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ABSTRACT

Neural operators have emerged as a powerful data-driven paradigm for solving
Partial Differential Equations (PDEs), offering orders-of-magnitude acceleration
over traditional solvers. However, existing approaches still suffer from limited ac-
curacy and scalability, particularly on irregular domains where fluid flows exhibit
rich multiscale structures. In this work, we introduce the Multiscale Neural Op-
erator (MNO), a new architecture for Computational Fluid Dynamics (CFD) on
three-dimensional (3D) unstructured point clouds. MNO explicitly decomposes
information across three scales: a global dimension-shrinkage attention module
for long-range dependencies, a local graph attention module for neighborhood-
level interactions, and a micro point-wise attention module for fine-grained de-
tails. This design preserves multiscale inductive biases while remaining compu-
tationally efficient. We evaluate MNO on four diverse benchmarks, covering both
steady-state and unsteady flow scenarios with up to 300K points. Across all tasks,
MNO consistently outperforms state-of-the-art baselines, reducing prediction er-
rors by 5% to 40% and demonstrating improved robustness in challenging 3D
CFD problems. Our results highlight the importance of explicit multiscale de-
sign for neural operators and establish MNO as a scalable framework for learning
complex fluid dynamics on irregular domains.

1 INTRODUCTION

Neural operators (Lu et al., 2021), as a data-driven approach for solving Partial Differential Equa-
tions (PDEs), have attracted increasing attention in accelerating Computational Fluid Dynamics
(CFD) (Lin et al., 2009). They provide approximate solutions within seconds (Sun et al., 2024),
achieving inference speeds orders of magnitude faster than traditional numerical methods, e.g., FEM
or FVM, enabling real-time computation and design exploration for complex fluid dynamics tasks.

Despite this remarkable efficiency, neural operators still fall short of traditional solvers in accu-
racy (typically 10−3 versus 10−7 relative error). Recent works have sought to close this gap
through carefully-designed feature transformations, including spectral mappings FNO (Li et al.,
2021), global latent space learning LNO (Wang & Wang, 2024), and Transformer-stacked approach
with multiple physical space transformations Transolver (Wu et al., 2024), etc. Yet the intrinsic mul-
tiscale nature of fluid flow remains (Rahman et al., 2023; Wen et al., 2022) largely underexplored in
architectural design, particularly on irregular and unstructured domains. In addition, sole reliance
on global modeling often sacrifices local details, while fine-grained attention mechanisms incur pro-
hibitive computational costs. These challenges highlight the need for architectures that explicitly
disentangle and integrate information across multiple spatial scales.

In this work, we propose a Multiscale Neural Operator (MNO) to tackle typical CFD tasks on irregu-
lar domains. The motivation stems from the observation that physical quantities in flow fields exhibit
strong multiscale effects: large-scale global trends, localized interactions near object surfaces, and
fine-grained pointwise variations. Our goal is to develop a general framework that can faithfully rep-
resent objects in three-dimensional (3D) flow fields and accurately predict critical physical quantities
such as pressure and velocity.
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At the core of MNO is a sequence of three-scale blocks, each combining three complementary, paral-
lel modules: (1) a Global Dimension-Shrinkage Attention module, which projects N points into a
compact set of M modes to capture long-range dependencies; (2) a Local Graph Attention module,
which encodes k-nearest-neighbor interactions to model mid-scale neighborhood dynamics; and (3)
a Micro Point-wise Attention module, which evolves each point’s features independently to retain
high-frequency variations. The outputs of these modules are fused after each block, enabling MNO
to integrate receptive fields across scales and capture a broad spectrum of physical phenomena. Built
directly on 3D point clouds, this design avoids mesh constraints and provides a unified framework
for extracting global, local, and fine-grained flow representations.

We validate MNO across multiple benchmarks, spanning both steady-state and unsteady flow tasks
with point resolutions ranging from 15K to 300K. Compared to state-of-the-art methods, MNO
reduces prediction errors by 5% to 40%, demonstrating consistent improvements in accuracy and
robustness on challenging 3D CFD problems.

In summary, the main contributions of this paper are as follows:

• We propose a Multiscale Neural Operator (MNO) for CFD on unstructured point clouds.
Unlike prior multiscale methods restricted to regular grids, MNO directly processes 3D
point data, removing mesh constraints and enabling flexible modeling of complex geome-
tries and dynamic domains.

• We introduce an explicit multiscale decomposition with three complementary modules:
global dimension-reduction attention for long-range dependencies, local graph attention for
neighborhood interactions, and micro point-wise attention for fine-grained details, ensuring
balanced representation across scales.

• We evaluate MNO on four diverse datasets, covering both steady and unsteady CFD tasks,
and show that it consistently outperforms state-of-the-art baselines, reducing prediction
errors by 5% to 40%.

2 RELATED WORK

Deep learning for PDEs has mainly progressed along two paths: physics-informed networks that
enforce PDE constraints during training, and neural operators that learn solution mappings directly
from data. We briefly review both directions, emphasizing their use in fluid dynamics and their
limitations in modeling multiscale predictions on irregular domains.

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) embed PDE constraints into the
loss function, enabling solution learning without labeled data. Despite inspiring many extensions
(Wang et al., 2021; 2022; Karlbauer et al., 2022; Rao et al., 2023), PINNs require task-specific loss
design, struggle with unstructured point clouds, and is hard to scale to high-dimensional or stiff
PDEs, limiting their applicability to complex CFD tasks.

2.2 NEURAL OPERATORS

Neural operators learn mappings from initial or boundary conditions, or equation parameters, to
PDE solutions in a data-driven manner. Depending on the data representation, existing approaches
can be broadly divided into regular-domain (Li et al., 2021) and irregular-domain methods (Zeng
et al., 2025a; Bryutkin et al., 2024; Li et al., 2020).

Regular Domain Neural Operators CNO (Raonic et al., 2023) approximates integral operators
with convolutional layers, enabling function-to-function mappings on regular grids. FNO (Li et al.,
2021) extends this idea by learning PDE operators in Fourier space, efficiently capturing long-range
dependencies. AM-FNO (Xiao et al., 2024) further reduces FNO’s parameter cost through an amor-
tized kernel that adapts to varying frequency modes. While effective, these models are restricted to
structured geometries (e.g., rectangles or cubes) and is hard to transfer to domains with complex or
varying shapes.
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Irregular Domain Neural Operators PointNet (Qi et al., 2017a) and PointNet++ (Qi et al.,
2017b) introduce point-based learning with global pooling and hierarchical neighbor search, respec-
tively, though the latter often incurs high cost and may lose fine-scale details. Geo-FNO (Li et al.,
2023a) maps irregular meshes into a uniform latent space for FFT-based FNO operations. LNO
(Wang & Wang, 2024) encodes point clouds into compact latent tokens and applies Transformer lay-
ers for global modeling, while Transolver (Wu et al., 2024) compresses tokens into physical slices
for Transformer-based feature extraction. PCNO (Zeng et al., 2025b) combines FNO-style global
features with residual and gradient-based local features. Despite these advances, most irregular-
domain operators emphasize global features, paying limited attention to the coupling between local
and global scales.

Multiscale Neural Operators U-NO (Rahman et al., 2023) integrates U-Net with neural opera-
tors, enabling multiscale PDE mapping. U-FNO (Wen et al., 2022) enhances FNO with local convo-
lutions, while MscaleFNO (You et al., 2024) employs multiple FNO branches to extract features at
different scales. These methods improve multiscale representation but remain tied to regular grids,
limiting their ability to handle geometric deformations and dynamic flow fields. This motivates the
development of multiscale neural operators tailored to point clouds, where scale interactions can be
explicitly modeled in unstructured domains.

3 METHOD

The proposed Multiscale Neural Operator (MNO) is designed to solve CFD problems directly on
unstructured point clouds by integrating global, local, and micro-scale feature learning. The overall
architecture follows an Encoder–MNO–Decoder pipeline: the Encoder embeds spatial coordinates
and associated attributes of the input points into latent tokens, a sequence of MNO blocks pro-
gressively enriches these representations through multiscale attention mechanisms, and the Decoder
maps the processed features back to the target physical quantities. This design allows MNO to
capture long-range dependencies, neighborhood-level interactions, and fine-grained details simulta-
neously, providing an efficient and accurate framework for modeling complex fluid dynamics.

In what follows, we first describe the overall model and the input–output format, then introduce the
global, local, and micro modules in detail. Finally, we discuss the differences between MNO and
existing multiscale approaches for point cloud learning.

3.1 OVERVIEW OF THE MNO MODEL

The proposed MNO model, illustrated in Figure 1, is composed of an Encoder, a sequence of MNO
blocks, and a Decoder. The input is represented as an array of points, where each point is described
by its 3D spatial coordinates and task-specific auxiliary attributes.

The Encoder, implemented as an MLP, embeds these inputs into a latent token space,

X = Encoder(concat(posin, featurein)), (1)

where posin ∈ RN×3 denotes the 3D coordinates, featurein represents auxiliary features, and
X ∈ RN×D are the latent tokens, with D = 128 by default. Since the positional information is
explicitly included, no additional positional encoding is required.

The latent tokens are then processed by a sequence of MNO blocks, which form the core of the
architecture. Each block integrates global, local, and point-wise attention modules to capture mul-
tiscale dynamics, progressively enriching the latent representations with hierarchical flow features.
Finally, the Decoder, which is the MLP by default, maps the enriched latent features back to the
target physical quantities

Xp = MNO(X),

Xout = Decoder(Xp),
(2)

where Xp ∈ RN×D denotes the processed latent features and Xout ∈ RN×O represents the pre-
dicted outputs, with O the number of physical variables.

As a concrete example, in the ShapeNet Car benchmark, after preprocessing (Deng et al., 2024; Wu
et al., 2024), the input consists of N points with 3D coordinates posin and features featurein that
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Figure 1: (a) The overview of the proposed MNO model with a sequence of three-scale blocks, and
(b) each block combines three complementary, parallel modules: (c) a global dimension-shrinkage
attention module for long-range dependencies, (d) a local graph attention module for neighborhood-
level interactions, and (e) a micro point-wise attention module for fine-grained details.

include surface normals and signed distance values (Euclidean distance from each air point to the
nearest surface point, positive outside the car). This results in an input dimension of RN×7. The
output Xout includes the velocity vector field in the air region and the pressure scalar field on the
car surface, with an output dimension of RN×4.

3.2 GLOBAL DIMENSION-SHRINKAGE ATTENTION MODULE

The global module captures long-range dependencies in the point cloud, enabling the model to
extract global patterns such as overall shape and large-scale flow trends.

To force this module capture long-range, low-frequency feature, and to address the quadratic compu-
tational cost of applying attention on all tokens, we introduce a low rank projection strategy similar
to Transolver (Wu et al., 2024) and LNO (Wang & Wang, 2024). Specifically, the latent features
X ∈ RN×D are projected into a compact M -dimensional subspace (M ≪ N ) using a learnable
projector P , then the feature is processed by a multi-head self-attention (MSA) in the reduced space
RM×D, and finally recover to the point feature space RN×D via the inverse projection Q. Formally,
the global feature Xglobal ∈ RN×D is computed by

P = SoftmaxN (MLP(X)),

Q = SoftmaxM (MLP(X)),

Xglobal = Q · Zlr = Q · MSA(PT ·X),

(3)

where P,Q ∈ RN×M are the projection and inverse-projection matrices with M = 256 by default,
and SoftmaxN (·) and SoftmaxM (·) denote the Softmax function along the N and M dimensions,
respectively.

This mechanism removes redundant information while preserving low-frequency global compo-
nents. In the reduced space, attention weights can be computed efficiently at complexity O(M2D)
instead of O(N2D), and the overall cost is dominated by the projection step O(MND).
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3.3 LOCAL GRAPH ATTENTION MODULE

The Local Attention module is designed to restrict interactions to geographically nearby points,
ensuring that local geometric structures are explicitly preserved. Specifically, a k-nearest neighbor
(knn) graph is first constructed using the Euclidean distance of the input 3D coordinates. Each
spatial point serves as a graph node, and its k nearest neighbors define the local connectivity.

Compared to fixed radius neighborhoods, knn can ensure predictable linear memory growth (Table
9) to avoid memory overflow. Furthermore, traditional graph-based models frequently calculate
adjacency relationships, while our knn graph are shared among all depth blocks in MNO. Thus, it
only needs to be calculated once in the input stage, reducing computation time.

Inspired by the Point Transformer (Zhao et al., 2021), originally developed for point cloud segmen-
tation, the Local Graph Attention computes neighborhood features for each node by attending only
to its k nearest neighbors. The structure of the Local Attention module is illustrated in Figure 1 (d).
The local features between the node and its neighboring nodes is computed following

Xlocal = Sum
(
Softmax

(
MLP(Q−Knbr + posrel))⊙ (Vnbr + posrel

))
, (4)

where Q ∈ RN×k×D denotes the replicated features of the center node (k identical features vectors);
Knbr, Vnbr ∈ RN×k×D are the features of neighboring nodes, and posrel ∈ RN×k×D encodes
relative positional offsets. The symbol ⊙ indicates element-wise multiplication. The similarity
kernel is parameterized by an MLP, and the weighted neighbor features are aggregated by summation
along the dimension k, yielding Xlocal ∈ RN×D. The computational complexity is dominated by
matrix multiplication in the MLP, yielding O(NkD2).

This formulation enforces that only spatially adjacent tokens interact directly, embedding locality
into the feature learning process, which ensures that fine-scale geometric and physical properties are
preserved across deeper layers. In contrast, the Global Attention module complements this design by
capturing long-range dependencies, and together they enable MNO to achieve both local accuracy
and global coherence in flow prediction.

3.4 MICRO POINT-WISE ATTENTION MODULE

Micro-scale features correspond to the intrinsic attributes of individual spatial points. Since the
Local Module primarily extracts features by the feature differences (subtraction) between the central
node and its neighboring nodes, as shown in Equation (4), it overlooking the analysis of the central
node’s own characteristics. To address this issue, we design the Micro Point-wise Attention Module,
which specifically focuses on the token features of each spatial point itself. Additionally, the Micro
Module can also assist the Global Module in supplementing spatial details to some extent.

This module implements a point-wise self-attention mechanism, where each token is reweighted
solely based on its own feature vector. As illustrated in Figure 1 (e), token features from the previous
block are processed through an MLP followed by a softmax operation to produce point-specific
weights, which indicate the relative importance of each token. The scaled features are then combined
with the original input via a residual connection

Xmicro = X + Scorep ⊙X, with Scorep = Softmax(MLP(X), dim = N), (5)

where X ∈ RN×D denotes the input token features, Scorep ∈ RN×1 represents the point-wise
attention weights, and Xmicro ∈ RN×D is the resulting micro-scale representation. The symbol ⊙
indicates element-wise multiplication with broadcasting rule across feature dimensions.

Because each token is reweighted independently of others, this module emphasizes point-specific
high-frequency variations while remaining computationally efficient, with complexity O(ND2). In
combination with the global and local attentions, it ensures that MNO simultaneously preserves
fine-grained details, local neighborhood patterns, and long-range flow coherence.

Remarks on other multiscale models Existing multiscale methods for point clouds primarily
focus on multi-level sampling operation. (Li et al., 2020; 2025; Qi et al., 2017b; Hu et al., 2020).
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These approaches typically rely on repeated downsampling and upsampling, which can discard fine-
grained information and lead to suboptimal accuracy when applied to flow field prediction.

In contrast, our design introduces distinct mechanisms tailored to each scale without resampling.
At the global scale, a low rank projection enforces attention to long-range dependencies and low-
frequency structures while reducing computational cost. At the local scale, a restricted receptive
field ensures that each point interacts only with its nearest neighbors, capturing mid-frequency in-
teractions tied to geometric adjacency. At the micro scale, point-wise modulation refines the rep-
resentation by recovering high-frequency details. Together, these complementary modules provide
a balanced decomposition of global, local, and fine-scale features, enabling accurate and efficient
modeling of multiscale dynamics in CFD.

4 EXPERIMENTS

4.1 BENCHMARKS

We evaluate the model performance on four 3D CFD benchmarks, including steady-state flow field
benchmarks, Ahmed body (Ahmed et al., 1984; Li et al., 2023b), ShapeNet Car (Umetani & Bickel,
2018), DrivAerNet++ (Elrefaie et al., 2024), and the unsteady flow field benchmark, Parachute
dynamics (Zeng et al., 2025b).

Ahmed body (100k/sample): A vehicle wind tunnel dataset with a bluff-body structure. Inputs
consist of the vehicle surface point cloud and auxiliary conditions such as freestream velocity and
Reynolds number. The output is the pressure field on the vehicle surface. Parachute dynamics
(15k/sample): A time-dependent dataset capturing the inflation of parachutes under pressure loads.
Inputs include the initial point cloud positions and markers for the umbrella surface and ropes,
while outputs are displacement fields at four time steps. ShapeNet Car (30k/sample): A car wind
tunnel dataset. Inputs include point positions, signed distance values, and surface normals. Outputs
are the velocity field in the air region and the pressure field on the car surface. DrivAerNet++
(300k/sample): A large-scale automotive wind tunnel dataset. Inputs consist of point positions and
surface normals, and the output is the pressure field on the car surface. For detailed configurations,
please refer to Appendix B.

4.2 COMPARISON ON ACCURAY

We reproduce several state-of-the-art open-source methods of neural operator for comparative ex-
periments. The training and testing procedures for all baselines are consistent with MNO. The
hyperparameters of baselines adhere to their official code repositories or original papers. Detailed
settings can be found in Appendix D.

Table 1: The comparison results with other methods on Ahmed body and Parachute datasets, in
which RL2p denotes the relative L2 errors (RL2) of the pressure field; RL2x1∼4 represent the RL2
of the displacement field at 4 time steps; RL2x denotes the total RL2 of 4 time steps; MAE is the
mean absolute errors. The subscript “∗” indicates the result claimed in the original article. The row
titled with Improvement refers to the degree of advancement compared to the previous best method.

Ahmed body Parachute

Methods RL2p MAEp RL2x1 RL2x2 RL2x3 RL2x4 RL2x MAEx

DeepONet (Lu et al., 2021) 0.3683 59.6948 1.2620 0.7243 0.7915 0.7667 0.7733 0.2864
PointNet (Qi et al., 2017a) 0.1923 35.8585 0.0955 0.0703 0.1069 0.1427 0.1035 0.0345

PointNet++ (Qi et al., 2017b) 0.3366 55.5127 0.2364 0.0923 0.1009 0.1623 0.1165 0.0371
Geo-FNO (Li et al., 2023a) 0.1400 26.3723 0.0480 0.0248 0.0353 0.0551 0.0366 0.0114
LNO (Wang & Wang, 2024) 0.1908 30.4570 0.0584 0.0431 0.0484 0.0665 0.0504 0.0147

AMG(Li et al., 2025) - - 0.0432 0.0288 0.0369 0.0539 0.0379 0.0120
PCNO∗ (Zeng et al., 2025b) 0.0682 - - - - - 0.0373 -
PCNO (Zeng et al., 2025b) 0.0664 12.4693 0.0238 0.0189 0.0305 0.0515 0.0316 0.0094

Ours 0.0468 7.0465 0.0216 0.0164 0.0259 0.0418 0.0266 0.0081
Improvement 29.51% 43.48% 9.24% 13.23% 15.08% 18.83% 15.82% 13.82%
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Table 2: The comparison results with other advanced methods on ShapeNet Car and DrivAerNet++
datasets. RL2v denotes the RL2 of the velocity field. The subscript “∗” indicates the result claimed
in the original article.

ShapeNet Car DrivAerNet++

Methods RL2p MAEp RL2v MAEv RL2p MAEp

DeepONet (Lu et al., 2021) 0.4148 11.4996 0.2075 1.2256 0.3203 27.4931
PointNet (Qi et al., 2017a) 0.0927 2.6222 0.0314 0.1723 0.4278 42.6893

PointNet++ (Qi et al., 2017b) 0.2082 5.9648 0.0771 0.3813 0.4617 41.8497
Geo-FNO (Li et al., 2023a) 0.1164 3.5748 0.0737 0.4647 0.2869 26.3732
LNO (Wang & Wang, 2024) 0.0887 2.6118 0.0267 0.1498 0.1984 18.1088

AMG(Li et al., 2025) 0.0770 2.0062 0.0236 0.1203 - -
Transolver∗ (Wu et al., 2024) 0.0745 - 0.0207 - - -
Transolver (Wu et al., 2024) 0.0700 1.8151 0.0230 0.1130 0.1749 15.4372

Ours 0.0597 1.3796 0.0178 0.0845 0.1665 14.6335
Improve 14.71% 23.99% 22.61% 25.22% 4.80% 5.21%

The comparative results are summarized in Table 1 and Table 2. The proposed MNO consistently de-
livers higher predictive accuracy across all four benchmarks compared to recent baselines. In partic-
ular, relative to the current leading methods, Transolver and PCNO, MNO achieves error reductions
of 29.51% on the Ahmed Body dataset, 15.82% on Parachute Dynamics, 14.71% on ShapeNetCar,
and 4.80% on DrivAerNet++. The computing cost is shown in Appendix E.

The LNO, Transolver, PCNO, and AMG are the top-performing baselines. The following is a spe-
cific analysis of the poor performance of the baseliness. LNO (Wang & Wang, 2024) compresses
point clouds into a latent space with limited tokens, where multiple Transformer layers capture
global features. This approach resembles our Global Attention module but suffers from noticia-
ble loss of fine-grained details due to heavy compression. Transolver (Wu et al., 2024) employs
a global dimension reduction and introduces residual branch between token compression and de-
compression to reduce information loss. However, it does not explicitly support multiscale feature
learning. PCNO (Zeng et al., 2025b) extracts global, gradient, and residual features of the input
point cloud. However, its global feature extraction relies on FNO without point cloud compression,
limiting scalability for large datasets. Compared to PCNO, MNO provides stronger mid-scale rep-
resentations through its Local Attention module. AMG (Li et al., 2025) constructs global and local
graph structures through multiple downsampling, but this results in significant loss of spatial details,
thereby limiting prediction accuracy. Moreover, repeated farthest point sampling (FPS) significantly
increases computation time. In contrast, the Local module constructs adjacency relationships for
each point through a shared kNN graph, maximizing the preservation of local details and reducing
the computation time of the graph network, as shown in Table 6.

4.3 COMPARISON ON MODEL SCALES

This experiment is designed to demonstrate that the improvement of our MNO model compared to
other baselines is primarily due to its innovative multi-scale structural design, rather than merely an
increase in model scale.

To ensure fairness, all models are compared under consistent parameter scales. For our MNO model,
the number of blocks is set to 1, 2, 4, and 8 to construct four parameter scales. For Transolver (Wu
et al., 2024), the token length is set to 264, and the network depth is adjusted to 1, 2, 4, and 8 to
align with the parameter scales. For LNO (Wang & Wang, 2024), the token length is set to 88, 120,
168, and 240 to match the parameter scales. Due to the excessively long training time of AMG,
experiments are only conducted on ShapeNet Car and Parachute benchmarks. The token length for
AMG is set to 88, 116, and 162 to align with the parameter scales.

The experimental results, as shown in Figure 2, indicate that under the same parameter scales, the
prediction error of our MNO model is consistently lower than that of the baselines. For example,
in Figure.2 (a), our model achieved prediction errors that are 13%-20% lower than the best baseline
across the four parameter scales. When the RL2 error is below 0.075, the parameter scale of our
model is reduced by 46.61% compared to the best baseline. This indicates that MNO does not need
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(a) 

(c) 

(b) 

(d) 

Figure 2: Prediction results with identical model parameter counts. (a) the pressure error on
ShapeNet Car, (b) the velocity error on ShapeNet Car, (c) the displacement RL2 error on Parachute,
and (d) the displacement MAE on Parachute.

to design redundant parameter spaces for the underlying physical state of the flow field like other
baselines.

4.4 ATTENTION MODULES ABLATION EXPERIMENTS

In each MNO block, the three attention modules are responsible for extracting multiscale features.
To better understand their contributions, we conduct ablation studies by selectively enabling differ-
ent modules. Unless otherwise specified, the number of MNO blocks is fixed at four.

The results are summarized in Table 3. “Global,” “Local,” and “Micro” denote using only the corre-
sponding attention module to learn and predict flow fields. “Global+Local” indicates the joint use of
both Global and Local Attention modules, “Global+Local+Micro” represents the full MNO block.
The “Global+Global+Global” refers to using three identical Global Attention modules as a control.
This was done to verify that the performance improvement stems from the complementary benefits
of the innovative multi-scale architecture, rather than from simply stacking modules.

Table 3: The results of the ablation experiment of Attention Modules. OOM is out of memory.
Ahmed body Parachute ShapeNet Car DrivAerNet++

Modules RL2p MAEp RL2x MAEx RL2p MAEp RL2v MAEv RL2p MAEp

Global 0.8588 154.899 0.8205 0.2629 0.5117 16.9729 0.2025 1.3195 0.7853 73.3534
Local 0.1350 24.8293 0.1479 0.0314 0.0832 2.9235 0.0399 0.2042 0.1919 17.8505
Micro 0.4028 64.5137 0.2307 0.0542 0.1881 6.2470 0.0609 0.3098 0.2396 21.2415

Local+Micro 0.1267 24.0813 0.1062 0.0234 0.0807 2.7964 0.0393 0.1975 0.1908 17.6443
Global+Micro 0.0484 7.4700 0.0304 0.0095 0.0663 1.5408 0.0194 0.0980 0.1728 15.3040
Global+Local 0.0488 7.6412 0.0287 0.0090 0.0610 1.4994 0.0201 0.0983 0.1713 14.9961

Global+Global+Global 0.8591 153.907 0.8170 0.2601 0.7986 23.7095 0.3249 2.0015 0.7853 73.2887
Local+Local+Local OOM OOM 0.1484 0.0313 0.0800 2.7651 0.0385 0.1852 OOM OOM

Micro+Micro+Micro 0.4328 76.6320 0.2249 0.0527 0.1893 6.1662 0.0591 0.2930 0.2420 21.5583
Global+Local+Micro 0.0468 7.0465 0.0266 0.0081 0.0597 1.3796 0.0178 0.0845 0.1665 14.6335

When used individually, the Global attention module cannot complete CFD tasks, because repeated
point cloud compression operations result in a significant loss of spatial information. By contrast, the
Local Attention module achieves the best performance among the three. Local Attention captures
mid-scale features, i.e., mid-frequency information, which is crucial for distinguishing geometric
shapes of objects.

Combining Global and Local Attention substantially improves performance, with relative gains of
63.85%, and 80.59%, 25.33%, and 10.73%, across the four datasets compared to using Local At-
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tention alone. This highlights the strong complementarity of global and mid-scale features, showing
that their combination captures most of the key physical processes in flow fields.

Adding Micro Attention on top of Global+Local yields further improvements of 4.09%, 7.32%,
2.13%, and 2.80%, across the four datasets. The Micro Attention module captures high-frequency
variations that serve as fine-scale corrections to mid-frequency features. While its contribution is
smaller, it refines predictions and enhances overall accuracy.

The performance of individual modules is limited, while their combination can produce powerful
results, which is the design advantage of MNO. Local and Micro modules provide detailed local spa-
tial information to supplement global modules, while global modules provide a broader perspective
to enhance Local and Micro units. Therefore, any combination of them can improve performance.
These three modules work together to improve the overall performance of MNO, without the need
for each module to handle CFD tasks independently. Conversely, if the Global and Micro mod-
ules performed well independently, it would indicate architectural redundancy rather than effective
specialization.

4.5 VISUALIZATION OF ATTENTION MODULES

Figure 3 visualizes the prediction errors for different attention configurations. Each row corresponds
to one of the four benchmarks, while columns represent the module combinations: the first column
shows predictions using only Global Attention; the second column shows Global+Local Attention;
the third column repeats the second but with a different color scale for better contrast; and the fourth
column shows the full combination of Global, Local, and Micro Attention. The following discussion
takes Figure 3 (b) as an illustrative example.

Global Global+Local

error of wind speed error of pressure

Global+Local Global+Local+Micro

error of wind speed error of pressure

error of pressure: error of pressure:

error of pressure: error of  pressure:

error of  displacement: error of  displacement:

(a)

(b)

(c)

(d)

Figure 3: The visualization of Global, Local and Micro Attention modules. The red circle serves as
a reference for areas with obvious differences. Rows show the error maps for different benchmarks.
For each row: (a) ShapeNet Car. The arrow represents the direction of the wind, and the color
denotes the prediction error; (b) Ahmed body; (c) DrivAerNet++; (d) Parachute. For each column:
(first column) prediction of only Global Attention module; (second column) prediction of Global
and Local Attention modules together; (third column) identical values to the second column but
with a different color scale; (fourth column) prediction of the full MNO with Global, Local, and
Micro Attention modules together.
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From the error map of Global Attention alone, show in the first column of Figure 3 (b), we observe
that the module tends to minimize error in the larger side area of the car (the non-windward region).
This reflects its capacity to capture low-frequency components: the non-windward region is subject
to simpler forces and smaller pressure fluctuations, making it easier to approximate. In contrast, the
windward region experiences stronger forces and larger fluctuations, resulting in higher prediction
error.

Comparing Global with Global+Local, it is evident that Local Attention significantly improves per-
formance in the windward region. Local Attention captures mid-frequency information and ef-
fectively distinguishes between windward and non-windward regions, complementing the Global
Attention module.

Finally, comparing Global+Local with Global+Local+Micro shows that errors in transitional areas
between the front and side regions are further reduced when Micro Attention is included. By refining
predictions at specific points, Micro Attention supplements fine-grained details and corrects residual
errors, demonstrating its role as a complementary high-frequency module.

Other important experiments: Ablation on the number of MNO blocks, the hyperparameter M in the
Global module, and the knbr in the Local module are detailed in Appendix F-H. The evaluation of
the MNO’s geometric generalization and adaptive resolution capabilities is detailed in Appendices I
and J. For a comparative visualization of the key local flow fields between MNO and the baselines,
please refer to Appendix L.

5 CONCLUSIONS

In this work, we introduced the Multiscale Neural Operator (MNO), a new framework for solving
CFD problems directly on unstructured point clouds. By explicitly decomposing information into
global, local, and micro scales, MNO captures long-range dependencies, neighborhood interactions,
and fine-grained details within a unified architecture. Besides performance gains, the ablation and
visualization studies confirm the complementary roles of the three attention modules and validate
the importance of explicit multiscale design. These results highlight the potential of MNO as a
general and efficient framework for learning complex fluid dynamics on irregular domains, paving
the way for broader applications of neural operators in large-scale scientific computing.
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A LLMS POLISHING

The manuscript was initially drafted in Chinese and polished using Large Language Models (LLMs)
of DeepSeek-R1 and ChatGPT-4.0 to improve clarity, grammar, and academic style. The authors
rigorously reviewed and edited all AI-generated content to ensure accuracy and consistency with the
original scientific intent. The intellectual contributions remain entirely human.

B DETAILS OF BENCHMARKS

This paper conducts a comprehensive evaluation of the model across four benchmarks. The details
for each benchmark are provided below.

The ShapeNet Car (Umetani & Bickel, 2018) focuses on wind tunnel experiments for automobiles,
a critical stage in automotive industrial design. This dataset contains 889 samples representing
different car shapes, used to simulate driving conditions at a speed of 72 km/h. The car shapes
are drawn from the ”Car” category of ShapeNet (Chang et al., 2015). The surrounding space is
discretized into an unstructured grid with 32,186 points, and both the airflow velocity around the car
and the pressure on the car surface are recorded. The number of points on the car surface is 3,682.
Following the experimental setup in Transolver (Wu et al., 2024), we use 789 samples for training
and the remaining 100 samples for testing. The input point cloud of each sample is preprocessed
into a combination of point positions, signed distance functions, and normal vectors. A notable
difference is that the original dataset contains 96 fixed noisy points on the car surface. After our
preprocessing, the point cloud data consists of 29,498 air points and 3,586 car surface points.

The DrivAerNet++ (Elrefaie et al., 2024) is a large-scale, comprehensive benchmark for automotive
aerodynamic design, constructed using high-fidelity CFD simulations. It contains over 8,000 distinct
car designs, covering various vehicle types, wheel configurations, and chassis layouts. The inflow
air velocity is 108 km/h. We only use a subset of surface pressures for the experiment. To maintain
sample diversity while improving research efficiency, we randomly select 200 samples for training
and 50 samples for testing. Each point cloud sample consists of approximately 600k points, with
each point described by its three-dimensional coordinates (x, y, z) and surface normal vectors (ux,
uy, uz). Since the dataset was generated with y-axis symmetry, we only use the points with y > 0
(300k) to enhance computational efficiency.

The Ahmed Body (Li et al., 2023b) is a wind tunnel dataset for bluff-body vehicles, used to predict
the pressure on the vehicle surface. The vehicle shape is based on the benchmark model designed in
(Ahmed et al., 1984). The inflow velocity ranges from 10 m/s to 70 m/s, corresponding to Reynolds
numbers from 4.35× 105 to 6.82× 106. The dataset is generated by systematically varying the ve-
hicle’s length, width, height, ground clearance, inclination angle, and rear rounding radius, resulting
in a total of 551 samples, each containing approximately 100k surface points. Among these, 500
samples are used for training and 51 samples for testing, consistent with the setup in PCNO (Zeng
et al., 2025b). The variations in inflow velocity and Reynolds number are shown in Figure 4.

(a) (b)

Figure 4: Sample distribution of varying inflow velocities and Reynolds numbers for the Ahmed
body benchmark case.
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The Parachute Dynamics (Zeng et al., 2025b) captures the inflation process of different parachutes
under specific pressure loads. The pressure load increases linearly from 0 to 1000 Pa over the first 0.1
seconds and then remains constant at 1000 Pa. The learning objective is to map the initial parachute
shape to the displacement fields at four specific time points during inflation: t1 = 0.04, t2 = 0.08, t3
= 0.12, and t4 = 0.16. These time points characterize the inflation process, where the parachute first
rapidly expands under pressure, then over-expands, and finally rebounds. The experimental setup
follows that of PCNO (Zeng et al., 2025b), with 1000 samples for training and 200 samples for
testing. Each sample contains approximately 15k points in the point cloud.

C THE EVALUATION METRICS

For the quantitative evaluation of point cloud predicion algorithms, this study employs the following
two widely used metrics: Relative L2 Error (RL2) and Mean Absolute Error (MAE). Both metrics
are calculated based on point-to-point correspondence between the predicted point cloud and the
true point cloud, requiring that the point clouds be precisely aligned and point correspondences
established prior to evaluation.

C.1 THE RELATIVE L2 ERROR

The RL2 measures the normalized Euclidean distance discrepancy of the predicted point cloud as a
whole relative to the true point cloud. It is defined as follows:

RL2 =
∥Ŷ − Y ∥2

∥Y ∥2
=

√∑N
i=1 ∥ŷi − yi∥2√∑N

i=1 ∥yi∥2
, (6)

where Y = {y1, y2, . . . , yN} is the true point cloud, Ŷ = {ŷ1, ŷ2, . . . , ŷN} is the predicted point
cloud, N is the number of points, ∥ · ∥2 represents the L2 norm.

A smaller RL2 value indicates lower relative error between the predicted point cloud and the true
point cloud at the overall level, reflecting higher prediction accuracy. By using the norm of the true
point cloud as the denominator, this metric achieves scale invariance, enabling robust performance
comparisons across different scales or datasets.

C.2 THE MEAN ABSOLUTE ERROR

MAE measures the mean of the absolute deviations between the predicted point cloud and the true
point cloud on a point-wise basis. It is defined as follows:

MAE =
1

N

N∑
i=1

∥ŷi − yi∥, (7)

where Y = {y1, y2, . . . , yN} is the true point cloud, Ŷ = {ŷ1, ŷ2, . . . , ŷN} is the predicted point
cloud, N is the number of points, ∥ · ∥1 represents the L1 norm.

A smaller MAE value indicates that the predicted point cloud aligns more closely with the ground
truth along each coordinate axis, reflecting higher point-wise accuracy. Unlike Mean Squared Error
(MSE), MAE is less sensitive to outliers (individual points with large errors), providing a more
robust estimate of the average deviation.

The combined use of RL2 and MAE enables a more comprehensive evaluation of point cloud re-
construction algorithm performance: RL2 focuses on the fidelity of global, while MAE assesses
localized accuracy. Lower values for both metrics collectively indicate superior reconstruction qual-
ity.
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D FULL IMPLEMENTATION DETAILS

The code and data can be obtained from: anonymous4open or google drive. The implementation
software of the model is mainly based on PyTorch 2.4.1, CUDA 12.1, and Python 3.9.0. The com-
puting platform mainly includes Ubuntu 22.04.4 LTS and 4 NVIDIA H100 GPUs. Due to the high
cost of H100 GPUs, we use a more affordable NVIDIA 3090 GPU to measure the inference time,
which better represents practical application scenarios.

Table 4: The key hyperparameters and training configurations of our MNO and baseline methods.

Methods Model key hyperparameters Training configurations

DeepONet branch_dim=128, trunk_dim=128

batch size=4
epochs=500
Loss=RL2
Optimizer=AdamW(
lr=1e-3, 
weight_decay=5e-5, 
betas=(0.9, 0.99) )
Scheduler=OneCycleLR(
max_lr=1e-3,
 pct_start=0.2, 
div_factor=1e4, 
final_div_factor=1e4)

PointNet point numbers=[N,N,N,N,N,N]
feature dims= [64,128,1024,512,256,128]

PointNet++ point numbers = [N,1024, 256, 64, 16, 64, 256, 1024 ,N]
feature dims = [32,64, 128, 256, 512, 256, 256, 128, 128]

GeoFNO modes1=8, modes2=8, modes3=8, width=64, 
is_mesh=True

LNO n_block=8, n_mode=256, n_dim=128, 
n_head=8, n_layer=2

AMG

feature_width=128, num_layers=3, pos_dim=3, 
global_ratio=0.25, global_k=4, local_nodes=512, 
local_ratio=0.25, local_k=6, 
num_phys=32, num_heads=4

PCNO
layers=[128, 128, 128, 128, 128], fc_dim=128,
Parachute:      n_mode=7812, n_measure=2
Ahmed body: n_mode=2456, n_measure=1

Transolver n_hidden=256, n_layers=8, n_head=8, 
mlp_ratio=2, slice_num=32

Ours Block=4, M=256, D=128, Head=8, 
knbr=16 (8 of DrivAerNet++)

Table 4 details the hyperparameter configurations and training settings of the MNO model and other
baseline methods across all benchmarks. Training employed a relative L2 error loss function over
500 epochs, optimized using the AdamW optimizer and the OneCycleLR learning rate scheduler.
In the MNO model, N denotes the point number per sample, Block refers to the number of MNO
blocks, M indicates the number of tokens in the low rank space of the global attention module, D
represents the vector dimension of each token, Head specifies the number of heads in the multi-
head self-attention (MSA) mechanism, and knbr defines the number of neighboring nodes in the
local attention module. For DrivAerNet++, due to GPU memory limitations, knbr is reduced to 8.

The parameter configurations for all baseline models are derived from the settings provided in the
authors’ official papers and code repositories. In Transolver (Wu et al., 2024), n layers is similar
in meaning to Blocks in MNO, and slice num represents the number of physical slices in the latent
space. In LNO (Wang & Wang, 2024), n block refers to the number of MSA modules in the latent
space, and n mode refers to the number of tokens in latent space. In PointNet++ (Qi et al., 2017b),
point numbers refer to the quantity of spatially downsampled or upsampled points at different scale
levels, and feature dims refer to the number of channels at each level. This resembles a U-Net-like
architecture for point clouds. Other detailed parameter explanations will not be reiterated. Readers
can refer to the baselines’ original papers and official code repositories for further details.

15

https://anonymous.4open.science/r/MNO-A640/README.md
https://drive.google.com/drive/folders/1k9rKJmvnpdI4kFuhdOe0njz8rMyar09H?usp=sharing


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E CALCULATION COST OF OUR AND BASELINE METHODS.

In this section, we provide a detailed statistical analysis of the computational costs of MNO and
the compared baseline methods. Table 5 presents the computational costs of MNO model. Table 6
shows the computational costs of other baseline methods.

In Table 5, ”Global (no low rank)” refers to the standard self-attention method, which computes
global attention across all spatial points directly without using low rank projection for compression.
Compared to this standard self-attention method, the low rank projection reduces the GPU memory
usage during inference by 97.03%. Furthermore, due to training GPU memory requirements exceed-
ing 80GB, the standard self-attention method could not complete the training task on any benchmark
used in this paper.

Table 5: Statistical results of computational costs for MNO model. Flops and Params represent
the model’s theoretical computational load and parameter count, respectively. GPUt and GPUi

represent the training and inference GPU memory per sample, respectively. train/epoch and infer-
ence/sample represent the training time per epoch and the inference time per sample, respectively.

Ahmed body

Modules Flops Params GPUt GPUi train/epoch inference/sample

Global (no low rank) 116.6G 1.16M >80G >80G OOM OOM
Global 96.5G 1.49M 10.1G 0.8G 106s 0.2312s

Global+Local 442.6G 1.95M 40.7G 8.2G 163s 1.2113s
Global+Local+Micro 462.5G 2.15M 41.3G 8.2G 164s 1.2214s

Parachute

Modules Flops Params GPUt GPUi train/epoch inference/sample

Global (no low rank) 16.759G 1.16M >80G 13584M OOM 0.1327s
Global 13.9G 1.49M 4.7G 0.4G 24s 0.0392s

Global+Local 63.7G 1.95M 9.1G 1.4G 34s 0.1027s
Global+Local+Micro 66.5G 2.15M 9.2G 1.4G 35s 0.1116s

ShapeNet Car

Modules Flops Params GPUt GPUi train/epoch inference/sample
Global (no low rank) 37.2G 1.16M >80G >80G OOM OOM

Global 30.9G 1.49M 5.6G 0.5G 50s 0.0839s
Global+Local 141.4G 1.95M 15.4G 2.8G 70s 0.2650s

Global+Local+Micro 147.8G 2.15M 15.7G 2.8G 71s 0.2765s

DrivAerNet++

Modules Flops Params GPUt GPUi train/epoch inference/sample
Global (no low rank) OOM OOM >80G >80G OOM OOM

Global 286.8G 1.49M 22.7G 2.2G 115s 0.6897s
Global+Local 841.6G 1.95M 68.5G 13.2G 237s 6.3662s

Global+Local+Micro 900.8G 2.15M 71.0G 13.2G 239s 6.3969s

Table 6 shows the computational cost of MNO and baselines. When inferring physical fields at 15k,
30k, 100k, and 300k points, MNO requires only 1.2s, 0.1s, 0.2s, and 6.3s, respectively. The actual
training and inference time of MNO is 90% lower than the latest graph based SOTA (AMG)(Li et al.,
2025), while other Transformer baselines are typically faster because graph architectures (MNO and
AMG) are not optimized on current GPU hardware. It is worth noting that although our Local
method also uses a graph structure, the computational time of MNO does not increase explosively.
The Local modules in all blocks of MNO share the same graph structure. Therefore, the adjacency
matrix for MNO only needs to be computed once at the front end, which greatly alleviates the
commonly excessive computational time issue associated with graph neural networks.

PCNO’s (Zeng et al., 2025b) high GPU memory usage is due to the lack of adequate compression
in the number of frequency modes when using FNO (Li et al., 2021) to extract global features.
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Table 6: Statistical results of the computational cost for the baseline model. Red indicates cases
where the cost is significantly exceeds the normal range.

Ahmed body

Methods Flops Params GPUt GPUi train/epoch inference/sample

LNO 23.7G 1.29M 1.3G 0.6G 28s 0.0958s
AMG 125.7G 1.35M 16.3G 3.9G 4257s 28.009s
PCNO 28.2G 0.28M 33.8G 11.3G 243s 0.1527s
MNO 462.5G 2.15M 41.4G 8.2G 164s 1.2214s

Parachute

Methods Flops Params GPUt GPUi train/epoch inference/sample

LNO 3.6G 1.29M 4.0G 0.8G 16s 0.0146s
AMG 18.0G 1.35M 5.6G 1.2G 277s 0.9047s
PCNO 4.0G 0.28M 44.4G 13.1G 172s 0.1807s
MNO 66.5G 2.15M 9.2G 1.4G 35s 0.1116s

ShapeNet Car

Methods Flops Params GPUt GPUi train/epoch inference/sample

LNO 7.7G 1.29M 4.3G 0.9G 14s 0.0313s
AMG 40.1G 1.35M 7.9G 1.8G 814s 3.2592s

Transolver 125.3G 3.86M 7.4G 0.9G 14s 0.0545s
MNO 147.8G 2.15M 15.7G 2.8G 71s 0.2765s

DrivAerNet++

Methods Flops Params GPUt GPUi train/epoch inference/sample

LNO 69.5G 1.29M 9.6G 2.5G 22s 0.2959s
AMG 373.8G 1.35M 40.8G 10.1G 13525s 247.6723s

Transolver 1.1T 3.85M 38.1G 3.5G 22s 0.5172s
MNO 900.8G 2.15M 71.038G 13.2G 239s 6.3969s

To demonstrate that the improvement in prediction accuracy of our MNO stems from the innovative
design of its multi-scale architecture rather than merely increased computational cost, we conducted
a fair comparison with other baselines under equivalent model parameters. For details, refer to
Section 4.3 in the main text. The results show that the predictive performance of our MNO model
consistently outperforms all other baseline methods across varying model parameter levels.

F THE ABLATION OF THE DEPTH OF MNO

This experiment aims to explore performance changes in Global Attention, Local Attention, and
Micro Attention modules with varying depths of the MNO model.

Due to the large number of models requiring training in this experiment, to enhance experimen-
tal efficiency, ablation studies are performed exclusively on the smaller-scale point cloud datasets:
ShapeNet Car and Parachute. ShapeNet Car necessitates simultaneous prediction of velocity and
pressure fields, while Parachute incorporates temporal information, making both highly representa-
tive benchmarks.

Table 7 presents the experimental results. It is evident that the MNO model incorporating all three
attention modules achieves the highest prediction accuracy in most cases. A significant improve-
ment in MNO’s predictive performance is observed as the number of blocks increases from 1 to 4.
However, performance gains become marginal when the block count exceeds 4, suggesting that the
model likely enters a saturated state at this stage.

MNO achieves satisfactory performance with only four serially connected blocks. Because that the
kNN graph–based Local Module provides strong inductive bias and tends to saturate with relatively
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Table 7: The ablation experimental results of depth of MNO model. Blocks refer to the number of
cascaded MNO blocks in the model. RL2x1∼4 represent the RL2 of the displacement field at 4 time
steps. RL2x denotes the total RL2 of 4 time steps.

ShapeNet Car Parachute

Blocks Modules RL2v MAEv RL2p MAEp RL2x1 RL2x2 RL2x3 RL2x4 RL2x MAEx

1

Global 0.0252 0.1315 0.0813 2.1268 0.0535 0.0380 0.0439 0.0615 0.0455 0.0135
Local 0.0526 0.2637 0.1191 4.1156 0.0777 0.0872 0.1263 0.2221 0.1353 0.0315
Micro 0.0594 0.2925 0.1924 6.3051 0.1942 0.1967 0.2504 0.3138 0.2408 0.0581

Global+Local 0.0220 0.1130 0.0686 1.7701 0.0319 0.0250 0.0358 0.0531 0.0361 0.0110
Global+Local+Micro 0.0196 0.0999 0.0672 1.6221 0.0310 0.0239 0.0336 0.0500 0.0340 0.0105

2

Global 0.0266 0.1481 0.0852 2.1712 0.0342 0.0236 0.0323 0.0490 0.0330 0.0102
Local 0.0465 0.2328 0.0959 3.4201 0.0569 0.0641 0.1022 0.1671 0.1045 0.0251
Micro 0.0586 0.0586 0.1906 0.2893 0.1813 0.1894 0.2429 0.3042 0.2335 0.0553

Global+Local 0.0197 0.0972 0.0632 1.5172 0.0245 0.0185 0.0291 0.0453 0.0294 0.0093
Global+Local+Micro 0.0192 0.0946 0.0612 1.4408 0.0231 0.0172 0.0276 0.0441 0.0281 0.0088

4

Global 0.2025 1.3195 0.5117 16.9729 0.7308 0.7884 0.8502 0.8143 0.8205 0.2629
Local 0.0399 0.2042 0.0832 2.9235 0.0455 0.0911 0.1545 0.2099 0.1479 0.0314
Micro 0.0609 0.3098 0.1881 6.2470 0.1812 0.1869 0.2402 0.3010 0.2307 0.0542

Global+Local 0.0201 0.0983 0.0610 1.4994 0.0250 0.0183 0.0289 0.0438 0.0287 0.0090
Global+Local+Micro 0.0178 0.0845 0.0597 1.3796 0.0216 0.0164 0.0259 0.0418 0.0266 0.0081

8

Global 0.3252 1.9870 0.7991 23.7101 0.7659 0.8413 0.8981 0.8552 0.8661 0.2713
Local 0.0319 0.1644 0.0728 2.3717 0.1106 0.1242 0.1916 0.2549 0.1790 0.0472
Micro 0.0584 0.2916 0.1880 6.1920 0.1727 0.1804 0.2361 0.2949 0.2254 0.0525

Global+Local 0.0201 0.1006 0.0614 1.4902 0.0392 0.0313 0.0401 0.0558 0.0402 0.0123
Global+Local+Micro 0.0194 0.0857 0.0604 1.3986 0.0239 0.0163 0.0235 0.0399 0.0250 0.0078

shallow depth, unlike deep Transformers that rely heavily on stacking for expressivity. Figure 2 also
confirms this: MNO can achieve better performance than Transolver with fewer block numbers.

Each module operates at distinct receptive field scales: the global module captures domain-level
dependencies, while the local and micro modules provide fine-grained neighborhood and point-
level information. Conversely, if the global and micro modules function effectively in isolation, it
indicates architectural redundancy rather than an effective and specialized model.

G THE ABLATION OF M IN LOW RANK SPACE

To investigate the size of the model’s demand for low rank space representation capacity, we conduct
ablation experiments with parameter M . Table 8 shows ablation results for M . When M >= 256,
model performance saturates, indicating limited capacity requirements in the low rank space. For
CFD tasks with limited computational resources, we recommend reducing M , as performance does
not drop significantly.

Table 8: The low rank space M ablation results on ShapeNet Car
Methods M RL2p MAEp RL2v MAEv Flops Params GPUi

MNO 16 0.0606 1.4320 0.0197 0.0917 143.720G 2.032M 2858M
MNO 32 0.0597 1.3803 0.0180 0.0857 143.992G 2.040M 2858M
MNO 64 0.0599 1.4123 0.0187 0.0910 144.536G 2.056M 2858M
MNO 128 0.0607 1.4201 0.0188 0.0888 145.625G 2.089M 2858M
MNO 256 0.0597 1.3796 0.0178 0.0845 147.802G 2.156M 2858M
MNO 512 0.0601 1.3763 0.0177 0.0822 152.155G 2.288M 2924M

Increasing the value of M does not lead to significant improvements. This indicates that the low
rank space does not rely on a large dimensionality setting. We speculate that among objects of the
same category (such as different vehicles in ShapeNet Car), the overall contours exhibit high struc-
tural similarity, primarily composed of low-frequency information, while the key factors affecting
prediction accuracy depend more on mid- to high-frequency details. Therefore, a smaller low rank
space is sufficient to capture the low-frequency features of the overall contours, whereas finer geo-
metric structures are dominated by mid- to high-frequency components. This result suggests that in
flow field prediction tasks, low-frequency information primarily serves an auxiliary global constraint
role, while mid- to high-frequency information is more critical for recovering local details.
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H THE ABLATION OF knbr OF LOCAL GRAPH ATTENTION

To investigate the model’s sensitivity to the number of neighbors, an ablation study on the knbr is
conducted. The experimental results are shown in Table 9. When k >= 16, the performance of the
MNO reaches saturation. The GPU memory is linearly related to the value of k.

Table 9: The ablation results of knbr of Local graph attention on ShapeNet Car
Methods knbr RL2p MAEp RL2v MAEv Flops Parameters GPUi

Local 2 0.1902 5.8130 0.0627 0.3134 32.987G 831.492K 774M
Local 4 0.1154 3.8378 0.0488 0.2407 45.742G 831.492K 1158M
Local 8 0.0943 3.2675 0.0428 0.2230 71.252G 831.492K 1718M
Local 16 0.0832 2.9235 0.0399 0.2042 122.272G 831.492K 2854M
Local 32 0.0746 2.4595 0.0350 0.1780 224.311G 831.492K 5126M

MNO 2 0.0648 1.4644 0.0184 0.0860 58.517G 2.156M 828M
MNO 4 0.0645 1.4378 0.0186 0.0861 71.272G 2.156M 1244M
MNO 8 0.0635 1.4210 0.0183 0.0855 96.782G 2.156M 1722M
MNO 16 0.0597 1.3796 0.0178 0.0845 147.802G 2.156M 2858M
MNO 32 0.0599 1.4160 0.0191 0.0935 249.841G 2.156M 5130M

When the Local Module independently handles the CFD task, the prediction error rapidly decreases
as knbr increases. However, when the MNO model performs the CFD prediction task, the reduction
in prediction error with increasing knbr is more gradual. The Local Module lacks a global perspec-
tive of the point cloud. Increasing knbr effectively expands its receptive field, making the Local
Module highly sensitive to changes in knbr. Nevertheless, a larger knbr significantly increases GPU
memory usage and computational complexity, so its value cannot be set excessively high. The MNO
model possesses receptive fields at multiple scales. The global perspective provided by the Global
Module alleviates the Local Module’s strong dependence on a large receptive field, allowing the
Local Module to focus more on analyzing local features. Consequently, the prediction performance
of MNO is less sensitive to variations in knbr.

Since GPU memory is exceptionally sensitive to knbr, we must minimize the number of neighbor
nodes knbr to avoid memory overflow when the dataset contains a large number of sampled points.
Fortunately, the unique multi-scale structure design of MNO mitigates the heavy reliance of graph
structures on computational resources. As shown in Table 9, when the RL2 error is also less than
0.08, compared to the Local Graph Attention method, MNO reduces computational Flops by 73.9%
and GPU memory usage by 83.8%. Therefore, even when knbr is reduced to prevent memory over-
flow, MNO can still achieve excellent prediction performance. For instance, in the DrivAerNet++
dataset used in this study, the point cloud scale of 300k forces us to reduce knbr from 16 to 8, yet
the prediction error remains lower than that of the best baseline.

I ZERO-SHOT RESOLUTION ADAPTATION STUDY

In this experiment, we designed an adaptive resolution training strategy that enables the MNO model
to support point cloud inputs with arbitrarily varying resolutions within a certain range in a zero-shot
manner. The training method is illustrated in the following equation:

mask = randmask(sample rate),

Xsample
in = Xin ⊙mask,

Xsample
out = model(Xsample

in ),

Y sample = Y ⊙mask,

L = Loss(Xsample
out , Y sample)

(8)

where sample rate represents the proportion of sampling points, and sample rate ∈ (10%, 100%),
mask ∈ RNmax×1, and Nmax represents the maximum limit of input points. The function
randmask(·) randomly sets n positions in the mask to 1, where n = round(N × sample rate),
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and sets the remaining positions to 0. Xin ∈ RNmax×f represents the original point cloud input
data, where f is the number of input features. Xsample

out corresponds to the predicted physical field
data of the sampled points, Y is the ground truth, and Loss is the loss function.

During model training, the hyperparameter settings are consistent with Table 4. The results are
shown in Table 10. Across 10 input resolutions (100% → 10%), MNO maintains stable performance
with RL2 = 0.1755 ± 0.0038. This proves that even in severely sparse situations, it exhibits strong
robustness and consistent physical state prediction for subsampling and density variations.

Table 10: Zero-Shot results across different resolutions on DrivAerNet++ benchmark. Sample rate
refers to the proportion of spatial sampling points. RL2p, MAEp, RMSEp and MSEp denote the
Relative L2 error, Mean Absolute Error, Root Mean Square Error, and Mean Square Error of the
pressure field, respectively.

sample rate n RL2p MAEp RMSEp MSEp

10% 30k 0.1793 15.7110 27.9917 816.6555
20% 60k 0.1727 15.1267 26.9546 743.8958
30% 90k 0.1708 15.0152 26.6468 725.7269
40% 120k 0.1728 14.9423 27.0181 753.2448
50% 150k 0.1729 14.9048 26.9991 759.3806
60% 180k 0.1712 14.9021 26.7007 735.7252
70% 210k 0.1715 14.9023 26.7680 739.0064
80% 240k 0.1725 14.9164 26.9393 754.6640
90% 270k 0.1719 14.9203 26.8491 747.4118
100% 300k 0.1717 14.9379 26.8093 743.3867

J THE GEOMETRIC GENERALIZATION STUDY

In this section, we investigate the geometric generalization capability of the MNO. The model is
trained exclusively on one category of geometric shapes and tested on another category to evaluate
its performance.

The car shapes in the DrivAerNet++ benchmark are categorized into Sedan and Sport Utility Vehicle
(SUV), as illustrated in Figure 5. Sedans typically feature a low-center-of-gravity, streamlined body
design that emphasizes road-handling stability and high-speed cruising capability. In contrast, SUVs
are characterized by higher ground clearance and a more boxy, taller body, providing a more spa-
cious cargo area and enhanced off-road performance. Accordingly, we conduct ablative experiments
to evaluate geometric generalization performance for the two vehicle types.

sample rate N RL2 MAE RMSE MSE
10% 30k 0.1793 15.7110 27.9917 816.6555 
20% 60k 0.1727 15.1267 26.9546 743.8958 
30% 90k 0.1708 15.0152 26.6468 725.7269 
40% 120k 0.1728 14.9423 27.0181 753.2448 
50% 150k 0.1729 14.9048 26.9991 759.3806 
60% 180k 0.1712 14.9021 26.7007 735.7252 
70% 210k 0.1715 14.9023 26.7680 739.0064 
80% 240k 0.1725 14.9164 26.9393 754.6640 
90% 270k 0.1719 14.9203 26.8491 747.4118 

100% 300k 0.1717 14.9379 26.8093 743.3867 

MNO randmask

Train Test $RL2_p$ $MAE_p$ RMSE MSE
Sedan Sedan 0.1468 14.0959 23.3102 173.2603
Sedan SUV 0.2020 19.6659 31.2958 290.4522
SUV SUV 0.1419 12.4015 22.1808 162.3201
SUV Sedan 0.2189 20.1559 34.6224 368.7184

(a) Sedan (b) SUV

Figure 5: Display of different geometric shapes of Sedan and SUV.

The experimental results are summarized in Table 11. The predicted RL2 errors for all four cases are
below 0.22, indicating that the MNO possesses a certain degree of geometric generalization ability.
It demonstrates that the model can learn some universal physical laws from training cases of a single
geometric type. When the model is trained solely on Sedan-type shapes, the predicted RL2 error is
approximately 0.14 for Sedan cases, while the error increases to around 0.20 for SUV cases. The
converse also holds true. This suggests that the geometric generalization capability of the MNO is
limited. The geometric homogeneity and limited quantity of the training samples cause the model
to overfit to some extent.
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Table 11: Research results on zero-shot transfer of different geometric shapes.
Train Test RL2p MAEp RMSEp MSEp Train samples Test samples

Sedan Sedan 0.1468 14.0959 23.3102 173.2603 200 50
Sedan SUV 0.2020 19.6659 31.2958 290.4522 200 50
SUV SUV 0.1419 12.4015 22.1808 162.3201 200 50
SUV Sedan 0.2189 20.1559 34.6224 368.7184 200 50

Increasing the diversity of training samples can effectively alleviate this issue. For example, if the
training set of the MNO includes both vehicle types, the RL2 error will decrease from 0.2 to 0.16.
In the future, we will collect and construct a large-scale 3D CFD benchmark encompassing a wider
variety of geometric types and a larger sample size to enhance the generalization capability of the
MNO.

K THE DISPLAY AND DISCUSSION OF PREDICTION RESULTS OF MNO
MODEL

In this section, we present prediction results obtained by the proposed MNO model, as illustrated
in Figures 6, Figure 7, Figure 8, and Figure 9. It is evident that across all datasets, the model’s
predictions exhibit strong consistency with the ground truth, with prediction errors approaching
zero in most regions of the point cloud. These results confirm that the MNO model is capable of
capturing the majority of physical behaviors in fluid flows, making it highly suitable for CFD tasks.
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Figure 6: The display of prediction results on ShapeNet Car dataset. The pred represents the pre-
dicted velocity and pressure fields, the true denotes the ground truth, and the error stands for the
absolute error of the prediction fluid fields. The arrows represent the wind direction, and the color
of arrows denotes the magnitude of wind speed.

Among the benchmarks, the ShapeNet Car dataset merits particular attention, as the model is re-
quired to simultaneously predict both the velocity field of the airflow around the car and the pres-
sure field normal to the car surface. Figure 6 presents the experimental results on this dataset. From
the “true” visualization, one can observe that the windward regions of the car surface exhibit higher
pressure, while the leeward and side regions experience lower pressure. As the airflow passes the ve-
hicle body, its velocity decreases and complex wake turbulence forms downstream of the car. In the
“pred” visualization, the model successfully reproduces the contrast between windward and leeward
surfaces, as well as the turbulent structures in the wake, indicating that MNO has effectively learned
the underlying PDEs governing wind tunnel phenomena from point cloud data. In the “error” vi-
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1 5 1927
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Figure 7: The display of prediction results on DrivAerNet++ dataset. The pred represents the pre-
dicted pressure fields, the true denotes the ground truth, and the error stands for the absolute error of
the prediction fluid fields.

pred
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error
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Figure 8: The display of prediction results on Ahmed body dataset. The pred represents the predicted
pressure fields, the true denotes the ground truth, and the error stands for the absolute error of the
prediction fluid fields.

sualization, relatively large prediction errors are observed at the front surface of the car, where the
windward face encounters high-speed inflow and rapid flow variations, making the prediction more
challenging. Similarly, noticeable errors appear in the downstream velocity field due to the highly
complex turbulent dynamics in the wake region.

L VISUALIZATION OF KEY FLOW FIELD REGIONS OF MNO AND BASELINE

In this section, we aim to zoom in some local flow fields to observe key regions where the model pre-
dictions fail and conduct a detailed discussion and analysis. The DrivAerNet++ benchmark features
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Figure 9: The display of prediction results on Parachute dataset. t0 is the initial shape of the
parachute in the air, while t1, t2, t3, and t4 stand for the shape changes of the parachute over 4
time steps. The color of the point cloud represents the prediction error amplitude of displacement
fields.

the highest point cloud resolution, the most complex geometric shapes, and the highest prediction
difficulty. Therefore, we selected this dataset for local visualization and observation.

By comparing the overall prediction errors, the key regions we select include the demarcation line
area between the front end and the chassis of the car, the transition area between the rear end and
the chassis of the car, the door handle area of the car, the rearview mirror area, and the wheel area.
Figure 10 shows the prediction results of MNO and the best baseline, Transolver. The baseline
model consistently performs worse than our MNO method in these key regions, especially in small-
scale areas with abrupt geometric changes. As shown in Figure 10 (d), the rearview mirror area
occupies an extremely small proportion of the surface but involves complex geometric deformations,
particularly at the connection part between the mirror and the car body. The prediction error of the
MNO model in this region is consistently lower than that of the baseline model, which sufficiently
demonstrates that MNO’s multi-scale strategy possesses a stronger capability for analyzing fine-
grained boundary variations in flow fields.

Moreover, Figure 10 reveals a common challenge: all models perform not well around the wheel
regions, particularly behind the wheels. Although MNO shows improvement in error metrics com-
pared to the baseline, the performance remain limited in the wheel regions. The interior space of
the wheel compartment is narrow and contains numerous components, which collectively form a
multitude of intricate gaps and cavity structures. This generates highly disordered turbulent wakes
behind the wheels that exceed the fitting capacity of current neural operator models. Consequently,
the wheel region will be a key focus for future model improvements.
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Figure 10: Display of local key regions of flow field. (a) Demarcation line area between the front
end and the chassis of the car, (b) Transition area between the rear end and the chassis of the car, (c)
Door handle area of the car, (d) Rearview mirror area, (e) Wheel area.
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