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Abstract
Large Multimodal Models (LMMs) have001
demonstrated strong performance on vision-002
language benchmarks, yet current evaluations003
predominantly focus on single-image reason-004
ing. In contrast, real-world scenarios always005
involve understanding sequences of images. A006
typical scenario is comic strips understanding,007
which requires models to perform nuanced vi-008
sual reasoning beyond surface-level recogni-009
tion. To address this gap, we introduce STRIP-010
CIPHER, a benchmark designed to evaluate the011
model ability on understanding implicit narra-012
tives in silent comics. STRIPCIPHER is a high-013
quality, human-annotated dataset featuring fine-014
grained annotations and comprehensive cover-015
age of varying difficulty levels. It comprises016
three tasks: visual narrative comprehension,017
contextual frame prediction, and temporal nar-018
rative reordering. Notably, evaluation results019
on STRIPCIPHER reveals a significant gap be-020
tween current LMMs and human performance—021
e.g., GPT-4o achieves only 23.93% accuracy in022
the reordering task, 56.07% below human lev-023
els. These findings underscore the limitations024
of current LMMs in implicit visual narrative025
understanding and highlight opportunities for026
advancing sequential multimodal reasoning.027

1 Introduction028

In the space between the panels, human029

imagination takes separate images and030

transforms them into a single idea.031

— Scott McCloud (1993)032

Comics are a widely accessible medium, appeal-033

ing to audiences ranging from children to adults.034

Sophisticated comics heavily harness context cues,035

cultural references, and visual metaphors to con-036

vey layered, implicit meaning (Magnussen, 2000;037

Manning, 1998; Pressman, 2014). Generally, chil-038

dren with basic comprehension skills can grasp the039

logical relationships and underlying meanings of040

multi-panel comics.041

Prediction: A. Two cats jumped to the fish 
tank's side while a bear watched.  B... C... D...

 

Reordering:  A. ④②③①      B. ②③④① 
     C. ④③②①       D. ①②③④

Comprehension:  A. The cats are trying to 
lure the fish out to eat them.  B... C... D...

Figure 1: An example of three tasks: prediction, compre-
hension, and reordering from the STRIPCIPHER dataset.
All tasks are presented as multiple-choice questions,
with distractors excluded due to limited context.

LMMs have demonstrated impressive perfor- 042

mance across various visual-language tasks such as 043

image captioning (Liu et al., 2023a; Ghandi et al., 044

2024), text recognition (Liu et al., 2023b), visual 045

question answering (Lu et al., 2023; Zhu et al., 046

2024) and video understanding (Zhang et al., 2023; 047

Maaz et al., 2024). However, the question remains 048

whether these models can truly grasp the implicit 049

narratives embedded in comics—a challenge that 050

goes beyond conventional OCR and text reasoning. 051

Existing comic benchmarks (Huang et al., 2016; 052

Hong et al., 2024; Surikuchi et al., 2024; Vivoli 053

et al., 2024; Sachdeva and Zisserman, 2024) have 054

predominantly focus on instance level tasks like 055

object detection and dialogue generation in text- 056

heavy comics, allowing LMMs to rely on OCR 057

and superficial text processing rather than deep 058

visual comprehension. Recent benchmarks (Yang 059

et al., 2024; Liu et al., 2024b) evaluate single-frame 060
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comics with an emphasis on surface-level interpre-061

tation, neglecting the sequential dependencies of062

multi-frame narratives.063

Motivated by these limitation, we focus on silent064

comic strips—compositions devoid of explicit tex-065

tual dialogue and consisting of 3–8 frames. The066

transition from single images to sequential data067

is not just a logical progression—it mirrors real-068

world perceptual processes and aligns with emerg-069

ing trends in multimodal research. Video-based070

LLMs (Zhang et al., 2025; Maaz et al., 2024; Zhang071

et al., 2024) also preprocess video input by sam-072

pling key frames before performing inference.073

Multi-frame comics occupy a distinctive niche074

between static images and dynamic videos, convey-075

ing complete narratives through a minimal, densely076

packed sequence of frames. Much like keyframes077

in video analysis, these structured sequences create078

a controlled yet challenging environment for evalu-079

ating temporal understanding, causal relationships,080

and contextual reasoning in LMMs.081

We introduce STRIPCIPHER, a novel benchmark082

designed to assess the implicit temporal-visual rea-083

soning ability of LMMs. STRIPCIPHER consists of084

three challenging tasks: (1) contextual frame pre-085

diction task to eval visual contextual reasoning, (2)086

visual narrative comprehension task to infer overall087

implicit narrative, moving beyond local cues (3)088

temporal frames reordering, as shown in Figure 1.089

We utilized GPT-4o to preprocessing and gener-090

ate answers and distractors, then employed human091

annotators double-verify and remove low-quality092

entries, resulting in 2,170 samples. The dataset093

includes classic comics like "Peanuts" as well as094

recent published "Buni", ensuring diversity.095

Our comprehensive evaluation of 16 state-of-the-096

art LMMs on STRIPCIPHER reveals a substantial097

performance gap compared to human capabilities098

in sequential image comprehension, especially in099

the frame reordering task. Most notably, GPT-4o100

achieves only 23.93% accuracy in the reordering101

subtask and trails human performance by 30% in vi-102

sual narrative comprehension. Further quantitative103

analysis identifies several key factors affecting the104

sequential understanding performance of LMMs,105

highlighting the fundamental challenges for future106

LMM development.107

Our key contributions are as follows: We intro-108

duce STRIPCIPHER, the first benchmark that eval-109

uates LMMs on implicit visual narrative reasoning110

with silent comics. We propose three novel tasks111

(narrative comprehension, frame prediction, and112

Benchmark Task Seq. #Fra #Seq #Cat

HCD Funniness Classification ✗ 50 0 1
MTSD Sarcasm Classification ✗ 9,638 0 3
HUB Matching, Ranking, Explanation ✗ 651 0 1
MORE Sarcasm Explanation ✗ 3,510 0 1
DEEPEVAL Description, Title, Deep Semantics ✗ 1,001 0 6
AutoEval-Video Open-Ended Question Answering ✓ 1,033 327 12
Mementos Description Generation ✓ 8,124 699 1

STRIPCIPHER Prediction, Comprehension, Reorder ✓ 3,660 896 6

Table 1: Features and statistics of STRIPCIPHER and re-
lated datasets. Seq. indicates whether image sequences
are included. #Fra denotes the number of frames (sub-
images), #Seq is the number of image sequences, and
#Cat is the number of image categories.

reordering) that challenge existing LMMs beyond 113

single-frame comic understanding. We comprehen- 114

sive evaluat 16 state-of-the-art LMMs, revealing 115

substantial gaps between AI and human capabili- 116

ties. 117

2 Related Work 118

Large Multimodal Models LLMs have demon- 119

strated exceptional performance in various nat- 120

ural language understanding and generation 121

tasks (Dubey et al., 2024; Liu et al., 2024a; Ray, 122

2023). Building on the scaling laws of LLMs, the 123

next generation of LMMs has emerged, utilizing 124

LLMs as their backbone. Several closed-source 125

LMMs (Reid et al., 2024; Driess et al., 2023; Yang 126

et al., 2023), including GPT-4o (Hurst et al., 2024), 127

have shown remarkable capabilities in handling 128

complex multimodal inputs (Fu et al., 2023; Li 129

et al., 2023). Beyond single-image processing, 130

models such as QwenVL2.5 (Team, 2025) and 131

MiniCPM-o2.6 (Yao et al., 2024) can handle multi- 132

ple images, while video-based LLMs (Zhang et al., 133

2025; Maaz et al., 2024; Zhang et al., 2024) prepro- 134

cess video content by sampling key frames before 135

inference. Additionally, state-of-the-art models 136

like Gemini (Reid et al., 2024) and frameworks 137

incorporating interleaved Chain-of-Thought (Gao 138

et al., 2024) explicitly account for the sequential 139

order of both text and images in their reasoning 140

processes. Our approach extends from single to 141

sequential images, mirroring real-world perceptual 142

processes and aligning with emerging trends in 143

multimodal research. 144

Visual Implicit Meanings Understanding Be- 145

yond studies on surface-level image understand- 146

ing (Antol et al., 2015; Wang et al., 2022; Dong 147

et al., 2022; Xia et al., 2023), recent works have 148

shown that LMMs struggle implicit meaning un- 149

derstanding (Desai et al., 2022; Abu Farha et al., 150
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Stage2: Data Annotation

Stage1: Image Collection

Frame Split 

prompts

option pool

Selection

Answer: The cat encourage the fish...

Strong Distractor: The cat want to play...

Strong Distractor: The cat confused... 

Strong Distractor: The bear want to join...

Refine

Answer: The cat is watching the fish...

Strong Distractor: The cat want to play...

Strong Distractor: The cat confused... 

Strong Distractor: The bear want to join...

Stage3: Cross-Examination

Task: Sequential ComprehensionDistractor Selection

Quality Examination

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Discard

Save

Figure 2: Schematic diagram of STRIPCIPHER dataset construction process including three stages: Image Collection,
Data Annotation and Cross Check. Only comprehension task is displayed, as prediction follows the same process.

2022; Hu et al., 2024). A recent study (Yang et al.,151

2024) further highlights a significant gap between152

AI and human comprehension of implicit meanings153

in images. However, these works are limited to154

single-image analysis. Multiple sequential images,155

arranged temporally, provide richer contextual in-156

formation and serve as a bridge between static im-157

ages and videos. Existing studies on sequential158

images have only focused on surface-level under-159

standing (Chen et al., 2024a; Wang et al., 2024c).160

A detailed comparison with prior work is presented161

in Table 1, and the detailed description of cate-162

gories and distributions covered by our method are163

illustrated in Appendix D.164

3 Dataset and Task Overview165

To systematically evaluate the narrative compre-166

hension capabilities of LMMs on silent comics, we167

design a suite of tasks arranged in order of increas-168

ing complexity. Each task is crafted to probe a169

distinct facet of visual and sequential reasoning:170

• Contextual Frame Prediction: Assesses the171

model reasoning ability to predict missing172

frames in image sequences based contextual173

cues. Successful performance requires a keen174

understanding of local visual continuity and175

narrative coherence.176

• Visual Narrative Comprehension: Requires177

the model to infer the overall implicit narrative178

or “punchline” from multiple frames, moving179

beyond local cues.180

• Temporal narrative Reordering: Evaluates181

whether models correctly infer and restore the182

chronological order of image sequences based183

causal temporal relationship. Demands a com- 184

plete understanding of sequential logic and 185

causal relationships, making it the most chal- 186

lenging of the three. 187

The instructions for three subtasks are presented 188

in Table 2. These subtasks provide a rigorous 189

and multifaceted assessment of LMMs, offering 190

insights into their strengths and limitations in se- 191

quential image understanding. In the following, we 192

may use their full names or refer to them as predic- 193

tion, comprehension, and reordering for simplicity. 194

Prediction: Based on the overall story, what is hap-
pening in the blank frame (second-to-last)?

Comprehension: What is happening in this comic
strip? What is the implicit meaning? Based on your
understanding, answer the question.

Reordering: The sequence of the comic strips pro-
vided below is incorrect. Your task is to find out the
correct order of the comic strips based on the storyline
and temporal logical relationship. Number each comic
strip in the order they should appear, starting from 1.

Table 2: Instruction for each tasks.

Task #Examples Length #Frames #Type

Prediction 600 19.07 2642 6
Comprehension 680 30.53 2762 6

Reordering 890 4.08 3635 6

Table 3: Statistics of STRIPCIPHER. #Nums refers to
the sum of samples. Length refers to the average of
options. #Frames refers to the sum of frames. #Type
refers to the sum of categories of images.

Detailed statistics is displayed on Table 3. Over- 195

all, our proposed STRIPCIPHER includes 896 im- 196

age sequences, with an average frame length of 197

4.08 of each sequence. The number of frames 198
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ranges from 3 to 8. Each task is designed in199

the form of multiple-choice questions, except for200

the reorder task, which also includes a question-201

answering format. Since its options are simple and202

well-defined, accuracy can be directly computed.203

In our tasks, the input format uniformly consists of204

images paired with textual prompts. Specifically,205

the comprehension task utilizes the whole images206

without split, the reordering task takes shuffled im-207

age sequence as input, and the frame prediction208

task involves masking second-to-last frame within209

the image sequence. For the frame prediction task,210

we select the second-to-last frame, as it typically211

serves as a bridge between the preceding frames212

and the final frame. The start and end frames are213

generally more challenging to predict.214

4 Dataset Construction215

We construct our STRIPCIPHER dataset in a multi-216

step crowd-sourcing pipeline, including 1) anno-217

tator training, 2) data annotation, and 3) cross-218

check examination. An overall demonstration of219

our dataset construction pipeline is illustrated in220

Figure 2.221

4.1 Image Source222

We use silent comic strips, comic with panels and223

no dialogue, as our primary data source. As a dis-224

tinct art form, comic strips often encapsulate com-225

plex narratives within concise visual sequences,226

addressing deeper themes such as social satire, hu-227

mor, and inspiration. These characteristics make228

comic strips a particularly challenging medium229

for evaluating ability of LMMs to understand vi-230

sual sequences. The dataset comprises samples231

from well-known comics, such as Father and Son232

and Peanuts, along with web-scraped images from233

GoComics 1, Google, and Facebook 2. Initially, we234

collected 1, 260 images and then refined the dataset235

through a filtering process. We conducted a thor-236

ough manual inspection to eliminate unclear, toxic,237

overly simplistic images, along withmulti-panel238

comics lacking a clear temporal sequence. More-239

over, comics with dialogue will also be removed to240

prevent the model from using OCR to understand241

the meaning of the comics through text rather than242

through images. As a result, the final dataset was243

reduced to 896 images.244

1https://www.gocomics.com/
2https://www.facebook.com/

4.2 Phase 1: Data Annotation. 245

Annotator Training We posted job descriptions 246

on online forums and received over 50 applications 247

from candidates with at least a Bachelor’s degree. 248

To ensure dataset quality, we provided training ses- 249

sions that included online pre-annotation instruc- 250

tions and a qualification test to assess candidates’ 251

performance. Only those scoring above 95% were 252

selected. candidates were assigned to one of two 253

groups: annotators or inspectors. Ultimately, we 254

hired 13 annotators and 7 inspectors for our data an- 255

notation process. To optimize efficiency and reduce 256

costs, we implement a semi-automated pipeline 257

for STRIPCIPHER annotation, leveraging GPT-4o3. 258

Specifically, our data annotation process consists 259

of two substeps: answer creation and distractor 260

generation. 261

Answer Creation. The bottom panel of Figure 2 262

illustrates the process of our answer creation phase. 263

Notably, only the comprehension task and frame 264

prediction task need option annotation. The re- 265

ordering task only necessitates using a program 266

to randomly shuffle the frame order as the an- 267

swer order, without the need for manual selection 268

of the correct answer. We adopt an AI-assisted 269

annotation approach in which human annotators 270

refine pre-generated answers instead of creating 271

them from scratch. Initially, we leverage GPT-4o, 272

GPT-4o-Mini (Hurst et al., 2024) and Gemini 273

(Reid et al., 2024) to generate diverse candidate 274

answers. Human annotators then evaluate the im- 275

age sequence and candidate answers, selecting the 276

most appropriate ground truth. If none of the candi- 277

date answers is suitable, annotators are instructed 278

to either refine a specific answer or create a new 279

ground truth from scratch, which is about 28%. 280

Distractor Generation. We use candidates with 281

plausible hallucinations from the previous sub-step 282

as strong distractors. To ensure diversity in the 283

multiple-choice options, we also prompt GPT-4o, 284

GPT-4o-mini (Hurst et al., 2024) to generate in- 285

tentionally incorrect responses as weak distractors. 286

Typically, the responses of GPT-4o-mini are not 287

very accurate and are mostly used as distractors. 288

Annotators are instructed to evaluate the quality of 289

these distractors and select top-3 options, refining 290

them if necessary. Finally, each ground truth is 291

paired with three high-quality distractors for evalu- 292

3We use the gpt-4o-2024-11-20 version for the data an-
notation process and subsequent evaluations in this work.
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ation.293

4.3 Phase 2: Cross-Check Examination294

We implement a cross-check examination mecha-295

nism to ensure rigorous screening of high-quality296

annotations. During the data annotation process,297

hired inspectors review the annotated data and cor-298

responding image sequences. If they encounter299

low-quality annotations, they have the option to300

reject them. Each annotation is reviewed by two301

inspectors. If both inspectors reject the annotation,302

it is discarded, and the image is returned to the303

dataset for re-annotation. If an image sequence is304

rejected in two rounds of annotation, it suggests305

that this sample is not suitable for the current task306

(e.g., the meaning of the sample is unclear), and307

the image is subsequently removed from the task.308

After annotation, both advanced annotators and309

inspectors, acting as final examiners, review the310

annotations to ensure they meet the required stan-311

dards. Each annotation undergoes review by three312

examiners, who vote on whether to accept the an-313

notated sample. Only the samples that receive a314

majority vote are approved. To ensure the quality315

of the examiners’ work, we randomly sample 10%316

of the annotations for verification.317

4.4 Data Composition318

It is notably that the reordering task does not re-319

quire human annotation, as described in the previ-320

ous process. For this task, we select suitable image321

sequences based on the criterion that the correct322

ordering must be unique. To ensure this, we con-323

duct a manual review to verify that each sequence324

follows a logically unambiguous order. A script is325

then run to perform the initial splitting of panels326

within specific comics, followed by a random shuf-327

fling of these panels. Human annotators are tasked328

with verifying the format and quality of the frames329

to ensure they meet the required standards. These330

processed image sequences serve as the evaluation331

data for the reordering task.332

The final version of our 32-day annotated STRIP-333

CIPHER contains 896 items (see Table 2), encom-334

passing three tasks: visual narrative comprehen-335

sion, contextual frame prediction, and temporal336

narrative reordering. In each of these tasks, each337

sample consists of an image sequence paired with a338

multiple-choice question offering four options. The339

evaluated LMMs are required to select the option340

they deem most appropriate from the four. More341

information and examples of STRIPCIPHER can be342

found in Appendix F. 343

5 Experiments 344

5.1 Models 345

To comprehensively evaluate on LMMs, we con- 346

ducted zero-shot inference across both commer- 347

cial and open-source models. Our evaluation 348

suite includes leading commercial models GPT- 349

4o (Hurst et al., 2024) and Gemini1.5-Pro (Anil 350

et al., 2023) alongside state-of-the-art open-source 351

alternatives of varying scales: Qwen2.5-VL (Team, 352

2025), Qwen2-VL (Wang et al., 2024b), LLaVA- 353

v1.6 (Liu et al., 2023a), CogVLM (Wang et al., 354

2023), MiniCPM-o-2.6 (Yao et al., 2024), mPlug- 355

Owl2 (Ye et al., 2023), InternVL2v5 (Chen et al., 356

2024b),LLaVA-NEXT-Video (Zhang et al., 2024) 357

and Cambrian (Tong et al., 2024). Besides, Janus- 358

Pro (Chen et al., 2025), which unifies multimodal 359

understanding and generation, is included to test 360

the abilities between Unified Model and Vision 361

Language Model. This diverse selection enables 362

us to analyze how model scale, architecture, and 363

training approaches influence comic comprehen- 364

sive capabilities. 365

5.2 Experimental Details 366

The task prompts is displayed in Table 2. For 367

visual narrative comprehension task, model is pro- 368

vided with the whole image. But for next-frame 369

prediction and multi-frame sequence reordering 370

task, LMMs infer with image sequences. The 371

hyper-parameters for each LMMs in the experi- 372

ments including possible settings are detailed in 373

Appendix C. Furthermore, to assess human capa- 374

bilities in these tasks, we randomly select 100 ques- 375

tions from the dataset for each task and instruct 376

human evaluators to answer. This allows us to 377

benchmark the performance of human participants 378

against our models, offering a thorough compari- 379

son of both human and LMMs proficiency in these 380

specific tasks. We present sample outputs of three 381

tasks generated by LMMs in Figure 3 382

5.3 Main Results 383

Our comprehensive evaluation reveals that while 384

LMMs show promising capabilities in comprehen- 385

sion and prediction tasks, they significantly under- 386

performed in sequence reordering tasks. More- 387

over, there remains a substantial performance gap 388

between current models and human performance 389
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Models Backbone #Params I-Video Prediction Comprehension R-C R-G AVG

Human 82.00 80.00 86.00 80.00 82.00
Closed-Model

GPT-4o-mini (Hurst et al., 2024) - - 56.33 53.23 26.07 8.45 36.02
Gemini1.5-Pro (Reid et al., 2024) - - 67.83 49.56 25.51 32.02 43.73
GPT-4o (Hurst et al., 2024) - - 69.95 61.60 25.17 23.93 45.16

Open-Source
Janus-Pro (Chen et al., 2025) DeepSeek-LLM-7b-base 7B ✗ 27.50 27.50 26.07 * 20.27
mPlug-Owl2 (Ye et al., 2023) LLaMA2 8B ✗ 31.17 30.74 25.06 0.56 21.88
LLaVA-v1.6 (Liu et al., 2023a) Vicuna-v1.5 7B ✗ 43.50 34.41 26.29 3.37 26.89
LLaVA-NeXT-Video (Zhang et al., 2024) Vicuna-v1.5 7B ✓ 44.50 45.74 23.71 * 28.49
CogVLM (Wang et al., 2023) Vicuna-v1.5 17B ✗ 56.00 34.26 24.83 * 28.77
LLaVA-v1.6 (Liu et al., 2023a) Vicuna-v1.5 13B ✗ 46.50 46.03 27.98 2.58 30.77
LLaVA-v1.6 (Liu et al., 2023a) Vicuna-v1.5 34B ✗ 50.83 52.94 25.62 2.13 32.88
Cambrian (Tong et al., 2024) Vicuna-v1.5 13B ✗ 55.00 45.59 26.85 4.94 33.10
Qwen2.5VL (Team, 2025) Qwen2.5 3B ✓ 58.83 50.59 27.75 1.91 34.77
InternVL2v5 (Chen et al., 2024b) Intern 26B ✓ 65.17 60.92 24.61 2.58 38.32
MiniCPM-o 2.6 (Yao et al., 2024) Qwen2.5 7B ✓ 65.83 56.18 26.85 5.51 38.59
Qwen2.5VL (Team, 2025) Qwen2.5 7B ✓ 64.00 56.03 29.21 11.01 40.06
Qwen2VL (Wang et al., 2024a) Qwen2 7B ✓ 63.00 58.53 31.91 9.44 40.72

Table 4: Comparison of model performance across various architectures and scales, sorted by accuracy. I-Video
indicates support for video input. R-C and R-G represent the Reordering task with choice and generation formats,
respectively. Scores are reported as percentages (%), with * denoting a model failure on the corresponding task. AVG
is the average of all four scores, including failures. Bold values highlight the highest scores among closed-source
and open-source models.

across all tasks. Unified Model underperformed390

than Vision Language Model.391

Contextual Frame Prediction The frame pre-392

diction task appears to be the most tractable among393

the three tasks. GPT-4o achieves the highest score394

of 69.95%, followed closely by Qwen2-VL at395

64.00%.This demonstrates that the performance396

gap between closed and open-source models is rel-397

atively small for this task. However, Janus-Pro398

perform notably below expectations (27.50%), pos-399

sibly due to its unified model architectural.400

Visual Narrative Comprehension For visual401

narrative comprehension, we observe a similar pat-402

tern but with generally lower scores. GPT-4o leads403

with 61.60%, while other models show varying404

degrees of capability.405

Temporal Narrative Reordering The frame re-406

ordering task proves to be the most challenging,407

with all models performing significantly below hu-408

man capability. Even the best-performing mod-409

els struggle to exceed 30% accuracy, with many410

achieving scores around 25−26%, which is slightly411

higher than random selection. Notably, several412

models (marked with *) are unable to perform413

this task due to their architectural limitations in414

processing multiple images simultaneously. For415

these models, we attempted to accommodate their416

single-image constraint by concatenating multiple417

frames horizontally into a single image, with white418

margins serving as frame boundaries. However, 419

this workaround appears to be suboptimal, as these 420

models likely struggle to properly distinguish indi- 421

vidual frame boundaries and maintain the semantic 422

independence of each frame, ultimately leading to 423

their poor performance on the reordering task. 424

The poor performance on reordering task sug- 425

gests that current LMMs, regardless of their scale 426

or architecture, have not yet developed robust ca- 427

pabilities for understanding temporal relationships 428

and sequential logic in visual narratives. 429

6 Analysis 430

Our analysis addresses the following questions: 431

Does fine-tuning with reorder task help? Yes, 432

it does. We fine-tune Qwen2-VL using 3,160 sam- 433

ples for one epoch. This not only significantly 434

improves performance on the reordering VQA task 435

but also enhances comprehension tasks. To con- 436

struct the training dataset, we applied data augmen- 437

tation to 790 images using the reorder task. Specif- 438

ically, we randomly shuffled the sequence of im- 439

ages four times, generating a total of approximately 440

3,160 distinct samples. For evaluation on the re- 441

order task, we used only the remaining 100 samples. 442

For the comprehension task, we conducted a full 443

test set evaluation, as the training data provided 444

only images without any analytical content. Mean- 445

while, we excluded the frame prediction task from 446

testing due to potential data leakage. The experi- 447
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Choices:
A.  The father marked son's height on a tree, but a year 
later, the son appeared shorter than the mark. Both 
looked puzzled, forgetting that trees grow too, and faster 
than children.
B. The son's growth rate slowed unexpectedly, leaving 
both the father and son to contemplate whether external 
factors might have stunted his physical development 
compared to previous expectations.   C...  D…

Task1: Comprehension

Answer

Choices:
A. The rabbit, concerned about its weight, approaches 
the fridge while imagining the scale and questioning its 
eating habits. 
B. The rabbit is confused about the scale's reading and 
decides to open the fridge to check if it contains 
something other than carrots.  C... D...

Task2: Frame Prediction

Choices: A.③②①④ B.④②①③ C.①④③② D.①③②④ 

Choices: A.②③④① B.④③①② C.③①②④ D.①③②④ 

C A B D
①②④③ ①②④③ ①②③④ ②①④③

Choice A B A D
①②③④ ③④①② ①②③④ ②①③④Gen.

Chioce

Gen.
A                      A                           B                         A

Answer A                       A                        B                          B

Task3: Reordering

Figure 3: Sample outputs of our three tasks generated by different vision language models, along with gold truth.
We highlight errors in distractors.

mental results are presented in the table 5. Over-448

all, our reordering data is useful for fine-tuning,449

as it can enhance the LMMs to reason on sequen-450

tial images. However, the ultimate performance451

still depends on the base capability of the model.452

According to the table, Qwen2.5-VL significantly453

benefits from fine-tuning, enhancing both reorder-454

ing and comprehension tasks. Improvements in455

generation tasks for reordering are greater than456

in choice tasks, likely because generation instruc-457

tions are more challenging and unfamiliar, while458

choice tasks allow educated guesses from provided459

options. Limited training samples also constrain460

improvements in choice tasks. In contrast, LLaVA461

only improves in the reorder-choice task after train-462

ing.463

Tasks Comprehension Reordering-G Reordering-C

Qwen2-VL 58.53 6.00 31.00
+finetune 62.94 31.00 38.00

LLaVA-1.6 34.41 3.00 26.00
+finetune 33.82 2.00 32.00

Table 5: Performance on Qwen2-VL-7B and LLaVA-
1.6-7B finetuned with reordering task data. Reordering-
C refers to the Reordering-choice. Reordering-G refers
to the Reordering-generation

Does GPT-4o understand sequence images as464

well as humans? While GPT-4o achieves the465

highest performance among all tested models, there466

remains a substantial gap between its capabili-467

ties and human performance, particularly in novel468

tasks like frame reordering. Through our prelim-469

inary data annotation experiments, we observed470

that while GPT-4o can comprehend basic comic471

content and provide interpretations, it frequently 472

generates hallucinated content and struggles with 473

comics that depict unconventional or imaginative 474

scenarios rarely encountered in real life. 475

In the visual narrative comprehension and next- 476

frame prediction tasks, the multiple-choice format 477

allows models to leverage similarity matching be- 478

tween options. Our investigation revealed that 479

model performance is heavily influenced by the 480

quality of distractor options. In initial experiments 481

with weak distractors (generated using GPT-4o 482

with instructions to provide distractors with hal- 483

lucinations, the prompt is followed HalluEval), the 484

model achieved accuracy rates up to 90%. Upon 485

analysis, we found these initial distractors were too 486

obviously incorrect or irrelevant to the comic con- 487

tent, making the selection task trivial. To address 488

this limitation, we carefully curated a new set of 489

challenging distractors. With these enhanced dis- 490

tractors, performance of GPT-4o decreased signif- 491

icantly to more realistic levels (61.60% for under- 492

standing and 69.95% for prediction), better reflect- 493

ing the true challenges in comic comprehension. 494

The scores obtained from multiple-choice ques- 495

tions with semantically transparent options tend to 496

be inflated. In subsequent reordering tasks, where 497

options lack explicit semantic meanings, coupled 498

with open-ended questions, the scores provided a 499

more authentic assessment of the LMMs. 500

Does input format of images influence perfor- 501

mance? Considering the distinct computational 502

pathways that LMMs employ in processing indi- 503

vidual versus multiple images, we designed follow- 504
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ing experiments to measure the differential impact505

of varied input formats using Qwen2.5VL as our506

test case. We compared three input formats: (1)507

whole image - the entire comic strip as a single im-508

age, (2) sequential frames - individually separated509

frames input in order, and (3) shuffled sequence -510

separated frames input in random order. Table 6511

shows surprisingly consistent performance across512

all three formats (56.03%, 54.56%, and 57.65%513

respectively).514

This consistency suggests that while separated515

frames might theoretically help models extract516

clearer information from each panel and avoid vi-517

sual confusion from complex layouts, the current518

video-like processing mechanism used by LMMs519

for multiple images might not fully capitalize on520

these advantages. The similar performance with521

shuffled sequences further indicates that models522

rely more on individual frame content rather than523

sequential relationships for comprehension tasks.524

Input GPT-4o-mini Qwen2.5-VL

Whole Image 53.23 56.03
Image Sequence 51.03 54.56

Shuffled Sequence 49.56 57.65

Table 6: Performance with different input format for
understanding task.

Does implicit meaning help reordering task?525

To investigate whether poor reordering perfor-526

mance stems from inadequate semantic understand-527

ing, we enhanced the reordering task by providing528

explicit semantic annotations along with shuffled529

images4. As shown in Table 7, this additional se-530

mantic information only marginally improved per-531

formance (from 30.01% to 32.54%). This modest532

improvement suggests that the bottleneck in re-533

ordering tasks lies not in semantic understanding534

but in the fundamental capability to reason about535

temporal and logical sequences in visual narratives.536

Input GPT-4o-mini Qwen2.5-VL

Shuffled image 26.07 30.01
+Meaning 28.40 32.54

Table 7: Performance with enhanced data (correct an-
swer for comprehension task) for reordering task.

How does model size affect? In this section, we537

will discuss the relationship between model param-538

eters size and reasoning performance for tasks due539

4The prompt is displayed in Figure 10

Figure 4: Comparison of the accuracy results between
Qwen2.5-3B vs Qwen2.5-7B and LLaVA-1.6-7B vs
LLaVA-1.6-13B vs LLaVA-1.6-34B

to the scaling law. We examine on LLaVA and 540

Qwen2.5VL, from 3B scale to 34B scale. There 541

is a clear scaling effect across model sizes, as 542

demonstrated by LLaVA1.5’s performance improv- 543

ing from 34.41% (7B) to 46.03% (13B) to 52.94% 544

(34B). This suggests that model scale plays a cru- 545

cial role in comprehending implicit meanings in 546

visual narratives. Figure 4 provide a visual repre- 547

sentation of the performance trend for five models. 548

How does each task influence others Table 5 549

demonstrates that fine-tuning with reordering data 550

enhances comprehension performance, likely be- 551

cause it compels the model to capture subtle narra- 552

tive transitions. Table 6 confirms the importance 553

of correct temporal order, as shuffling image se- 554

quences significantly degrades comprehension per- 555

formance. Table 7 reveals that models with robust 556

comprehension skills tend to reorder frames more 557

accurately, highlighting the synergistic relationship 558

between narrative understanding and reordering 559

capability. 560

We also analyzed additional factors, including 561

comic category and frame count effects on model 562

inference performance. These detailed analyses are 563

provided in Appendix D due to space limitations. 564

7 Conclusion 565

We present STRIPCIPHER, a comprehensive bench- 566

mark for evaluating Large Multimodal Models’ 567

capabilities in visual comic sequence reasoning. 568

Our benchmark comprises meticulously curated 569

and human-AI annotated tasks spanning visual nar- 570

rative comprehension, next-frame prediction, and 571

multi-frame sequence reordering. Through exten- 572

sive evaluations of state-of-the-art LMMs, we iden- 573

tify significant performance gaps between AI sys- 574

tems and human capabilities in comic strip under- 575

standing. These findings underscore the consider- 576

able challenges that remain in developing AI sys- 577

tems capable of deep visual semantic understand- 578

ing comparable to human cognition. 579
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Limitations580

Limited Availability of Comic Strips: Our dataset581

contains a relatively small number of samples due582

to the scarcity of standalone short-story comic583

strips available online. Most comics are either584

serialized narratives or dialog-driven, making it585

challenging to collect a diverse set of independent586

stories.587

Limited Training Data for Fine-Tuning: Our588

findings indicate that fine-tuning significantly en-589

hances model performance on the reordering task.590

However, the limited availability of training data591

constrains the model’s ability to fully develop tem-592

poral reasoning skills. Expanding the dataset or593

incorporating alternative sources, such as video594

sequences, could further improve performance.595

Ethics Statement596

The datasets used in our experiment are publicly597

released and labeled through interaction with hu-598

mans in English. In this process, user privacy is599

protected, and no personal information is contained600

in the dataset. The scientific artifacts that we used601

are available for research with permissive licenses.602

And the use of these artifacts in this paper is consis-603

tent with their intended use. Therefore, we believe604

that our research work meets the ethics of ACL.605
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Appendix879

A License and Copyright.880

We used original web links to comic images with-881

out infringing on their copyright. This work is882

licensed under a CC BY-NC license. We will open-883

source all related code for processing image se-884

quences and frames to facilitate the reproducibility885

of our evaluated image sequences. All annotators886

participated voluntarily in the annotation process887

and were provided fair compensation.888

B Model889

Our evaluation suite includes leading commer-890

cial models GPT-4o (Hurst et al., 2024) and891

Gemini1.5-Pro (Anil et al., 2023) alongside892

state-of-the-art open-source alternatives of vary-893

ing scales: Qwen2.5-VL (Team, 2025), Qwen2-894

VL (Wang et al., 2024b), LLaVA-v1.6 (Liu et al.,895

2023a), CogVLM (Wang et al., 2023), MiniCPM-o896

2.6 (Yao et al., 2024), mPlug-Owl2 (Ye et al., 2023),897

InternVL2v5 (Chen et al., 2024b),LLaVA-NEXT-898

Video (Zhang et al., 2024) and Cambrian (Tong899

et al., 2024). Besides, Janus-Pro (Chen et al., 2025),900

which unifies multimodal understanding and gen-901

eration, is included to test the abilities between902

Unified Model and Vision Language Model.903

C Model Hyper-parameter Details904

We use the default hyper-parameter values of the905

models. In the LLaVa-1.5-7B and LLaVa-1.5-13B,906

the temperature is set to 0.2. For MiniGPT-4, the907

temperature is set to 1.0, and num_beams is also908

set to 1.0. The temperature for mPlug-Owl-2 is set909

to 0.7. For CogVLM, the temperature is set to 0.4,910

top_p is set to 0.8, and top_k is set to 1.0.911

In the LLaVa-1.6-7B, LLaVa-1.6-13B and912

LLaVa-1.6-34B, the temperature is set to 0.2. In913

the Qwen2-VL-7B, Qwen2.5-VL-3B and Qwen2.5-914

VL-7B, the temperature is set to 0.01, top_p is set915

to 0.001, and top_k is set to 1. For CogVLM-17B,916

the temperature is set to 0.4, top_p is set to 0.8, and917

top_k is set to 1.0. For InternVL2-26B, do_sample918

is set to False. For Cambrian-13B, the temperature919

is set to 0.2.920

D Analysis921

Where do LMMs fail? We present sample out-922

puts of three tasks generated by vision language923

models (VLMs) in Figure 3. These images are924

easy for human but hard for VLMs. VLMs can925

understand one comic strip but they can still make 926

mistakes with reordering task. 927

Frame counts We static the model performance 928

on comprehension task on different frame numbers, 929

as shown in table 8. Our results indicate that mod- 930

els perform better on both four-panel and six-panel 931

comics. This performance boost is likely due to 932

the uniform dimensions and layouts, which facil- 933

itate the reliable identification and sequencing of 934

sub-images. 935

Model 3 Frames 4 Frames 5 Frames 6 Frames
Qwen2VL-7B 57.06 60.51 53.09 55.26
Qwen2.5VL-7B 52.76 58.99 48.15 63.16
LLaVAv1.6-4B 52.76 53.16 50.62 57.89
LLaVAv1.6-13B 42.94 46.84 48.15 47.37
LLaVAv1.6-7B 34.97 32.41 41.98 39.47
CogVLM-7B 33.74 33.92 35.8 36.84
AVG 45.71 47.64 46.30 50.00

Table 8: Comprehension task performance comparision
of different LLMs on different frames numbers.

Category We evaluated the performance of 936

LLMs on comprehension tasks across 6 categories 937

of comic strip. 938

Consistency Across Models: Models such as 939

Gemini1.5-Pro, Qwen2.5VL-7B, and Qwen2VL- 940

7B demonstrate more balanced performance across 941

various categories compared to the higher variabil- 942

ity observed with LLaVA-34B, highlighting the 943

robustness of their training strategies. 944

Humorous

Touching
Critical

Satirical

Inspiring
Philosophical

Figure 5: The distribution of six categories of STRIPCI-
PHER.

Error Analysis During the GPT-4o annotation 945

stage of dataset construction, we also observed in- 946

stances of hallucinated content. For example, mod- 947

els sometimes generated actions that did not occur 948

or confused relationships between characters (e.g., 949
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satirical

inspiring
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45
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Performance Comparison of Different Models

30
50

70

36
52

69
32

55

78

34
48

61

41
72

104

Cambrian_13B
Internvl_26B

LLaVA_34B
Qwen2.5_3B

LLaVA_13B
LLaVA_7B

Qwen2_7B
Qwen2.5vl_7B

MiniCPM_o2.6
Gemini1.5-Pro

Figure 6: Comprehension task performance compari-
sion of different LLMs on different categories.

misidentifying kinship roles or misinterpreting nar-950

rative cues). In some cases, comics require external951

common sense for accurate interpretation. An ex-952

ample of this is analyzing the meaning of the scene953

in which "eight planets are celebrating around the954

Sun, while one small planet remains isolated" after955

Pluto was removed from the list of the nine major956

planets in the solar system in 2006.957

E Examples for comic task comparesion958

Here is an example 7 of our dataset and CoMix959

dataset for comparison.960

F Examples on data construction961

The following listed prompts are used to construct962

data. By instructing to different LMMs, we can963

obtain option candidate pool. Here is a detailed964

example at Figure 8.965
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Instance-level V.S. Narrative-level

Figure 7: Example for our task and traditional task.

Refine answer： …… As the wave approaches, the dog confronts and repels it, 
safeguarding the sandcastle. The reversal of strength through exaggeration 
creates an unconventional ending, conveying a spirit of defiance against life's 
challenges.

Select Top-4：ABDE  Answer : D

D. …It reflects a carefree 
attitude and the joy of 
simple pleasures.

E. …showing acceptance 
of nature's course…

F. … It emphasizes the 
theme of distraction and 
the unpredictability of 
nature.

A. …illustrating that 
physical limitations do not 
define one's courage.

B. The comic portrays 
resilience and 
determination,…

C. … physical limitations 
do not define one's 
courage or spirit.

Option Pool

Human  Selecting:

LMM Generating

Prompt1

Prompt3

Prompt2

Done!Option1,Option2
Option3,Answer

Figure 8: An detailed example of data construction.
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Category Definition

Satirical The comic uses irony, exaggeration, or ridicule to criticize social, political, or cul-
tural issues. It often highlights contradictions, hypocrisy, or absurdity in a way that
provokes thought or debate. The humor may be sharp or biting but serves a critical
purpose.

Inspiring The comic presents a positive or uplifting message, often encouraging personal
growth, motivation, or perseverance. It may depict acts of kindness, success against
adversity, or wisdom that encourages the reader to strive for betterment.

Touching The comic evokes emotions such as empathy, nostalgia, or affection. It may explore
themes of love, friendship, loss, or family bonds, aiming to create a sentimental or
heartfelt response from the audience.

Philosophical The comic explores deep, abstract, or existential ideas about life, morality, meaning,
or human nature. It prompts the reader to reflect on profound questions, often using
metaphors or thought-provoking dialogue rather than direct humor or emotion.

Critical The comic highlights flaws or problems in society, institutions, or human behav-
ior with a serious or analytical tone. Unlike satire, which uses humor as a tool for
critique, a critical comic may adopt a more straightforward, serious, or thought-
provoking approach to expose issues and encourage awareness.

Humorous The comic’s primary goal is to entertain and amuse the audience. It relies on light-
hearted jokes, wordplay, or visual gags without necessarily conveying a deeper
message or critique. The tone is playful, aiming for laughter rather than serious re-
flection.

Table 9: The types and definition of the categories in STRIPCIPHER.
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Prompt1 for prediction task:
Predict what happened in the blank panel? Output in 35 words.

Prompt1 for prediction task:
You are now a mature hallucination generator. Please generate one strong distractor option for
the following question. You can use any method you have learned that is misleading for the given
question.
Question: Predict what happened in the blank panel. Please output with 35 words without any
additional text or explanation.

Prompt1 for comprehension task:
What happened in comic strip? Conclude the whole story, then carefully analyze the implicit
meaning of comic. Ouput in 35 words.

Prompt2 for comprehension task:
You are now a mature hallucination generator. Please generate one strong distractor option for
the following question. You can use any method you have learned that is misleading for the given
question.

Figure 9: Instruction for annotating dataset with LLM.

Prompt for analysis experiment:
The sequence of the comic strips provided below is incorrect. Your task is to determine the
correct order based on the storyline, temporal relationships, and common-sense logic. **Here is
the depiction of the comic strips: ’qa.get(’understanding’)’**
Number each comic strip in the order they should appear, starting from 1.
[Options]
Please output the correct option ID without any additional text or explanation

Figure 10: Instruction for providing implicit meaning on reordering task.
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Prompt3 for comprehension task:
Task Overview:
Strive to understand this story and analyze its implicit meaning, then complete multi-choice
question for test. You should act in two roles to complete tasks.
Image Context:
Pic1: The first picture shows the complete comic strip. Read it from left to right, top to
bottom, to understand the full narrative arc.
Pic2: The second picture is the second-to-last frame from Pic1, which is the target frame in
Task 1.
Role 1 - Excellent Comic Analysis Expert:
Task 1: Contextual Scene Description
Question 1: Based on the overall story, what is happening in the second-to-last frame (Pic2) of
the comic strip?
Requirements:
1. Provide a clear and detailed description of the key visual elements, characters, relationships
and actions in Pic2. 2. Ensure narrative continuity with the events of the entire comic. 3.
Output this as the right option for Task 2 with 30-40 words.
Task 2: Implicit Meaning Analysis
Question 2: What happened in comic strip (Pic1)? Describe the whole story in detail, then analyze
its implicit meaning.
Requirements:
1. Describe the whole story in detail and analyze its implicit meaning and sentiment. 2. Provide
three sentences with 40-50 words as right option for Task 4.
Role 2 - Strong Distractor Options Generator:
Task 3: Frame Scene Options Generation
Question 1: Based on the overall story, what is happening in the second-to-last frame (Pic2) of
the comic strip?
Requirements:
1. Generate three plausible but incorrect options for Question 1. 2.The length of each option
should be similar with the correct answer from Task 1 (around 30-40 words)! 3. Ensure that the
incorrect options are consistent with the overall story but misinterpret the events of Pic2.
Task 4: Comic Strip Analysis Options Generation
Question 2: What happened in comic strip (Pic1)? Describe the whole story in detail, then analyze
its implicit meaning.
Requirements:
1. Generate three plausible but incorrect options for Question 2. 2. Each incorrect option should
be composed of 3 sentences and share the same length with the correct answer from Task 2! 3.
Avoid obviously wrong or nonsensical answers.
Please strictly adhere to the word count requirement! The final output should be in the following
format:
Question 1: Based on the overall story, what is happening in the second-to-last frame (Pic2) of
the comic strip?
Reasoning Chain 1: [Describe the story in sequence.]
Options in Q1:
A. [Hallucination option with 30-40 words from Task 3]
B. [Hallucination option with 30-40 words from Task 3]
C. [Hallucination option with 30-40 words from Task 3]
D. [Right option with 30-40 words from Task 1]
Right Answer 1: D
Question 2: What happened in comic strip (Pic1)? Describe the whole story in detail. Carefully
analyze the implicit meaning of comic.
Reasoning Chain 2: Reason step by step here.
Options in Q2:
A. [Hallucination option with 40-50 words from Task 4]
B. [Hallucination option with 40-50 words from Task 4]
C. [Hallucination option with 40-50 words from Task 4]
D. [Right option with 40-50 words from Task 2]
Right Answer 2: D

Figure 11: Instruction for annotating dataset with LLM.
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