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Abstract

Explaining the prediction process of Graph Neural Networks (GNNs) is critical for
enhancing model transparency and trustworthiness. However, real-world graphs are
predominantly heterogeneous and often suffer from structural noise, which severely
hampers the reliability of existing explanation methods. To address this challenge,
we propose RoHeX, a Robust Heterogeneous Graph Neural Network Explainer.
RoHeX begins with a theoretical analysis of how different heterogeneous GNN
architectures amplify noise through message passing. To mitigate this effect, we
introduce a denoising variational inference framework that operates on the graph
structure to extract robust latent representations. Furthermore, RoHeX incorporates
heterogeneous edge semantics into the subgraph generation process and formulates
explanation as an optimization problem under the graph information bottleneck
principle. This enables RoHeX to generate explanations that are both semantically
meaningful and structurally robust. Extensive experiments on multiple real-world
heterogeneous graph datasets demonstrate that RoHeX significantly outperforms
state-of-the-art baselines in terms of explanation quality and robustness to noise.

1 Introduction

Graph Neural Networks (GNN5s) have emerged as powerful tools for learning from graph-structured
data, demonstrating strong performance across domains such as social networks [1I], citation
graphs [2]], and recommender systems [3]. Despite these successes, GNNs remain largely opaque:
their predictions are difficult to interpret, which limits their deployment in sensitive domains involving
fairness, privacy, and security [4} [5].

To address this, GNN explainers aim to reveal the decision rationale behind model predictions by
identifying critical substructures. Existing approaches fall into two categories: post-hoc methods [6]
7,181, which explain a pretrained model without modifying it, and built-in methods [9, 10} [11], which
generate explanations during model training. Post-hoc methods are more flexible and generalizable,
while built-in methods often yield task-specific insights. However, both struggle under complex, noisy
conditions—especially in heterogeneous graphs, which are the norm in real-world settings [12} [13].

Heterogeneous graphs, composed of diverse node and edge types, introduce nontrivial challenges.
Their interwoven semantics and irregular structures complicate subgraph extraction. Moreover,
real-world graphs commonly exhibit noise such as irrelevant or missing edges, which exacerbate the
challenges in achieving robust model explainability [[14}15]. The diversity in distributions, attributes,
and application domains across heterogeneous graphs also limits the generalizability of existing
explainers. While post-hoc methods offer broader applicability, they remain vulnerable to structural
irregularities and noise, which can distort the model’s reasoning process. Moreover, noise amplifies
structural irregularities and shifts node importance, rendering conventional methods that rely on strict
constraints (e.g., subgraph size, connectivity, or budget) ineffective [[16].
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In this paper, we propose RoHeX, a Robust Heterogeneous Graph Neural Network Explainer. First, we
theoretically analyze how noise amplification occurs in heterogeneous GNNs. Second, we introduce
a denoising variational inference module that learns robust latent representations by filtering noise in
the input graph. Third, we design a heterogeneous explanation generator based on relation-aware
attention, which captures the rich semantics across node and edge types. Finally, by integrating the
Graph Information Bottleneck (GIB) principle, we reframe explanation as an information-theoretic
optimization problem to better handle irregular structures. We validate RoHeX’s performance through
extensive experiments on multiple real-world datasets, demonstrating its superior ability to handle
noise and generate high-quality explanations compared to state-of-the-art GNN explainers.

The contributions of this paper are as follows:

* We present the first systematic analysis of how noise interacts with heterogeneity in GNN
explainers, theoretically proving that existing heterogeneous GNNs amplify structural noise
and degrade explainability.

* We propose RoHeX, a robust heterogeneous GNN explainer that integrates denoising
variational inference and a relation-aware explanation generator, effectively modeling het-
erogeneity while suppressing noise during explanation generation.

* Extensive experiments on multiple real-world heterogeneous graphs demonstrate that RoHeX
consistently outperforms existing explainers in both explanation fidelity and robustness
under noisy conditions.

2 Problem Definition

2.1 Heterogeneous Graph

A heterogeneous graph, denoted as G = (A, X, A, R, @), encompasses multiple types of nodes V
and edges &£, where A is the corresponding adjacency matrix, X represents node features, .A denotes
the set of node types, R signifies the set of edge types, and ® represents the set of meta-paths. A
meta-path ¢ € ® is a path of edges connecting various types of nodes from node v; to node v;1,

such as A; R, As Ro Ry A1, where [ denotes the length of the meta-path. The label set of
G is denoted as Y, comprising C categories. Meanwhile, a heterogeneous graph has two mapping
functions ¥ (v) : V — A and p(e) : £ — R that correspond to nodes and edges, respectively.

2.2 Heterogeneous Graph Neural Network Explainer

Given a trained GNN model f as the subject of explanation and a heterogeneous graph G, the
objective of the GNN explainer is to identify the most influential subgraph G; = (A, X, As, Rs).
Here, A, represents the adjacency matrix formed by nodes V, and £ which significantly contribute
to prediction. For the original prediction of GNN model f, it can be formalized as follows:

g = argmax Py (c|]A, X, A, R), )]
ceC
where Pj(-) represents the prediction function of the GNN model f. Current research indicates
that graph structural information is crucial for classification tasks [16}|17]]. Therefore, our RoHeX
focuses on exploring structural noise when generating explanations. The excellent explanation should
contain the most critical information to approximate the predicted labels and outcome changing when
predicting the remaining part of the original graph, which is as follows:

argmax Py (c|As, X, A, Rs) = 0. )
ceC

3 Methodology

Figure [T]illustrates the overall framework of RoHeX. We begin by applying a denoising variational
graph encoder to obtain a robust latent representation of the input graph G. Node embeddings sampled
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Figure 1: The architecture of our proposed RoHeX. First, the denoised node representations are
obtained from the noisy graph via denoising variational inference. Then, the Explainer Network
employs the heterogeneous relation-based importance computation method to obtain the weights for
different edges. The top k percent of edges are selected as important edges to generate the explanatory
subgraph. Finally, the generated explanatory subgraph and the original graph are respectively input
into heterogeneous GNN models to obtain predictions, which are used to compute the loss function.

from the latent structural distribution are used to construct edge representations. These edge features
are then fed into a heterogeneous relation-aware attention module, which estimates the importance
of each edge by modeling the semantics of different edge types. Based on the learned importance
scores, RoHeX generates a compact and informative explanatory subgraph. Finally, the entire process
is optimized under the graph information bottleneck objective, which adaptively promotes structural
sparsity and robustness against irregularities.

3.1 Controllable Structural Perturbation for Heterogeneous Graphs

Real-world graph noise often arises from missing or spurious edges and is typically modeled via
random edge addition or deletion [18| 19} 20]. Building upon this idea, we introduce a controllable
and heterogeneous-aware structural perturbation strategy—a heuristic but flexible method designed to
simulate realistic noise, maintain comparability with prior work, and enable targeted evaluation under
adversarial or highly irregular settings. Notably, this method can be changed into a graph structure
attack method to achieve structural corruption.

For each edge type r € R, we define its deletion rate n;" and false addition rate 7, , which represent
the probabilities of deleting and adding edges of this type, respectively. The perturbed adjacency A,
for edge type r is generated as:

0 with probability nf - %54
Al =<1 with probability ;" - ﬁ (3)

A;; otherwise,

where d] is the degree of node v; under edge type r, and d” = lv—lr‘ > cy, d; denotes the average
degree for type r. This degree-aware perturbation prevents the disproportionate removal of hub-node
edges and limits unrealistic edge additions, thus preserving key graph structure properties. To control
the overall noise intensity, we introduce a global noise budget B, representing the total number of
edges to be perturbed. This budget is allocated across edge types according to their importance
scores:

Sr

em o

&
where s, = [&r] -log |E], “)

B, =B-
€|




100
101

102
103

104

106

107
108

109

110
111
112
113
114
115
116
117
118
119

120
121
122

123

124

125
126
127
128
129
130
131
132
133

134

136
137
138
139
140

with s, capturing both the proportion and diversity of edge type . We then calibrate the edge
type-specific perturbation rates:

Bf B

+ =r_ N =
B L N 1 24 Lt

st. Bf + BT = B,. 5)

Ui

Finally, we provide a theoretical analysis showing how degree-aware perturbation impacts node
connectivity:

Theorem 3.1 (Degree-Aware Perturbation). For node v;, its expected perturbed degree d;; under the
above strategy satisfies:

- (Ml =df) d;®
E[d;]:dﬁ'Z(nr'H—nj' = ).
P d +d 2d

By incorporating degree balance constraints and noise budget allocation, our method simulates
real-world noise more realistically and preserves the structural properties of the original graph.

3.2 Noise Analysis and Denoising Variational Inference

We investigate the impact of noise on different approaches for Heterogeneous Graph Neural Network
(HGNN). We categorize common HGNN into two classes: meta-path-based and neighborhood
aggregation-based methods. Meta-path-based methods typically require defining a meta-path ¢, and
then capturing information along different relations following the meta-path structure, aggregating
this information, such as Paths2Pair [21]] and MAGNET [22]. Neighborhood aggregation-based
methods simultaneously consider the neighbor node types and edge types and use specific aggregation
functions to combine information from different types. Common neighborhood aggregation methods
include MHGCN [23]] and Simple-HGN [24]]. However, these two categories of methods differ in
their efficiency of noise propagation [20], and we find that meta-path-based message passing methods
amplify the impact of noise.

Theorem 3.2 (Noise Amplification Effect in HG). In HG, compared to neighborhood aggregation-
based methods, meta-path-based methods can significantly amplify the effect of noisy edges. Specifi-

cally, for a node v; and a newly added noisy edge e;;, the factor by which its influence changes is
dy, +k
dy, 11
k > d,,, this factor is significantly greater than 1.

where k is the degree of the new neighbor v; under the noise and d,, is the degree of v;. When

The complete proof of Theorem [3.2]is provided in Appendix [D] Based on Theorem 3.2} we employ a
neighborhood aggregation method to encode heterogeneous graph and mitigate noise. Given noisy
graph data G, our objective is to obtain a denoised version of the standard graph data G. VGAE [25]
uses variational inference to derive statistical properties of the graph. The statistical data of latent
variables in VGAE can be efficiently inferred from the latent space rather than the observation space,
which provides robust graph information. For the standard graph G, it initially generates latent
variables Z from a prior distribution p(Z), such as a Gaussian distribution A'(p, 02). Second, the
data G is generated using a conditional distribution p(G|Z). VGAE optimizes its parameters by
maximizing the likelihood of the observed data, which as follows:

KL(qu(Z[9)|lpe(Z19)) + L(¥, 6;G), (©)

where W is the encoder and 6 represents the parameters to be optimized. Then, the evidence lower
bound L(¥, §; G) can be expressed as follows:
po(Z,G)

£(V,0:6) = Eyy i) [log W(Zg)} — E,y 216 logpe(ZI6)] — KL (qu(ZI0)[p(Z). ()

Variational inference enhances the model’s robustness and generalization capabilities [26, 27]]. How-
ever, due to the differing distributions between noisy heterogeneous graph data and standard graph
data, the obtained distribution tends to align with the noisy distribution, potentially misleading the
GNN explainer into generating incorrect explanatory subgraphs. Therefore, we introduce a denoising
module during the process of variational inference. The original encoder part is modified to:

4 (ZIG) = / 44(G16)q(G16)dG. ®)

4
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where W is the encoder based on G, and ¢(G|G) = Hrenq(AAAr). During this process, the
evidence lower bound is expressed as:

po(Z,G)
Li=E, log —/————<]. 9
d qq,(z\g)[og Q<p(z‘g)] ( )

As we need to derive the distribution of the noisy graph data G, this lower bound can be further
refined as:

po(Z,3) { pg(g,Z):|
La=Eq,z/g)[log 7~ =01 > By 8 (26
¢ = Fu@olos i) 2 Paao) [ 75

= Eq, (219 l0g po(912)] — E (g6 [KL(qw (ZIG))|lp(Z))- (10)

The detailed derivation is in the Appendix[E] Compared to VGAE, the denoising variational inference
models the posterior probability p(Z|G) using a Gaussian Mixture Model, whereas VGAE models
p(Z|G) using a Gaussian distribution. Additionally, during the optimization process, there is a
constraint that forces gy (Z|G) to approximate the standard Gaussian distribution p(Z). Consequently,
our method can significantly improve the model’s robustness and produce high-quality graph data.
We further employ the Monte Carlo sampling method to approximate the objective, which can be
effectively optimized using gradient descent as follows:

Z Z log Po\Yr, 4) (Gr,Z (11)
k 1rerR qw Z|'A )

where K is the number of samples sampled during the simulation. After denoising variational infer-

ence, we input the sampled robust representations Z into the Heterogeneous Explanation Generator,

where the complex semantics on the heterogeneous graph are learned. Before delving into that, we
introduce the Graph Information Bottleneck.

3.3 Graph Information Bottleneck

As mentioned in the introduction, noise exacerbates the irregularity of graph structures and alters node
importance. Therefore, previous methods imposing structural regularity constraints on explanatory
subgraphs are infeasible under noise influence. We exploit the Graph Information Bottleneck (GIB)
to enable the explainer network to adaptively handle structural irregularities. The objective of GIB
is to obtain the optimal explanatory subgraph G,. From an information-theoretic perspective, GIB
limits the amount of information carried by the explanatory subgraph G, rather than imposing
simple structural constraints. Simultaneously, nodes may require scattered edges across the graph to
jointly explain their predictive function, rather than constraining connectedness. Consequently, GIB
adaptively explores the entire graph without imposing any potentially biased restrictions. GIB can be

formulated as:

where I(-; -) denotes mutual information, and 5 controls the trade-off between the two terms. Since
the information in G, can be continually optimized, the explain task can be characterized as an
optimization task guided by GIB.

The GIB principle aims to obtain the minimum sufficient information about the graph G. The first
term maximizes the mutual information between the label and the explanatory subgraph, ensuring G,
contains as much information about the label as possible. The second term minimizes the mutual
information between the input graph and the explanatory subgraph, ensuring G, contains the minimum
information about the input graph. Next, we introduce the Heterogeneous Explanation Generator,
describing how each term is optimized during training under the GIB principle.

3.4 Heterogeneous Explanation Generator

We begin by modeling the explanatory subgraph as a Gilbert random graph [28]], where edges are
conditionally independent. Following the literature [[16], we define an adjacency matrix-like edge
matrix E,, where each element e;; is a binary variable indicating whether the edge is included in the
subgraph. When there is an edge (i, j) from v; to v;, e;; = 1, otherwise e;; = 0.
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To capture the rich semantics of heterogeneous graphs, pairwise node interactions alone are in-
sufficient. Thus, we incorporate heterogeneous semantics learning into the explanatory subgraph
generation process. We incorporate heterogeneous edge type information into the attention compu-
tation by extending the standard graph attention mechanism. Specifically, we assign an edge type
embedding r, ) for each edge type ¢(e), and simultaneously utilize the edge type embeddings and
node embeddings to compute the attention coefficient c;;:

exp (ReLU (G/T[WziHsz”WV'T‘P(eij)]))
Zke/\/,: exp (ReLU (GT[WZiHWZkHWT”'tp(Ezk)D) 7

where W, is a learnable weight matrix for type embeddings. Edge type embedding is a one-hot
encoding derived from each edge type. This attention coefficient c;; integrates both heterogeneous
node and edge type semantics, offering a more comprehensive representation.

13)

aij =

Next, we define the heterogeneous random graph variable. The probability of the heterogeneous
explanatory subgraph can be factorized as:

PG =[] plesle(e)), (14)
(4,7)EES

where ¢;; ~ Bern(mj) and m;; is the edge existence probability inferred via «;;. To enable
backpropagation through discrete edge selections, we adopt the reparameterization trick using a
hard-concrete relaxation:

loge —log(1 —¢€) + aij(‘/)(eij))>
T 3
€ ~ Uniform(0, 1),

where 7 is a temperature coefficient to smooth the optimization, and «;; from Eq. E] adds heteroge-
neous information into the explanatory subgraph. When «;; = log we have im, o p(e;; =

€ij = SlngId( (15)

Tij
1771'1']' ’

1) = %, s0 we can obtain the explanatory subgraph Gj since p(e;; = 1) = m;;.

This results in a continuous probability matrix M, € RY*Y | where each entry [My];; = 7;;
denotes the likelihood of including edge (i, 7). We then construct the soft explanatory subgraph:
gs = (AS :Mp®A7XaAS)RS)' (16)

To optimize the explainer, we adopt the Graph Information Bottleneck (GIB) principle, balancing
predictive fidelity and information compression. The GIB objective [I2]is upper-bounded as:

—1(5;G5)+B1UG; Gs) < —Epg, 5 [log pr(91Gs) | +H(9) +BEpg) [KL(pa (Gs1G)19(Gs))], (17)

where f is the GNN model and « is the explain model, see Appendix [E| for detailed derivation. Since
H(%) is constant, the objective function can be expressed as follows:

Lars = —Eyg. ) [1ogps(§1Gs)] + BEyg) [KL(pa(Gs|G)[1a(Gs))]- (18)
The total loss combines the GIB objective with the denoising loss from the variational graph encoder:
L=Ls+ LcIB. (19)

3.5 Complexity Analysis.

The cost of each iteration comprises two parts: (1) the variational inference process and (2) the
heterogeneous explanation generation. The time complexity of the first step is O(N? + E), and the
space complexity is O(IV), as this step requires storing the robust node representations. The time
complexity of the second step is O(FE), and the space complexity is O(E). Therefore, the overall
time complexity of RoHeX is O(N? + E), and the space complexity is O(N + E).

4 Experiment

In this section, we evaluate the performance of the proposed RoHeX and state-of-the-art baselines on
the node classification task. We then analyze the contributions of different components of RoHeX and
demonstrate why RoHeX is robust to noise and capable of generating explanations that incorporate
heterogeneous information.
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Table 1: The comparison of RoHeX and baselines under different ratios of random structural noise.

‘We use bold font to mark the best score. The second best score is marked with underline.

Dataset | Metric | Noise | PGExplainer GNNExplainer PGM-Explainer V-InfoR AMExplainer Hete-PGE xPath RoHeX
10% | 1.2158+0.0062 0.8530+0.0009 1.0704+0.0007 1.1930+0.0030 1.4862+0.0026 0.8719+0.0008 0.8162:+0.0032 | 0.8359-0.0029
20% | 1.2179+0.0089 0.9080+0.0007 1.2046£0.0006 1.1960+0.0025 1.5697+£0.0008 0.88961-0.0005 0.965140.0042 | 0.8743-0.0018

MAE

30% | 1.244940.0059 1.261340.0011  1.3313£0.0002  1.2312+0.0026  1.7133:£0.0006  1.1913+0.0006  1.14054-0.1032 | 0.8827+0.0034
40% | 1.2451£0.0068  1.3389+£0.0008  1.340140.0005  1.2530£0.0010  1.934540.0005  0.9268+0.0006  1.2852+0.0002 | 0.9014:0.0015
DBLP 10% | 1.6775£0.0054 1.2968+0.0006 1.3855+£0.0005 1.6481£0.0027 1.9219+0.0048 1.2814+0.0004 1.3175+0.0020 | 1.2416+0.0017

20% | 1.681540.0666 1.307240.0004  1.5280+0.0003 1.6511+0.0020 2.0419+0.0006 1.2859+0.0002  1.434140.0025 | 1.275040.0013
RMSE | 300, | 1.6999£0.0024 1.847040.0007 1.6497£0.0001 1.6781£0.0020 2.184240.0003 1.6532£0.0003 1.575240.1198 | 1.2792::0.0022
40% | 1.7060+0.0042  1.9043+0.0004  1.66814+0.0001  1.6885+0.0008 2.36164:0.0002  1.310040.0004 1.6819+0.0001 | 1.2889+0.0008
10% | 0.7624+0.0080 0.3449+0.0003  0.2155:£0.0009 0.7639+0.0001  0.3895+0.0005 0.8091:£0.0003  0.3900-£0.0001 | 0.2129-0.0009
20% | 0.7751£0.0162  0.395140.0001  0.3732+0.0003  0.7913+0.0004  0.6746:£0.0224  0.8183+0.0005  0.398540.0003 | 0.2483+0.0010
30% | 0.786740.0152  0.508740.0003  0.5932+0.0006  0.8064:0.0003  0.7077+£0.0221  0.8220+0.0002  0.416440.0012 | 0.3140+0.0019
40% | 0.7913+0.0181  0.6496+0.0002  0.793240.0007  0.8154£0.0005 0.718140.0164  0.831040.0001  0.4292+0.0006 | 0.3163+0.0015
ACM 10% | 1.0258+0.0037 0.6831+0.0005 0.5121£0.0004 1.0145£0.0002 0.6241£0.0003  1.0740=0.0001 0.7750+0.0002 | 0.5662+0.0012
20% | 1.030740.0069 0.779140.0002  0.6893+0.0002  1.0366+0.0004 0.8213+£0.0649  1.0778+0.0004  0.745840.0003 | 0.6177+0.0008
RMSE | 300, | 1.0423£0.0127 0.950620.0001 0.8793£0.0004 1.0705£0.0007 0.84120.0698 1.0731£0.0001 0.776820.0009 | 0.6669-£0.0013
40% | 1.0431+0.0124  1.1306+0.0002  1.0766+0.0004  1.0786+0.0003  0.847440.0713  1.0856+0.0001  0.8396+0.0007 | 0.6909+0.0008
10% | 0.7189£0.0096 0.9012+0.0002 0.9190-£0.0003  0.5957+0.0322  0.9312+0.0004 0.7760-£0.0007  0.9006-:0.0127 | 0.3885-0.0010
20% | 0.723740.0078  0.910840.0003  0.9401£0.0001  0.6822+0.0527  0.9709+£0.1209  0.7812+0.0005  0.924740.0092 | 0.4441+0.0012

MAE

MAE | 300 | 0.7285+0.0041 0.9126:+0.0003 0.953040.0004 0.7249+0.0329 1.0089:£0.1651 0.7908+0.0003 0.9263:0.0043 | 0.4694--0.0021
40% | 0.7370+0.0019  0.9378+0.0007  0.958740.0009  0.7894£0.0111  1.053140.0005  0.80304:0.0001  0.9301+0.0061 | 0.4880-:0.0014
Freebase 10% | 1.0616+0.0071 1.2886+0.0001 1.243240.0001 1.0375£0.0233  1.2589+0.0004 1.1064=0.0003 1.2466+0.0056 | 0.8251+0.0018

20% | 1.063540.0051 1.298340.0002  1.2549+0.0001  1.1172+0.0566  1.2987+0.1848  1.1117£0.0004 1.243540.0108 | 0.8854+-0.0010
RMSE | 309% | 1.06892£0.0039 1.2995+0.0002 1.2747+0.0002 1.1487+0.0277 1.3391£0.2381  1.1200£0.0002  1.2721+£0.0034 | 0.9035+0.0012
40% | 1.0803+0.0018 1.321740.0005 1.2838+0.0004  1.1929£0.0054  1.383040.0004 1.13154+0.0001  1.264340.0072 | 0.9217+0.0007

4.1 Experiment Settings

Datasets and Baselines. We evaluate the effectiveness of our RoHeX on three real-world datasets,
including two academic citation datasets (DBLP and ACM) and a knowledge graph dataset (Freebase).
Since there are no existing robust heterogeneous explainer, we select three types of baselines: the
surrogate method PGM-Explainer, the perturbation-based methods GNNExplainer, PGExplainer and
AMExplainer, and the V-infor method studying robustness on homogeneous graphs. We used the
heterogeneous graph path explainer, xPath, and extended our Heterogeneous Explanation Generator
to PGExplainer, referred to as Hete-PGE, for comparison.

Evaluation. The evaluation of explainer performance is based on the generated explanatory sub-
graphs, assessing their contribution to the original prediction. We adopt two metrics: fidelity and spar-
sity. Fidelity measures the decrease in prediction confidence after removing the explanation from the
input graph, while sparsity measures the ratio of remaining edges in the explanatory subgraph G, rela-

tive to the input graph. We use the Mean Absolute Error (MAE, % 511 ’H(@l =) =157 = y:)])s

2
and Root Mean Squared Error (RMSE, \/ % vazl (I[(g, =y) — ]I@gs — y7)> ) as proxy measures

for fidelity, and compare the performance of different baselines across varying sparsity levels, where
N is the number of nodes or graphs, §; is the original prediction result, and §;* is the prediction
result obtained by the explanatory subgraph.

Implementation Details. We conduct experiments under different proportions of random noise
scenarios. Noise is added to both the training set and the test set to restore the real scene. To ensure
randomness, the deletion rate and false addition rate are set to be equal. For the baselines, we select
the best-performing parameters for heterogeneous datasets based on the original settings. We chose
the most basic HGNN architecture, which only includes GCN [29] and relational learning modules,
as the base model for fair comparison. For our RoHeX, we use Adam as the optimizer with a learning
rate of le-4. We set the hidden dimension for variational inference to 64, the output dimension to
32, and the edge weight output dimension to 32. Each experiment is repeated 5 times, and we report
the mean and variance as the results. Descriptions of the variance, datasets, baselines, base HGNN
model architecture, and parameter settings are provided in the Appendix [F|

4.2 Overall Performance under Structural Perturbations

Table [I] shows the experimental results on the heterogeneous graphs with different budgets of
structural perturbations. We find that RoHeX outperforms other baselines in most experimental
results, achieving the best performance on the DBLP and Freebase datasets. Taking 30% noise ratio as
an example, RoHeX shows 25.9% lower MAE and 22.4% lower RMSE than the second-best method
on the DBLP dataset, 38.2% lower MAE and 24.1% lower RMSE on the ACM dataset, and 35.2%
lower MAE and 15.4% lower RMSE on the Freebase dataset. xPath performs excellently in multiple
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Figure 2: Fidelity-Sparsity Curve on the DBLP  Figure 3: Ablation study on three datasets and
dataset. The first row is the result without noise,  the influence of hyperparameters 7 and 3 on
and the second row is the result with 20% noise =~ RoHeX.

budget.

scenarios, indicating that designing corresponding modules for heterogeneous graphs is essential. We
can observe that Hete-PGE achieves second best performance multiple times on the DBLP dataset
and outperforms many baselines on other datasets, demonstrating the effectiveness of our proposed
heterogeneous explanation generator in considering rich semantics on heterogeneous graphs. Due
to the similar edge type distribution in the DBLP dataset, the dataset exhibits higher heterogeneity,
which enhances the module’s ability to capture heterogeneous information. Simultaneously, as a
plug-and-play module, it can be conveniently extended to other parameterized explanation methods
for generating explanations on heterogeneous graphs. On the medium and small-scale datasets DBLP
and ACM, explanation methods based on raw features (e.g., GNNExplainer) are more susceptible
to noise, potentially because raw features are more easily affected in smaller graphs. Since RoHeX
generates robust graph representations, it can better mitigate the influence of noise, which is also why
the latent representation-based explainer V-InfoR performs well in multiple scenarios. Under the
guidance of GIB, our method can adaptively select important edges while excluding redundant and
noisy edges, thereby generating the best explanations for the prediction model.

4.3 Fidelity-Sparsity Analysis

Next, we further investigate RoHeX’s performance at different sparsity levels. We provide the
Fidelity-Sparsity curve on the DBLP dataset as shown in Figure 2] RoHeX consistently outperforms
other baselines across all sparsity levels, indicating that our method can generate the best explanations.
As the sparsity increases from O to 1, the overall trend of all curves is downward, i.e., decreasing
error. When the sparsity is extremely low, e.g., 10%, our method significantly outperforms other
baselines, suggesting that RoHeX can identify the truly critical subgraphs. We further find that
although the overall performance improves as the sparsity level increases, there are still some cases
where the performance drops with increasing sparsity, such as PGExplainer. We conjecture that this
may be because in the subgraph generation process, when the sparsity increases to a point where all
edges with high importance scores have been selected, forcing higher sparsity will begin to select
unimportant edges, which can be viewed as noisy edges, leading to degraded performance. As the
sparsity continues to increase, this adverse effect is offset. Since AMExplainer and xPath contain
specific Sparsity settings to generate explanations, they were not included in the experiment.

4.4 Model Analysis

Perturbation Performance We analyze the perturbation performance of controllable structural
perturbation for heterogeneous graphs under different noise scenarios, as shown in Table[2} Compared
to the original results, our structural perturbation method significantly impacts the decision-making
process of HGNN on the whole graph (Noisy), 1-hop subgraph (1-hop), and 2-hop subgraph (2-hop).
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Table 2: Prediction performance of HGNN in different noise scenarios.

10% 20% 30% 40%
Dataset Method Micro-F1  Macro-F1 ~ Micro-F1  Macro-F1 ~ Micro-F1 ~ Macro-F1 ~ Micro-F1 =~ Macro-F1
Original ~ 92.64 92.16 92.64 92.16 92.64 92.16 92.64 92.16
Noisy 81.58 80.34 73.41 70.26 67.18 62.02 62.99 5591
DBLP 1-hop 57.28 55.92 54.22 52.40 52.18 49.98 50.56 48.40
2-hop 57.64 55.65 42.07 38.55 41.76 38.06 39.01 34.01
Original 9232 92.40 92.32 92.40 92.32 92.40 92.32 92.40
Noisy 33.52 19.28 33.28 18.82 31.96 16.14 31.96 16.14
ACM 1-hop 77.10 77.31 76.39 76.51 75.40 75.57 67.94 67.81
2-hop 52.19 51.73 49.12 50.65 4238 36.42 38.73 30.07
Original  68.99 63.57 68.99 63.57 68.99 63.57 68.99 63.57
Noisy 67.89 61.90 66.05 59.29 62.94 53.74 57.50 46.02
Freebase  |_hop 58.52 53.23 57.62 51.94 57.50 51.21 57.01 51.14
2-hop 44.66 31.12 42.90 27.24 41.10 24.15 39.46 21.62

An interesting finding is that 30% noise is enough to cause the performance of HGNN on the ACM
dataset to drop to its lowest.

Ablation Study We investigate the contributions of different components in RoHeX. Specifically,
we study (a) the effectiveness of the denoising variational inference module, and (b) the effectiveness
of the relation-based importance module. We use *w/o VI’ to denote the model without the denoising
variational inference module, and w/o Re’ to denote the model without the relation-based importance
module. For the latter case, we replace it with the common concatenation operation, i.e., a;; =
MLP(z;,z;]). The experiments are conducted under 20% noise budget, and the first row of Figure
shows the results after ablation. We find that without the denoising variational inference module,
the model relies on the original features and graph structure for prediction, failing to mitigate the
influence of noise, leading to performance degradation. When the model loses the ability to learn
heterogeneous relationships, the process of generating explanation subgraphs struggles to recognize
the complex semantics in heterogeneous graphs. All edges are treated as the same type, and the
model explains solely based on node interactions. This demonstrates the necessity of our proposed
relation importance module.

Hyperparameter Analysis We further analyze the impact of two parameters 7 and /5 on model
performance. 7 controls the approximation degree of e;; distribution to the Bernoulli distribution,
ranging within [0.1,0.5]. § balances the information recovery strength and information filtering
strength in the optimization objective, and we select values from {0.3,0.5, 1,2, 3}. The second row
of Figure [3| shows the effects of these hyperparameters on RoHeX across three datasets. We can
observe that the best results of 7 all appear around 0.3. That is, when 7 = 0.3, the continuity and
approximation degree in Eq. [I5]reach the best trade-off. Secondly, RoHeX is not very sensitive to 3
that controls the constraint strength in Eq. [I8] validating that our used GIB constraint can adapt to
different data scenarios and achieve superior performance.

5 Conclusion

In this work, we focus on the problem of explaining heterogeneous graph neural network under
noise. We are the first to study this problem, theoretically proving that heterogeneous graph neural
network have an amplifying effect on noise, and propose RoHeX to mitigate the influence of
noise and obtain explanatory subgraphs based on heterogeneous relations. Specifically, RoHeX
employs denoising variational inference to obtain robust graph representations and parameterizes the
explanatory subgraph generation process with heterogeneous semantics. It integrates type information
to capture the complexity of diverse node and edge types. Extensive experiments on real-world
datasets demonstrate RoHeX’s superiority over other state-of-the-art baselines. For future work, we
plan to further extend RoHeX to dynamic graphs by incorporating dynamic information into the
explanation generation process, further broadening RoHeX’s applicability.
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A Related Work

GNN Explainability. Recently, various approaches have been proposed to explain the predictions
of GNN, these approaches can be categorized into post-hoc and built-in method. Common post-hoc
methods include perturbation-based [6, [30] and surrogate model-based [7} 8] approaches. Mixu-
pExplainer [31] extends the existing GIB framework by introducing label-independent subgraphs
during the sampling of explanation subgraphs, thereby obtaining explanations while mitigating the
distribution shift phenomenon. GNNEXxplainer [32] learns masks for features and edges by optimizing
the masks to obtain the optimal explanation. PGExplainer [16]] employs a parametric neural network
approach to learn the importance of each edge and ultimately selects edges with high importance
scores to construct the explanatory subgraph. PGM-Explainer [33]] adopts a Bayesian network formu-
lation, naturally expressing the dependencies between nodes in the form of conditional probabilities.
Common built-in methods include prototype learning-based [9,[10]] and graph generation-based [[11]]
approaches. PGIB [9] integrates prototypes into the Graph Information Bottleneck framework, allow-
ing it to learn prototypes based on key subgraphs in the input graph, thereby providing a more accurate
explanation of the prediction process. GOAt [34] generates explanatory subgraphs by decomposing
the model’s output into a series of scalar products involving node and edge features, and calculating
the contribution of each feature to these scalar products, thereby highlighting the edges that are
important for the prediction outcome. xPath [35] provides fine-grained explanations by identifying
cause nodes and their influence paths through a novel graph rewiring algorithm, thereby offering
detailed insights into how specific nodes affect model predictions. AMExplainer [36] leverages ad-
versarial networks to optimize for both sparsity and prediction accuracy in explanations, significantly
enhancing the clarity and efficiency of model interpretability.

Heterogeneous Graph Neural Networks Heterogeneous Graph Neural Networks can be catego-
rized into meta-path-based methods and neighborhood aggregation-based methods. Meta-path-based
methods typically decompose heterogeneous graphs into multiple homogeneous subgraphs using
predefined meta-paths, thereby capturing specific types of heterogeneous semantics. Message passing
is then performed within each subgraph, and the messages are subsequently aggregated. Common
methods in this category include HAN [37]], MAGNN [38]], and SeHGNN [39]]. On the other hand,
neighborhood aggregation-based methods usually aggregate information directly from neighbors and
apply specific aggregation strategies based on node types. Examples of methods in this category
include RGCN [40], NARS [41], and Simple-HGN [24].

B Proof of Theorem 3.1

Let node v;’s original degree under edge type r be denoted as d}. The deletion rate for edge type r is
n,", and the false addition rate is 7,". The average degree for edge type r is defined as:

> odr (20)

1€V,

where V), represents the set of nodes involved in edge type r. For node v;, the expected number of
edges deleted under edge type r is:

IV\

d; +d’
E[Ad] -7 21
N T 1)
JEN-(7)
where N,.(i) represents the set of neighbors of node v; under edge type . Assuming the degree
distribution of neighbors is uniform, it can be approximated as:

di +d"
E[Ad! ]~ d} -nt - e 22
[Adi ]~ di -y =5 (22)
Further simplification gives:
r2

E[Ad] ]~ nt - 5 (23)

For node v;, the expected number of false added edges under edge type r is:
E[Ad; _ 24
Z 777" 7“ + dT‘ ( )

JEN(9)
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Assuming the degree distribution of non-neighbor nodes is uniform, it can be approximated as:

i T - 1

BIA; ]~ (Vi =) 1 g 25)

For node v;, the total degree change across all edge types is:
E[Ad] = > (E[Ad] _] - E[Ad],]) (26)

reR
Substituting the above results, we get:
— (W =) d;?

E[Ad;] = R 27
[Ad;] Z(n e Y 27)

reER
The expected degree of node v; after perturbation is:
E[d)] = d; + E[Ad,] (28)
Substituting the expression for E[Ad;], we get:

(Wl =dp) dr?
E[d}] = d; A= d) 29
) =di + ) (m R er) (29)

reER

To maintain the degree distribution characteristics of the graph, we introduce a degree-balancing
constraint, which states that the expected degree after perturbation should be as close as possible to
the original degree. Specifically, we require:

|E[d}] — d;] < e (30)

where € is a small constant representing the allowed degree deviation. By adjusting the deletion rate
;" and false addition rate 7, , we can satisfy this constraint.

The above derivation shows that the degree-balancing constraint can effectively control the impact of
noise injection on the graph structure. For high-degree nodes, the deletion rate 7, has a larger weight
gd} , thereby reducing the number of edges to be deleted. For low-degree nodes, the false addition
rate 77, has a larger weight ﬁlﬂl}’ thereby increasing the number of edges to be added. This design
ensures that the perturbed graph structure maintains degree distribution characteristics similar to the
original graph, thereby improving the reasonableness of noise injection.

Table 3: Statistics of the graphs before and after perturbation.

Dataset | Budget | Ad IS Divergence

10% | 0.0831 0.0875
20% | 0.8337 0.0905
DBLP 30% 1.7506 0.1114
40% | 2.6675 0.1407
10% | 4.0125 0.2156
20% | 9.0189 0.2126

ACM 30% | 14.0254 0.2131
40% | 19.0318 0.2188

10% | 0.6556 0.2029
20% | 03112 0.1516
Freebase | 309 | 0.0332 0.1167
40% | 0.3776 0.0897

C Effectiveness of Controllable Structural Perturbation and Theorem 3.1

We propose controllable structural perturbation on heterogeneous graphs to simulate real-world
noise. Our focus is on statistical perturbation effects rather than individual node changes. The
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Table 4: The performance of RoHeX under different distribution perturbations.

10% 20% 30% 40%
Dataset  Budget — \jAp RMSE MAE RMSE MAE RMSE MAE RMSE

Uniform 0.7940  1.3462 0.8877 13708  0.9391 1.4185 0.9486  1.3891
DBLP Real 0.8359  1.2416 0.8743 1.2750  0.8827 1.2792 0.9014  1.2889
Difference  5.01% -842% -1.53% -751% -639% -1089% -524% -1.77%

Uniform 0.2225  0.5648 0.2544 0.5986  0.3362 0.7516 0.3743  0.7333
ACM Real 02129  0.5662 0.2483 0.6177  0.3140 0.6669 0.3163  0.6909
Difference  -4.51% 025% -246% 3.09% -1.07% -12.710% -18.34% -6.14%

Uniform 0.4331 0.7906 0.4564 009125 0.5186 0.9758 0.5247  0.9818
Freebase Real 0.3885  0.8251 0.4441 0.8854  0.4694 0.9035 0.4880  0.9217
Difference -11.47% 4.18% -2.78% -3.06% -10.48% -8.01%  -7.51% -6.53%

uniform assumption was introduced to simplify the derivation, a practice widely adopted in prior
works [42] 43]]. Assuming uniform distribution effectively captures perturbation impacts. To further
validate this, we analyzed the degree distributions of the DBLP, ACM, and Freebase datasets before
and after perturbation, as shown in Table[3| The results indicate that our method achieves significant
noise effect while only slightly altering the degree distribution (with JS divergence < 0.22), as
demonstrated in Table 2] of the main text.

Additionally, we conducted experiments comparing the performance of the explainer under the
uniform assumption and the actual degree distribution. The results, presented in Table ] confirm
that the uniform assumption has minimal impact on model performance compared to using the real
distribution.

D Proof of Theorem 3.2

In Graph Neural Network, a node representation is typically updated by aggregating information
from its neighboring nodes. This process can be described as a message passing mechanism, where
each node receives messages from neighboring nodes and updates its representation based on these
messages. To avoid cases where the influence is overly amplified during the aggregation process, the
messages from neighboring nodes are typically normalized. A common normalization approach is
to multiply each neighbor message by the inverse of its degree. Assuming that each node influence
on neighbors is equal, a higher-degree node will distribute its influence evenly among all neighbors.
Therefore, the influence received by each neighbor should be proportional to the inverse of the node
degree. In contrast, in random walk models, the transition probability between nodes is inversely
proportional to the node degree. That is, the probability of a node reaching a particular neighbor is
the inverse of its degree.

Given a heterogeneous graph G, let v; be a node with degree d,,,. A noisy edge e;; is added to the
graph, where v; is a new neighbor with degree d,,; and k specific-type neighbors that match a given
meta-path ¢.

For meta-path-based methods:

(a) Before adding the noisy edge, the influence of v; is assumed to be a combination of the
influences from its d,,, existing neighbors vy, va, ..., Ud,, in G. The influence of each neighbor v,, on
v; can be represented as:

dy,
1
Lot =) = (31)
n=1 Vi

(b) After adding the noisy edge (v;, v;), v; is directly connected to v;, and the influence of v;
will propagate to its & neighbors. The influence on each neighbor of v; changes in the following
manner v;:

d.

: 1 k dy, k dy. +k
Lyewt = S . 32
newl ;dvi+1+dvi+1 d,,i+1+d,w+1 dy +1 (32)
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Figure 4: The illustrative example for noise against HGNNs on Movie-Director graph.

For neighborhood aggregation-based methods:

(a) Before adding the noisy edge, the influence on the direct neighbors of v; is given by:

dUi

L=y 33)

(b) After adding the noisy edge (v;, vj), the neighbors of v; increase to d,,; + 1, and the influence
on each of its neighbors changes to:

dy,; +1 1
Inew2 = Z dvv 1 (34)
n=1 H

The multiplicative relationship £ of the influence propagation between the meta-path-based method
and the neighborhood aggregation method is:

Lnewt dv; +h
g _ Lorit _ d7’z‘+1 _ dvqﬂ + k‘ (35)
= T =
Loz 1 dv; +1

Consequently, when k£ > d,,,, the multiplicative factor ¢ is significantly greater than 1. This indicates
that in general heterogeneous graphs, meta-path-based approaches are far more susceptible to the
influence of noisy edges compared to neighborhood aggregation-based approaches. This substantiates
that meta-path-based methods can significantly amplify the effect of noisy edges to a greater extent
than neighborhood aggregation methods.

We also provide the illustrative example for noise against HGNNs on Movie-Director graph in
Figure ] The meta-path used is M-D-M. In neighborhood aggregation-based HGNNG, the noise-
introduced nodes are not directly considered as 1-hop neighbors of M;. Consequently, under the
influence of noise, the 2-hop neighbors M3, My, M; can only affect M; through the 1-hop neighbor
D3. However, in meta-path-based HGNNSs, all neighbors under the M-D-M meta-path are aggregated
with equal weight %, thereby enlarging the effect of the noisy edge (M7, D3) to g (the total weight
of the noisy neighbors Ms, My, Ms).

E Detailed Derivation

First, we give the detailed derivation of Eq. [/} We introduce the Kullback-Leibler (KL) divergence.
The KL divergence is a measure used to quantify the difference between two probability distributions.
Let us consider two continuous random variables with probability distributions P and (), and their
corresponding probability density functions denoted as p(x) and g(z), respectively. If we aim to
approximate p(z) using g(x), the KL divergence can be expressed as:

KL(P||Q) = /p(m)log Zg;dx. (36)
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Because the logarithmic function is convex, the value of KL divergence is nonnegative. Then, Eq.[7]

can be written as:

L(¥,0,G) =

pe(%,9)
qv(Z|G)

]

Eqq (210) log 2
p(Z) 2
qv(Z|G)

KL(%(ZIQ)IIP(Z))

37
= Eyy (z)g)[log pe(Z[G) - (37)

= Eyy (z/9)log po(Z|G)] —

se4 Second, the lower bound of denoising variational inference in Eq.[T0]can be derived as:

565

566

Lqi=E

= Ey;, (z|6)[log po(G|Z) + log p(Z) —

:]Eq&,

=E,

:]EZI(I,

¢, (2|6) [log

po(Z,G)
7y (Z[G)

p@(ga Z):|
>E, log —/———=

log qu (Z|G)]
(z|9)1

(38)

zi)[log po(G|Z)] — Eqy, (z)0) [log @)

qu(Z[G)
zi9)[log pe(G1Z)] — E, 16/ Equ (zi0) llog o(Z) ]

(219108 po(G1Z)] — E g6 [KL(qw (ZIG))||p(Z)).

Third, we derive an upper bound for GIB in Eq.[T7] We decompose the mutual information:

(y;gs) = y7gé) |:10g (

p(9,9s)

10(Ga))” 39

] 1(G;Gs) = Epg.0.) [10g ;Z(gg)]’j‘ggz)} :

The GIB objective can be written as:

—1(9;Gs) + BL(G; Gs)

= *Ep(@,gg

= —Ep)Epgi9.) {10%

—Ep.6.) 1

—Ep.6.) |log

y,gs p(g, Qs))}

]JrﬂEp(ggs {1g 2 O)p(C

<y|g> (©G.) P(G.1G)p(G)
2(9)p(G2) }”EP@’Q” {I‘Jg P(G)p(G a}

[ p(yl9s) p(Gs|G)
o8 =) ] PEn(a6.) [Og p(gg}
p(31G:)

»(9) ] +5EP(9 P(Gs19) [IOg

(40)

p(gslg)}
p(QS) .

s67  Using Jensen’s inequality and assuming that p¢(g|G,) is an approximation of p(|Gs), we can get:

568

569

—Ep6.)Epgi6.) {bg

We introduce explain models:

BEL6)Ep(g.19) [10g
=Ep9)Epg.19) [log

= Epg)Ep(g.19) [bg

The second term is the KL divergence:

Ep6)Ep.19) {10%

(y(lyg;)] < —Ep6.)Epegic.)[logps (91Gs)] — Epg)log p(9)] @1
= —Eyg..9) log ps(91Gs)] + H(y).
p(Gs |g>}
p(Gs)
pal(0sl9)  p(G,I9)
2(G) pa(gsw)] 42)
pa(gs|g) p(g8|g)
»(G.) ] B0 Eog.10) [log pa(gsw)} ‘
p(gs|g) _
o (gsg)} By gy [KL((G|0)1pa(G5]6))] > 0. @)
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16:6:) < Byio By 108 P25 | = By IKLa (00N aG)] . 49

Combined with our previous derivation of the first term, we can get:
—1(9;G5)+B1(G; Gs) < —Ep(g, 5 [10g s (91Gs)] +H(9)+BEp(g) [KL(pa (Gs19)1la(Gs))] - (45)

F Experiment Supplement

Table 5: Statistics of Datasets.

Dataset | DBLP ACM  Freebase

Nodes 26,128 10,942 43,854
Edges 239,566 547,872 151,034

Node Types 4 4 4
Edge Types 6 8 6
Classes 4 3 3

F.1 Datasets

We conduct experiments on three real-world datasets. According to the Heterogeneous Graph
Benchmark [24]] settings, we randomly split the nodes with proportions of 24%, 6%, and 70% for
training, validation, and testing, respectively. The statistics of the three datasets are shown in Table 5]

. DBLPF_-] is a computer science bibliography network that contains four types of nodes: Paper
(P), Author (A), Term (T), and Venue (V). The authors in this network are from four research
areas (Database, Data Mining, Artificial Intelligence, and Information Retrieval).

. ACME]is a citation network that contains four types of nodes: Paper (P), Author (A), Term
(T), and Subject (S). The papers in this network are divided into three classes (Database,
Wireless Communication, and Data Mining).

* Freebase [44] is a knowledge graph that contains four types of nodes: Movie (M), Actor
(A), Director (D) and Writer (W).

F.2 Baselines
Next, we provide details on the baselines used in our experiments.

* PGExpaliner [16] is a parameterized explainer that learns a mask for each edge to obtain
edge importance scores.

* GNNExplainer [32]] maximizes the mutual information between the model’s prediction on
the original input and the masked input by masking features and edges.

* PGM-Explainer [33] employs a Bayesian network-based approach, treating vertices in the
input graph as random variables to fit the GNN model’s predicted label.

* V-InfoR [3] utilizes a parametric method, learning edge masks on the latent representations
to identify important edges.

* AMExplainer [36] optimizes GNN explanations by leveraging adversarial networks to
achieve both sparsity and prediction accuracy, ensuring compact and faithful explanation
sets.

* Hete-PGE is an extension of PGExplainer, where we replace the initial concatenation with
a relation-based attention learning module to enable learning of heterogeneous semantics.

» xPath provides fine-grained explanations by identifying causal nodes and their influence
paths through a novel graph rewiring algorithm, offering detailed insights into the model’s
decision-making process.

"https://dblp.uni-trier.de
*http://dl.acm.org/
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F.3 Base Heterogeneous Graph Neural Network

Table 6: Node classification result using our heterogeneous Graph Neural Network.

Dataset | DBLP ACM Freebase

Micro-F1 | 92.64+0.14 92.32+0.12 68.99+0.20
Macro-F1 | 92.16+0.19 92.40+£0.11 63.57+0.36

In the experiment, we use a basic heterogeneous Graph Neural Network, which encodes the input
graph through 2 layers of GCN, and then used a layer of attention learning module to learn different
heterogeneous relations. For a heterogeneous graph, the feature spaces of different types of nodes are
usually different. We use a mapping function to map the features of different types into a common
feature space, as shown below:

2, = W, x2 + b, (46)

where A € A is the node type of node v, W, is a learnable weight, and b, is the bias. Then, in the
shared space, we use GCN to obtain the node embeddings:

z" = GCN(z'~Y,A), 20 = Z,. 47)

To learn the heterogeneous semantics of the heterogeneous graph, we introduce a type vector -y, and
learn relation information through an attention module:

{I:W(I 75 k:Wk B
’Yz 7‘7 ’YJ 7"7] (48)

Y Ak
score;; =Y, 75,

where W4 and WF are learnable weights. The attention of the nodes can be computed as follows:
¢ = Wyzi kj = Wiz,
exp(LeakyReLU(a”[g; || k;])) (49)
> jren; exp(LeakyReLU(a”[g; || kjr]))”

where W7 and W are learnable weights. The final prediction can be expressed as:

Oéij =

yA

i)

Z\") — LayerNorm(Z{\ ™" + score;; - Z), (50)
- I
v =pPyz:06,).

where 0,, is the parameter of the predictor. The basic prediction results are shown in Table @

score;j = Q;j + Bscore

The experiments are conducted on an L20 GPU with 48GB of memory. Our CPU is an Intel(R)
Xeon(R) Platinum 8457C. We utilized PyTorch version 1.13.1 and DGL version 1.1.1.

F.4 Impact of Noise

We measure the impact of noise on the graph distribution through the variation of the KL divergence.
The result is in Table[/] and it can be observed that noise significantly disrupts the graph distribution.

Table 7: The impact of noise with different budgets on graph distribution.

Noise | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%
KL | 0.11108 | 0.31823 | 0.54854 | 0.80690 | 1.09782 | 1.43823 | 2.01607 | 2.15205 | 2.40943

F.5 Parameter Setting

For the base heterogeneous Graph Neural Network, we use Adam [45]] as the optimizer, LeakyReLU
with a negative slope s = 0.2 as the activation function, a learning rate of le-4, and a dropout rate of 0
for Freebase and 0.5 for other datasets. The hidden dimension is set to 256. Our training is performed
for 100 epochs.
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G Limitations

Node Feature Noise. This paper focuses on structural noise. Both denoising variational inference
and heterogeneous explanation generator are proposed to mitigate the impact of structural noise.
Therefore, RoHeX cannot be directly used to explain heterogeneous graphs containing feature noise.
We will extend RoHeX to achieve robustness at the node feature level in future work.

Dynamic Graph. RoHeX can be used to explain different levels of tasks on heterogeneous graphs
and can also be applied to homogeneous graphs. Due to the lack of dynamic information extraction
module, RoHeX cannot be applied to dynamic graphs.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Appendix

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix [B] [D] and [E]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[4.T]and Appendix [F.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22



740 Answer:

741 Justification: The code will be open-sourced after the paper is accepted.

742 Guidelines:

743 * The answer NA means that paper does not include experiments requiring code.

744 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
745 public/guides/CodeSubmissionPolicy) for more details.

746 * While we encourage the release of code and data, we understand that this might not be
747 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
748 including code, unless this is central to the contribution (e.g., for a new open-source
749 benchmark).

750 * The instructions should contain the exact command and environment needed to run to
751 reproduce the results. See the NeurIPS code and data submission guidelines (https:
752 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

753 * The authors should provide instructions on data access and preparation, including how
754 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
755  The authors should provide scripts to reproduce all experimental results for the new
756 proposed method and baselines. If only a subset of experiments are reproducible, they
757 should state which ones are omitted from the script and why.

758 * At submission time, to preserve anonymity, the authors should release anonymized
759 versions (if applicable).

760 * Providing as much information as possible in supplemental material (appended to the
761 paper) is recommended, but including URLSs to data and code is permitted.

762 6. Experimental setting/details

763 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
764 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
765 results?

766 Answer: [Yes]

767 Justification: See Appendix [F.Iand [F35]

768 Guidelines:

769 * The answer NA means that the paper does not include experiments.

770 * The experimental setting should be presented in the core of the paper to a level of detail
771 that is necessary to appreciate the results and make sense of them.

772 ¢ The full details can be provided either with the code, in appendix, or as supplemental
773 material.

774 7. Experiment statistical significance

775 Question: Does the paper report error bars suitably and correctly defined or other appropriate
776 information about the statistical significance of the experiments?

777 Answer: [Yes]

778 Justification: See Section 4.2

779 Guidelines:

780 » The answer NA means that the paper does not include experiments.

781 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
782 dence intervals, or statistical significance tests, at least for the experiments that support
783 the main claims of the paper.

784 * The factors of variability that the error bars are capturing should be clearly stated (for
785 example, train/test split, initialization, random drawing of some parameter, or overall
786 run with given experimental conditions).

787 * The method for calculating the error bars should be explained (closed form formula,
788 call to a library function, bootstrap, etc.)

789 * The assumptions made should be given (e.g., Normally distributed errors).

790 * It should be clear whether the error bar is the standard deviation or the standard error
791 of the mean.

23


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

792
793
794

795
796
797

798
799
800

801
802
803

804

805

806

807

808
809

810
811

812
813
814

815

816
817

818

819

820

821

822
823

824
825
826

827
828

829

830

831

832
833
834
835
836
837
838

839

841
842

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [F.3]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We comply.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Section[I]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Appendix [FT]and [F.2]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: We does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: This paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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