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Abstract

Explaining the prediction process of Graph Neural Networks (GNNs) is critical for1

enhancing model transparency and trustworthiness. However, real-world graphs are2

predominantly heterogeneous and often suffer from structural noise, which severely3

hampers the reliability of existing explanation methods. To address this challenge,4

we propose RoHeX, a Robust Heterogeneous Graph Neural Network Explainer.5

RoHeX begins with a theoretical analysis of how different heterogeneous GNN6

architectures amplify noise through message passing. To mitigate this effect, we7

introduce a denoising variational inference framework that operates on the graph8

structure to extract robust latent representations. Furthermore, RoHeX incorporates9

heterogeneous edge semantics into the subgraph generation process and formulates10

explanation as an optimization problem under the graph information bottleneck11

principle. This enables RoHeX to generate explanations that are both semantically12

meaningful and structurally robust. Extensive experiments on multiple real-world13

heterogeneous graph datasets demonstrate that RoHeX significantly outperforms14

state-of-the-art baselines in terms of explanation quality and robustness to noise.15

1 Introduction16

Graph Neural Networks (GNNs) have emerged as powerful tools for learning from graph-structured17

data, demonstrating strong performance across domains such as social networks [1], citation18

graphs [2], and recommender systems [3]. Despite these successes, GNNs remain largely opaque:19

their predictions are difficult to interpret, which limits their deployment in sensitive domains involving20

fairness, privacy, and security [4, 5].21

To address this, GNN explainers aim to reveal the decision rationale behind model predictions by22

identifying critical substructures. Existing approaches fall into two categories: post-hoc methods [6,23

7, 8], which explain a pretrained model without modifying it, and built-in methods [9, 10, 11], which24

generate explanations during model training. Post-hoc methods are more flexible and generalizable,25

while built-in methods often yield task-specific insights. However, both struggle under complex, noisy26

conditions—especially in heterogeneous graphs, which are the norm in real-world settings [12, 13].27

Heterogeneous graphs, composed of diverse node and edge types, introduce nontrivial challenges.28

Their interwoven semantics and irregular structures complicate subgraph extraction. Moreover,29

real-world graphs commonly exhibit noise such as irrelevant or missing edges, which exacerbate the30

challenges in achieving robust model explainability [14, 15]. The diversity in distributions, attributes,31

and application domains across heterogeneous graphs also limits the generalizability of existing32

explainers. While post-hoc methods offer broader applicability, they remain vulnerable to structural33

irregularities and noise, which can distort the model’s reasoning process. Moreover, noise amplifies34

structural irregularities and shifts node importance, rendering conventional methods that rely on strict35

constraints (e.g., subgraph size, connectivity, or budget) ineffective [16].36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



In this paper, we propose RoHeX, a Robust Heterogeneous Graph Neural Network Explainer. First, we37

theoretically analyze how noise amplification occurs in heterogeneous GNNs. Second, we introduce38

a denoising variational inference module that learns robust latent representations by filtering noise in39

the input graph. Third, we design a heterogeneous explanation generator based on relation-aware40

attention, which captures the rich semantics across node and edge types. Finally, by integrating the41

Graph Information Bottleneck (GIB) principle, we reframe explanation as an information-theoretic42

optimization problem to better handle irregular structures. We validate RoHeX’s performance through43

extensive experiments on multiple real-world datasets, demonstrating its superior ability to handle44

noise and generate high-quality explanations compared to state-of-the-art GNN explainers.45

The contributions of this paper are as follows:46

• We present the first systematic analysis of how noise interacts with heterogeneity in GNN47

explainers, theoretically proving that existing heterogeneous GNNs amplify structural noise48

and degrade explainability.49

• We propose RoHeX, a robust heterogeneous GNN explainer that integrates denoising50

variational inference and a relation-aware explanation generator, effectively modeling het-51

erogeneity while suppressing noise during explanation generation.52

• Extensive experiments on multiple real-world heterogeneous graphs demonstrate that RoHeX53

consistently outperforms existing explainers in both explanation fidelity and robustness54

under noisy conditions.55

2 Problem Definition56

2.1 Heterogeneous Graph57

A heterogeneous graph, denoted as G = (A,X,A,R,Φ), encompasses multiple types of nodes V58

and edges E , where A is the corresponding adjacency matrix, X represents node features, A denotes59

the set of node types, R signifies the set of edge types, and Φ represents the set of meta-paths. A60

meta-path ϕ ∈ Φ is a path of edges connecting various types of nodes from node v1 to node vl+1,61

such as A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, where l denotes the length of the meta-path. The label set of62

G is denoted as Y, comprising C categories. Meanwhile, a heterogeneous graph has two mapping63

functions ψ(v) : V → A and φ(e) : E → R that correspond to nodes and edges, respectively.64

2.2 Heterogeneous Graph Neural Network Explainer65

Given a trained GNN model f as the subject of explanation and a heterogeneous graph G, the66

objective of the GNN explainer is to identify the most influential subgraph Gs = (As,X,As,Rs).67

Here, As represents the adjacency matrix formed by nodes Vs and Es which significantly contribute68

to prediction. For the original prediction of GNN model f , it can be formalized as follows:69

ŷ = argmaxPf
c∈C

(c|A,X,A,R), (1)

where Pf (·) represents the prediction function of the GNN model f . Current research indicates70

that graph structural information is crucial for classification tasks [16, 17]. Therefore, our RoHeX71

focuses on exploring structural noise when generating explanations. The excellent explanation should72

contain the most critical information to approximate the predicted labels and outcome changing when73

predicting the remaining part of the original graph, which is as follows:74

argmaxPf
c∈C

(c|As,X,As,Rs) = ŷ. (2)

3 Methodology75

Figure 1 illustrates the overall framework of RoHeX. We begin by applying a denoising variational76

graph encoder to obtain a robust latent representation of the input graph G. Node embeddings sampled77
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Figure 1: The architecture of our proposed RoHeX. First, the denoised node representations are
obtained from the noisy graph via denoising variational inference. Then, the Explainer Network
employs the heterogeneous relation-based importance computation method to obtain the weights for
different edges. The top k percent of edges are selected as important edges to generate the explanatory
subgraph. Finally, the generated explanatory subgraph and the original graph are respectively input
into heterogeneous GNN models to obtain predictions, which are used to compute the loss function.

from the latent structural distribution are used to construct edge representations. These edge features78

are then fed into a heterogeneous relation-aware attention module, which estimates the importance79

of each edge by modeling the semantics of different edge types. Based on the learned importance80

scores, RoHeX generates a compact and informative explanatory subgraph. Finally, the entire process81

is optimized under the graph information bottleneck objective, which adaptively promotes structural82

sparsity and robustness against irregularities.83

3.1 Controllable Structural Perturbation for Heterogeneous Graphs84

Real-world graph noise often arises from missing or spurious edges and is typically modeled via85

random edge addition or deletion [18, 19, 20]. Building upon this idea, we introduce a controllable86

and heterogeneous-aware structural perturbation strategy—a heuristic but flexible method designed to87

simulate realistic noise, maintain comparability with prior work, and enable targeted evaluation under88

adversarial or highly irregular settings. Notably, this method can be changed into a graph structure89

attack method to achieve structural corruption.90

For each edge type r ∈ R, we define its deletion rate η+r and false addition rate η−r , which represent91

the probabilities of deleting and adding edges of this type, respectively. The perturbed adjacency Ãr92

for edge type r is generated as:93

Ãr
ij =


0 with probability η+r · dr

i+dr
j

2d̄r ,

1 with probability η−r · 1
dr
i+dr

j
,

Aij otherwise,

(3)

where dri is the degree of node vi under edge type r, and d̄r = 1
|Vr|

∑
i∈Vr

dri denotes the average94

degree for type r. This degree-aware perturbation prevents the disproportionate removal of hub-node95

edges and limits unrealistic edge additions, thus preserving key graph structure properties. To control96

the overall noise intensity, we introduce a global noise budget B, representing the total number of97

edges to be perturbed. This budget is allocated across edge types according to their importance98

scores:99

Br = B · sr∑
r′∈R sr′

, where sr =
|Er|
|E|

· log |Er|, (4)
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with sr capturing both the proportion and diversity of edge type r. We then calibrate the edge100

type-specific perturbation rates:101

η+r =
B+

r

|Er|
, η−r =

B−
r

|Vr|2 − |Er|
, s.t. B+

r +B−
r = Br. (5)

Finally, we provide a theoretical analysis showing how degree-aware perturbation impacts node102

connectivity:103

Theorem 3.1 (Degree-Aware Perturbation). For node vi, its expected perturbed degree d′i under the104

above strategy satisfies:105

E[d′i] = di +
∑
r∈R

(
η−r · (|Vr| − dri )

dri + d̄r
− η+r · d

r
i
2

2d̄r

)
.

106

By incorporating degree balance constraints and noise budget allocation, our method simulates107

real-world noise more realistically and preserves the structural properties of the original graph.108

3.2 Noise Analysis and Denoising Variational Inference109

We investigate the impact of noise on different approaches for Heterogeneous Graph Neural Network110

(HGNN). We categorize common HGNN into two classes: meta-path-based and neighborhood111

aggregation-based methods. Meta-path-based methods typically require defining a meta-path ϕ, and112

then capturing information along different relations following the meta-path structure, aggregating113

this information, such as Paths2Pair [21] and MAGNET [22]. Neighborhood aggregation-based114

methods simultaneously consider the neighbor node types and edge types and use specific aggregation115

functions to combine information from different types. Common neighborhood aggregation methods116

include MHGCN [23] and Simple-HGN [24]. However, these two categories of methods differ in117

their efficiency of noise propagation [20], and we find that meta-path-based message passing methods118

amplify the impact of noise.119

Theorem 3.2 (Noise Amplification Effect in HG). In HG, compared to neighborhood aggregation-120

based methods, meta-path-based methods can significantly amplify the effect of noisy edges. Specifi-121

cally, for a node vi and a newly added noisy edge eij , the factor by which its influence changes is122
dvi

+k

dvi
+1 , where k is the degree of the new neighbor vj under the noise and dvi is the degree of vi. When123

k > dvi , this factor is significantly greater than 1.124

The complete proof of Theorem 3.2 is provided in Appendix D. Based on Theorem 3.2, we employ a125

neighborhood aggregation method to encode heterogeneous graph and mitigate noise. Given noisy126

graph data G̃, our objective is to obtain a denoised version of the standard graph data G. VGAE [25]127

uses variational inference to derive statistical properties of the graph. The statistical data of latent128

variables in VGAE can be efficiently inferred from the latent space rather than the observation space,129

which provides robust graph information. For the standard graph G, it initially generates latent130

variables Z from a prior distribution p(Z), such as a Gaussian distribution N (µ,σ2). Second, the131

data G is generated using a conditional distribution p(G|Z). VGAE optimizes its parameters by132

maximizing the likelihood of the observed data, which as follows:133

KL(qΨ(Z|G)||pθ(Z|G)) + L(Ψ, θ;G), (6)
where Ψ is the encoder and θ represents the parameters to be optimized. Then, the evidence lower134

bound L(Ψ, θ;G) can be expressed as follows:135

L(Ψ, θ;G) = EqΨ(Z|G)

[
log

pθ(Z,G)
qΨ(Z|G)

]
= EqΨ(Z|G) [log pθ(Z|G)]−KL (qΨ(Z|G)∥p(Z)) . (7)

Variational inference enhances the model’s robustness and generalization capabilities [26, 27]. How-136

ever, due to the differing distributions between noisy heterogeneous graph data and standard graph137

data, the obtained distribution tends to align with the noisy distribution, potentially misleading the138

GNN explainer into generating incorrect explanatory subgraphs. Therefore, we introduce a denoising139

module during the process of variational inference. The original encoder part is modified to:140

q′Ψ(Z|G) =
∫
qΨ(G|G̃)q(G̃|G)dG̃, (8)

4



where Ψ is the encoder based on G̃, and q(G̃|G) =
∏

r∈R q(Ãr|Ar). During this process, the141

evidence lower bound is expressed as:142

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

]. (9)

As we need to derive the distribution of the noisy graph data G̃, this lower bound can be further143

refined as:144

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

] ≥ Eq′Ψ(Z|G)

[
log

pθ(G,Z)
qΨ(Z|G̃)

]
= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)[KL(qΨ(Z|G̃))||p(Z)]. (10)

The detailed derivation is in the Appendix E. Compared to VGAE, the denoising variational inference145

models the posterior probability p(Z|G) using a Gaussian Mixture Model, whereas VGAE models146

p(Z|G) using a Gaussian distribution. Additionally, during the optimization process, there is a147

constraint that forces qΨ(Z|G̃) to approximate the standard Gaussian distribution p(Z). Consequently,148

our method can significantly improve the model’s robustness and produce high-quality graph data.149

We further employ the Monte Carlo sampling method to approximate the objective, which can be150

effectively optimized using gradient descent as follows:151

Ld ≈ 1

K

K∑
k=1

∑
r∈R

log
pθ(Gr,Z)

qΨ(Z|Ãr)
, (11)

where K is the number of samples sampled during the simulation. After denoising variational infer-152

ence, we input the sampled robust representations Z into the Heterogeneous Explanation Generator,153

where the complex semantics on the heterogeneous graph are learned. Before delving into that, we154

introduce the Graph Information Bottleneck.155

3.3 Graph Information Bottleneck156

As mentioned in the introduction, noise exacerbates the irregularity of graph structures and alters node157

importance. Therefore, previous methods imposing structural regularity constraints on explanatory158

subgraphs are infeasible under noise influence. We exploit the Graph Information Bottleneck (GIB)159

to enable the explainer network to adaptively handle structural irregularities. The objective of GIB160

is to obtain the optimal explanatory subgraph Gs. From an information-theoretic perspective, GIB161

limits the amount of information carried by the explanatory subgraph Gs, rather than imposing162

simple structural constraints. Simultaneously, nodes may require scattered edges across the graph to163

jointly explain their predictive function, rather than constraining connectedness. Consequently, GIB164

adaptively explores the entire graph without imposing any potentially biased restrictions. GIB can be165

formulated as:166

min
Gs⊂G

− I(ŷ;Gs) + β I(G;Gs), (12)

where I(·; ·) denotes mutual information, and β controls the trade-off between the two terms. Since167

the information in Gs can be continually optimized, the explain task can be characterized as an168

optimization task guided by GIB.169

The GIB principle aims to obtain the minimum sufficient information about the graph G. The first170

term maximizes the mutual information between the label and the explanatory subgraph, ensuring Gs171

contains as much information about the label as possible. The second term minimizes the mutual172

information between the input graph and the explanatory subgraph, ensuring Gs contains the minimum173

information about the input graph. Next, we introduce the Heterogeneous Explanation Generator,174

describing how each term is optimized during training under the GIB principle.175

3.4 Heterogeneous Explanation Generator176

We begin by modeling the explanatory subgraph as a Gilbert random graph [28], where edges are177

conditionally independent. Following the literature [16], we define an adjacency matrix-like edge178

matrix Es, where each element eij is a binary variable indicating whether the edge is included in the179

subgraph. When there is an edge (i, j) from vi to vj , eij = 1, otherwise eij = 0.180
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To capture the rich semantics of heterogeneous graphs, pairwise node interactions alone are in-181

sufficient. Thus, we incorporate heterogeneous semantics learning into the explanatory subgraph182

generation process. We incorporate heterogeneous edge type information into the attention compu-183

tation by extending the standard graph attention mechanism. Specifically, we assign an edge type184

embedding rφ(e) for each edge type φ(e), and simultaneously utilize the edge type embeddings and185

node embeddings to compute the attention coefficient αij :186

αij =
exp

(
ReLU

(
aT [Wzi∥Wzj∥Wrrφ(eij)]

))∑
k∈Ni

exp
(
ReLU

(
aT [Wzi∥Wzk∥Wrrφ(eik)]

)) , (13)

where Wr is a learnable weight matrix for type embeddings. Edge type embedding is a one-hot187

encoding derived from each edge type. This attention coefficient αij integrates both heterogeneous188

node and edge type semantics, offering a more comprehensive representation.189

Next, we define the heterogeneous random graph variable. The probability of the heterogeneous190

explanatory subgraph can be factorized as:191

p(G) =
∏

(i,j)∈Es

p(eij |φ(eij)), (14)

where eij ∼ Bern(πij) and πij is the edge existence probability inferred via αij . To enable192

backpropagation through discrete edge selections, we adopt the reparameterization trick using a193

hard-concrete relaxation:194

eij = Sigmoid
( log ϵ− log(1− ϵ) + αij(φ(eij))

τ

)
,

ϵ ∼ Uniform(0, 1),
(15)

where τ is a temperature coefficient to smooth the optimization, and αij from Eq. 13 adds heteroge-195

neous information into the explanatory subgraph. When αij = log
πij

1−πij
, we have limτ→0 p(eij =196

1) =
exp(αij)

1+exp(αij)
, so we can obtain the explanatory subgraph Gs since p(eij = 1) = πij .197

This results in a continuous probability matrix Mp ∈ RN×N , where each entry [Mp]ij = πij198

denotes the likelihood of including edge (i, j). We then construct the soft explanatory subgraph:199

Gs = (As = Mp ⊙A,X,As,Rs). (16)

To optimize the explainer, we adopt the Graph Information Bottleneck (GIB) principle, balancing200

predictive fidelity and information compression. The GIB objective 12 is upper-bounded as:201

− I(ŷ;Gs)+β I(G;Gs) ≤ −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+H(ŷ)+βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
, (17)

where f is the GNN model and α is the explain model, see Appendix E for detailed derivation. Since202

H(ŷ) is constant, the objective function can be expressed as follows:203

LGIB = −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+ βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
. (18)

The total loss combines the GIB objective with the denoising loss from the variational graph encoder:204

L = Ld + LGIB . (19)

3.5 Complexity Analysis.205

The cost of each iteration comprises two parts: (1) the variational inference process and (2) the206

heterogeneous explanation generation. The time complexity of the first step is O(N2 + E), and the207

space complexity is O(N), as this step requires storing the robust node representations. The time208

complexity of the second step is O(E), and the space complexity is O(E). Therefore, the overall209

time complexity of RoHeX is O(N2 + E), and the space complexity is O(N + E).210

4 Experiment211

In this section, we evaluate the performance of the proposed RoHeX and state-of-the-art baselines on212

the node classification task. We then analyze the contributions of different components of RoHeX and213

demonstrate why RoHeX is robust to noise and capable of generating explanations that incorporate214

heterogeneous information.215
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Table 1: The comparison of RoHeX and baselines under different ratios of random structural noise.
We use bold font to mark the best score. The second best score is marked with underline.

Dataset Metric Noise PGExplainer GNNExplainer PGM-Explainer V-InfoR AMExplainer Hete-PGE xPath RoHeX

DBLP

MAE

10% 1.2158±0.0062 0.8530±0.0009 1.0704±0.0007 1.1930±0.0030 1.4862±0.0026 0.8719±0.0008 0.8162±0.0032 0.8359±0.0029
20% 1.2179±0.0089 0.9080±0.0007 1.2046±0.0006 1.1960±0.0025 1.5697±0.0008 0.8896±0.0005 0.9651±0.0042 0.8743±0.0018
30% 1.2449±0.0059 1.2613±0.0011 1.3313±0.0002 1.2312±0.0026 1.7133±0.0006 1.1913±0.0006 1.1405±0.1032 0.8827±0.0034
40% 1.2451±0.0068 1.3389±0.0008 1.3401±0.0005 1.2530±0.0010 1.9345±0.0005 0.9268±0.0006 1.2852±0.0002 0.9014±0.0015

RMSE

10% 1.6775±0.0054 1.2968±0.0006 1.3855±0.0005 1.6481±0.0027 1.9219±0.0048 1.2814±0.0004 1.3175±0.0020 1.2416±0.0017
20% 1.6815±0.0666 1.3072±0.0004 1.5280±0.0003 1.6511±0.0020 2.0419±0.0006 1.2859±0.0002 1.4341±0.0025 1.2750±0.0013
30% 1.6999±0.0024 1.8470±0.0007 1.6497±0.0001 1.6781±0.0020 2.1842±0.0003 1.6532±0.0003 1.5752±0.1198 1.2792±0.0022
40% 1.7060±0.0042 1.9043±0.0004 1.6681±0.0001 1.6885±0.0008 2.3616±0.0002 1.3100±0.0004 1.6819±0.0001 1.2889±0.0008

ACM

MAE

10% 0.7624±0.0080 0.3449±0.0003 0.2155±0.0009 0.7639±0.0001 0.3895±0.0005 0.8091±0.0003 0.3900±0.0001 0.2129±0.0009
20% 0.7751±0.0162 0.3951±0.0001 0.3732±0.0003 0.7913±0.0004 0.6746±0.0224 0.8183±0.0005 0.3985±0.0003 0.2483±0.0010
30% 0.7867±0.0152 0.5087±0.0003 0.5932±0.0006 0.8064±0.0003 0.7077±0.0221 0.8220±0.0002 0.4164±0.0012 0.3140±0.0019
40% 0.7913±0.0181 0.6496±0.0002 0.7932±0.0007 0.8154±0.0005 0.7181±0.0164 0.8310±0.0001 0.4292±0.0006 0.3163±0.0015

RMSE

10% 1.0258±0.0037 0.6831±0.0005 0.5121±0.0004 1.0145±0.0002 0.6241±0.0003 1.0740±0.0001 0.7750±0.0002 0.5662±0.0012
20% 1.0307±0.0069 0.7791±0.0002 0.6893±0.0002 1.0366±0.0004 0.8213±0.0649 1.0778±0.0004 0.7458±0.0003 0.6177±0.0008
30% 1.0423±0.0127 0.9506±0.0001 0.8793±0.0004 1.0705±0.0007 0.8412±0.0698 1.0731±0.0001 0.7768±0.0009 0.6669±0.0013
40% 1.0431±0.0124 1.1306±0.0002 1.0766±0.0004 1.0786±0.0003 0.8474±0.0713 1.0856±0.0001 0.8396±0.0007 0.6909±0.0008

Freebase

MAE

10% 0.7189±0.0096 0.9012±0.0002 0.9190±0.0003 0.5957±0.0322 0.9312±0.0004 0.7760±0.0007 0.9006±0.0127 0.3885±0.0010
20% 0.7237±0.0078 0.9108±0.0003 0.9401±0.0001 0.6822±0.0527 0.9709±0.1209 0.7812±0.0005 0.9247±0.0092 0.4441±0.0012
30% 0.7285±0.0041 0.9126±0.0003 0.9530±0.0004 0.7249±0.0329 1.0089±0.1651 0.7908±0.0003 0.9263±0.0043 0.4694±0.0021
40% 0.7370±0.0019 0.9378±0.0007 0.9587±0.0009 0.7894±0.0111 1.0531±0.0005 0.8030±0.0001 0.9301±0.0061 0.4880±0.0014

RMSE

10% 1.0616±0.0071 1.2886±0.0001 1.2432±0.0001 1.0375±0.0233 1.2589±0.0004 1.1064±0.0003 1.2466±0.0056 0.8251±0.0018
20% 1.0635±0.0051 1.2983±0.0002 1.2549±0.0001 1.1172±0.0566 1.2987±0.1848 1.1117±0.0004 1.2435±0.0108 0.8854±0.0010
30% 1.0689±0.0039 1.2995±0.0002 1.2747±0.0002 1.1487±0.0277 1.3391±0.2381 1.1200±0.0002 1.2721±0.0034 0.9035±0.0012
40% 1.0803±0.0018 1.3217±0.0005 1.2838±0.0004 1.1929±0.0054 1.3830±0.0004 1.1315±0.0001 1.2643±0.0072 0.9217±0.0007

4.1 Experiment Settings216

Datasets and Baselines. We evaluate the effectiveness of our RoHeX on three real-world datasets,217

including two academic citation datasets (DBLP and ACM) and a knowledge graph dataset (Freebase).218

Since there are no existing robust heterogeneous explainer, we select three types of baselines: the219

surrogate method PGM-Explainer, the perturbation-based methods GNNExplainer, PGExplainer and220

AMExplainer, and the V-infor method studying robustness on homogeneous graphs. We used the221

heterogeneous graph path explainer, xPath, and extended our Heterogeneous Explanation Generator222

to PGExplainer, referred to as Hete-PGE, for comparison.223

Evaluation. The evaluation of explainer performance is based on the generated explanatory sub-224

graphs, assessing their contribution to the original prediction. We adopt two metrics: fidelity and spar-225

sity. Fidelity measures the decrease in prediction confidence after removing the explanation from the226

input graph, while sparsity measures the ratio of remaining edges in the explanatory subgraph Gs rela-227

tive to the input graph. We use the Mean Absolute Error (MAE, 1
N

∑N
i=1

∣∣∣I(ŷi = yi)− I(ŷGs
i = yi)

∣∣∣),228

and Root Mean Squared Error (RMSE,

√
1
N

∑N
i=1

(
I(ŷi = yi)− I(ŷGs

i = yi)
)2

) as proxy measures229

for fidelity, and compare the performance of different baselines across varying sparsity levels, where230

N is the number of nodes or graphs, ŷi is the original prediction result, and ŷGs
i is the prediction231

result obtained by the explanatory subgraph.232

Implementation Details. We conduct experiments under different proportions of random noise233

scenarios. Noise is added to both the training set and the test set to restore the real scene. To ensure234

randomness, the deletion rate and false addition rate are set to be equal. For the baselines, we select235

the best-performing parameters for heterogeneous datasets based on the original settings. We chose236

the most basic HGNN architecture, which only includes GCN [29] and relational learning modules,237

as the base model for fair comparison. For our RoHeX, we use Adam as the optimizer with a learning238

rate of 1e-4. We set the hidden dimension for variational inference to 64, the output dimension to239

32, and the edge weight output dimension to 32. Each experiment is repeated 5 times, and we report240

the mean and variance as the results. Descriptions of the variance, datasets, baselines, base HGNN241

model architecture, and parameter settings are provided in the Appendix F.242

4.2 Overall Performance under Structural Perturbations243

Table 1 shows the experimental results on the heterogeneous graphs with different budgets of244

structural perturbations. We find that RoHeX outperforms other baselines in most experimental245

results, achieving the best performance on the DBLP and Freebase datasets. Taking 30% noise ratio as246

an example, RoHeX shows 25.9% lower MAE and 22.4% lower RMSE than the second-best method247

on the DBLP dataset, 38.2% lower MAE and 24.1% lower RMSE on the ACM dataset, and 35.2%248

lower MAE and 15.4% lower RMSE on the Freebase dataset. xPath performs excellently in multiple249
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Figure 2: Fidelity-Sparsity Curve on the DBLP
dataset. The first row is the result without noise,
and the second row is the result with 20% noise
budget.
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Figure 3: Ablation study on three datasets and
the influence of hyperparameters τ and β on
RoHeX.

scenarios, indicating that designing corresponding modules for heterogeneous graphs is essential. We250

can observe that Hete-PGE achieves second best performance multiple times on the DBLP dataset251

and outperforms many baselines on other datasets, demonstrating the effectiveness of our proposed252

heterogeneous explanation generator in considering rich semantics on heterogeneous graphs. Due253

to the similar edge type distribution in the DBLP dataset, the dataset exhibits higher heterogeneity,254

which enhances the module’s ability to capture heterogeneous information. Simultaneously, as a255

plug-and-play module, it can be conveniently extended to other parameterized explanation methods256

for generating explanations on heterogeneous graphs. On the medium and small-scale datasets DBLP257

and ACM, explanation methods based on raw features (e.g., GNNExplainer) are more susceptible258

to noise, potentially because raw features are more easily affected in smaller graphs. Since RoHeX259

generates robust graph representations, it can better mitigate the influence of noise, which is also why260

the latent representation-based explainer V-InfoR performs well in multiple scenarios. Under the261

guidance of GIB, our method can adaptively select important edges while excluding redundant and262

noisy edges, thereby generating the best explanations for the prediction model.263

4.3 Fidelity-Sparsity Analysis264

Next, we further investigate RoHeX’s performance at different sparsity levels. We provide the265

Fidelity-Sparsity curve on the DBLP dataset as shown in Figure 2. RoHeX consistently outperforms266

other baselines across all sparsity levels, indicating that our method can generate the best explanations.267

As the sparsity increases from 0 to 1, the overall trend of all curves is downward, i.e., decreasing268

error. When the sparsity is extremely low, e.g., 10%, our method significantly outperforms other269

baselines, suggesting that RoHeX can identify the truly critical subgraphs. We further find that270

although the overall performance improves as the sparsity level increases, there are still some cases271

where the performance drops with increasing sparsity, such as PGExplainer. We conjecture that this272

may be because in the subgraph generation process, when the sparsity increases to a point where all273

edges with high importance scores have been selected, forcing higher sparsity will begin to select274

unimportant edges, which can be viewed as noisy edges, leading to degraded performance. As the275

sparsity continues to increase, this adverse effect is offset. Since AMExplainer and xPath contain276

specific Sparsity settings to generate explanations, they were not included in the experiment.277

4.4 Model Analysis278

Perturbation Performance We analyze the perturbation performance of controllable structural279

perturbation for heterogeneous graphs under different noise scenarios, as shown in Table 2. Compared280

to the original results, our structural perturbation method significantly impacts the decision-making281

process of HGNN on the whole graph (Noisy), 1-hop subgraph (1-hop), and 2-hop subgraph (2-hop).282
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Table 2: Prediction performance of HGNN in different noise scenarios.

Dataset Method
10% 20% 30% 40%

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

DBLP

Original 92.64 92.16 92.64 92.16 92.64 92.16 92.64 92.16
Noisy 81.58 80.34 73.41 70.26 67.18 62.02 62.99 55.91
1-hop 57.28 55.92 54.22 52.40 52.18 49.98 50.56 48.40
2-hop 57.64 55.65 42.07 38.55 41.76 38.06 39.01 34.01

ACM

Original 92.32 92.40 92.32 92.40 92.32 92.40 92.32 92.40
Noisy 33.52 19.28 33.28 18.82 31.96 16.14 31.96 16.14
1-hop 77.10 77.31 76.39 76.51 75.40 75.57 67.94 67.81
2-hop 52.19 51.73 49.12 50.65 42.38 36.42 38.73 30.07

Freebase

Original 68.99 63.57 68.99 63.57 68.99 63.57 68.99 63.57
Noisy 67.89 61.90 66.05 59.29 62.94 53.74 57.50 46.02
1-hop 58.52 53.23 57.62 51.94 57.50 51.21 57.01 51.14
2-hop 44.66 31.12 42.90 27.24 41.10 24.15 39.46 21.62

An interesting finding is that 30% noise is enough to cause the performance of HGNN on the ACM283

dataset to drop to its lowest.284

Ablation Study We investigate the contributions of different components in RoHeX. Specifically,285

we study (a) the effectiveness of the denoising variational inference module, and (b) the effectiveness286

of the relation-based importance module. We use ’w/o VI’ to denote the model without the denoising287

variational inference module, and ’w/o Re’ to denote the model without the relation-based importance288

module. For the latter case, we replace it with the common concatenation operation, i.e., αij =289

MLP[(zi, zj ]). The experiments are conducted under 20% noise budget, and the first row of Figure 3290

shows the results after ablation. We find that without the denoising variational inference module,291

the model relies on the original features and graph structure for prediction, failing to mitigate the292

influence of noise, leading to performance degradation. When the model loses the ability to learn293

heterogeneous relationships, the process of generating explanation subgraphs struggles to recognize294

the complex semantics in heterogeneous graphs. All edges are treated as the same type, and the295

model explains solely based on node interactions. This demonstrates the necessity of our proposed296

relation importance module.297

Hyperparameter Analysis We further analyze the impact of two parameters τ and β on model298

performance. τ controls the approximation degree of eij distribution to the Bernoulli distribution,299

ranging within [0.1, 0.5]. β balances the information recovery strength and information filtering300

strength in the optimization objective, and we select values from {0.3, 0.5, 1, 2, 3}. The second row301

of Figure 3 shows the effects of these hyperparameters on RoHeX across three datasets. We can302

observe that the best results of τ all appear around 0.3. That is, when τ = 0.3, the continuity and303

approximation degree in Eq. 15 reach the best trade-off. Secondly, RoHeX is not very sensitive to β304

that controls the constraint strength in Eq. 18, validating that our used GIB constraint can adapt to305

different data scenarios and achieve superior performance.306

5 Conclusion307

In this work, we focus on the problem of explaining heterogeneous graph neural network under308

noise. We are the first to study this problem, theoretically proving that heterogeneous graph neural309

network have an amplifying effect on noise, and propose RoHeX to mitigate the influence of310

noise and obtain explanatory subgraphs based on heterogeneous relations. Specifically, RoHeX311

employs denoising variational inference to obtain robust graph representations and parameterizes the312

explanatory subgraph generation process with heterogeneous semantics. It integrates type information313

to capture the complexity of diverse node and edge types. Extensive experiments on real-world314

datasets demonstrate RoHeX’s superiority over other state-of-the-art baselines. For future work, we315

plan to further extend RoHeX to dynamic graphs by incorporating dynamic information into the316

explanation generation process, further broadening RoHeX’s applicability.317
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A Related Work447

GNN Explainability. Recently, various approaches have been proposed to explain the predictions448

of GNN, these approaches can be categorized into post-hoc and built-in method. Common post-hoc449

methods include perturbation-based [6, 30] and surrogate model-based [7, 8] approaches. Mixu-450

pExplainer [31] extends the existing GIB framework by introducing label-independent subgraphs451

during the sampling of explanation subgraphs, thereby obtaining explanations while mitigating the452

distribution shift phenomenon. GNNExplainer [32] learns masks for features and edges by optimizing453

the masks to obtain the optimal explanation. PGExplainer [16] employs a parametric neural network454

approach to learn the importance of each edge and ultimately selects edges with high importance455

scores to construct the explanatory subgraph. PGM-Explainer [33] adopts a Bayesian network formu-456

lation, naturally expressing the dependencies between nodes in the form of conditional probabilities.457

Common built-in methods include prototype learning-based [9, 10] and graph generation-based [11]458

approaches. PGIB [9] integrates prototypes into the Graph Information Bottleneck framework, allow-459

ing it to learn prototypes based on key subgraphs in the input graph, thereby providing a more accurate460

explanation of the prediction process. GOAt [34] generates explanatory subgraphs by decomposing461

the model’s output into a series of scalar products involving node and edge features, and calculating462

the contribution of each feature to these scalar products, thereby highlighting the edges that are463

important for the prediction outcome. xPath [35] provides fine-grained explanations by identifying464

cause nodes and their influence paths through a novel graph rewiring algorithm, thereby offering465

detailed insights into how specific nodes affect model predictions. AMExplainer [36] leverages ad-466

versarial networks to optimize for both sparsity and prediction accuracy in explanations, significantly467

enhancing the clarity and efficiency of model interpretability.468

Heterogeneous Graph Neural Networks Heterogeneous Graph Neural Networks can be catego-469

rized into meta-path-based methods and neighborhood aggregation-based methods. Meta-path-based470

methods typically decompose heterogeneous graphs into multiple homogeneous subgraphs using471

predefined meta-paths, thereby capturing specific types of heterogeneous semantics. Message passing472

is then performed within each subgraph, and the messages are subsequently aggregated. Common473

methods in this category include HAN [37], MAGNN [38], and SeHGNN [39]. On the other hand,474

neighborhood aggregation-based methods usually aggregate information directly from neighbors and475

apply specific aggregation strategies based on node types. Examples of methods in this category476

include RGCN [40], NARS [41], and Simple-HGN [24].477

B Proof of Theorem 3.1478

Let node vi’s original degree under edge type r be denoted as dri . The deletion rate for edge type r is479

η+r , and the false addition rate is η−r . The average degree for edge type r is defined as:480

d̄r =
1

|Vr|
∑
i∈Vr

dri (20)

where Vr represents the set of nodes involved in edge type r. For node vi, the expected number of481

edges deleted under edge type r is:482

E[∆dri,+] =
∑

j∈Nr(i)

η+r ·
dri + drj
2d̄r

(21)

where Nr(i) represents the set of neighbors of node vi under edge type r. Assuming the degree483

distribution of neighbors is uniform, it can be approximated as:484

E[∆dri,+] ≈ dri · η+r · d
r
i + d̄r

2d̄r
(22)

Further simplification gives:485

E[∆dri,+] ≈ η+r · d
r
i
2

2d̄r
(23)

For node vi, the expected number of false added edges under edge type r is:486

E[∆dri,−] =
∑

j /∈Nr(i)

η−r · 1

dri + drj
(24)
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Assuming the degree distribution of non-neighbor nodes is uniform, it can be approximated as:487

E[∆dri,−] ≈ (|Vr| − dri ) · η−r · 1

dri + d̄r
(25)

For node vi, the total degree change across all edge types is:488

E[∆di] =
∑
r∈R

(E[∆dri,−]− E[∆dri,+]) (26)

Substituting the above results, we get:489

E[∆di] =
∑
r∈R

(
η−r · (|Vr| − dri )

dri + d̄r
− η+r · d

r
i
2

2d̄r

)
(27)

The expected degree of node vi after perturbation is:490

E[d′i] = di + E[∆di] (28)

Substituting the expression for E[∆di], we get:491

E[d′i] = di +
∑
r∈R

(
η−r · (|Vr| − dri )

dri + d̄r
− η+r · d

r
i
2

2d̄r

)
(29)

To maintain the degree distribution characteristics of the graph, we introduce a degree-balancing492

constraint, which states that the expected degree after perturbation should be as close as possible to493

the original degree. Specifically, we require:494

|E[d′i]− di| ≤ ϵ (30)

where ϵ is a small constant representing the allowed degree deviation. By adjusting the deletion rate495

η+r and false addition rate η−r , we can satisfy this constraint.496

The above derivation shows that the degree-balancing constraint can effectively control the impact of497

noise injection on the graph structure. For high-degree nodes, the deletion rate η+r has a larger weight498
dir

2d̄r
, thereby reducing the number of edges to be deleted. For low-degree nodes, the false addition499

rate η−r has a larger weight 1
dir+d̄r

, thereby increasing the number of edges to be added. This design500

ensures that the perturbed graph structure maintains degree distribution characteristics similar to the501

original graph, thereby improving the reasonableness of noise injection.502

Table 3: Statistics of the graphs before and after perturbation.

Dataset Budget △d̄ JS Divergence

DBLP

10% 0.0831 0.0875
20% 0.8337 0.0905
30% 1.7506 0.1114
40% 2.6675 0.1407

ACM

10% 4.0125 0.2156
20% 9.0189 0.2126
30% 14.0254 0.2131
40% 19.0318 0.2188

Freebase

10% 0.6556 0.2029
20% 0.3112 0.1516
30% 0.0332 0.1167
40% 0.3776 0.0897

C Effectiveness of Controllable Structural Perturbation and Theorem 3.1503

We propose controllable structural perturbation on heterogeneous graphs to simulate real-world504

noise. Our focus is on statistical perturbation effects rather than individual node changes. The505
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Table 4: The performance of RoHeX under different distribution perturbations.

Dataset Budget
10% 20% 30% 40%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

DBLP
Uniform 0.7940 1.3462 0.8877 1.3708 0.9391 1.4185 0.9486 1.3891

Real 0.8359 1.2416 0.8743 1.2750 0.8827 1.2792 0.9014 1.2889
Difference 5.01% -8.42% -1.53% -7.51% -6.39% -10.89% -5.24% -7.77%

ACM
Uniform 0.2225 0.5648 0.2544 0.5986 0.3362 0.7516 0.3743 0.7333

Real 0.2129 0.5662 0.2483 0.6177 0.3140 0.6669 0.3163 0.6909
Difference -4.51% 0.25% -2.46% 3.09% -7.07% -12.70% -18.34% -6.14%

Freebase
Uniform 0.4331 0.7906 0.4564 0.9125 0.5186 0.9758 0.5247 0.9818

Real 0.3885 0.8251 0.4441 0.8854 0.4694 0.9035 0.4880 0.9217
Difference -11.47% 4.18% -2.78% -3.06% -10.48% -8.01% -7.51% -6.53%

uniform assumption was introduced to simplify the derivation, a practice widely adopted in prior506

works [42, 43]. Assuming uniform distribution effectively captures perturbation impacts. To further507

validate this, we analyzed the degree distributions of the DBLP, ACM, and Freebase datasets before508

and after perturbation, as shown in Table 3. The results indicate that our method achieves significant509

noise effect while only slightly altering the degree distribution (with JS divergence < 0.22), as510

demonstrated in Table 2 of the main text.511

Additionally, we conducted experiments comparing the performance of the explainer under the512

uniform assumption and the actual degree distribution. The results, presented in Table 4, confirm513

that the uniform assumption has minimal impact on model performance compared to using the real514

distribution.515

D Proof of Theorem 3.2516

In Graph Neural Network, a node representation is typically updated by aggregating information517

from its neighboring nodes. This process can be described as a message passing mechanism, where518

each node receives messages from neighboring nodes and updates its representation based on these519

messages. To avoid cases where the influence is overly amplified during the aggregation process, the520

messages from neighboring nodes are typically normalized. A common normalization approach is521

to multiply each neighbor message by the inverse of its degree. Assuming that each node influence522

on neighbors is equal, a higher-degree node will distribute its influence evenly among all neighbors.523

Therefore, the influence received by each neighbor should be proportional to the inverse of the node524

degree. In contrast, in random walk models, the transition probability between nodes is inversely525

proportional to the node degree. That is, the probability of a node reaching a particular neighbor is526

the inverse of its degree.527

Given a heterogeneous graph G, let vi be a node with degree dvi . A noisy edge eij is added to the528

graph, where vj is a new neighbor with degree dvj and k specific-type neighbors that match a given529

meta-path ϕ.530

For meta-path-based methods:531

(a) Before adding the noisy edge, the influence of vi is assumed to be a combination of the532

influences from its dvi existing neighbors v1, v2, ..., vdpi
in G. The influence of each neighbor vn on533

vi can be represented as:534

Iori1 =

dvi∑
n=1

1

dvi
(31)

(b) After adding the noisy edge (vi, vj), vi is directly connected to vj , and the influence of vj535

will propagate to its k neighbors. The influence on each neighbor of vj changes in the following536

manner vi:537

Inew1 =

dvi∑
i=1

1

dvi + 1
+

k

dvi + 1
=

dvi
dvi + 1

+
k

dvi + 1
=
dvi + k

dvi
+ 1

(32)
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Figure 4: The illustrative example for noise against HGNNs on Movie-Director graph.

For neighborhood aggregation-based methods:538

(a) Before adding the noisy edge, the influence on the direct neighbors of vi is given by:539

Iori2 =

dvi∑
n=1

1

dvi
(33)

(b) After adding the noisy edge (vi, vj), the neighbors of vi increase to dv1+1, and the influence540

on each of its neighbors changes to:541

Inew2 =

dvi
+1∑

n=1

1

dvi
+ 1

(34)

The multiplicative relationship ξ of the influence propagation between the meta-path-based method542

and the neighborhood aggregation method is:543

ξ =

Inew1
Iori1

Inew2
Iori2

=

dvi
+k

dvi
+1

1
=
dvi + k

dvi + 1
(35)

Consequently, when k > dvi , the multiplicative factor ξ is significantly greater than 1. This indicates544

that in general heterogeneous graphs, meta-path-based approaches are far more susceptible to the545

influence of noisy edges compared to neighborhood aggregation-based approaches. This substantiates546

that meta-path-based methods can significantly amplify the effect of noisy edges to a greater extent547

than neighborhood aggregation methods.548

We also provide the illustrative example for noise against HGNNs on Movie-Director graph in549

Figure 4. The meta-path used is M-D-M. In neighborhood aggregation-based HGNNs, the noise-550

introduced nodes are not directly considered as 1-hop neighbors of M1. Consequently, under the551

influence of noise, the 2-hop neighbors M3,M4,M5 can only affect M1 through the 1-hop neighbor552

D3. However, in meta-path-based HGNNs, all neighbors under the M-D-M meta-path are aggregated553

with equal weight 1
5 , thereby enlarging the effect of the noisy edge ⟨M1, D3⟩ to 3

5 (the total weight554

of the noisy neighbors M3,M4,M5).555

E Detailed Derivation556

First, we give the detailed derivation of Eq. 7. We introduce the Kullback-Leibler (KL) divergence.557

The KL divergence is a measure used to quantify the difference between two probability distributions.558

Let us consider two continuous random variables with probability distributions P and Q, and their559

corresponding probability density functions denoted as p(x) and q(x), respectively. If we aim to560

approximate p(x) using q(x), the KL divergence can be expressed as:561

KL(P ||Q) =

∫
p(x) log

p(x)

q(x)
dx. (36)
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Because the logarithmic function is convex, the value of KL divergence is nonnegative. Then, Eq. 7562

can be written as:563

L(Ψ, θ;G) = EqΨ(Z|G)[log
pθ(Z,G)
qΨ(Z|G)

]

= EqΨ(Z|G)[log pθ(Z|G) ·
p(Z)

qΨ(Z|G)
]

= EqΨ(Z|G)[log pθ(Z|G)]−KL(qΨ(Z|G)||p(Z)).

(37)

Second, the lower bound of denoising variational inference in Eq. 10 can be derived as:564

Ld = Eq′Ψ(Z|G)[log
pθ(Z,G)
q′Ψ(Z|G)

] ≥ Eq′Ψ(Z|G)

[
log

pθ(G,Z)
qΨ(Z|G̃)

]
= Eq′Ψ(Z|G)[log pθ(G|Z) + log p(Z)− log qΨ(Z|G̃)]

= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq′Ψ(Z|G)

[
log

qΨ(Z|G̃)
p(Z)

]

= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)EqΨ(Z|G)

[
log

qΨ(Z|G̃)
p(Z)

]
= Eq′Ψ(Z|G)[log pθ(G|Z)]− Eq(G̃|G)[KL(qΨ(Z|G̃))||p(Z)].

(38)

Third, we derive an upper bound for GIB in Eq. 17. We decompose the mutual information:565

I(ŷ;Gs) = Ep(ŷ,Gs)

[
log

p(ŷ,Gs)

p(ŷ)p(Gs)

]
, I(G;Gs) = Ep(G,Gs)

[
log

p(G,Gs)

p(G)p(Gs)

]
. (39)

The GIB objective can be written as:566

− I(ŷ;Gs) + β I(G;Gs)

= −Ep(ŷ,Gs)

[
log

p(ŷ,Gs)

p(ŷ)p(Gs)

]
+ βEp(G,Gs)

[
log

p(G,Gs)

p(G)p(Gs)

]
= −Ep(ŷ,Gs)

[
log

p(ŷ|Gs)p(Gs)

p(ŷ)p(Gs)

]
+ βEp(G,Gs)

[
log

p(Gs|G)p(G)
p(G)p(Gs)

]
= −Ep(ŷ,Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
+ βEp(G,Gs)

[
log

p(Gs|G)
p(Gs)

]
= −Ep(Gs)Ep(ŷ|Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
+ βEp(G)Ep(Gs|G)

[
log

p(Gs|G)
p(Gs)

]
.

(40)

Using Jensen’s inequality and assuming that pf (ŷ|Gs) is an approximation of p(ŷ|Gs), we can get:567

−Ep(Gs)Ep(ŷ|Gs)

[
log

p(ŷ|Gs)

p(ŷ)

]
≤ −Ep(Gs)Ep(ŷ|Gs)[log pf (ŷ|Gs)]− Ep(ŷ)[log p(ŷ)]

= −Ep(Gs,ŷ) [log pf (ŷ|Gs)] + H(ŷ).

(41)

We introduce explain models:568

βEp(G)Ep(Gs|G)

[
log

p(Gs|G)
p(Gs)

]
= Ep(G)Ep(Gs|G)

[
log

pα(Gs|G)
p(Gs)

· p(Gs|G)
pα(Gs|G)

]
= Ep(G)Ep(Gs|G)

[
log

pα(Gs|G)
p(Gs)

]
+ Ep(G)Ep(Gs|G)

[
log

p(Gs|G)
pα(Gs|G)

]
.

(42)

The second term is the KL divergence:569

Ep(G)Ep(Gs|G)

[
log

p(Gs|G)
pα(Gs|G)

]
= Ep(G) [KL(p(Gs|G)∥pα(Gs|G))] ≥ 0. (43)
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Therefore,570

I(G;Gs) ≤ Ep(G)Epα(Gs|G)

[
log

pα(Gs|G)
q(Gs)

]
= Ep(G) [KL(pα(Gs|G)∥q(Gs))] . (44)

Combined with our previous derivation of the first term, we can get:571

− I(ŷ;Gs)+β I(G;Gs) ≤ −Ep(Gs,ŷ)

[
log pf (ŷ|Gs)

]
+H(ŷ)+βEp(G)

[
KL(pα(Gs|G)||q(Gs))

]
. (45)

F Experiment Supplement572

Table 5: Statistics of Datasets.

Dataset DBLP ACM Freebase

Nodes 26,128 10,942 43,854
Edges 239,566 547,872 151,034

Node Types 4 4 4
Edge Types 6 8 6

Classes 4 3 3

F.1 Datasets573

We conduct experiments on three real-world datasets. According to the Heterogeneous Graph574

Benchmark [24] settings, we randomly split the nodes with proportions of 24%, 6%, and 70% for575

training, validation, and testing, respectively. The statistics of the three datasets are shown in Table 5.576

• DBLP1 is a computer science bibliography network that contains four types of nodes: Paper577

(P), Author (A), Term (T), and Venue (V). The authors in this network are from four research578

areas (Database, Data Mining, Artificial Intelligence, and Information Retrieval).579

• ACM2 is a citation network that contains four types of nodes: Paper (P), Author (A), Term580

(T), and Subject (S). The papers in this network are divided into three classes (Database,581

Wireless Communication, and Data Mining).582

• Freebase [44] is a knowledge graph that contains four types of nodes: Movie (M), Actor583

(A), Director (D) and Writer (W).584

F.2 Baselines585

Next, we provide details on the baselines used in our experiments.586

• PGExpaliner [16] is a parameterized explainer that learns a mask for each edge to obtain587

edge importance scores.588

• GNNExplainer [32] maximizes the mutual information between the model’s prediction on589

the original input and the masked input by masking features and edges.590

• PGM-Explainer [33] employs a Bayesian network-based approach, treating vertices in the591

input graph as random variables to fit the GNN model’s predicted label.592

• V-InfoR [5] utilizes a parametric method, learning edge masks on the latent representations593

to identify important edges.594

• AMExplainer [36] optimizes GNN explanations by leveraging adversarial networks to595

achieve both sparsity and prediction accuracy, ensuring compact and faithful explanation596

sets.597

• Hete-PGE is an extension of PGExplainer, where we replace the initial concatenation with598

a relation-based attention learning module to enable learning of heterogeneous semantics.599

• xPath provides fine-grained explanations by identifying causal nodes and their influence600

paths through a novel graph rewiring algorithm, offering detailed insights into the model’s601

decision-making process.602

1https://dblp.uni-trier.de
2http://dl.acm.org/

18



F.3 Base Heterogeneous Graph Neural Network603

Table 6: Node classification result using our heterogeneous Graph Neural Network.

Dataset DBLP ACM Freebase

Micro-F1 92.64±0.14 92.32±0.12 68.99±0.20
Macro-F1 92.16±0.19 92.40±0.11 63.57±0.36

In the experiment, we use a basic heterogeneous Graph Neural Network, which encodes the input604

graph through 2 layers of GCN, and then used a layer of attention learning module to learn different605

heterogeneous relations. For a heterogeneous graph, the feature spaces of different types of nodes are606

usually different. We use a mapping function to map the features of different types into a common607

feature space, as shown below:608

zv = WmxA
v + bm, (46)

where A ∈ A is the node type of node v, Wm is a learnable weight, and bm is the bias. Then, in the609

shared space, we use GCN to obtain the node embeddings:610

Z(l) = GCN(Z(l−1),A),Z(0) = Zv. (47)

To learn the heterogeneous semantics of the heterogeneous graph, we introduce a type vector γv and611

learn relation information through an attention module:612

γq
i = Wq

rγi,γ
k
j = Wk

rγj ,

scoreγij = γq
i γ

k
j ,

(48)

where Wq
r and Wk

r are learnable weights. The attention of the nodes can be computed as follows:613

qi = Wz
qzi, kj = Wz

kzj ,

α̂ij =
exp(LeakyReLU(aT [qi ∥ kj ]))∑

j′∈Ni
exp(LeakyReLU(aT [qi ∥ kj′ ]))

.
(49)

where Wz
q and Wz

k are learnable weights. The final prediction can be expressed as:614

scoreij = α̂ij + βscoreγij ,

Z
(l)
H = LayerNorm(Z

(l−1)
H + scoreij · Z(l−1)

H ),

Ŷ = Pf (Z
(l)
H ; θp).

(50)

where θp is the parameter of the predictor. The basic prediction results are shown in Table 6.615

The experiments are conducted on an L20 GPU with 48GB of memory. Our CPU is an Intel(R)616

Xeon(R) Platinum 8457C. We utilized PyTorch version 1.13.1 and DGL version 1.1.1.617

F.4 Impact of Noise618

We measure the impact of noise on the graph distribution through the variation of the KL divergence.619

The result is in Table 7, and it can be observed that noise significantly disrupts the graph distribution.620

Table 7: The impact of noise with different budgets on graph distribution.

Noise 10% 20% 30% 40% 50% 60% 70% 80% 90%

KL 0.11108 0.31823 0.54854 0.80690 1.09782 1.43823 2.01607 2.15205 2.40943

F.5 Parameter Setting621

For the base heterogeneous Graph Neural Network, we use Adam [45] as the optimizer, LeakyReLU622

with a negative slope s = 0.2 as the activation function, a learning rate of 1e-4, and a dropout rate of 0623

for Freebase and 0.5 for other datasets. The hidden dimension is set to 256. Our training is performed624

for 100 epochs.625
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G Limitations626

Node Feature Noise. This paper focuses on structural noise. Both denoising variational inference627

and heterogeneous explanation generator are proposed to mitigate the impact of structural noise.628

Therefore, RoHeX cannot be directly used to explain heterogeneous graphs containing feature noise.629

We will extend RoHeX to achieve robustness at the node feature level in future work.630

Dynamic Graph. RoHeX can be used to explain different levels of tasks on heterogeneous graphs631

and can also be applied to homogeneous graphs. Due to the lack of dynamic information extraction632

module, RoHeX cannot be applied to dynamic graphs.633
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Guidelines:820

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.821

• If the authors answer No, they should explain the special circumstances that require a822

deviation from the Code of Ethics.823

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-824

eration due to laws or regulations in their jurisdiction).825

10. Broader impacts826

Question: Does the paper discuss both potential positive societal impacts and negative827

societal impacts of the work performed?828

Answer: [Yes]829

Justification: See Section 1.830

Guidelines:831

• The answer NA means that there is no societal impact of the work performed.832

• If the authors answer NA or No, they should explain why their work has no societal833

impact or why the paper does not address societal impact.834

• Examples of negative societal impacts include potential malicious or unintended uses835

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations836

(e.g., deployment of technologies that could make decisions that unfairly impact specific837

groups), privacy considerations, and security considerations.838

• The conference expects that many papers will be foundational research and not tied839

to particular applications, let alone deployments. However, if there is a direct path to840

any negative applications, the authors should point it out. For example, it is legitimate841

to point out that an improvement in the quality of generative models could be used to842
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generate deepfakes for disinformation. On the other hand, it is not needed to point out843

that a generic algorithm for optimizing neural networks could enable people to train844

models that generate Deepfakes faster.845

• The authors should consider possible harms that could arise when the technology is846

being used as intended and functioning correctly, harms that could arise when the847

technology is being used as intended but gives incorrect results, and harms following848

from (intentional or unintentional) misuse of the technology.849

• If there are negative societal impacts, the authors could also discuss possible mitigation850

strategies (e.g., gated release of models, providing defenses in addition to attacks,851

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from852

feedback over time, improving the efficiency and accessibility of ML).853

11. Safeguards854

Question: Does the paper describe safeguards that have been put in place for responsible855

release of data or models that have a high risk for misuse (e.g., pretrained language models,856

image generators, or scraped datasets)?857

Answer: [NA]858

Justification: This paper poses no such risks.859

Guidelines:860

• The answer NA means that the paper poses no such risks.861

• Released models that have a high risk for misuse or dual-use should be released with862

necessary safeguards to allow for controlled use of the model, for example by requiring863

that users adhere to usage guidelines or restrictions to access the model or implementing864

safety filters.865

• Datasets that have been scraped from the Internet could pose safety risks. The authors866

should describe how they avoided releasing unsafe images.867

• We recognize that providing effective safeguards is challenging, and many papers do868

not require this, but we encourage authors to take this into account and make a best869

faith effort.870

12. Licenses for existing assets871

Question: Are the creators or original owners of assets (e.g., code, data, models), used in872

the paper, properly credited and are the license and terms of use explicitly mentioned and873

properly respected?874

Answer: [Yes]875

Justification: See Appendix F.1 and F.2.876

Guidelines:877

• The answer NA means that the paper does not use existing assets.878

• The authors should cite the original paper that produced the code package or dataset.879

• The authors should state which version of the asset is used and, if possible, include a880

URL.881

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.882

• For scraped data from a particular source (e.g., website), the copyright and terms of883

service of that source should be provided.884

• If assets are released, the license, copyright information, and terms of use in the885

package should be provided. For popular datasets, paperswithcode.com/datasets886

has curated licenses for some datasets. Their licensing guide can help determine the887

license of a dataset.888

• For existing datasets that are re-packaged, both the original license and the license of889

the derived asset (if it has changed) should be provided.890

• If this information is not available online, the authors are encouraged to reach out to891

the asset’s creators.892

13. New assets893

Question: Are new assets introduced in the paper well documented and is the documentation894

provided alongside the assets?895
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Answer: [NA]896

Justification: We does not release new assets.897

Guidelines:898

• The answer NA means that the paper does not release new assets.899

• Researchers should communicate the details of the dataset/code/model as part of their900

submissions via structured templates. This includes details about training, license,901

limitations, etc.902

• The paper should discuss whether and how consent was obtained from people whose903

asset is used.904

• At submission time, remember to anonymize your assets (if applicable). You can either905

create an anonymized URL or include an anonymized zip file.906

14. Crowdsourcing and research with human subjects907

Question: For crowdsourcing experiments and research with human subjects, does the paper908

include the full text of instructions given to participants and screenshots, if applicable, as909

well as details about compensation (if any)?910

Answer: [NA]911

Justification: This paper does not involve crowdsourcing nor research with human subjects.912

Guidelines:913

• The answer NA means that the paper does not involve crowdsourcing nor research with914

human subjects.915

• Including this information in the supplemental material is fine, but if the main contribu-916

tion of the paper involves human subjects, then as much detail as possible should be917

included in the main paper.918

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,919

or other labor should be paid at least the minimum wage in the country of the data920

collector.921

15. Institutional review board (IRB) approvals or equivalent for research with human922

subjects923

Question: Does the paper describe potential risks incurred by study participants, whether924

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)925

approvals (or an equivalent approval/review based on the requirements of your country or926

institution) were obtained?927

Answer: [NA]928

Justification: This paper does not involve crowdsourcing nor research with human subjects.929

Guidelines:930

• The answer NA means that the paper does not involve crowdsourcing nor research with931

human subjects.932

• Depending on the country in which research is conducted, IRB approval (or equivalent)933

may be required for any human subjects research. If you obtained IRB approval, you934

should clearly state this in the paper.935

• We recognize that the procedures for this may vary significantly between institutions936

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the937

guidelines for their institution.938

• For initial submissions, do not include any information that would break anonymity (if939

applicable), such as the institution conducting the review.940

16. Declaration of LLM usage941

Question: Does the paper describe the usage of LLMs if it is an important, original, or942

non-standard component of the core methods in this research? Note that if the LLM is used943

only for writing, editing, or formatting purposes and does not impact the core methodology,944

scientific rigorousness, or originality of the research, declaration is not required.945

Answer: [NA]946
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Justification: This paper does not involve LLMs as any important, original, or non-standard947

components.948

Guidelines:949

• The answer NA means that the core method development in this research does not950

involve LLMs as any important, original, or non-standard components.951

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)952

for what should or should not be described.953
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