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ABSTRACT

Neural operators have emerged as a powerful data-driven paradigm for solving
Partial Differential Equations (PDEs), offering orders-of-magnitude acceleration
over traditional solvers. However, existing approaches still suffer from limited ac-
curacy and scalability, particularly on irregular domains where fluid flows exhibit
rich multiscale structures. In this work, we introduce the Multiscale Neural Op-
erator (MNO), a new architecture for Computational Fluid Dynamics (CFD) on
three-dimensional (3D) unstructured point clouds. MNO explicitly decomposes
information across three scales: a global dimension-shrinkage attention module
for long-range dependencies, a local graph attention module for neighborhood-
level interactions, and a micro point-wise attention module for fine-grained de-
tails. This design preserves multiscale inductive biases while remaining compu-
tationally efficient. We evaluate MNO on four diverse benchmarks, covering both
steady-state and unsteady flow scenarios with up to 300K points. Across all tasks,
MNO consistently outperforms state-of-the-art baselines, reducing prediction er-
rors by 5% to 40% and demonstrating improved robustness in challenging 3D
CFD problems. Our results highlight the importance of explicit multiscale de-
sign for neural operators and establish MNO as a scalable framework for learning
complex fluid dynamics on irregular domains.

1 INTRODUCTION

Neural operators (Lu et al., 2021), as a data-driven approach for solving Partial Differential Equa-
tions (PDEs), have attracted increasing attention in accelerating Computational Fluid Dynamics
(CFD) (Lin et al., 2009). They provide approximate solutions within seconds (Sun et al., 2024),
achieving inference speeds orders of magnitude faster than traditional numerical methods, e.g., FEM
or FVM, enabling real-time computation and design exploration for complex fluid dynamics tasks.

Despite this remarkable efficiency, neural operators still fall short of traditional solvers in accu-
racy (typically 10−3 versus 10−7 relative error). Recent works have sought to close this gap
through carefully-designed feature transformations, including spectral mappings FNO (Li et al.,
2021), global latent space learning LNO (Wang & Wang, 2024), and Transformer-stacked approach
with multiple physical space transformations Transolver (Wu et al., 2024), etc. Yet the intrinsic mul-
tiscale nature of fluid flow remains (Rahman et al., 2023; Wen et al., 2022) largely underexplored in
architectural design, particularly on irregular and unstructured domains. In addition, sole reliance
on global modeling often sacrifices local details, while fine-grained attention mechanisms incur pro-
hibitive computational costs. These challenges highlight the need for architectures that explicitly
disentangle and integrate information across multiple spatial scales.

In this work, we propose a Multiscale Neural Operator (MNO) to tackle typical CFD tasks on irregu-
lar domains. The motivation stems from the observation that physical quantities in flow fields exhibit
strong multiscale effects: large-scale global trends, localized interactions near object surfaces, and
fine-grained pointwise variations. Our goal is to develop a general framework that can faithfully rep-
resent objects in three-dimensional (3D) flow fields and accurately predict critical physical quantities
such as pressure and velocity.
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At the core of MNO is a sequence of three-scale blocks, each combining three complementary, paral-
lel modules: (1) a Global Dimension-Shrinkage Attention module, which projects N points into a
compact set of M modes to capture long-range dependencies; (2) a Local Graph Attention module,
which encodes k-nearest-neighbor interactions to model mid-scale neighborhood dynamics; and (3)
a Micro Point-wise Attention module, which evolves each point’s features independently to retain
high-frequency variations. The outputs of these modules are fused after each block, enabling MNO
to integrate receptive fields across scales and capture a broad spectrum of physical phenomena. Built
directly on 3D point clouds, this design avoids mesh constraints and provides a unified framework
for extracting global, local, and fine-grained flow representations.

We validate MNO across multiple benchmarks, spanning both steady-state and unsteady flow tasks
with point resolutions ranging from 15K to 300K. Compared to state-of-the-art methods, MNO
reduces prediction errors by 5% to 40%, demonstrating consistent improvements in accuracy and
robustness on challenging 3D CFD problems.

In summary, the main contributions of this paper are as follows:

• We propose a Multiscale Neural Operator (MNO) for CFD on unstructured point clouds.
Unlike prior multiscale methods restricted to regular grids, MNO directly processes 3D
point data, removing mesh constraints and enabling flexible modeling of complex geome-
tries and dynamic domains.

• We introduce an explicit multiscale decomposition with three complementary modules:
global dimension-reduction attention for long-range dependencies, local graph attention for
neighborhood interactions, and micro point-wise attention for fine-grained details, ensuring
balanced representation across scales.

• We evaluate MNO on four diverse datasets, covering both steady and unsteady CFD tasks,
and show that it consistently outperforms state-of-the-art baselines, reducing prediction
errors by 5% to 40%.

2 RELATED WORK

Deep learning for PDEs has mainly progressed along two paths: physics-informed networks that
enforce PDE constraints during training, and neural operators that learn solution mappings directly
from data. We briefly review both directions, emphasizing their use in fluid dynamics and their
limitations in modeling multiscale predictions on irregular domains.

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) embed PDE constraints into the
loss function, enabling solution learning without labeled data. Despite inspiring many extensions
(Wang et al., 2021; 2022; Karlbauer et al., 2022; Rao et al., 2023), PINNs require task-specific loss
design, struggle with unstructured point clouds, and is hard to scale to high-dimensional or stiff
PDEs, limiting their applicability to complex CFD tasks.

2.2 NEURAL OPERATORS

Neural operators learn mappings from initial or boundary conditions, or equation parameters, to
PDE solutions in a data-driven manner. Depending on the data representation, existing approaches
can be broadly divided into regular-domain and irregular-domain methods.

Regular Domain Neural Operators CNO (Raonic et al., 2023) approximates integral operators
with convolutional layers, enabling function-to-function mappings on regular grids. FNO (Li et al.,
2021) extends this idea by learning PDE operators in Fourier space, efficiently capturing long-range
dependencies. AM-FNO (Xiao et al., 2024) further reduces FNO’s parameter cost through an amor-
tized kernel that adapts to varying frequency modes. While effective, these models are restricted to
structured geometries (e.g., rectangles or cubes) and is hard to transfer to domains with complex or
varying shapes.
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Irregular Domain Neural Operators PointNet (Qi et al., 2017a) and PointNet++ (Qi et al.,
2017b) introduce point-based learning with global pooling and hierarchical neighbor search, respec-
tively, though the latter often incurs high cost and may lose fine-scale details. Geo-FNO (Li et al.,
2023a) maps irregular meshes into a uniform latent space for FFT-based FNO operations. LNO
(Wang & Wang, 2024) encodes point clouds into compact latent tokens and applies Transformer lay-
ers for global modeling, while Transolver (Wu et al., 2024) compresses tokens into physical slices
for Transformer-based feature extraction. PCNO (Zeng et al., 2025) combines FNO-style global
features with residual and gradient-based local features. Despite these advances, most irregular-
domain operators emphasize global features, paying limited attention to the coupling between local
and global scales.

Multiscale Neural Operators U-NO (Rahman et al., 2023) integrates U-Net with neural opera-
tors, enabling multiscale PDE mapping. U-FNO (Wen et al., 2022) enhances FNO with local convo-
lutions, while MscaleFNO (You et al., 2024) employs multiple FNO branches to extract features at
different scales. These methods improve multiscale representation but remain tied to regular grids,
limiting their ability to handle geometric deformations and dynamic flow fields. This motivates the
development of multiscale neural operators tailored to point clouds, where scale interactions can be
explicitly modeled in unstructured domains.

3 METHOD

The proposed Multiscale Neural Operator (MNO) is designed to solve CFD problems directly on
unstructured point clouds by integrating global, local, and micro-scale feature learning. The overall
architecture follows an Encoder–MNO–Decoder pipeline: the Encoder embeds spatial coordinates
and associated attributes of the input points into latent tokens, a sequence of MNO blocks pro-
gressively enriches these representations through multiscale attention mechanisms, and the Decoder
maps the processed features back to the target physical quantities. This design allows MNO to
capture long-range dependencies, neighborhood-level interactions, and fine-grained details simulta-
neously, providing an efficient and accurate framework for modeling complex fluid dynamics.

In what follows, we first describe the overall model and the input–output format, then introduce the
global, local, and micro modules in detail. Finally, we discuss the differences between MNO and
existing multiscale approaches for point cloud learning.

3.1 OVERVIEW OF THE MNO MODEL

The proposed MNO model, illustrated in Figure 1, is composed of an Encoder, a sequence of MNO
blocks, and a Decoder. The input is represented as an array of points, where each point is described
by its 3D spatial coordinates and task-specific auxiliary attributes.

The Encoder, implemented as an MLP, embeds these inputs into a latent token space,

X = Encoder(concat(posin, featurein)), (1)

where posin ∈ RN×3 denotes the 3D coordinates, featurein represents auxiliary features, and
X ∈ RN×D are the latent tokens, with D = 128 by default. Since the positional information is
explicitly included, no additional positional encoding is required.

The latent tokens are then processed by a sequence of MNO blocks, which form the core of the
architecture. Each block integrates global, local, and point-wise attention modules to capture mul-
tiscale dynamics, progressively enriching the latent representations with hierarchical flow features.
Finally, the Decoder, which is the MLP by default, maps the enriched latent features back to the
target physical quantities

Xp = MNO(X),

Xout = Decoder(Xp),
(2)

where Xp ∈ RN×D denotes the processed latent features and Xout ∈ RN×O represents the pre-
dicted outputs, with O the number of physical variables.

As a concrete example, in the ShapeNet Car benchmark, after preprocessing (Deng et al., 2024; Wu
et al., 2024), the input consists of N points with 3D coordinates posin and features featurein that
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Figure 1: (a) The overview of the proposed MNO model with a sequence of three-scale blocks, and
(b) each block combines three complementary, parallel modules: (c) a global dimension-shrinkage
attention module for long-range dependencies, (d) a local graph attention module for neighborhood-
level interactions, and (e) a micro point-wise attention module for fine-grained details.

include surface normals and signed distance values (Euclidean distance from each air point to the
nearest surface point, positive outside the car). This results in an input dimension of RN×7. The
output Xout includes the velocity vector field in the air region and the pressure scalar field on the
car surface, with an output dimension of RN×4.

3.2 GLOBAL DIMENSION-SHRINKAGE ATTENTION MODULE

The global module captures long-range dependencies in the point cloud, enabling the model to
extract global patterns such as overall shape and large-scale flow trends.

To force this module capture long-range, low-frequency feature, and to address the quadratic compu-
tational cost of applying attention on all tokens, we introduce a low rank projection strategy similar
to Transolver (Wu et al., 2024) and LNO (Wang & Wang, 2024). Specifically, the latent features
X ∈ RN×D are projected into a compact M -dimensional subspace (M ≪ N ) using a learnable
projector P , then the feature is processed by a multi-head self-attention (MSA) in the reduced space
RM×D, and finally recover to the point feature space RN×D via the inverse projection Q. Formally,
the global feature Xglobal ∈ RN×D is computed by

P = SoftmaxN (MLP(X)),

Q = SoftmaxM (MLP(X)),

Xglobal = Q · Zlr = Q · MSA(PT ·X),

(3)

where P,Q ∈ RN×M are the projection and inverse-projection matrices with M = 256 by default,
and SoftmaxN (·) and SoftmaxM (·) denote the Softmax function along the N and M dimensions,
respectively.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This mechanism removes redundant information while preserving low-frequency global compo-
nents. In the reduced space, attention weights can be computed efficiently at complexity O(M2D)
instead of O(N2D), and the overall cost is dominated by the projection step O(MND).

3.3 LOCAL GRAPH ATTENTION MODULE

The Local Attention module is designed to restrict interactions to geographically nearby points,
ensuring that local geometric structures are explicitly preserved. Specifically, a k-nearest neighbor
(k-NN) graph is first constructed using the Euclidean distance of the input 3D coordinates. Each
spatial point serves as a graph node, and its k nearest neighbors define the local connectivity.

Inspired by the Point Transformer (Zhao et al., 2021), originally developed for point cloud segmen-
tation, the Local Graph Attention computes neighborhood features for each node by attending only
to its k nearest neighbors. The structure of the Local Attention module is illustrated in Figure 1(d).
The local features between the node and its neighboring nodes is computed following

Xlocal = Sum
(
Softmax

(
MLP(Q−Knbr + posrel))⊙ (Vnbr + posrel

))
, (4)

where Q ∈ RN×k×D denotes the replicated features of the center node (k identical features vectors);
Knbr, Vnbr ∈ RN×k×D are the features of neighboring nodes, and posrel ∈ RN×k×D encodes
relative positional offsets. The symbol ⊙ indicates element-wise multiplication. The similarity
kernel is parameterized by an MLP, and the weighted neighbor features are aggregated by summation
along the dimension k, yielding Xlocal ∈ RN×D. The computational complexity is dominated by
matrix multiplication in the MLP, yielding O(NkD2).

This formulation enforces that only spatially adjacent tokens interact directly, embedding locality
into the feature learning process, which ensures that fine-scale geometric and physical properties are
preserved across deeper layers. In contrast, the Global Attention module complements this design by
capturing long-range dependencies, and together they enable MNO to achieve both local accuracy
and global coherence in flow prediction.

3.4 MICRO POINT-WISE ATTENTION MODULE

Micro-scale features correspond to the intrinsic attributes of individual spatial points. To com-
plement the global and local attention modules, which capture long-range and neighborhood-level
interactions, the micro point-wise attention module focuses on the single-point scale that could be
overlooked at coarser scales.

This module implements a point-wise self-attention mechanism, where each token is reweighted
solely based on its own feature vector. As illustrated in Figure 1(e), token features from the previous
block are processed through an MLP followed by a softmax operation to produce point-specific
weights, which indicate the relative importance of each token. The scaled features are then combined
with the original input via a residual connection

Xmicro = X + Scorep ⊙X, with Scorep = Softmax(MLP(X), dim = N), (5)

where X ∈ RN×D denotes the input token features, Scorep ∈ RN×1 represents the point-wise
attention weights, and Xmicro ∈ RN×D is the resulting micro-scale representation. The symbol ⊙
indicates element-wise multiplication with broadcasting rule across feature dimensions.

Because each token is reweighted independently of others, this module emphasizes point-specific
high-frequency variations while remaining computationally efficient, with complexity O(ND2). In
combination with the global and local attentions, it ensures that MNO simultaneously preserves
fine-grained details, local neighborhood patterns, and long-range flow coherence.

Remarks on other multiscale models Existing multiscale methods for point clouds primarily fo-
cus on visual tasks, e.g., segmentation (Qi et al., 2017b; Hu et al., 2020; Yu et al., 2018). These ap-
proaches typically rely on repeated downsampling and upsampling, which can discard fine-grained
information and lead to suboptimal accuracy when applied to flow field prediction (Qi et al., 2017b).

In contrast, our design introduces distinct mechanisms tailored to each scale without resampling.
At the global scale, a low rank projection enforces attention to long-range dependencies and low-
frequency structures while reducing computational cost. At the local scale, a restricted receptive
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Table 1: The comparison results with other methods on Ahmed body and Parachute datasets, in
which RL2p denotes the relative L2 errors (RL2) of the pressure field; RL2x1∼4 represent the RL2
of the displacement field at 4 time steps; RL2x denotes the total RL2 of 4 time steps; MAE is the
mean absolute errors. The subscript “∗” indicates the result claimed in the original article. The row
titled with Improvement refers to the degree of advancement compared to the previous best method.

Ahmed body Parachute

Methods RL2p MAEp RL2x1 RL2x2 RL2x3 RL2x4 RL2x MAEp

DeepONet (Lu et al., 2021) 0.3683 59.6948 1.2620 0.7243 0.7915 0.7667 0.7733 0.2864
PointNet (Qi et al., 2017a) 0.1923 35.8585 0.0955 0.0703 0.1069 0.1427 0.1035 0.0345

PointNet++ (Qi et al., 2017b) 0.3366 55.5127 0.2364 0.0923 0.1009 0.1623 0.1165 0.0371
Geo-FNO (Li et al., 2023a) 0.1400 26.3723 0.0480 0.0248 0.0353 0.0551 0.0366 0.0114
LNO (Wang & Wang, 2024) 0.1908 30.4570 0.0584 0.0431 0.0484 0.0665 0.0504 0.0147
PCNO∗ (Zeng et al., 2025) 0.0682 - - - - - 0.0373 -
PCNO (Zeng et al., 2025) 0.0664 12.4693 0.0238 0.0189 0.0305 0.0515 0.0316 0.0094

Ours 0.0468 7.0465 0.0216 0.0164 0.0259 0.0418 0.0266 0.0081
Improvement 29.51% 43.48% 9.24% 13.23% 15.08% 18.83% 15.82% 13.82%

field ensures that each point interacts only with its nearest neighbors, capturing mid-frequency in-
teractions tied to geometric adjacency. At the micro scale, point-wise modulation refines the rep-
resentation by recovering high-frequency details. Together, these complementary modules provide
a balanced decomposition of global, local, and fine-scale features, enabling accurate and efficient
modeling of multiscale dynamics in CFD.

4 EXPERIMENTS

4.1 BENCHMARKS

We evaluate the model performance on four 3D CFD benchmarks, including steady-state flow field
benchmarks, Ahmed body (Ahmed et al., 1984; Li et al., 2023b), ShapeNet Car (Umetani & Bickel,
2018), DrivAerNet++ (Elrefaie et al., 2024), and the unsteady flow field benchmark, Parachute
dynamics (Zeng et al., 2025).

Ahmed body (100k/sample): A vehicle wind tunnel dataset with a bluff-body structure. Inputs
consist of the vehicle surface point cloud and auxiliary conditions such as freestream velocity and
Reynolds number. The output is the pressure field on the vehicle surface. Parachute dynamics
(15k/sample): A time-dependent dataset capturing the inflation of parachutes under pressure loads.
Inputs include the initial point cloud positions and markers for the umbrella surface and ropes,
while outputs are displacement fields at four time steps. ShapeNet Car (30k/sample): A car wind
tunnel dataset. Inputs include point positions, signed distance values, and surface normals. Outputs
are the velocity field in the air region and the pressure field on the car surface. DrivAerNet++
(300k/sample): A large-scale automotive wind tunnel dataset. Inputs consist of point positions and
surface normals, and the output is the pressure field on the car surface. For detailed configurations,
please refer to Appendix B.

4.2 COMPARISON ON ACCURAY

We reproduce several state-of-the-art open-source methods of neural operator for comparative ex-
periments. To ensure fairness, all comparative experiments are conducted on the same protocol and
executed on our identical computational hardware.

The methods we compared are commented as follows.

DeepONet (Lu et al., 2021): The first neural operator framework, primarily based on MLPs. Its
representational capacity is limited, particularly when addressing highly nonlinear 3D PDEs.

PointNet’s (Qi et al., 2017a): Utilizes global pooling to model the overall structure of flow fields.
However, it neglects local interactions among points, and in dense point clouds, the pooling mecha-
nism may excessively compress information.

6
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Table 2: The comparison results with other advanced methods on ShapeNet Car and DrivAerNet++
datasets. RL2v denotes the RL2 of the velocity field. The subscript “∗” indicates the result claimed
in the original article.

ShapeNet Car DrivAerNet++

Methods RL2p MAEp RL2v MAEv RL2p MAEp

DeepONet (Lu et al., 2021) 0.4148 11.4996 0.2075 1.2256 0.3203 27.4931
PointNet (Qi et al., 2017a) 0.0927 2.6222 0.0314 0.1723 0.4278 42.6893

PointNet++ (Qi et al., 2017b) 0.2082 5.9648 0.0771 0.3813 0.4617 41.8497
Geo-FNO (Li et al., 2023a) 0.1164 3.5748 0.0737 0.4647 0.2869 26.3732
LNO (Wang & Wang, 2024) 0.0887 2.6118 0.0267 0.1498 0.1984 18.1088
Transolver∗ (Wu et al., 2024) 0.0745 - 0.0207 - - -
Transolver (Wu et al., 2024) 0.0700 1.8151 0.0230 0.1130 0.1749 15.4372

Ours 0.0597 1.3796 0.0178 0.0845 0.1665 14.6335
Improve 14.71% 23.99% 22.61% 25.22% 4.80% 5.21%

PointNet++ (Qi et al., 2017b): Extends PointNet with fixed-number downsampling to extract multi-
scale features. On large-scale point clouds, this strategy may discard essential geometric structures,
sometimes resulting in performance worse than PointNet. Moreover, increasing the sampled points
significantly raises computational cost and parameter count, making the method less practical.

Geo-FNO (Li et al., 2023a): Maps irregular grids onto regular ones and applies FNO for global
Fourier-based convolutions. Its performance is highly dependent on the quality of the mapping and
lacks robustness for complex geometries.

Transolver (Wu et al., 2024): Employs a global dimension reduction and introduces residual branch
between token compression and decompression to reduce information loss. However, it does not
explicitly support multiscale feature learning.

LNO (Wang & Wang, 2024): Compresses point clouds into a latent space with limited tokens, where
multiple Transformer layers capture global features. This approach resembles our Global Attention
module but suffers from noticiable loss of fine-grained details due to heavy compression.

PCNO (Zeng et al., 2025): Extracts global, gradient, and residual features of the input point cloud.
However, its global feature extraction relies on FNO without point cloud compression, limiting
scalability for large datasets. Compared to PCNO, MNO provides stronger mid-scale representations
through its Local Attention module.

The comparative results are summarized in Table 1 and Table 2. The proposed MNO consistently de-
livers higher predictive accuracy across all four benchmarks compared to recent baselines. In partic-
ular, relative to the current leading methods, Transolver and PCNO, MNO achieves error reductions
of 29.51% on the Ahmed Body dataset, 15.82% on Parachute Dynamics, 14.71% on ShapeNetCar,
and 4.80% on DrivAerNet++.

4.3 ATTENTION MODULES ABLATION EXPERIMENTS

In each MNO block, the three attention modules are responsible for extracting multiscale features.
To better understand their contributions, we conduct ablation studies by selectively enabling differ-
ent modules. Unless otherwise specified, the number of MNO blocks is fixed at four.

The results are summarized in Table 3. “Global,” “Local,” and “Micro” denote using only the corre-
sponding attention module to learn and predict flow fields. “Global+Local” indicates the joint use of
both Global and Local Attention modules, “Global+Local+Micro” represents the full MNO block,
and “Global+Global+Global” refers to using three identical Global Attention modules as a control.

When used individually, the Global Attention module performs worst due to repeated low-rank pro-
jections that discard point cloud information. By contrast, the Local Attention module achieves the
best performance among the three. Local Attention captures mid-scale features, i.e., mid-frequency
information, which is crucial for distinguishing geometric shapes of objects.

7
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Table 3: The results of the ablation experiment of Attention Modules. OOM is out of memory.
Ahmed body Parachute ShapeNet Car DrivAerNet++

Modules RL2p MAEp RL2x MAEx RL2p MAE p RL2v MAEv RL2p MAEp

Global 0.8588 154.899 0.8205 0.2629 0.5117 16.9729 0.2025 1.3195 0.7853 73.3534
Local 0.1350 24.8293 0.1479 0.0314 0.0832 2.9235 0.0399 0.2042 0.1919 17.8505
Micro 0.4028 64.5137 0.2307 0.0542 0.1881 6.2470 0.0609 0.3098 0.2396 21.2415

Local+Micro 0.1267 24.0813 0.1062 0.0234 0.0807 2.7964 0.0393 0.1975 0.1908 17.6443
Global+Micro 0.0484 7.4700 0.0304 0.0095 0.0663 1.5408 0.0194 0.0980 0.1728 15.3040
Global+Local 0.0488 7.6412 0.0287 0.0090 0.0610 1.4994 0.0201 0.0983 0.1713 14.9961

Global+Global+Global 0.8591 153.907 0.8170 0.2601 0.7986 23.7095 0.3249 2.0015 0.7853 73.2887
Local+Local+Local OOM OOM 0.1484 0.0313 0.0800 2.7651 0.0385 0.1852 OOM OOM

Micro+Micro+Micro 0.4328 76.6320 0.2249 0.0527 0.1893 6.1662 0.0591 0.2930 0.2420 21.5583
Global+Local+Micro 0.0468 7.0465 0.0266 0.0081 0.0597 1.3796 0.0178 0.0845 0.1665 14.6335

Combining Global and Local Attention substantially improves performance, with relative gains of
63.85%, and 80.59%, 25.33%, and 10.73%, across the four datasets compared to using Local At-
tention alone. This highlights the strong complementarity of global and mid-scale features, showing
that their combination captures most of the key physical processes in flow fields.

Adding Micro Attention on top of Global+Local yields further improvements of 4.09%, 7.32%,
2.13%, and 2.80%, across the four datasets. The Micro Attention module captures high-frequency
variations that serve as fine-scale corrections to mid-frequency features. While its contribution is
smaller, it refines predictions and enhances overall accuracy.

4.4 VISUALIZATION OF ATTENTION MODULES

Figure 2 visualizes the prediction errors for different attention configurations. Each row corresponds
to one of the four benchmarks, while columns represent the module combinations: the first column
shows predictions using only Global Attention; the second column shows Global+Local Attention;
the third column repeats the second but with a different color scale for better contrast; and the fourth
column shows the full combination of Global, Local, and Micro Attention. The following discussion
takes Figure 2(b) as an illustrative example.

From the error map of Global Attention alone, show in the first column of Figure 2(b), we observe
that the module tends to minimize error in the larger side area of the car (the non-windward region).
This reflects its capacity to capture low-frequency components: the non-windward region is subject
to simpler forces and smaller pressure fluctuations, making it easier to approximate. In contrast, the
windward region experiences stronger forces and larger fluctuations, resulting in higher prediction
error.

Comparing Global with Global+Local, it is evident that Local Attention significantly improves per-
formance in the windward region. Local Attention captures mid-frequency information and ef-
fectively distinguishes between windward and non-windward regions, complementing the Global
Attention module.

Finally, comparing Global+Local with Global+Local+Micro shows that errors in transitional areas
between the front and side regions are further reduced when Micro Attention is included. By refining
predictions at specific points, Micro Attention supplements fine-grained details and corrects residual
errors, demonstrating its role as a complementary high-frequency module.

5 CONCLUSIONS

In this work, we introduced the Multiscale Neural Operator (MNO), a new framework for solving
CFD problems directly on unstructured point clouds. By explicitly decomposing information into
global, local, and micro scales, MNO captures long-range dependencies, neighborhood interactions,
and fine-grained details within a unified architecture. Besides performance gains, the ablation and
visualization studies confirm the complementary roles of the three attention modules and validate
the importance of explicit multiscale design. These results highlight the potential of MNO as a
general and efficient framework for learning complex fluid dynamics on irregular domains, paving
the way for broader applications of neural operators in large-scale scientific computing.
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Global Global+Local

error of wind speed error of pressure

Global+Local Global+Local+Micro

error of wind speed error of pressure

error of pressure: error of pressure:

error of pressure: error of  pressure:

error of  displacement: error of  displacement:

(a)

(b)

(c)

(d)

Figure 2: The visualization of Global, Local and Micro Attention modules. The red circle serves as
a reference for areas with obvious differences. Rows show the error maps for different benchmarks.
For each row: (a) ShapeNet Car. The arrow represents the direction of the wind, and the color
denotes the prediction error; (b) Ahmed body; (c) DrivAerNet++; (d) Parachute. For each column:
(first column) prediction of only Global Attention module; (second column) prediction of Global
and Local Attention modules together; (third column) identical values to the second column but
with a different color scale; (fourth column) prediction of the full MNO with Global, Local, and
Micro Attention modules together.
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A LLMS POLISHING

The manuscript was initially drafted in Chinese and polished using Large Language ModelS (LLMs)
of DeepSeek-R1 and ChatGPT-4.0 to improve clarity, grammar, and academic style. The authors
rigorously reviewed and edited all AI-generated content to ensure accuracy and consistency with the
original scientific intent. The intellectual contributions remain entirely human.

B DETAILS OF BENCHMARKS

This paper conducts a comprehensive evaluation of the model across four benchmarks. The details
for each benchmark are provided below.

The ShapeNet Car (Umetani & Bickel, 2018) focuses on wind tunnel experiments for automobiles,
a critical stage in automotive industrial design. This dataset contains 889 samples representing
different car shapes, used to simulate driving conditions at a speed of 72 km/h. The car shapes
are drawn from the ”Car” category of ShapeNet (Chang et al., 2015). The surrounding space is
discretized into an unstructured grid with 32,186 points, and both the airflow velocity around the car
and the pressure on the car surface are recorded. The number of points on the car surface is 3,682.
Following the experimental setup in Transolver (Wu et al., 2024), we use 789 samples for training
and the remaining 100 samples for testing. The input point cloud of each sample is preprocessed
into a combination of point positions, signed distance functions, and normal vectors. A notable
difference is that the original dataset contains 96 fixed noisy points on the car surface. After our
preprocessing, the point cloud data consists of 29,498 air points and 3,586 car surface points.

The DrivAerNet++ (Elrefaie et al., 2024) is a large-scale, comprehensive benchmark for automotive
aerodynamic design, constructed using high-fidelity CFD simulations. It contains over 8,000 distinct
car designs, covering various vehicle types, wheel configurations, and chassis layouts. The inflow
air velocity is 108 km/h. We only use a subset of surface pressures for the experiment. To maintain
sample diversity while improving research efficiency, we randomly select 200 samples for training
and 50 samples for testing. Each point cloud sample consists of approximately 600k points, with
each point described by its three-dimensional coordinates (x, y, z) and surface normal vectors (ux,
uy, uz). Since the dataset was generated with y-axis symmetry, we only use the points with y > 0
(300k) to enhance computational efficiency.

The Ahmed Body (Li et al., 2023b) is a wind tunnel dataset for bluff-body vehicles, used to predict
the pressure on the vehicle surface. The vehicle shape is based on the benchmark model designed in
(Ahmed et al., 1984). The inflow velocity ranges from 10 m/s to 70 m/s, corresponding to Reynolds
numbers from 4.35× 105 to 6.82× 106. The dataset is generated by systematically varying the ve-
hicle’s length, width, height, ground clearance, inclination angle, and rear rounding radius, resulting
in a total of 551 samples, each containing approximately 100k surface points. Among these, 500
samples are used for training and 51 samples for testing, consistent with the setup in PCNO (Zeng
et al., 2025).

The Parachute Dynamics (Zeng et al., 2025) captures the inflation process of different parachutes
under specific pressure loads. The pressure load increases linearly from 0 to 1000 Pa over the first 0.1
seconds and then remains constant at 1000 Pa. The learning objective is to map the initial parachute
shape to the displacement fields at four specific time points during inflation: t1 = 0.04, t2 = 0.08,
t3 = 0.12, and t4 = 0.16. These time points characterize the inflation process, where the parachute
first rapidly expands under pressure, then over-expands, and finally rebounds. The experimental
setup follows that of PCNO (Zeng et al., 2025), with 1000 samples for training and 200 samples for
testing. Each sample contains approximately 15k points in the point cloud.

C THE EVALUATION METRICS

For the quantitative evaluation of point cloud predicion algorithms, this study employs the following
two widely used metrics: Relative L2 Error (RL2) and Mean Absolute Error (MAE). Both metrics
are calculated based on point-to-point correspondence between the predicted point cloud and the
true point cloud, requiring that the point clouds be precisely aligned and point correspondences
established prior to evaluation.
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C.1 THE RELATIVE L2 ERROR

The RL2 measures the normalized Euclidean distance discrepancy of the predicted point cloud as a
whole relative to the true point cloud. It is defined as follows:

RL2 =
∥Ŷ − Y ∥2

∥Y ∥2
=

√∑N
i=1 ∥ŷi − yi∥2√∑N

i=1 ∥yi∥2
, (6)

where Y = {y1, y2, . . . , yN} is the true point cloud, Ŷ = {ŷ1, ŷ2, . . . , ŷN} is the predicted point
cloud, N is the number of points, ∥ · ∥2 represents the L2 norm.

A smaller RL2 value indicates lower relative error between the predicted point cloud and the true
point cloud at the overall level, reflecting higher prediction accuracy. By using the norm of the true
point cloud as the denominator, this metric achieves scale invariance, enabling robust performance
comparisons across different scales or datasets.

C.2 THE MEAN ABSOLUTE ERROR

MAE measures the mean of the absolute deviations between the predicted point cloud and the true
point cloud on a point-wise basis. It is defined as follows:

MAE =
1

N

N∑
i=1

∥ŷi − yi∥, (7)

where Y = {y1, y2, . . . , yN} is the true point cloud, Ŷ = {ŷ1, ŷ2, . . . , ŷN} is the predicted point
cloud, N is the number of points, ∥ · ∥1 represents the L1 norm.

A smaller MAE value indicates that the predicted point cloud aligns more closely with the ground
truth along each coordinate axis, reflecting higher point-wise accuracy. Unlike Mean Squared Error
(MSE), MAE is less sensitive to outliers (individual points with large errors), providing a more
robust estimate of the average deviation.

The combined use of RL2 and MAE enables a more comprehensive evaluation of point cloud re-
construction algorithm performance: RL2 focuses on the fidelity of global, while MAE assesses
localized accuracy. Lower values for both metrics collectively indicate superior reconstruction qual-
ity.

D FULL IMPLEMENTATION DETAILS

The implementation software of the model is mainly based on PyTorch 2.4.1, CUDA 12.1, and
Python 3.9.0. The computing platform mainly includes Ubuntu 22.04.4 LTS and 4 NVIDIA H100
GPUs.

Table 4: The hyperparameters and training configuration of MNO for different benchmarks.
Benchmark N Block M D Head knbr Batch Epoch Loss Optimizer Scheduler

ShapeNet Car 30k

4 256 128 8

16

4 500 RL2 AdamW OneCycleLRDrivAerNet++ 300k 8
Ahmed body 100k 16

Parachute 15k 16

Table 4 details the hyperparameter configurations used during training. Here, N denotes the scale
of point clouds per sample, Block indicates the number of MNO blocks, M represents the number
of tokens in the low rank space of the Global Attention module, D signifies the vector dimension
per token, Head refers to the number of heads in the Multi-head Self-Attention (MSA) mechanism,
and knbr specifies the number of neighboring nodes in the Local Attention module. The training
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employed a relative L2 error loss function over 500 epochs. Optimization is performed using the
AdamW optimizer coupled with a OneCycleLR learning rate scheduler, with the initial learning rate
set to 1× 10−3.

E THE ABLATION EXPERIMENTS OF THE DEPTH OF MNO

This experiment aims to explore performance changes in Global Attention, Local Attention, and
Micro Attention modules with varying depths of the MNO model.

Due to the large number of models requiring training in this experiment, to enhance experimen-
tal efficiency, ablation studies are performed exclusively on the smaller-scale point cloud datasets:
ShapeNet Car and Parachute. ShapeNet Car necessitates simultaneous prediction of velocity and
pressure fields, while Parachute incorporates temporal information, making both highly representa-
tive benchmarks.

Table 5: The ablation experimental results of depth of MNO model. Blocks refer to the number of
cascaded MNO blocks in the model. RL2x1∼4 represent the RL2 of the displacement field at 4 time
steps. RL2x denotes the total RL2 of 4 time steps.

ShapeNet Car Parachute

Blocks Modules RL2v MAEv RL2p MAEp RL2x1 RL2x2 RL2x3 RL2x4 RL2x MAEx

1

Global 0.0252 0.1315 0.0813 2.1268 0.0535 0.0380 0.0439 0.0615 0.0455 0.0135
Local 0.0526 0.2637 0.1191 4.1156 0.0777 0.0872 0.1263 0.2221 0.1353 0.0315
Micro 0.0594 0.2925 0.1924 6.3051 0.1942 0.1967 0.2504 0.3138 0.2408 0.0581

Global+Local 0.0220 0.1130 0.0686 1.7701 0.0319 0.0250 0.0358 0.0531 0.0361 0.0110
Global+Local+Micro 0.0196 0.0999 0.0672 1.6221 0.0310 0.0239 0.0336 0.0500 0.0340 0.0105

2

Global 0.0266 0.1481 0.0852 2.1712 0.0342 0.0236 0.0323 0.0490 0.0330 0.0102
Local 0.0465 0.2328 0.0959 3.4201 0.0569 0.0641 0.1022 0.1671 0.1045 0.0251
Micro 0.0586 0.0586 0.1906 0.2893 0.1813 0.1894 0.2429 0.3042 0.2335 0.0553

Global+Local 0.0197 0.0972 0.0632 1.5172 0.0245 0.0185 0.0291 0.0453 0.0294 0.0093
Global+Local+Micro 0.0192 0.0946 0.0612 1.4408 0.0231 0.0172 0.0276 0.0441 0.0281 0.0088

4

Global 0.2025 1.3195 0.5117 16.9729 0.7308 0.7884 0.8502 0.8143 0.8205 0.2629
Local 0.0396 0.1965 0.0817 2.8447 0.0455 0.0911 0.1545 0.2099 0.1479 0.0314
Micro 0.0609 0.3098 0.1881 6.2470 0.1812 0.1869 0.2402 0.3010 0.2307 0.0542

Global+Local 0.0201 0.0983 0.0610 1.4994 0.0250 0.0183 0.0289 0.0438 0.0287 0.0090
Global+Local+Micro 0.0178 0.0845 0.0597 1.3796 0.0216 0.0164 0.0259 0.0418 0.0266 0.0081

8

Global 0.3252 1.9870 0.7991 23.7101 0.7659 0.8413 0.8981 0.8552 0.8661 0.2713
Local 0.0319 0.1644 0.0728 2.3717 0.1106 0.1242 0.1916 0.2549 0.1790 0.0472
Micro 0.0584 0.2916 0.1880 6.1920 0.1727 0.1804 0.2361 0.2949 0.2254 0.0525

Global+Local 0.0201 0.1006 0.0614 1.4902 0.0392 0.0313 0.0401 0.0558 0.0402 0.0123
Global+Local+Micro 0.0194 0.0857 0.0604 1.3986 0.0239 0.0163 0.0235 0.0399 0.0250 0.0078

Table 5 presents the experimental results. It is evident that the MNO model incorporating all three
attention modules achieves the highest prediction accuracy in most cases. A significant improve-
ment in MNO’s predictive performance is observed as the number of blocks increases from 1 to 4.
However, performance gains become marginal when the block count exceeds 4, suggesting that the
model likely enters an overfitting state at this stage.

Notably, the predictive performance of Local Attention and Micro Attention modules exhibits a pos-
itive correlation with the number of blocks, whereas Global Attention module performance shows
an inverse correlation. This occurs because the low rank projection within Global Attention discards
certain mid-to-high frequency information. Cascading multiple MNO blocks increases the number
of low rank projections, thereby amplifying the loss of detailed information. In contrast, Local At-
tention incorporates posrel to mitigate feature distortion caused by network deepening, and Micro
Attention employs residual branches to supplement fine-grained details.

In summary, as the depth of the MNO model increases, the division of labor among different at-
tention modules becomes more distinct. Global Attention increasingly focuses on analyzing global
low-frequency features, while Local Attention and Micro Attention dedicate greater emphasis to
capturing local mid-to-high-frequency details.
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F THE DISPLAY AND DISCUSSION OF PREDICTION RESULTS OF MNO
MODEL

In this section, we present prediction results obtained by the proposed MNO model, as illustrated
in Figures 3, Figure 4, Figure 5, and Figure 6. It is evident that across all datasets, the model’s
predictions exhibit strong consistency with the ground truth, with prediction errors approaching
zero in most regions of the point cloud. These results confirm that the MNO model is capable of
capturing the majority of physical behaviors in fluid flows, making it highly suitable for CFD tasks.
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Figure 3: The display of prediction results on ShapeNet Car dataset. The pred represents the pre-
dicted velocity and pressure fields, the true denotes the ground truth, and the error stands for the
absolute error of the prediction fluid fields. The arrows represent the wind direction, and the color
of arrows denotes the magnitude of wind speed.

Among the benchmarks, the ShapeNet Car dataset merits particular attention, as the model is re-
quired to simultaneously predict both the velocity field of the airflow around the car and the pres-
sure field normal to the car surface. Figure 3 presents the experimental results on this dataset. From
the “true” visualization, one can observe that the windward regions of the car surface exhibit higher
pressure, while the leeward and side regions experience lower pressure. As the airflow passes the ve-
hicle body, its velocity decreases and complex wake turbulence forms downstream of the car. In the
“pred” visualization, the model successfully reproduces the contrast between windward and leeward
surfaces, as well as the turbulent structures in the wake, indicating that MNO has effectively learned
the underlying PDEs governing wind tunnel phenomena from point cloud data. In the “error” vi-
sualization, relatively large prediction errors are observed at the front surface of the car, where the
windward face encounters high-speed inflow and rapid flow variations, making the prediction more
challenging. Similarly, noticeable errors appear in the downstream velocity field due to the highly
complex turbulent dynamics in the wake region.
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1 5 1927
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Figure 4: The display of prediction results on DrivAerNet++ dataset. The pred represents the pre-
dicted pressure fields, the true denotes the ground truth, and the error stands for the absolute error of
the prediction fluid fields.
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Figure 5: The display of prediction results on Ahmed body dataset. The pred represents the predicted
pressure fields, the true denotes the ground truth, and the error stands for the absolute error of the
prediction fluid fields.
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Figure 6: The display of prediction results on Parachute dataset. t0 is the initial shape of the
parachute in the air, while t1, t2, t3, and t4 stand for the shape changes of the parachute over 4
time steps. The color of the point cloud represents the prediction error amplitude of displacement
fields.
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