing the inflation of parachutes under pressure loads.
 291 Inputs include the initial point cloud positions and markers for the umbrella surface and ropes,
 292 while outputs are displacement fields at four time steps. **ShapeNet Car** (30k/sample): A car wind
 293 tunnel dataset. Inputs include point positions, signed distance values, and surface normals. Outputs
 294 are the velocity field in the air region and the pressure field on the car surface. **DrivAerNet++**
 295 (300k/sample): A large-scale automotive wind tunnel dataset. Inputs consist of point positions and
 296 surface normals, and the output is the pressure field on the car surface. For detailed configurations,
 297 please refer to Appendix B.

301 4.2 COMPARISON ON ACCURAY

302 We reproduce several state-of-the-art open-source methods of neural operator for comparative
 303 experiments. The training and testing procedures for all baselines are consistent with MNO. The
 304 hyperparameters of baselines adhere to their official code repositories or original papers. Detailed
 305 settings can be found in Appendix D.

306
 307
 308 Table 1: The comparison results with other methods on Ahmed body and Parachute datasets, in
 309 which $RL2_p$ denotes the relative L_2 errors (RL2) of the pressure field; $RL2_{x1 \sim 4}$ represent the RL2
 310 of the displacement field at 4 time steps; $RL2_x$ denotes the total RL2 of 4 time steps; MAE is the
 311 mean absolute errors. The subscript “*” indicates the result claimed in the original article. The row
 312 titled with Improvement refers to the degree of advancement compared to the previous best method.

313 Methods	314 Ahmed body		315 Parachute					
	316 $RL2_p$	317 MAE_p	318 $RL2_{x1}$	319 $RL2_{x2}$	320 $RL2_{x3}$	321 $RL2_{x4}$	322 $RL2_x$	323 MAE_x
DeepONet (Lu et al., 2021)	0.3683	59.6948	1.2620	0.7243	0.7915	0.7667	0.7733	0.2864
PointNet (Qi et al., 2017a)	0.1923	35.8585	0.0955	0.0703	0.1069	0.1427	0.1035	0.0345
PointNet++ (Qi et al., 2017b)	0.3366	55.5127	0.2364	0.0923	0.1009	0.1623	0.1165	0.0371
Geo-FNO (Li et al., 2023a)	0.1400	26.3723	0.0480	0.0248	0.0353	0.0551	0.0366	0.0114
LNO (Wang & Wang, 2024)	0.1908	30.4570	0.0584	0.0431	0.0484	0.0665	0.0504	0.0147
AMG(Li et al., 2025)	-	-	0.0432	0.0288	0.0369	0.0539	0.0379	0.0120
PCNO* (Zeng et al., 2025b)	0.0682	-	-	-	-	-	0.0373	-
PCNO (Zeng et al., 2025b)	0.0664	12.4693	0.0238	0.0189	0.0305	0.0515	0.0316	0.0094
Ours	0.0468	7.0465	0.0216	0.0164	0.0259	0.0418	0.0266	0.0081
Improvement	29.51%	43.48%	9.24%	13.23%	15.08%	18.83%	15.82%	13.82%

324
 325 Table 2: The comparison results with other advanced methods on ShapeNet Car and DrivAerNet++
 326 datasets. $RL2_v$ denotes the RL2 of the velocity field. The subscript “*” indicates the result claimed
 327 in the original article.

Methods	ShapeNet Car				DrivAerNet++	
	$RL2_p$	MAE_p	$RL2_v$	MAE_v	$RL2_p$	MAE_p
DeepONet (Lu et al., 2021)	0.4148	11.4996	0.2075	1.2256	0.3203	27.4931
PointNet (Qi et al., 2017a)	0.0927	2.6222	0.0314	0.1723	0.4278	42.6893
PointNet++ (Qi et al., 2017b)	0.2082	5.9648	0.0771	0.3813	0.4617	41.8497
Geo-FNO (Li et al., 2023a)	0.1164	3.5748	0.0737	0.4647	0.2869	26.3732
LNO (Wang & Wang, 2024)	0.0887	2.6118	0.0267	0.1498	0.1984	18.1088
AMG (Li et al., 2025)	0.0770	2.0062	0.0236	0.1203	-	-
Transolver* (Wu et al., 2024)	0.0745	-	0.0207	-	-	-
Transolver (Wu et al., 2024)	0.0700	1.8151	0.0230	0.1130	0.1749	15.4372
Ours	0.0597	1.3796	0.0178	0.0845	0.1665	14.6335
Improve	14.71%	23.99%	22.61%	25.22%	4.80%	5.21%

341 The comparative results are summarized in Table 1 and Table 2. The proposed MNO consistently de-
 342 liveres higher predictive accuracy across all four benchmarks compared to recent baselines. In partic-
 343 ular, relative to the current leading methods, Transolver and PCNO, MNO achieves error reductions
 344 of 29.51% on the Ahmed Body dataset, 15.82% on Parachute Dynamics, 14.71% on ShapeNetCar,
 345 and 4.80% on DrivAerNet++. The computing cost is shown in Appendix E.

346 The LNO, Transolver, PCNO, and AMG are the top-performing baselines. The following is a spe-
 347 cific analysis of the poor performance of the baselines. LNO (Wang & Wang, 2024) compresses
 348 point clouds into a latent space with limited tokens, where multiple Transformer layers capture
 349 global features. This approach resembles our Global Attention module but suffers from noticiable
 350 loss of fine-grained details due to heavy compression. Transolver (Wu et al., 2024) employs
 351 a global dimension reduction and introduces residual branch between token compression and de-
 352 compression to reduce information loss. However, it does not explicitly support multiscale feature
 353 learning. PCNO (Zeng et al., 2025b) extracts global, gradient, and residual features of the input
 354 point cloud. However, its global feature extraction relies on FNO without point cloud compression,
 355 limiting scalability for large datasets. Compared to PCNO, MNO provides stronger mid-scale rep-
 356 resentations through its Local Attention module. AMG (Li et al., 2025) constructs global and local
 357 graph structures through multiple downsampling, but this results in significant loss of spatial details,
 358 thereby limiting prediction accuracy. Moreover, repeated farthest point sampling (FPS) significantly
 359 increases computation time. In contrast, the Local module constructs adjacency relationships for
 360 each point through a shared kNN graph, maximizing the preservation of local details and reducing
 361 the computation time of the graph network, as shown in Table 6.

362 4.3 COMPARISON ON MODEL SCALES

364 This experiment is designed to demonstrate that the improvement of our MNO model compared to
 365 other baselines is primarily due to its innovative multi-scale structural design, rather than merely an
 366 increase in model scale.

367 To ensure fairness, all models are compared under consistent parameter scales. For our MNO model,
 368 the number of blocks is set to 1, 2, 4, and 8 to construct four parameter scales. For Transolver (Wu
 369 et al., 2024), the token length is set to 264, and the network depth is adjusted to 1, 2, 4, and 8 to
 370 align with the parameter scales. For LNO (Wang & Wang, 2024), the token length is set to 88, 120,
 371 168, and 240 to match the parameter scales. Due to the excessively long training time of AMG,
 372 experiments are only conducted on ShapeNet Car and Parachute benchmarks. The token length for
 373 AMG is set to 88, 116, and 162 to align with the parameter scales.

374 The experimental results, as shown in Figure 2, indicate that under the same parameter scales, the
 375 prediction error of our MNO model is consistently lower than that of the baselines. For example,
 376 in Figure 2 (a), our model achieved prediction errors that are 13%-20% lower than the best baseline
 377 across the four parameter scales. When the RL2 error is below 0.075, the parameter scale of our
 model is reduced by 46.61% compared to the best baseline. This indicates that MNO does not need

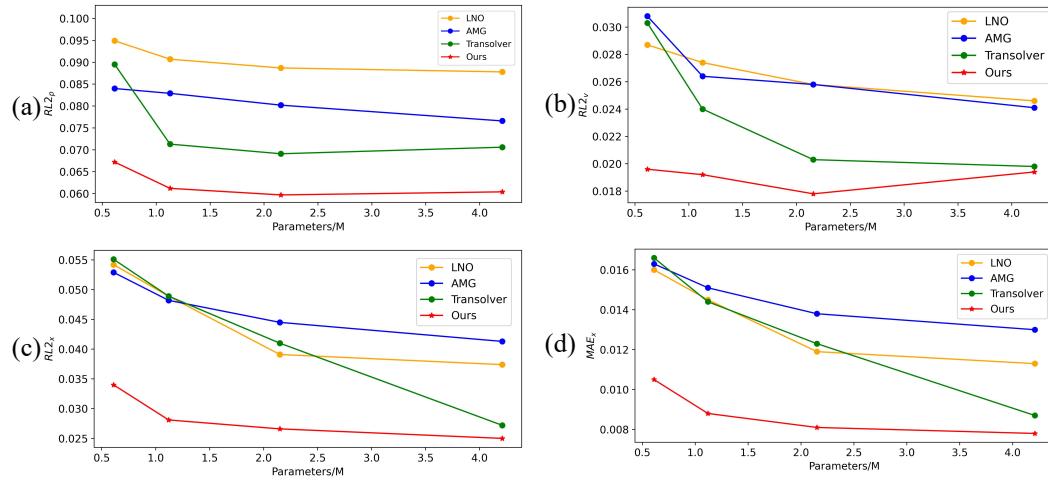


Figure 2: Prediction results with identical model parameter counts. (a) the pressure error on ShapeNet Car, (b) the velocity error on ShapeNet Car, (c) the displacement RL2 error on Parachute, and (d) the displacement MAE on Parachute.

to design redundant parameter spaces for the underlying physical state of the flow field like other baselines.

4.4 ATTENTION MODULES ABLATION EXPERIMENTS

In each MNO block, the three attention modules are responsible for extracting multiscale features. To better understand their contributions, we conduct ablation studies by selectively enabling different modules. Unless otherwise specified, the number of MNO blocks is fixed at four.

The results are summarized in Table 3. ‘‘Global,’’ ‘‘Local,’’ and ‘‘Micro’’ denote using only the corresponding attention module to learn and predict flow fields. ‘‘Global+Local’’ indicates the joint use of both Global and Local Attention modules, ‘‘Global+Local+Micro’’ represents the full MNO block. The ‘‘Global+Global+Global’’ refers to using three identical Global Attention modules as a control. This was done to verify that the performance improvement stems from the complementary benefits of the innovative multi-scale architecture, rather than from simply stacking modules.

Table 3: The results of the ablation experiment of Attention Modules. OOM is out of memory.

Modules	Ahmed body		Parachute		ShapeNet Car				DrivAerNet++	
	$RL2_p$	MAE_p	$RL2_x$	MAE_x	$RL2_p$	MAE_p	$RL2_v$	MAE_v	$RL2_p$	MAE_p
Global	0.8588	154.899	0.8205	0.2629	0.5117	16.9729	0.2025	1.3195	0.7853	73.3534
Local	0.1350	24.8293	0.1479	0.0314	0.0832	2.9235	0.0399	0.2042	0.1919	17.8505
Micro	0.4028	64.5137	0.2307	0.0542	0.1881	6.2470	0.0609	0.3098	0.2396	21.2415
Local+Micro	0.1267	24.0813	0.1062	0.0234	0.0807	2.7964	0.0393	0.1975	0.1908	17.6443
Global+Micro	0.0484	7.4700	0.0304	0.0095	0.0663	1.5408	0.0194	0.0980	0.1728	15.3040
Global+Local	0.0488	7.6412	0.0287	0.0090	0.0610	1.4994	0.0201	0.0983	0.1713	14.9961
Global+Global+Global	0.8591	153.907	0.8170	0.2601	0.7986	23.7095	0.3249	2.0015	0.7853	73.2887
Local+Local+Local	OOD	OOD	0.1484	0.0313	0.0800	2.7651	0.0385	0.1852	OOD	OOD
Micro+Micro+Micro	0.4328	76.6320	0.2249	0.0527	0.1893	6.1662	0.0591	0.2930	0.2420	21.5583
Global+Local+Micro	0.0468	7.0465	0.0266	0.0081	0.0597	1.3796	0.0178	0.0845	0.1665	14.6335

When used individually, the Global attention module cannot complete CFD tasks, because repeated point cloud compression operations result in a significant loss of spatial information. By contrast, the Local Attention module achieves the best performance among the three. Local Attention captures mid-scale features, i.e., mid-frequency information, which is crucial for distinguishing geometric shapes of objects.

Combining Global and Local Attention substantially improves performance, with relative gains of 63.85%, 80.59%, 25.33%, and 10.73%, across the four datasets compared to using Local At-

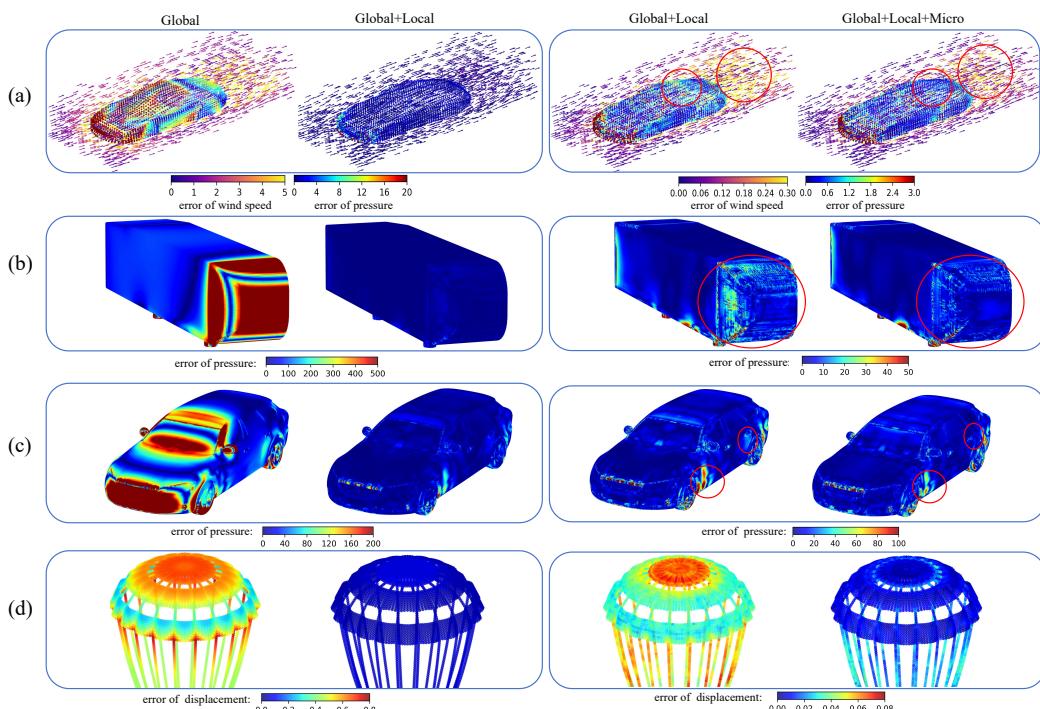
432 tention alone. This highlights the strong complementarity of global and mid-scale features, showing
 433 that their combination captures most of the key physical processes in flow fields.
 434

435 Adding Micro Attention on top of Global+Local yields further improvements of 4.09%, 7.32%,
 436 2.13%, and 2.80%, across the four datasets. The Micro Attention module captures high-frequency
 437 variations that serve as fine-scale corrections to mid-frequency features. While its contribution is
 438 smaller, it refines predictions and enhances overall accuracy.

439 **The performance of individual modules is limited, while their combination can produce powerful**
 440 **results, which is the design advantage of MNO. Local and Micro modules provide detailed local spatial**
 441 **information to supplement global modules, while global modules provide a broader perspective**
 442 **to enhance Local and Micro units. Therefore, any combination of them can improve performance.**
 443 **These three modules work together to improve the overall performance of MNO, without the need**
 444 **for each module to handle CFD tasks independently. Conversely, if the Global and Micro modules**
 445 **performed well independently, it would indicate architectural redundancy rather than effective**
 446 **specialization.**

447 4.5 VISUALIZATION OF ATTENTION MODULES

449 Figure 3 visualizes the prediction errors for different attention configurations. Each row corresponds
 450 to one of the four benchmarks, while columns represent the module combinations: the first column
 451 shows predictions using only Global Attention; the second column shows Global+Local Attention;
 452 the third column repeats the second but with a different color scale for better contrast; and the fourth
 453 column shows the full combination of Global, Local, and Micro Attention. The following discussion
 454 takes Figure 3 (b) as an illustrative example.



479 Figure 3: The visualization of Global, Local and Micro Attention modules. The red circle serves as
 480 a reference for areas with obvious differences. Rows show the error maps for different benchmarks.
 481 For each row: (a) ShapeNet Car. The arrow represents the direction of the wind, and the color
 482 denotes the prediction error; (b) Ahmed body; (c) DrivAerNet++; (d) Parachute. For each column:
 483 (first column) prediction of only Global Attention module; (second column) prediction of Global
 484 and Local Attention modules together; (third column) identical values to the second column but
 485 with a different color scale; (fourth column) prediction of the full MNO with Global, Local, and
 Micro Attention modules together.

486 From the error map of Global Attention alone, show in the first column of Figure 3 (b), we observe
 487 that the module tends to minimize error in the larger side area of the car (the non-windward region).
 488 This reflects its capacity to capture low-frequency components: the non-windward region is subject
 489 to simpler forces and smaller pressure fluctuations, making it easier to approximate. In contrast, the
 490 windward region experiences stronger forces and larger fluctuations, resulting in higher prediction
 491 error.

492 Comparing Global with Global+Local, it is evident that Local Attention significantly improves per-
 493 formance in the windward region. Local Attention captures mid-frequency information and ef-
 494 fectively distinguishes between windward and non-windward regions, complementing the Global
 495 Attention module.

496 Finally, comparing Global+Local with Global+Local+Micro shows that errors in transitional areas
 497 between the front and side regions are further reduced when Micro Attention is included. By refining
 498 predictions at specific points, Micro Attention supplements fine-grained details and corrects residual
 499 errors, demonstrating its role as a complementary high-frequency module.

500 Other important experiments: Ablation on the number of MNO blocks, the hyperparameter M in the
 501 Global module, and the k_{nbr} in the Local module are detailed in Appendix F-H. The evaluation of
 502 the MNO’s geometric generalization and adaptive resolution capabilities is detailed in Appendices I
 503 and J. For a comparative visualization of the key local flow fields between MNO and the baselines,
 504 please refer to Appendix L.

506 5 CONCLUSIONS

507 In this work, we introduced the Multiscale Neural Operator (MNO), a new framework for solving
 508 CFD problems directly on unstructured point clouds. By explicitly decomposing information into
 509 global, local, and micro scales, MNO captures long-range dependencies, neighborhood interactions,
 510 and fine-grained details within a unified architecture. Besides performance gains, the ablation and
 511 visualization studies confirm the complementary roles of the three attention modules and validate
 512 the importance of explicit multiscale design. These results highlight the potential of MNO as a
 513 general and efficient framework for learning complex fluid dynamics on irregular domains, paving
 514 the way for broader applications of neural operators in large-scale scientific computing.

517 REFERENCES

519 Syed R Ahmed, G Ramm, and Gunter Faltin. Some salient features of the time-averaged ground
 520 vehicle wake. *SAE transactions*, pp. 473–503, 1984.

521 Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, and
 522 Angelica I Aviles-Rivero. HAMLET: Graph transformer neural operator for partial differential
 523 equations. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=nYX7I6PsL7>.

525 Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
 526 Silvio Savarese, Manolis Savva, Shuran Song, and Hao Su. Shapenet: An information-rich 3d
 527 model repository. *arXiv preprint arXiv:1512.03012*, 2015.

529 Jingyang Deng, Xingjian Li, Haoyi Xiong, Xiaoguang Hu, and Jinwen Ma. Geometry-guided condi-
 530 tional adaptation for surrogate models of large-scale 3d pdes on arbitrary geometries. In *Proceed-
 531 ings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 5790–5798,
 532 2024.

533 Mohamed Elrefaei, Florin Morar, Angela Dai, and Faez Ahmed. Drivaernet++: A large-scale multi-
 534 modal car dataset with computational fluid dynamics simulations and deep learning benchmarks.
 535 *Advances in Neural Information Processing Systems*, 37:499–536, 2024.

537 Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
 538 Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In
 539 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11108–
 11117, 2020.

540 Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, and
 541 Martin V Butz. Composing partial differential equations with physics-aware neural networks. In
 542 *International Conference on Machine Learning*, pp. 10773–10801. PMLR, 2022.

543

544 Zhihao Li, Haoze Song, Di Xiao, Zhilu Lai, and Wei Wang. Harnessing scale and physics: A multi-
 545 graph neural operator framework for pdes on arbitrary geometries. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1*, pp. 729–740, 2025.

546

547 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
 548 tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
 549 ential equations. *Advances in Neural Information Processing Systems*, 33:6755–6766, 2020.

550

551 Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
 552 tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
 553 differential equations. In *International Conference on Learning Representations*, 2021.

554

555 Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
 556 ator with learned deformations for pdes on general geometries. *Journal of Machine Learning
 Research*, 24(388), 2023a.

557

558 Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
 559 Nabian, Maximilian Stadler, Christian Hundt, and Kamyar Azizzadenesheli. Geometry-informed
 560 neural operator for large-scale 3d pdes. *Advances in Neural Information Processing Systems*, 36:
 561 35836–35854, 2023b.

562

563 Ching-long Lin, Merryn H Tawhai, Geoffrey McLennan, and Eric A Hoffman. Computational fluid
 dynamics. *IEEE Engineering in Medicine and Biology Magazine*, 28(3):25–33, 2009.

564

565 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 566 nonlinear operators via deeponet based on the universal approximation theorem of operators.
 567 *Nature machine intelligence*, 3(3):218–229, 2021.

568

569 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
 570 for 3d classification and segmentation. In *Proceedings of the IEEE conference on computer vision
 and pattern recognition*, pp. 652–660, 2017a.

571

572 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
 573 ture learning on point sets in a metric space. *Advances in neural information processing systems*,
 574 30, 2017b.

575

576 Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
 577 operators. *Transactions on Machine Learning Research*, 2023.

578

579 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 580 deep learning framework for solving forward and inverse problems involving nonlinear partial
 581 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

582

583 Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, and Yang Liu. Encoding physics
 584 to learn reaction–diffusion processes. *Nature Machine Intelligence*, 5(7):765–779, 2023.

585

586 Bogdan Raonic, Roberto Molinaro, Tobias Rohner, Siddhartha Mishra, and Emmanuel de Bezenac.
 587 Convolutional neural operators. In *ICLR 2023 Workshop on Physics for Machine Learning*, 2023.

588

589 Xuxiang Sun, Wenbo Cao, Xianglin Shan, Yilang Liu, and Weiwei Zhang. A generalized framework
 590 for integrating machine learning into computational fluid dynamics. *Journal of Computational
 591 Science*, 82, 2024.

592

593 Nobuyuki Umetani and Bernd Bickel. Learning three-dimensional flow for interactive aerodynamic
 594 design. *ACM Transactions on Graphics*, 37(4), 2018.

595

596 Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
 597 gies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):3055–
 598 3081, 2021.

594 Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
 595 kernel perspective. *Journal of Computational Physics*, 449, 2022.
 596

597 Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde problems.
 598 volume 37, 2024.

599 Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M. Benson. U-
 600 fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. *Ad-*
 601 *vances in Water Resources*, 163, 2022.

602 Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
 603 transformer solver for pdes on general geometries. volume 235, pp. 53681–53705, 2024.

604

605 Zipeng Xiao, Siqi Kou, Hao Zhongkai, Bokai Lin, and Zhijie Deng. Amortized fourier neural
 606 operators. *Advances in Neural Information Processing Systems*, 37, 2024.

607

608 Zhilin You, Zhenli Xu, and Wei Cai. Mscalefno: Multi-scale fourier neural operator learning for
 609 oscillatory function spaces. *arXiv preprint arXiv:2412.20183*, 2024.

610 Bocheng Zeng, Qi Wang, Mengtao Yan, Yang Liu, Ruizhi Chengze, Yi Zhang, Hongsheng Liu,
 611 Zidong Wang, and Hao Sun. PhyMPGN: Physics-encoded message passing graph network for
 612 spatiotemporal PDE systems. In *The Thirteenth International Conference on Learning Represen-*
 613 *tations*, 2025a. URL <https://openreview.net/forum?id=fU8H41zkIm>.

614

615 Chenyu Zeng, Yanshu Zhang, Jiayi Zhou, Yuhao Wang, Zilin Wang, Yuhao Liu, Lei Wu, and
 616 Daniel Zhengyu Huang. Point cloud neural operator for parametric pdes on complex and variable
 617 geometries. *Computer Methods in Applied Mechanics and Engineering*, 443, 2025b.

618 Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and Vladlen Koltun. Point transformer. In
 619 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 16259–16268,
 620 2021.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

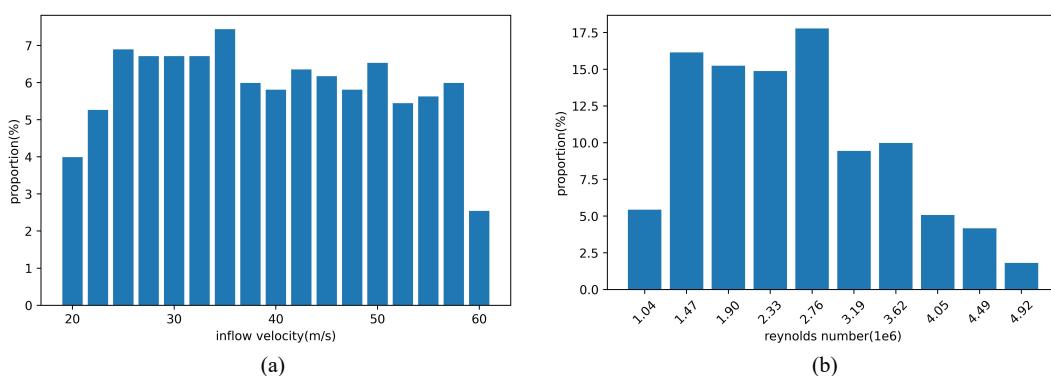
647

648
649

A LLMS POLISHING

650
651
652
653
The manuscript was initially drafted in Chinese and polished using Large Language Models (LLMs)
of DeepSeek-R1 and ChatGPT-4.0 to improve clarity, grammar, and academic style. The authors
rigorously reviewed and edited all AI-generated content to ensure accuracy and consistency with the
original scientific intent. The intellectual contributions remain entirely human.
654
655656
657

B DETAILS OF BENCHMARKS

658
659
This paper conducts a comprehensive evaluation of the model across four benchmarks. The details
for each benchmark are provided below.660
661
662
663
664
665
666
667
668
669
670
The ShapeNet Car (Umetani & Bickel, 2018) focuses on wind tunnel experiments for automobiles,
a critical stage in automotive industrial design. This dataset contains 889 samples representing
different car shapes, used to simulate driving conditions at a speed of 72 km/h. The car shapes
are drawn from the "Car" category of ShapeNet (Chang et al., 2015). The surrounding space is
discretized into an unstructured grid with 32,186 points, and both the airflow velocity around the car
and the pressure on the car surface are recorded. The number of points on the car surface is 3,682.
Following the experimental setup in Transolver (Wu et al., 2024), we use 789 samples for training
and the remaining 100 samples for testing. The input point cloud of each sample is preprocessed
into a combination of point positions, signed distance functions, and normal vectors. A notable
difference is that the original dataset contains 96 fixed noisy points on the car surface. After our
preprocessing, the point cloud data consists of 29,498 air points and 3,586 car surface points.671
672
673
674
675
676
677
678
679
The DrivAerNet++ (Elrefaei et al., 2024) is a large-scale, comprehensive benchmark for automotive
aerodynamic design, constructed using high-fidelity CFD simulations. It contains over 8,000 distinct
car designs, covering various vehicle types, wheel configurations, and chassis layouts. The inflow
air velocity is 108 km/h. We only use a subset of surface pressures for the experiment. To maintain
sample diversity while improving research efficiency, we randomly select 200 samples for training
and 50 samples for testing. Each point cloud sample consists of approximately 600k points, with
each point described by its three-dimensional coordinates (x, y, z) and surface normal vectors (ux,
uy, uz). Since the dataset was generated with y-axis symmetry, we only use the points with $y > 0$
(300k) to enhance computational efficiency.680
681
682
683
684
685
686
687
The Ahmed Body (Li et al., 2023b) is a wind tunnel dataset for bluff-body vehicles, used to predict
the pressure on the vehicle surface. The vehicle shape is based on the benchmark model designed in
(Ahmed et al., 1984). The inflow velocity ranges from 10 m/s to 70 m/s, corresponding to Reynolds
numbers from 4.35×10^5 to 6.82×10^6 . The dataset is generated by systematically varying the ve-
hicle's length, width, height, ground clearance, inclination angle, and rear rounding radius, resulting
in a total of 551 samples, each containing approximately 100k surface points. Among these, 500
samples are used for training and 51 samples for testing, consistent with the setup in PCNO (Zeng
et al., 2025b). [The variations in inflow velocity and Reynolds number are shown in Figure 4.](#)
688
689
690
691
692
693
694
695
696
697
698
699
700
701Figure 4: [Sample distribution of varying inflow velocities and Reynolds numbers for the Ahmed body benchmark case.](#)

The Parachute Dynamics (Zeng et al., 2025b) captures the inflation process of different parachutes under specific pressure loads. The pressure load increases linearly from 0 to 1000 Pa over the first 0.1 seconds and then remains constant at 1000 Pa. The learning objective is to map the initial parachute shape to the displacement fields at four specific time points during inflation: $t_1 = 0.04$, $t_2 = 0.08$, $t_3 = 0.12$, and $t_4 = 0.16$. These time points characterize the inflation process, where the parachute first rapidly expands under pressure, then over-expands, and finally rebounds. The experimental setup follows that of PCNO (Zeng et al., 2025b), with 1000 samples for training and 200 samples for testing. Each sample contains approximately 15k points in the point cloud.

C THE EVALUATION METRICS

For the quantitative evaluation of point cloud prediction algorithms, this study employs the following two widely used metrics: Relative L2 Error (RL2) and Mean Absolute Error (MAE). Both metrics are calculated based on point-to-point correspondence between the predicted point cloud and the true point cloud, requiring that the point clouds be precisely aligned and point correspondences established prior to evaluation.

C.1 THE RELATIVE L2 ERROR

The RL2 measures the normalized Euclidean distance discrepancy of the predicted point cloud as a whole relative to the true point cloud. It is defined as follows:

$$RL2 = \frac{\|\hat{Y} - Y\|_2}{\|Y\|_2} = \frac{\sqrt{\sum_{i=1}^N \|\hat{y}_i - y_i\|_2^2}}{\sqrt{\sum_{i=1}^N \|y_i\|_2^2}}, \quad (6)$$

where $Y = \{y_1, y_2, \dots, y_N\}$ is the true point cloud, $\hat{Y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N\}$ is the predicted point cloud, N is the number of points, $\|\cdot\|_2$ represents the L2 norm.

A smaller RL2 value indicates lower relative error between the predicted point cloud and the true point cloud at the overall level, reflecting higher prediction accuracy. By using the norm of the true point cloud as the denominator, this metric achieves scale invariance, enabling robust performance comparisons across different scales or datasets.

C.2 THE MEAN ABSOLUTE ERROR

MAE measures the mean of the absolute deviations between the predicted point cloud and the true point cloud on a point-wise basis. It is defined as follows:

$$MAE = \frac{1}{N} \sum_{i=1}^N \|\hat{y}_i - y_i\|_1, \quad (7)$$

where $Y = \{y_1, y_2, \dots, y_N\}$ is the true point cloud, $\hat{Y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N\}$ is the predicted point cloud, N is the number of points, $\|\cdot\|_1$ represents the L1 norm.

A smaller MAE value indicates that the predicted point cloud aligns more closely with the ground truth along each coordinate axis, reflecting higher point-wise accuracy. Unlike Mean Squared Error (MSE), MAE is less sensitive to outliers (individual points with large errors), providing a more robust estimate of the average deviation.

The combined use of RL2 and MAE enables a more comprehensive evaluation of point cloud reconstruction algorithm performance: RL2 focuses on the fidelity of global, while MAE assesses localized accuracy. Lower values for both metrics collectively indicate superior reconstruction quality.

756 **D FULL IMPLEMENTATION DETAILS**
757
758

759 The code and data can be obtained from: anonymous4open or google drive. The implementation
760 software of the model is mainly based on PyTorch 2.4.1, CUDA 12.1, and Python 3.9.0. The com-
761 puting platform mainly includes Ubuntu 22.04.4 LTS and 4 NVIDIA H100 GPUs. Due to the high
762 cost of H100 GPUs, we use a more affordable NVIDIA 3090 GPU to measure the inference time,
763 which better represents practical application scenarios.

764
765 **Table 4: The key hyperparameters and training configurations of our MNO and baseline methods.**

767 Methods	768 Model key hyperparameters	769 Training configurations
769 DeepONet	770 branch_dim=128, trunk_dim=128	771 batch size=4 772 epochs=500 773 Loss=RL2 774 Optimizer=AdamW(775 lr=1e-3, 776 weight_decay=5e-5, 777 betas=(0.9, 0.99)) 778 Scheduler=OneCycleLR(779 max_lr=1e-3, 780 pct_start=0.2, 781 div_factor=1e4, 782 final_div_factor=1e4)
771 PointNet	772 point numbers=[N,N,N,N,N,N] 773 feature dims=[64,128,1024,512,256,128]	
773 PointNet++	774 point numbers = [N,1024, 256, 64, 16, 64, 256, 1024 ,N] 775 feature dims = [32,64, 128, 256, 512, 256, 256, 128, 128]	
775 GeoFNO	776 modes1=8, modes2=8, modes3=8, width=64, 777 is_mesh=True	
778 LNO	779 n_block=8, n_mode=256, n_dim=128, 780 n_head=8, n_layer=2	
780 AMG	781 feature_width=128, num_layers=3, pos_dim=3, 782 global_ratio=0.25, global_k=4, local_nodes=512, 783 local_ratio=0.25, local_k=6, 784 num_phys=32, num_heads=4	
785 PCNO	786 layers=[128, 128, 128, 128, 128], fc_dim=128, 787 Parachute: n_mode=7812, n_measure=2 788 Ahmed body: n_mode=2456, n_measure=1	
788 Transolver	789 n_hidden=256, n_layers=8, n_head=8, 790 mlp_ratio=2, slice_num=32	
790 Ours	791 Block=4, M=256, D=128, Head=8, 792 k_nbr=16 (8 of DrivAerNet++)	

793
794 **Table 4** details the hyperparameter configurations and training settings of the MNO model and other
795 baseline methods across all benchmarks. Training employed a relative L2 error loss function over
796 500 epochs, optimized using the AdamW optimizer and the OneCycleLR learning rate scheduler.
797 In the MNO model, N denotes the point number per sample, Block refers to the number of MNO
798 blocks, M indicates the number of tokens in the low rank space of the global attention module, D
799 represents the vector dimension of each token, Head specifies the number of heads in the multi-
800 head self-attention (MSA) mechanism, and k_{nbr} defines the number of neighboring nodes in the
801 local attention module. For DrivAerNet++, due to GPU memory limitations, k_{nbr} is reduced to 8.

802 The parameter configurations for all baseline models are derived from the settings provided in the
803 authors' official papers and code repositories. In Transolver (Wu et al., 2024), n.layers is similar
804 in meaning to Blocks in MNO, and slice_num represents the number of physical slices in the latent
805 space. In LNO (Wang & Wang, 2024), n.block refers to the number of MSA modules in the latent
806 space, and n_mode refers to the number of tokens in latent space. In PointNet++ (Qi et al., 2017b),
807 point numbers refer to the quantity of spatially downsampled or upsampled points at different scale
808 levels, and feature dims refer to the number of channels at each level. This resembles a U-Net-like
809 architecture for point clouds. Other detailed parameter explanations will not be reiterated. Readers
can refer to the baselines' original papers and official code repositories for further details.

810 E CALCULATION COST OF OUR AND BASELINE METHODS. 811

812 In this section, we provide a detailed statistical analysis of the computational costs of MNO and
813 the compared baseline methods. Table 5 presents the computational costs of MNO model. Table 6
814 shows the computational costs of other baseline methods.
815

816 In Table 5, "Global (no low rank)" refers to the standard self-attention method, which computes
817 global attention across all spatial points directly without using low rank projection for compression.
818 Compared to this standard self-attention method, the low rank projection reduces the GPU memory
819 usage during inference by 97.03%. Furthermore, due to training GPU memory requirements exceeding
820 80GB, the standard self-attention method could not complete the training task on any benchmark
821 used in this paper.
822

823 Table 5: Statistical results of computational costs for MNO model. *Flops* and *Params* represent
824 the model's theoretical computational load and parameter count, respectively. GPU_t and GPU_i represent the training and inference GPU memory per sample, respectively. train/epoch and inference/sample represent the training time per epoch and the inference time per sample, respectively.
825

Ahmed body						
Modules	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
Global (no low rank)	116.6G	1.16M	>80G	>80G	OOM	OOM
Global	96.5G	1.49M	10.1G	0.8G	106s	0.2312s
Global+Local	442.6G	1.95M	40.7G	8.2G	163s	1.2113s
Global+Local+Micro	462.5G	2.15M	41.3G	8.2G	164s	1.2214s
Parachute						
Modules	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
Global (no low rank)	16.759G	1.16M	>80G	13584M	OOM	0.1327s
Global	13.9G	1.49M	4.7G	0.4G	24s	0.0392s
Global+Local	63.7G	1.95M	9.1G	1.4G	34s	0.1027s
Global+Local+Micro	66.5G	2.15M	9.2G	1.4G	35s	0.1116s
ShapeNet Car						
Modules	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
Global (no low rank)	37.2G	1.16M	>80G	>80G	OOM	OOM
Global	30.9G	1.49M	5.6G	0.5G	50s	0.0839s
Global+Local	141.4G	1.95M	15.4G	2.8G	70s	0.2650s
Global+Local+Micro	147.8G	2.15M	15.7G	2.8G	71s	0.2765s
DrivAerNet++						
Modules	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
Global (no low rank)	OOM	OOM	>80G	>80G	OOM	OOM
Global	286.8G	1.49M	22.7G	2.2G	115s	0.6897s
Global+Local	841.6G	1.95M	68.5G	13.2G	237s	6.3662s
Global+Local+Micro	900.8G	2.15M	71.0G	13.2G	239s	6.3969s

854 Table 6 shows the computational cost of MNO and baselines. When inferring physical fields at 15k,
855 30k, 100k, and 300k points, MNO requires only 1.2s, 0.1s, 0.2s, and 6.3s, respectively. The actual
856 training and inference time of MNO is 90% lower than the latest graph based SOTA (AMG)(Li et al.,
857 2025), while other Transformer baselines are typically faster because graph architectures (MNO and
858 AMG) are not optimized on current GPU hardware. It is worth noting that although our Local
859 method also uses a graph structure, the computational time of MNO does not increase explosively.
860 The Local modules in all blocks of MNO share the same graph structure. Therefore, the adjacency
861 matrix for MNO only needs to be computed once at the front end, which greatly alleviates the
862 commonly excessive computational time issue associated with graph neural networks.
863

PCNO's (Zeng et al., 2025b) high GPU memory usage is due to the lack of adequate compression
in the number of frequency modes when using FNO (Li et al., 2021) to extract global features.

864
 865 Table 6: Statistical results of the computational cost for the baseline model. Red indicates cases
 866 where the cost is significantly exceeds the normal range.

Ahmed body						
Methods	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
LNO	23.7G	1.29M	1.3G	0.6G	28s	0.0958s
AMG	125.7G	1.35M	16.3G	3.9G	4257s	28.009s
PCNO	28.2G	0.28M	33.8G	11.3G	243s	0.1527s
MNO	462.5G	2.15M	41.4G	8.2G	164s	1.2214s
Parachute						
Methods	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
LNO	3.6G	1.29M	4.0G	0.8G	16s	0.0146s
AMG	18.0G	1.35M	5.6G	1.2G	277s	0.9047s
PCNO	4.0G	0.28M	44.4G	13.1G	172s	0.1807s
MNO	66.5G	2.15M	9.2G	1.4G	35s	0.1116s
ShapeNet Car						
Methods	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
LNO	7.7G	1.29M	4.3G	0.9G	14s	0.0313s
AMG	40.1G	1.35M	7.9G	1.8G	814s	3.2592s
Transolver	125.3G	3.86M	7.4G	0.9G	14s	0.0545s
MNO	147.8G	2.15M	15.7G	2.8G	71s	0.2765s
DrivAerNet++						
Methods	Flops	Params	GPU_t	GPU_i	train/epoch	inference/sample
LNO	69.5G	1.29M	9.6G	2.5G	22s	0.2959s
AMG	373.8G	1.35M	40.8G	10.1G	13525s	247.6723s
Transolver	1.1T	3.85M	38.1G	3.5G	22s	0.5172s
MNO	900.8G	2.15M	71.038G	13.2G	239s	6.3969s

894
 895 To demonstrate that the improvement in prediction accuracy of our MNO stems from the innovative
 896 design of its multi-scale architecture rather than merely increased computational cost, we conducted
 897 a fair comparison with other baselines under equivalent model parameters. For details, refer to
 898 Section 4.3 in the main text. The results show that the predictive performance of our MNO model
 899 consistently outperforms all other baseline methods across varying model parameter levels.

F THE ABLATION OF THE DEPTH OF MNO

904 This experiment aims to explore performance changes in Global Attention, Local Attention, and
 905 Micro Attention modules with varying depths of the MNO model.

906 Due to the large number of models requiring training in this experiment, to enhance experimental
 907 efficiency, ablation studies are performed exclusively on the smaller-scale point cloud datasets:
 908 ShapeNet Car and Parachute. ShapeNet Car necessitates simultaneous prediction of velocity and
 909 pressure fields, while Parachute incorporates temporal information, making both highly representa-
 910 tive benchmarks.

911 Table 7 presents the experimental results. It is evident that the MNO model incorporating all three
 912 attention modules achieves the highest prediction accuracy in most cases. A significant improve-
 913 ment in MNO’s predictive performance is observed as the number of blocks increases from 1 to 4.
 914 However, performance gains become marginal when the block count exceeds 4, suggesting that the
 915 model likely enters a saturated state at this stage.

916 MNO achieves satisfactory performance with only four serially connected blocks. Because that the
 917 kNN graph-based Local Module provides strong inductive bias and tends to saturate with relatively

918
 919 Table 7: The ablation experimental results of depth of MNO model. Blocks refer to the number of
 920 cascaded MNO blocks in the model. $RL2_{x1 \sim 4}$ represent the RL2 of the displacement field at 4 time
 921 steps. $RL2_x$ denotes the total RL2 of 4 time steps.

Blocks	Modules	ShapeNet Car				Parachute					
		$RL2_v$	MAE_v	$RL2_p$	MAE_p	$RL2_{x1}$	$RL2_{x2}$	$RL2_{x3}$	$RL2_{x4}$	$RL2_x$	MAE_x
1	Global	0.0252	0.1315	0.0813	2.1268	0.0535	0.0380	0.0439	0.0615	0.0455	0.0135
	Local	0.0526	0.2637	0.1191	4.1156	0.0777	0.0872	0.1263	0.2221	0.1353	0.0315
	Micro	0.0594	0.2925	0.1924	6.3051	0.1942	0.1967	0.2504	0.3138	0.2408	0.0581
	Global+Local	0.0220	0.1130	0.0686	1.7701	0.0319	0.0250	0.0358	0.0531	0.0361	0.0110
	Global+Local+Micro	0.0196	0.0999	0.0672	1.6221	0.0310	0.0239	0.0336	0.0500	0.0340	0.0105
2	Global	0.0266	0.1481	0.0852	2.1712	0.0342	0.0236	0.0323	0.0490	0.0330	0.0102
	Local	0.0465	0.2328	0.0959	3.4201	0.0569	0.0641	0.1022	0.1671	0.1045	0.0251
	Micro	0.0586	0.0586	0.1906	0.2893	0.1813	0.1894	0.2429	0.3042	0.2335	0.0553
	Global+Local	0.0197	0.0972	0.0632	1.5172	0.0245	0.0185	0.0291	0.0453	0.0294	0.0093
	Global+Local+Micro	0.0192	0.0946	0.0612	1.4408	0.0231	0.0172	0.0276	0.0441	0.0281	0.0088
4	Global	0.2025	1.3195	0.5117	16.9729	0.7308	0.7884	0.8502	0.8143	0.8205	0.2629
	Local	0.0399	0.2042	0.0832	2.9235	0.0455	0.0911	0.1545	0.2099	0.1479	0.0314
	Micro	0.0609	0.3098	0.1881	6.2470	0.1812	0.1869	0.2402	0.3010	0.2307	0.0542
	Global+Local	0.0201	0.0983	0.0610	1.4994	0.0250	0.0183	0.0289	0.0438	0.0287	0.0090
	Global+Local+Micro	0.0178	0.0845	0.0597	1.3796	0.0216	0.0164	0.0259	0.0418	0.0266	0.0081
8	Global	0.3252	1.9870	0.7991	23.7101	0.7659	0.8413	0.8981	0.8552	0.8661	0.2713
	Local	0.0319	0.1644	0.0728	2.3717	0.1106	0.1242	0.1916	0.2549	0.1790	0.0472
	Micro	0.0584	0.2916	0.1880	6.1920	0.1727	0.1804	0.2361	0.2949	0.2254	0.0525
	Global+Local	0.0201	0.1006	0.0614	1.4902	0.0392	0.0313	0.0401	0.0558	0.0402	0.0123
	Global+Local+Micro	0.0194	0.0857	0.0604	1.3986	0.0239	0.0163	0.0235	0.0399	0.0250	0.0078

938
 939 shallow depth, unlike deep Transformers that rely heavily on stacking for expressivity. Figure 2 also
 940 confirms this: MNO can achieve better performance than Transolver with fewer block numbers.
 941

942 Each module operates at distinct receptive field scales: the global module captures domain-level
 943 dependencies, while the local and micro modules provide fine-grained neighborhood and point-
 944 level information. Conversely, if the global and micro modules function effectively in isolation, it
 945 indicates architectural redundancy rather than an effective and specialized model.

G THE ABLATION OF M IN LOW RANK SPACE

946
 947 To investigate the size of the model’s demand for low rank space representation capacity, we conduct
 948 ablation experiments with parameter M . Table 8 shows ablation results for M . When $M \geq 256$,
 949 model performance saturates, indicating limited capacity requirements in the low rank space. For
 950 CFD tasks with limited computational resources, we recommend reducing M , as performance does
 951 not drop significantly.

955 Table 8: The low rank space M ablation results on ShapeNet Car

Methods	M	$RL2_p$	MAE_p	$RL2_v$	MAE_v	Flops	Params	GPU_i
MNO	16	0.0606	1.4320	0.0197	0.0917	143.720G	2.032M	2858M
MNO	32	0.0597	1.3803	0.0180	0.0857	143.992G	2.040M	2858M
MNO	64	0.0599	1.4123	0.0187	0.0910	144.536G	2.056M	2858M
MNO	128	0.0607	1.4201	0.0188	0.0888	145.625G	2.089M	2858M
MNO	256	0.0597	1.3796	0.0178	0.0845	147.802G	2.156M	2858M
MNO	512	0.0601	1.3763	0.0177	0.0822	152.155G	2.288M	2924M

944 Increasing the value of M does not lead to significant improvements. This indicates that the low
 945 rank space does not rely on a large dimensionality setting. We speculate that among objects of the
 946 same category (such as different vehicles in ShapeNet Car), the overall contours exhibit high struc-
 947 tural similarity, primarily composed of low-frequency information, while the key factors affecting
 948 prediction accuracy depend more on mid- to high-frequency details. Therefore, a smaller low rank
 949 space is sufficient to capture the low-frequency features of the overall contours, whereas finer geo-
 950 metric structures are dominated by mid- to high-frequency components. This result suggests that in
 951 flow field prediction tasks, low-frequency information primarily serves an auxiliary global constraint
 952 role, while mid- to high-frequency information is more critical for recovering local details.

972 H THE ABLATION OF k_{nbr} OF LOCAL GRAPH ATTENTION

974 To investigate the model’s sensitivity to the number of neighbors, an ablation study on the k_{nbr} is
 975 conducted. The experimental results are shown in Table 9. When $k >= 16$, the performance of the
 976 MNO reaches saturation. The GPU memory is linearly related to the value of k.
 977

978 979 Table 9: The ablation results of k_{nbr} of Local graph attention on ShapeNet Car

980 Methods	$981 k_{nbr}$	$982 RL2_p$	$983 MAE_p$	$984 RL2_v$	$985 MAE_v$	Flops	Parameters	$986 GPU_i$
981 Local	982 2	983 0.1902	984 5.8130	985 0.0627	986 0.3134	987 32.987G	988 831.492K	989 774M
981 Local	982 4	983 0.1154	984 3.8378	985 0.0488	986 0.2407	987 45.742G	988 831.492K	989 1158M
981 Local	982 8	983 0.0943	984 3.2675	985 0.0428	986 0.2230	987 71.252G	988 831.492K	989 1718M
981 Local	982 16	983 0.0832	984 2.9235	985 0.0399	986 0.2042	987 122.272G	988 831.492K	989 2854M
981 Local	982 32	983 0.0746	984 2.4595	985 0.0350	986 0.1780	987 224.311G	988 831.492K	989 5126M
981 MNO	982 2	983 0.0648	984 1.4644	985 0.0184	986 0.0860	987 58.517G	988 2.156M	989 828M
981 MNO	982 4	983 0.0645	984 1.4378	985 0.0186	986 0.0861	987 71.272G	988 2.156M	989 1244M
981 MNO	982 8	983 0.0635	984 1.4210	985 0.0183	986 0.0855	987 96.782G	988 2.156M	989 1722M
981 MNO	982 16	983 0.0597	984 1.3796	985 0.0178	986 0.0845	987 147.802G	988 2.156M	989 2858M
981 MNO	982 32	983 0.0599	984 1.4160	985 0.0191	986 0.0935	987 249.841G	988 2.156M	989 5130M

991 When the Local Module independently handles the CFD task, the prediction error rapidly decreases
 992 as k_{nbr} increases. However, when the MNO model performs the CFD prediction task, the reduction
 993 in prediction error with increasing k_{nbr} is more gradual. The Local Module lacks a global perspec-
 994 tive of the point cloud. Increasing k_{nbr} effectively expands its receptive field, making the Local
 995 Module highly sensitive to changes in k_{nbr} . Nevertheless, a larger k_{nbr} significantly increases GPU
 996 memory usage and computational complexity, so its value cannot be set excessively high. The MNO
 997 model possesses receptive fields at multiple scales. The global perspective provided by the Global
 998 Module alleviates the Local Module’s strong dependence on a large receptive field, allowing the
 999 Local Module to focus more on analyzing local features. Consequently, the prediction performance
 1000 of MNO is less sensitive to variations in k_{nbr} .
 1001

1002 Since GPU memory is exceptionally sensitive to k_{nbr} , we must minimize the number of neighbor
 1003 nodes k_{nbr} to avoid memory overflow when the dataset contains a large number of sampled points.
 1004 Fortunately, the unique multi-scale structure design of MNO mitigates the heavy reliance of graph
 1005 structures on computational resources. As shown in Table 9, when the RL2 error is also less than
 1006 0.08, compared to the Local Graph Attention method, MNO reduces computational Flops by 73.9%
 1007 and GPU memory usage by 83.8%. Therefore, even when k_{nbr} is reduced to prevent memory over-
 1008 flow, MNO can still achieve excellent prediction performance. For instance, in the DrivAerNet++
 1009 dataset used in this study, the point cloud scale of 300k forces us to reduce k_{nbr} from 16 to 8, yet
 1010 the prediction error remains lower than that of the best baseline.

1011 I ZERO-SHOT RESOLUTION ADAPTATION STUDY

1012 1013 In this experiment, we designed an adaptive resolution training strategy that enables the MNO model
 1014 to support point cloud inputs with arbitrarily varying resolutions within a certain range in a zero-shot
 1015 manner. The training method is illustrated in the following equation:

$$\begin{aligned}
 1017 \quad & \text{mask} = \text{randmask}(\text{sample rate}), \\
 1018 \quad & X_{in}^{sample} = X_{in} \odot \text{mask}, \\
 1019 \quad & X_{out}^{sample} = \text{model}(X_{in}^{sample}), \\
 1020 \quad & Y^{sample} = Y \odot \text{mask}, \\
 1021 \quad & L = \text{Loss}(X_{out}^{sample}, Y^{sample})
 \end{aligned} \tag{8}$$

1022 1023 where sample rate represents the proportion of sampling points, and $\text{sample rate} \in (10\%, 100\%)$,
 1024 $\text{mask} \in \mathbb{R}^{N_{\max} \times 1}$, and N_{\max} represents the maximum limit of input points. The function
 1025 $\text{randmask}(\cdot)$ randomly sets n positions in the mask to 1, where $n = \text{round}(N \times \text{sample rate})$,

1026 and sets the remaining positions to 0. $X_{in} \in \mathbb{R}^{N_{max} \times f}$ represents the original point cloud input
 1027 data, where f is the number of input features. X_{out}^{sample} corresponds to the predicted physical field
 1028 data of the sampled points, Y is the ground truth, and Loss is the loss function.
 1029

1030 During model training, the hyperparameter settings are consistent with Table 4. The results are
 1031 shown in Table 10. Across 10 input resolutions (100% \rightarrow 10%), MNO maintains stable performance
 1032 with $RL2 = 0.1755 \pm 0.0038$. This proves that even in severely sparse situations, it exhibits strong
 1033 robustness and consistent physical state prediction for subsampling and density variations.
 1034

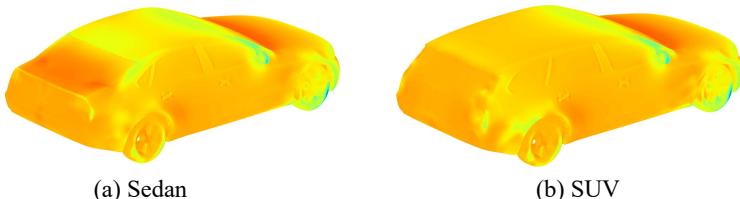
1035 Table 10: Zero-Shot results across different resolutions on DrivAerNet++ benchmark. Sample rate
 1036 refers to the proportion of spatial sampling points. $RL2_p$, MAE_p , $RMSE_p$ and MSE_p denote the
 1037 Relative L2 error, Mean Absolute Error, Root Mean Square Error, and Mean Square Error of the
 1038 pressure field, respectively.

sample rate	n	$RL2_p$	MAE_p	$RMSE_p$	MSE_p
10%	30k	0.1793	15.7110	27.9917	816.6555
20%	60k	0.1727	15.1267	26.9546	743.8958
30%	90k	0.1708	15.0152	26.6468	725.7269
40%	120k	0.1728	14.9423	27.0181	753.2448
50%	150k	0.1729	14.9048	26.9991	759.3806
60%	180k	0.1712	14.9021	26.7007	735.7252
70%	210k	0.1715	14.9023	26.7680	739.0064
80%	240k	0.1725	14.9164	26.9393	754.6640
90%	270k	0.1719	14.9203	26.8491	747.4118
100%	300k	0.1717	14.9379	26.8093	743.3867

J THE GEOMETRIC GENERALIZATION STUDY

1053 In this section, we investigate the geometric generalization capability of the MNO. The model is
 1054 trained exclusively on one category of geometric shapes and tested on another category to evaluate
 1055 its performance.
 1056

1057 The car shapes in the DrivAerNet++ benchmark are categorized into Sedan and Sport Utility Vehicle
 1058 (SUV), as illustrated in Figure 5. Sedans typically feature a low-center-of-gravity, streamlined body
 1059 design that emphasizes road-handling stability and high-speed cruising capability. In contrast, SUVs
 1060 are characterized by higher ground clearance and a more boxy, taller body, providing a more spa-
 1061 cious cargo area and enhanced off-road performance. Accordingly, we conduct ablative experiments
 1062 to evaluate geometric generalization performance for the two vehicle types.
 1063



1069 (a) Sedan (b) SUV
 1070
 1071 Figure 5: Display of different geometric shapes of Sedan and SUV.
 1072

1073 The experimental results are summarized in Table 11. The predicted $RL2$ errors for all four cases are
 1074 below 0.22, indicating that the MNO possesses a certain degree of geometric generalization ability.
 1075 It demonstrates that the model can learn some universal physical laws from training cases of a single
 1076 geometric type. When the model is trained solely on Sedan-type shapes, the predicted $RL2$ error is
 1077 approximately 0.14 for Sedan cases, while the error increases to around 0.20 for SUV cases. The
 1078 converse also holds true. This suggests that the geometric generalization capability of the MNO is
 1079 limited. The geometric homogeneity and limited quantity of the training samples cause the model
 to overfit to some extent.

1080

1081

Table 11: Research results on zero-shot transfer of different geometric shapes.

1082

1083

Train	Test	$RL2_p$	MAE_p	$RMSE_p$	MSE_p	Train samples	Test samples
Sedan	Sedan	0.1468	14.0959	23.3102	173.2603	200	50
Sedan	SUV	0.2020	19.6659	31.2958	290.4522	200	50
SUV	SUV	0.1419	12.4015	22.1808	162.3201	200	50
SUV	Sedan	0.2189	20.1559	34.6224	368.7184	200	50

1087

1088

1089 Increasing the diversity of training samples can effectively alleviate this issue. For example, if the
1090 training set of the MNO includes both vehicle types, the $RL2$ error will decrease from 0.2 to 0.16.
1091 In the future, we will collect and construct a large-scale 3D CFD benchmark encompassing a wider
1092 variety of geometric types and a larger sample size to enhance the generalization capability of the
1093 MNO.

1094

1095

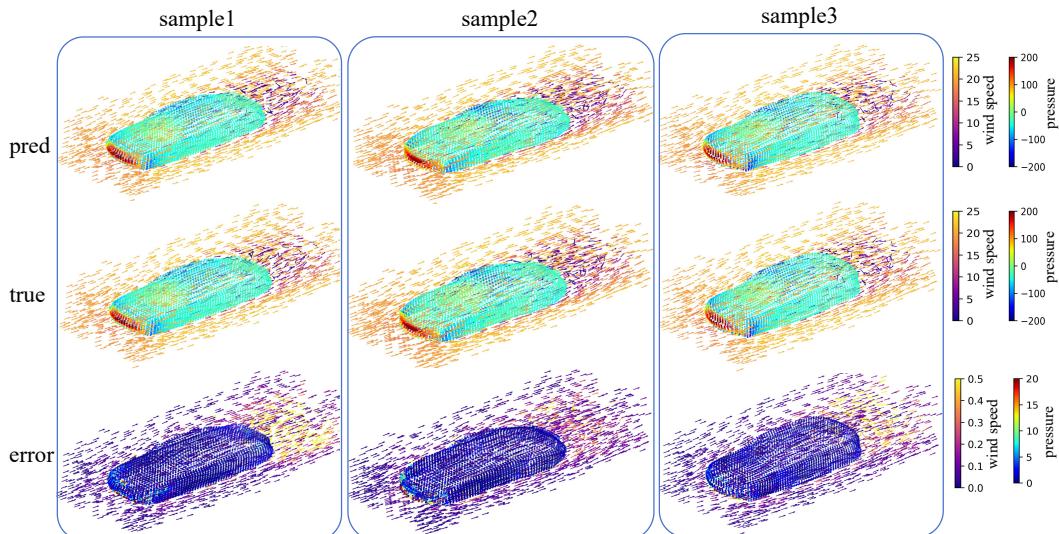
K THE DISPLAY AND DISCUSSION OF PREDICTION RESULTS OF MNO MODEL

1096

1097

1098 In this section, we present prediction results obtained by the proposed MNO model, as illustrated
1099 in Figures 6, Figure 7, Figure 8, and Figure 9. It is evident that across all datasets, the model’s
1100 predictions exhibit strong consistency with the ground truth, with prediction errors approaching
1101 zero in most regions of the point cloud. These results confirm that the MNO model is capable of
1102 capturing the majority of physical behaviors in fluid flows, making it highly suitable for CFD tasks.

1103



1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1122 Figure 6: The display of prediction results on ShapeNet Car dataset. The pred represents the pre-
1123 dicted velocity and pressure fields, the true denotes the ground truth, and the error stands for the
1124 absolute error of the prediction fluid fields. The arrows represent the wind direction, and the color
1125 of arrows denotes the magnitude of wind speed.

1126 Among the benchmarks, the ShapeNet Car dataset merits particular attention, as the model is re-
1127 quired to simultaneously predict both the velocity field of the airflow around the car and the pres-
1128 sure field normal to the car surface. Figure 6 presents the experimental results on this dataset. From
1129 the “true” visualization, one can observe that the windward regions of the car surface exhibit higher
1130 pressure, while the leeward and side regions experience lower pressure. As the airflow passes the
1131 vehicle body, its velocity decreases and complex wake turbulence forms downstream of the car. In the
1132 “pred” visualization, the model successfully reproduces the contrast between windward and leeward
1133 surfaces, as well as the turbulent structures in the wake, indicating that MNO has effectively learned
the underlying PDEs governing wind tunnel phenomena from point cloud data. In the “error” vi-

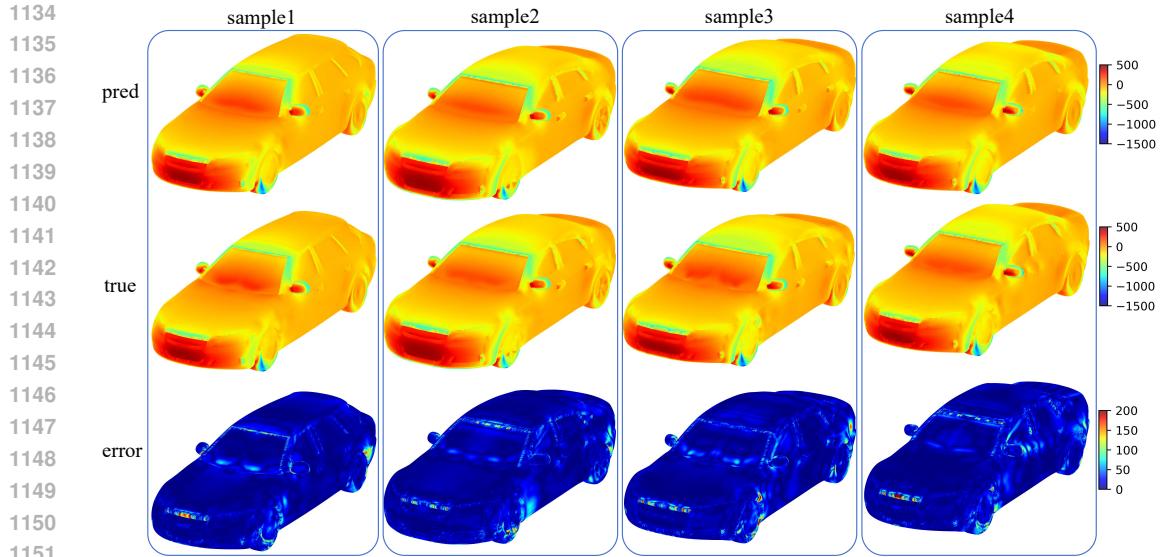


Figure 7: The display of prediction results on DrivAerNet++ dataset. The pred represents the predicted pressure fields, the true denotes the ground truth, and the error stands for the absolute error of the prediction fluid fields.

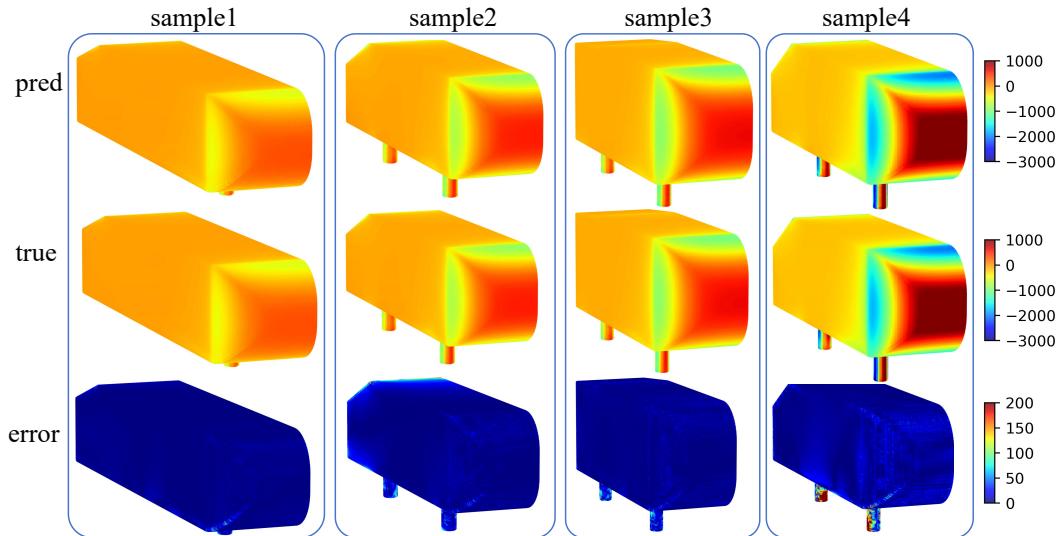


Figure 8: The display of prediction results on Ahmed body dataset. The pred represents the predicted pressure fields, the true denotes the ground truth, and the error stands for the absolute error of the prediction fluid fields.

sualization, relatively large prediction errors are observed at the front surface of the car, where the windward face encounters high-speed inflow and rapid flow variations, making the prediction more challenging. Similarly, noticeable errors appear in the downstream velocity field due to the highly complex turbulent dynamics in the wake region.

L VISUALIZATION OF KEY FLOW FIELD REGIONS OF MNO AND BASELINE

In this section, we aim to zoom in some local flow fields to observe key regions where the model predictions fail and conduct a detailed discussion and analysis. The DrivAerNet++ benchmark features

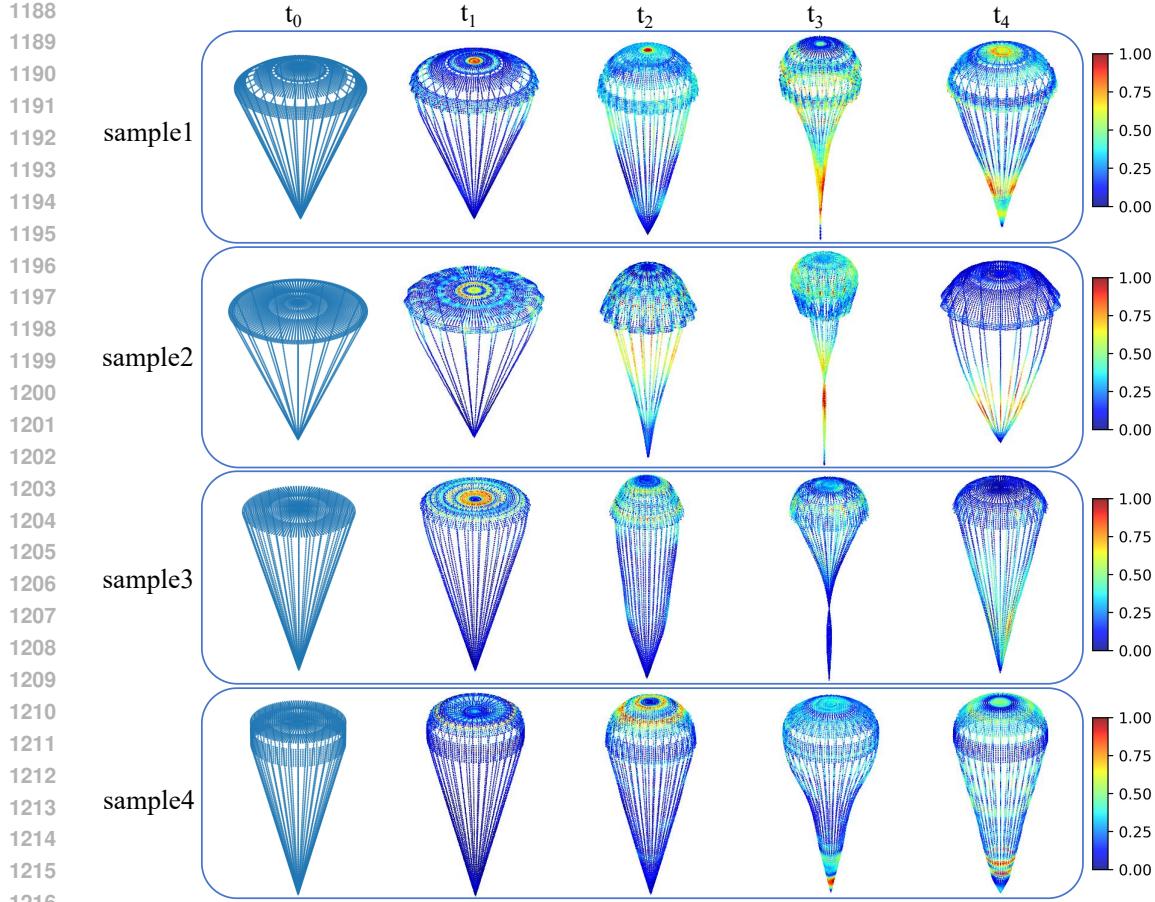
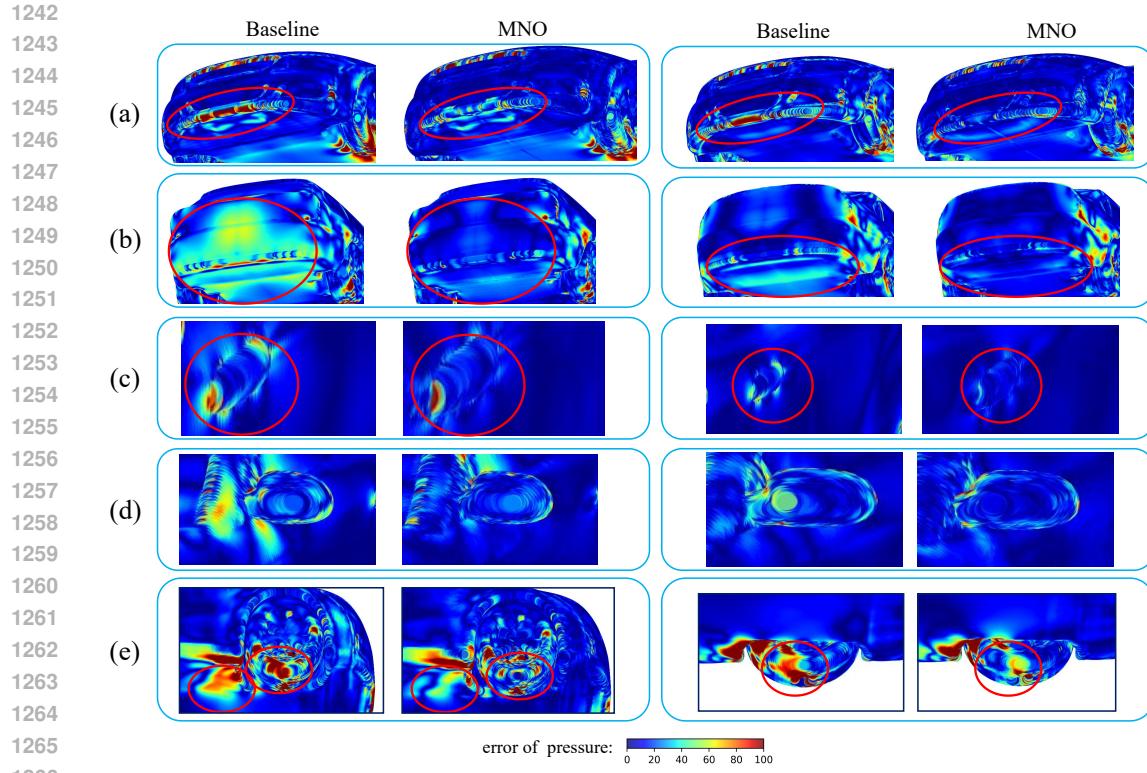


Figure 9: The display of prediction results on Parachute dataset. t_0 is the initial shape of the parachute in the air, while t_1, t_2, t_3 , and t_4 stand for the shape changes of the parachute over 4 time steps. The color of the point cloud represents the prediction error amplitude of displacement fields.

the highest point cloud resolution, the most complex geometric shapes, and the highest prediction difficulty. Therefore, we selected this dataset for local visualization and observation.

By comparing the overall prediction errors, the key regions we select include the demarcation line area between the front end and the chassis of the car, the transition area between the rear end and the chassis of the car, the door handle area of the car, the rearview mirror area, and the wheel area. Figure 10 shows the prediction results of MNO and the best baseline, Transolver. The baseline model consistently performs worse than our MNO method in these key regions, especially in small-scale areas with abrupt geometric changes. As shown in Figure 10 (d), the rearview mirror area occupies an extremely small proportion of the surface but involves complex geometric deformations, particularly at the connection part between the mirror and the car body. The prediction error of the MNO model in this region is consistently lower than that of the baseline model, which sufficiently demonstrates that MNO’s multi-scale strategy possesses a stronger capability for analyzing fine-grained boundary variations in flow fields.

Moreover, Figure 10 reveals a common challenge: all models perform not well around the wheel regions, particularly behind the wheels. Although MNO shows improvement in error metrics compared to the baseline, the performance remain limited in the wheel regions. The interior space of the wheel compartment is narrow and contains numerous components, which collectively form a multitude of intricate gaps and cavity structures. This generates highly disordered turbulent wakes behind the wheels that exceed the fitting capacity of current neural operator models. Consequently, the wheel region will be a key focus for future model improvements.



1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 10: Display of local key regions of flow field. (a) Demarcation line area between the front end and the chassis of the car, (b) Transition area between the rear end and the chassis of the car, (c) Door handle area of the car, (d) Rearview mirror area, (e) Wheel area.