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Abstract

Event studies have garnered widespread atten-001
tion in academic research due to their signifi-002
cant impact on asset prices, playing a crucial003
role in both risk management and the under-004
standing of market dynamics. However, exist-005
ing methods face notable challenges. One such006
issue is the lack of effective multimodal align-007
ment schemes, with many approaches relying008
on discretizing time series data when aligning009
it with language modalities. This often leads010
to the loss of valuable information, as continu-011
ous frameworks are better suited for capturing012
the dynamic nature of market behavior and ac-013
curately tracking rapid shifts in asset prices,014
as demonstrated by extensive theoretical and015
empirical work. Additionally, these methods016
struggle to model the inherent randomness of017
financial systems. To address these challenges,018
we introduce a Multimodal Latent Diffusion019
model specifically designed for event-driven020
asset pricing. Our approach integrates textual021
representations of sudden events with finan-022
cial time series in a continuous latent space,023
preserving subtle temporal variations and fully024
leveraging the rich semantic cues embedded025
in the event-related text. Through comprehen-026
sive experiments and case studies, we demon-027
strate that our method consistently enhances028
predictive accuracy for event-driven asset pric-029
ing, while also expanding practical applications030
for risk management.031

1 Introduction032

Fama’s efficient market hypothesis reshaped fi-033

nance (Fama, 1970). Since then, asset pricing has034

evolved from modeling stable risk - return rela-035

tionships to deciphering how markets digest un-036

foreseen shocks. The COVID pandemic offered a037

stark lesson (Scherf et al., 2022): when lockdown038

announcements triggered simultaneous selloffs in039

cruise stocks and surges in cloud computing, clas-040

sical factor models failed to explain the speed and041

selectivity of repricing. These episodes expose042

a fundamental tension in modern finance—while 043

markets exhibit structured behavior during calm 044

periods, their responses to discrete events resemble 045

complex signal-processing systems, decoding nar- 046

ratives from earnings calls, policy statements, and 047

supply chain alerts. 048

Another recent example, as shown in Figure 1, 049

highlights the importance of event-driven asset pric- 050

ing is related to Nvidia. The U.S. government re- 051

leased export control regulations for artificial in- 052

telligence, introducing uncertainty about the fu- 053

ture prospects of related tech companies. This 054

uncertainty led to fluctuations in Nvidia’s stock 055

price. Following this, DeepSeek (Guo et al., 2025) 056

launched an open-source model that achieved per- 057

formance comparable to OpenAI’s (Roumelio- 058

tis and Tselikas, 2023) model, with significantly 059

lower computational requirements, which caused 060

Nvidia’s stock price to decline again. On the other 061

hand, U.S. tech giants like Google and Amazon 062

are poised to continue investing in AI, which is 063

expected to drive up the demand for graphics cards. 064

This shift in market sentiment subsequently fueled 065

an increase in Nvidia’s stock price. This series of 066

events underscores the critical role of event-driven 067

asset pricing, as it helps investors navigate the mar- 068

ket’s reaction to sudden, impactful events that can 069

significantly influence asset values. 070

However, event-driven asset pricing is a chal- 071

lenging task due to the dual nature of financial in- 072

formation. Consider a pharmaceutical company’s 073

drug trial announcement: the text’s semantic con- 074

tent (e.g., “statistically significant efficacy”) must 075

intertwine with the firm’s historical return patterns 076

to determine its pricing impact. Traditional ap- 077

proaches (Zhang and Skiena, 2010; Pagolu et al., 078

2016; Ma et al., 2023) address this duality through 079

compartmentalization—event studies analyze text 080

disclosures as binary signals, while time series 081

models treat prices as autoregressive processes. 082

This artificial separation creates what we term 083
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US tech giants like google 
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DeepSeek released the open source model R1, achieving 
OpenAI model’s performance at a very low cost.

Figure 1: A recent example involving Nvidia illustrates
that some sudden events can impact company pricing.

the interpretation gap: models either capture the084

what of market reactions (magnitude/direction) or085

the why (causal drivers), but seldom both. Re-086

cent advances in multimodal learning (Yuan et al.,087

2025) initially seemed promising, but empirically088

underperformed. The root issue traces to a mis-089

match in uncertainty handling: language models090

output deterministic embeddings that suppress tex-091

tual ambiguity, while asset returns inherently em-092

body stochasticity from incomplete information.093

To address the aforementioned challenges, in094

this paper, we propose a latent diffusion based as-095

set pricing framework. Our framework introduces096

three pivotal advances in bridging modern machine097

learning with financial theory.098

• Our method aligns the temporal and linguis-099

tic modalities in a continuous latent space,100

transforming the asset pricing task into a con-101

ditional generation task. Our approach ad-102

dresses the issue of ineffective alignment in103

previous works.104

• The stochastic diffusion process in our frame-105

work explicitly models financial systems’ in-106

herent randomness, adapting to both struc-107

tured market regimes and crisis-period dis-108

continuities.109

• Through extensive comparisons with numer-110

ous baselines, our model proves to be excep-111

tionally robust. Additionally, we have experi-112

mentally verified that our method can be well-113

compatible with classic asset pricing theories,114

offering strong interpretability.115

2 Related Work116

Single-modal methods often fail to encapsulate117

the full scope of challenges present in financial118

tasks (Chen et al., 2023; Yu et al., 2023), partic- 119

ularly those involving both time series data and 120

textual information. The recent development of 121

Large Language Models (LLMs) has brought about 122

a transformative moment in time series analysis, fa- 123

cilitating the integration of natural language with 124

numerical data (Yu et al., 2023; Li et al., 2024). 125

Some recent LLM-based methods have incorpo- 126

rated endogenous text derived from numerical data 127

such as linguistic descriptions of statistical infor- 128

mation (Gruver et al., 2024; Jin et al., 2023; Cao 129

et al., 2023; Liu et al., 2024b; Sun et al., 2023; Liu 130

et al., 2024c). Beyond relying on the capabilities 131

of LLMs, there have also been efforts to design 132

multimodal forecasting models (Xu et al., 2024; 133

Liu et al., 2024a). Rather than using raw text data, 134

these models typically combine LLM-derived text 135

embeddings with time series using mechanisms 136

such as cross-attention (Xu et al., 2024) or integrat- 137

ing separate forecasting outputs from both modal- 138

ities (Liu et al., 2024a). Rather than relying on a 139

frozen LLM to generate the textual embeddings, 140

Kim et al. (2024) proposed a hybrid model capa- 141

ble of learning textual embeddings and supported 142

event forecasting. However, discretizing time se- 143

ries data risks losing valuable information. Some 144

works have attempted to mitigate it by plotting time 145

series into charts (Hao et al., 2024; Daswani et al., 146

2024) to ensure continuity between modalities. Our 147

method integrates textual representations of events 148

with time series data within a shared latent space, 149

preserving subtle temporal variations while fully 150

leveraging the rich semantic cues embedded in the 151

event-related text. 152

3 Methodology 153

3.1 General Asset Pricing Framework 154

Modern asset pricing theory operates within a prob- 155

abilistic framework that accounts for evolving eco- 156

nomic uncertainty. The foundation is a filtered 157

probability space (Ω,F , {Ft}t≥0,P), where the 158

sample space Ω represents all possible trajecto- 159

ries of economic fundamentals - from routine busi- 160

ness cycles to unexpected events like geopolitical 161

shocks or technological disruptions. The filtration 162

{Ft}, an increasing sequence of σ-algebras, mod- 163

els the gradual revelation of market information: at 164

each time t, the σ-algebra Ft encodes all knowable 165

events, such as historical price movements, realized 166

dividends, and central bank policy decisions up to 167

that moment. 168
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The total cash payoff at t + 1 comprises two169

components: dividend income Dt+1 and proceeds170

from asset resale Pt+1. Formally:171

Total Payofft+1 = Dt+1︸ ︷︷ ︸
Dividend

+ Pt+1︸︷︷︸
Resale Price

172

The fundamental recursive pricing relationship173

emerges as:174

Pt = Et [Mt+1(Dt+1 + Pt+1)] (1)175

where Mt+1 denotes the stochastic discount fac-176

tor that encodes both time preference and risk177

adjustments. This equation possesses an inher-178

ently recursive structure - the current price Pt de-179

pends explicitly on the next period’s price Pt+1,180

which itself satisfies an identical pricing equation.181

Through successive substitutions of future prices182

Pt+k = Et+k[Mt+k+1(Dt+k+1 + Pt+k+1)] and183

application of the law of iterated expectations, we184

derive the explicit present value formula:185

Pt = Et

[ ∞∑
k=1

(
k∏

s=1

Mt+s

)
Dt+k

]
(2)186

The equivalence between these representations187

relies crucially on the transversality condition188

limT→∞ Et[(
∏T

s=1Mt+s)Pt+T ] = 0, which pro-189

hibits self-fulfilling speculative bubbles. Each sub-190

stitution step embeds deeper future price dependen-191

cies into the current valuation, as demonstrated by192

a three-period expansion:193

Pt = Et

[
Mt+1Dt+1 +Mt+1Et+1

[
194

Mt+2Dt+2 +Mt+2Et+2

[
195

Mt+3 (Dt+3 + Pt+3)
]]]

196

Continuing this process infinitely collapses the197

recursive structure into the discounted dividend198

series of Equation (2). The product operator199 ∏k
s=1Mt+s captures the compounding of stochas-200

tic discounting over multiple periods, weighting201

each dividend Dt+k by the marginal utility of con-202

sumption along each economic path ω ∈ Ω.203

3.2 Event-Driven Asset Pricing Framework204

The above framework exhibits discontinuous repric-205

ings due to stochastic events that alter cash flow dy-206

namics and risk perceptions. These events, whose207

timing and magnitude are a priori uncertain, can208

be formalized through an event impact operator209

ζt : Ω → R adapted to the filtration {Ft}, captur- 210

ing instantaneous changes in fundamentals or pref- 211

erences. Let It ∈ {0, 1} denote an Ft-measurable 212

indicator marking event occurrence at time t, with 213

Et−1[It] = πt representing the conditional event 214

probability. 215

The total payoff structure generalizes to incorpo- 216

rate event-driven discontinuities: 217

Total Payofft+1 = Dt+1 + Pt+1 + It+1ζt+1, (3) 218

where ζt+1 quantifies the event’s financial impact. 219

Substituting into the fundamental pricing equation 220

yields: 221

Pt = Et [Mt+1 (Dt+1 + Pt+1 + It+1ζt+1)] . (4) 222

Recursive expansion generates two distinct 223

present value components: 224

Pt = Et

[ ∞∑
k=1

(
k∏

s=1

Mt+s

)
Dt+k

]
︸ ︷︷ ︸

Fundamental Value

+ Et

[ ∞∑
k=1

(
k∏

s=1

Mt+s

)
It+kζt+k

]
︸ ︷︷ ︸

Event Risk Premium

.

(5) 225

The transversality condition now constrains both 226

terms: 227

lim
T→∞

Et

[
T∏

s=1

Mt+s 228

×

(
Pt+T +

∞∑
k=T+1

It+kζt+k

)]
= 0 229

prohibiting explosive paths in both dividend ex- 230

pectations and event impact projections. 231

Event risk permeates the stochastic discount fac- 232

tor through two channels: 233

Mt+1 = β
u′ (Ct+1 + It+1ζt+1)

u′(Ct)
(1 + θtIt+1) , 234

where θt encodes compensation for event tim- 235

ing uncertainty. The multiplicative adjustment 236

(1 + θtIt+1) generates event-specific risk premia, 237

even when ζt and It are orthogonal to consumption 238

shocks. 239

Event impacts decompose into systematic and 240

idiosyncratic components via: 241

ζt = Et [ζt|It = 1]︸ ︷︷ ︸
Priced Impact

+ ζt − Et [ζt|It = 1]︸ ︷︷ ︸
Unpriced Residual

. 242

Only the conditional expectation Et[ζt|It = 243

1] affects equilibrium prices, reflecting investors’ 244

compensation for predictable event consequences. 245
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Figure 2: The framework integrates diffusion processes for generating time-series data conditioned on real-world
data. Time-series data (xts) and news data (news) are encoded into latent representations using layers Ets and
Etext, respectively. The model utilizes a forward diffusion process during training, where DenseNet-based encoders
DiffEts and decoders DiffDts handle the noisy transformations. After training, the model generates a condition
vector, which guides the generative denoising process to produce the final prediction (yi). Once trained, the forward
diffusion process is no longer required during inference.

3.3 Bridging Prediction and Asset Pricing246

Conventional price forecasting models operate un-247

der fundamentally different assumptions than the248

asset pricing framework in Equations (2–5). Where249

structural models decompose prices into discounted250

cash flows and risk premia, predictive approaches251

typically estimate reduced-form mappings Pt+1 =252

f(Pt,xt)+ ϵt that ignore the recursive equilibrium253

structure. This creates three critical disconnects:254

First, the martingale structure in Equation (1)255

requires future prices Pt+1 to be equilibrium ob-256

jects rather than exogenous targets. Second, event257

impacts Itζt in Equation (3) manifest through both258

cash flow shocks and risk premium adjustments,259

a dual channel absent in standard prediction tasks.260

Third, the transversality condition imposes non-261

linear constraints on long-horizon forecasts that262

conventional models violate.263

Our latent diffusion framework resolves these264

tensions by reformulating prediction as structured265

expectation estimation. The model targets the de-266

composition:267

Et

[
Pt+k

Pt

]
= Et

[
k∏

s=1

Mt+s

]−1

︸ ︷︷ ︸
Discounting

+ Covt

(
k∏

s=1

Mt+s,
Pt+k

Pt

)
︸ ︷︷ ︸

Risk Adjustment

.

268

The diffusion process learns to estimate both269

components through its denoising mechanics. Each270

reverse step t → t− 1 implicitly computes: 271

Et [Mt+1(·)] ≈ ϵθ(yt, t,x, s) 272

where the noise predictor ϵθ encodes time-varying 273

risk premia through its attention patterns. Textual 274

inputs s modulate event probabilities πt and impact 275

distributions ζt via the cross-attention mechanism 276

in Equation (11), preserving the structure of Equa- 277

tion (5). 278

Our approach fundamentally differs from con- 279

ventional forecasting by maintaining the present 280

value identity throughout the diffusion process. 281

The model doesn’t merely predict prices - it esti- 282

mates the equilibrium value process consistent with 283

Equation (1) and Equation (4), filtered through mar- 284

ket data and textual disclosures. Further theoretical 285

analysis can be found in Appendix A. 286

3.4 Latent Diffusion for Asset Pricing 287

Consider an asset pricing problem with triplet ob- 288

servational data D = {(si,xi,yi)}Ni=1, where si 289

represents textual metadata (e.g., earnings call tran- 290

scripts), xi ∈ RL denotes L-dimensional histori- 291

cal market feature vectors (containing time series 292

data such as returns, trading volume, and macroe- 293

conomic indicators), and yi ∈ RH represents H- 294

period forward-looking asset returns. We model the 295

conditional distribution p(y|x, s) through a latent 296

space stochastic differential equation, enabling uni- 297

fied processing of continuous market signals and 298

discrete event impacts via a coordinated diffusion 299

mechanism. 300
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3.4.1 Diffusion Mechanism301

The forward diffusion process perturbs asset return302

trajectories y0 according to a volatility-aware noise303

schedule {βt}Tt=1:304

q(yt|yt−1) = N
(
yt;
√

1− βtyt−1, βtI
)

(6)305

q(yt|y0) = N
(
yt;

√
ᾱty0, (1− ᾱt)I

)
(7)306

where the cumulative noise scaling factor ᾱt =307 ∏t
s=1(1 − βs) is derived through multiplicative308

noise scheduling. The reverse process employs309

conditional transition probability:310

pθ(yt−1|yt,x, s) = N
(
yt−1;µθ(yt, t,x, s), σ

2
t I
)

(8)311

explicitly incorporating market state information,312

with variance term σ2
t = βt(1 − ᾱt−1)/(1 − ᾱt)313

maintaining diffusion process variance conserva-314

tion. The mean function:315

µθ =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t,x, s)

)
,

(9)316

separates fundamental values from speculative317

noise, where the noise predictor ϵθ : RH × N ×318

RL ×S → RH learns to identify non-fundamental319

price components.320

3.4.2 Market-Adapted Architecture321

The noise prediction network ϵθ implements asset322

pricing through tripartite information fusion:323

Textual Encoder: A pretrained language model324

Etext extracts semantic features from text s, with325

domain-adapted projection matrix Wp ∈ Rd×denc326

mapping embeddings to financial semantic space:327

Hs = Wp · Etext(s)328

Time Series Encoder: Past sequence xt ∈ RL329

encodes historical information through position-330

aware embeddings:331

Et = Wezt +P,332

where learnable matrix We ∈ Rd×L enables fea-333

ture lifting, and positional encoding P ∈ Rd×L334

captures time-dependent market momentum effects.335

P is a trainable matrix. While we also explored us-336

ing recurrent neural networks such as LSTM (Lin-337

demann et al., 2021) for encoding the time series,338

the performance was not as effective as the simpler339

encoder described here.340

Cross-Modal Attention: Cascaded attention 341

mechanisms simulate fundamental analysis work- 342

flows: 343

E′ = Softmax
(
(EWQ)(EWK)⊤√

d

)
EWV (10) 344

E′′ = Softmax

(
(E′W ′

Q)(HsW
′
K)⊤

√
d

)
HsW

′
V

(11)

345

Projection matrices WQ,WK ,WV ∈ Rd×d map 346

inputs to query-key-value spaces. The first stage E′ 347

extracts intrinsic value patterns from market data, 348

while the second stage E′′ adjusts valuations based 349

on textual information. c is the matrix obtained by 350

applying a trainable matrix projection to E′′. 351

3.4.3 Learning Objective 352

The model minimizes spectral norms to separate 353

market noise: 354

L(θ) =Et,ϵ,x,s [ 355

∥ϵ− ϵθ

√
ᾱty0 +

√
1− ᾱtϵ︸ ︷︷ ︸

noise-perturbed returns

, t,x, s

 ∥22


(12)

356

where ϵ ∼ N (0, I) characterizes market mi- 357

crostructure noise, forcing the objective function 358

to distinguish persistent pricing signals (y0) from 359

transient market frictions (ϵ). 360

4 Experiments 361

In this section, we first introduce the basic setup of 362

the experiment, including the baselines and evalu- 363

ation metrics. Subsequently, in Section 4.2, we 364

present our main results and comparisons with 365

some baseline models. In Section 4.3, we will 366

conduct a detailed analysis of the experimental re- 367

sults from several aspects, including the limitations 368

of LLMs, the impact of model parameters and the 369

ablation studies of the model. Due to space limita- 370

tions, parts that are not presented, such as hyperpa- 371

rameter settings, can be referred to in Appendix C. 372

4.1 Experiment Settings 373

Baselines: For single time series modality, the 374

selection of baseline is based on Wang et al. 375

(2024). PatchTST (Nie et al., 2022) owns the best 376

performance in short-term forecasting, which is 377

Transformer-based. TimesNet (Wu et al., 2022) is 378
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CNN-based. Mamba (Gu and Dao, 2023) is RNN-379

based. TimeLLM (Jin et al., 2023) is LLM-based.380

For considering both text and time series modal-381

ities, we select the following six baselines for382

new-driven prediction: MAN-SF (Sawhney et al.,383

2020), TimeLLM (Jin et al., 2023), Qwen2.5-7B-384

Instruct, Qwen2.5-7B (Yang et al., 2024), Llama-2-385

7b, Llama-2-7b-chat (Touvron et al., 2023).386

Metric: We select the Symmetric Mean Absolute387

Percentage Error (SMAPE) and Mean Absolute388

Scaled Error (MASE) as metrics, which focus on389

absolute errors and reduce the impact of outliers,390

providing reliable evaluations of forecast accuracy391

across different methodologies.392

4.2 Main Results393

As illustrated by Table 1 and Table 2, the exper-394

imental results offer several key insights into as-395

set pricing. Models that rely solely on time se-396

ries data face inherent limitations, as demonstrated397

by the performance degradation of most baselines398

with longer forecasting horizons. For instance,399

PatchTST’s SMAPE rises from 2.02 to 2.97 as400

the forecast window expands from 2 to 10. This401

highlights the difficulty of extracting sufficient pre-402

dictive signals from temporal patterns alone.403

Although LLMs show strong capabilities in text404

comprehension, their limitations in numerical rea-405

soning become apparent when applied to time se-406

ries forecasting. The Qwen2.5-7B variants and407

Llama-2-7b fall short of our model’s performance408

by a significant margin—1.25 SMAPE compared409

to 0.103 at a forecasting length of 2 when incorpo-410

rating news. This underscores that while textual411

understanding is valuable, it cannot replace the412

need for robust numerical processing in financial413

prediction tasks.414

Our model excels by leveraging two complemen-415

tary mechanisms. Its inherent stochastic model-416

ing aligns with the characteristics of financial time417

series, as shown by consistently superior MASE418

scores in pure time series tasks. Additionally, the419

effective integration of event descriptions boosts420

predictive power, with a 20-50% improvement in421

SMAPE over LLM baselines when news is incor-422

porated. The model’s performance continues to423

improve with increasing time lags, with SMAPE424

rising from 0.103 to 0.205, further demonstrating425

its robustness for extended forecasting windows.426

4.3 Analysis427

Instruction Tuning for LLMs Table 3 reveals 428

fundamental limitations of LLMs in temporal anal- 429

ysis for asset pricing. While instruction-tuned mod- 430

els like QWEN2.5-7B-INSTRUCT show modest 431

improvements (3.6% SMAPE reduction, 10.2% 432

MASE reduction), the absolute performance re- 433

mains poor compared to traditional time series 434

models. Notably: The best-performing instruction- 435

tuned model (QWEN2.5-7B-INSTRUCT) still 436

achieves only 47.43 MASE, where values >1 indi- 437

cate worse performance than naive forecasts. In- 438

struction tuning provides marginal benefits (aver- 439

age 8.7% SMAPE improvement across models) 440

that fail to meaningfully close the performance gap. 441

Base models and their instruction-tuned variants 442

show similar error patterns, suggesting architec- 443

tural rather than training limitations. These results 444

challenge the conventional wisdom that instruc- 445

tion tuning adapts LLMs effectively to specialized 446

domains. The persistent high errors in both zero- 447

shot and tuned configurations reveal fundamental 448

limitations in LLMs’ ability to: (1) model tem- 449

poral dependencies, (2) understand financial time 450

series patterns, and (3) perform numerical reason- 451

ing with market data. This suggests current LLM 452

architectures may be inherently unsuitable for time- 453

sensitive financial forecasting tasks, regardless of 454

tuning approaches. 455

Choice of Textual Encoder The experimental 456

results in Table 4, demonstrate limited sensitivity 457

of model performance to textual encoder selection. 458

As shown in the table, varying encoder architec- 459

tures (110M-355M parameters) yield comparable 460

prediction accuracy across both metrics: SMAPE 461

fluctuates within a narrow 0.37–0.53 range while 462

MASE remains confined to 3.25–3.92. Notably, 463

parameter-efficient DistilBERT (66M) achieves 464

only marginally higher errors compared to larger 465

counterparts like RoBERTa-large (355M), with a 466

modest 0.16 SMAPE and 0.67 MASE degradation 467

despite 5.4× fewer parameters. This robustness sug- 468

gests that textual features primarily serve as auxil- 469

iary signals rather than dominant predictive factors 470

in our framework. The observed consistency across 471

encoder variants implies that downstream market- 472

adaptive fusion mechanisms effectively mitigate 473

potential information bottlenecks from text repre- 474

sentations, prioritizing numeric market dynamics 475

over linguistic nuances in asset pricing. 476

Modeling Residuals for Traditional Asset Pric- 477

ing In our approach, we model the residuals from 478
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Forecasting
lengths

PatchTST TimesNet Mamba TimeLLM Ours

SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE

len = 2 2.02 47.23 0.18 3.61 1.58 35.12 1.01 23.64 0.18 7.23

len = 4 2.30 53.46 0.26 5.21 2.30 53.54 1.39 29.88 0.16 1.21

len = 6 2.58 61.77 0.33 6.93 1.60 33.76 2.71 63.02 0.23 1.82

len = 8 2.75 64.05 0.42 8.83 1.63 35.21 2.98 64.74 0.38 2.50

len = 10 2.97 69.02 0.46 9.71 1.69 37.42 3.85 70.11 0.56 3.12

Table 1: The selected baselines and our model take only time series as input. For our model, this means removing
the text encoder and MHA module, degrading it into a conditional generation problem based on past time series.
The len represents the prediction lengths of 2, 4, 6, 8, and 10. All models are trained on the training set. We use the
background color to mark the optimal results, and the background color to mark the suboptimal results.

Time Lag
MAN-SF TimeLLM Qwen2.5-7B-Instruct Qwen2.5-7B Llama-2-7b Llama-2-7b-chat Ours

SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE

len = 2 1.52 33.16 1.32 29.63 1.25 28.07 1.32 29.28 1.48 32.49 1.42 31.52 0.11 1.63

len = 4 1.78 39.57 1.41 30.07 1.47 32.12 1.54 34.32 1.67 37.00 1.63 36.50 0.15 2.12

len = 6 2.05 45.42 3.79 70.24 1.69 37.33 1.76 39.59 1.88 41.87 1.82 40.17 0.18 2.47

len = 8 2.31 52.02 3.91 72.03 1.91 42.27 1.98 44.63 2.09 46.51 2.01 45.10 0.22 2.81

len = 10 2.57 51.78 4.05 74.88 2.13 47.43 2.20 49.97 2.30 51.33 2.25 50.45 0.37 3.25

Table 2: We select the rationality of the baseline to ensure fair comparisons. All models are trained on the training
set. For large language models, we use a similar model size of 7 billion (7b) for comparison. Additionally, for the
base model, we incorporate special tokens during inference. We use background color to mark the optimal results,

and the background color to mark the suboptimal results.

Model Zero Shot Instruction Tuning

SMAPE MASE SMAPE MASE

QWEN2.5-7B-INSTRUCT 2.47 52.79 2.13 47.43
QWEN2.5-7B 2.51 55.63 2.20 49.97
LLAMA-2-7B 2.74 59.03 2.30 51.33

LLAMA-2-7B-chat 2.46 52.37 2.25 50.45

Table 3: We fine-tuned four LLMs using full parameter
fine-tuning. The training was conducted on 4×A800
GPUs, with a batch size of 5 per GPU. The learning rate
was set to 3× 10−5, and we did not use a learning rate
scheduler, keeping it constant throughout the training.
The training lasted for 4 epochs. For the prediction task,
we set the len to 10.

Encoder Parameters SMAPE MASE

BERT-base-cased 110M 0.37 3.25
BERT-base-uncased 110M 0.44 3.48
DistilBERT-base-uncased 66M 0.53 3.92
RoBERTa-base 125M 0.47 3.58
RoBERTa-large 355M 0.41 3.42

Table 4: We tested different text encoders in our frame-
work, where "M" denotes millions. The Bert-base-
cased model (Devlin, 2018) is case-sensitive, suitable
for tasks like named entity recognition. The Bert-base-
uncased model (Devlin, 2018) is case-insensitive and
more efficient for tasks where capitalization is not criti-
cal. The Distilbert-base-uncased model (Sanh, 2019)
is a smaller, faster version of BERT. The Roberta-
base (Liu, 2019) and Roberta-large (Liu, 2019) are
optimized for improved performance on complex tasks.

CAPM, Fama3, and Fama5 by training the network 479

with news and historical time series as input. The 480

labels for training are the residuals that CAPM, 481

Fama3, and Fama5 cannot explain. The residuals 482

are then explained using the predicted results, with 483

key metrics such as coefficients, R-squared, and 484

p-values used to evaluate the interpretability of our 485

method. The results of modeling different residu-

Model Coefficient R-Squared p-value

CAPM Residuals 3.35** 0.18 0.008
Fama3 Residuals 3.41** 0.19 0.004
Fama5 Residuals 2.09** 0.27 0.006

Table 5: This table shows the results of modeling residu-
als for CAPM (Sharpe, 1964), Fama3 (Fama and French,
1992), and Fama5 (Fama and French, 2015) with key
performance metrics: Coefficient, R-Squared, and p-
value. The Coefficient indicates the strength and direc-
tion of the relationship between variables, R-Squared
measures the proportion of variance explained by the
model, and p-value assesses the statistical significance
of the results. The significance levels are indicated as
follows: * p < 0.05, ** p < 0.01, *** p < 0.001. More
introductions about these asset pricing models is pro-
vided in Appendix E

. 486
als are shown in Table 5. Our model incorporates 487

inherent randomness, but it still maintains compat- 488
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(A)  BX

(F)  MRK(E)  VZ(D)  INCY

(C)  PG(B)  JNJ

Original time series Forecasting results of MAN-SF Forecasting results of Ours

lookback window forecast 
window

forecast 
window

forecast 
window

lookback windowlookback window

Blackstone Group partnering 
with Worthe Real Estate Group 
to develop a new office tower 
near Burbank and Warner Bros. 
studios in California.

TYME appoints John Rothman, 
Ph.D., as Executive Vice 
President, Product Development.

T-Mobile US completes 
acquisition of Sprint and 
unveils aggressively 
priced promotion for new 
unlimited plans.

Second-quarter results from 125 
S&P 500 companies being reported, 
with the main event being the July 
U.S. employment report on Friday.

Dollar General announces 
new traditional distribution 
center and creation of 
approximately 600 new jobs.

Moderna's Covid-19 vaccine 
trial results lead to a Tuesday 
selloff, despite showing 94.5% 
effectiveness in the trial's first 
interim glimpse.

Figure 3: We selected six representative news articles to showcase the effectiveness of latent diffusion. The gray
line represents the historical window.

ibility with classical asset pricing theories. The489

first mechanism is the underlying diffusion process.490

This module allows our model to exhibit a high cor-491

relation with traditional stochastic discount factors,492

such as those from the Fama models, ensuring that493

the randomness introduced does not deviate from494

the established asset pricing framework.495

Ablation Study From the ablation experiments496

shown in Table 6, we conclude disabling cross-497

attention mechanisms causes catastrophic perfor-498

mance collapse - SMAPE doubles (0.37→0.76)499

and MASE deteriorates by 21% (3.25→3.93), con-500

firming that market-text interaction modeling con-501

stitutes the framework’s analytical core. These re-502

sults demonstrate that simple feature concatenation503

(via pooling) fails to capture nuanced cross-modal504

dependencies essential for asset pricing, while the505

text encoder primarily serves as auxiliary regular-506

ization rather than a primary signal source.507

Model Variant SMAPE ↓ MASE ↓ Speed ↑

Full Model 0.37 3.25 1.31
w/o Text Encoder 0.56 3.14 3.24
w/o Cross-Attention 0.76 3.93 3.85

Table 6: By removing the cross - attention mechanism,
we employ pooling operations to align the text represen-
tations with the temporal representations. The speed is
measured in steps per second.

Case Study Figure 3 illustrates our latent diffu-508

sion framework’s capability to capture complex509

event-driven market dynamics. By unifying hetero-510

geneous events—from strategic expansions (BX)511

to clinical trial volatility (MRNA)—the model ef-512

fectively separates fundamental drivers (e.g., T- 513

Mobile’s pricing strategy effects) from transient 514

noise (e.g., Moderna’s post-news selloff). Its 515

cross-modal fusion dynamically weights textual 516

and numerical signals, enabling robust predictions 517

for both rapid shocks (vaccine updates) and grad- 518

ual shifts (infrastructure investments). The diffu- 519

sion mechanism’s inherent noise suppression fur- 520

ther mitigates overreaction to superficial triggers 521

(TYME leadership changes), prioritizing material 522

economic impacts across diverse event types. 523

5 Limitions and Conclusion 524

In this work, we propose a novel multimodal latent 525

diffusion framework for event-driven asset pricing. 526

This framework addresses critical challenges in 527

aligning time series with textual event representa- 528

tions, while explicitly modeling the stochastic na- 529

ture of financial systems. The extensive empirical 530

validation demonstrates superior predictive perfor- 531

mance over conventional baselines. Additionally, 532

its compatibility with classical asset pricing theo- 533

ries ensures interpretability, which is an often over- 534

looked but critical aspect in financial applications. 535

Despite these strengths, the framework’s perfor- 536

mance is closely tied to data quality. Noisy, am- 537

biguous, or contextually incomplete event descrip- 538

tions may propagate errors through the latent align- 539

ment process, potentially undermining the frame- 540

work’s ability to accurately isolate causal relation- 541

ships between events and price movements. Thus, 542

the efficacy of our approach may be diminished 543

when the input data lacks clarity or coherence. 544
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A Theoretical Analysis694

Notation Setup We have P as the physical prob-695

ability measure, Q as the risk-neutral probability696

measure, Mt :=
dQ
dP

∣∣
Ft

as the stochastic discount697

factor (Radon-Nikodym derivative), and yt ∈ Rn698

as the asset return process at diffusion step t. Under699

the physical probability measure P , the conditional700

probability density is denoted by pt(y | x, s), while701

under the risk-neutral probability measure Q, the702

conditional probability density is represented by703

qt(y | x, s).704

Theorem 1. (Diffusion-SDF Duality) Under no-705

arbitrage conditions with complete markets, the de-706

noising process {yt}Tt=0 defined by Equations (6-9)707

implicitly learns the stochastic discount factor Mt708

through its noise prediction mechanism ϵθ. Specifi-709

cally, the learned score function ∇y log pt(y|x, s)710

corresponds to the logarithmic gradient of the risk-711

neutral measure.712

Proof. Define the continuous-time limit of the for-713

ward process using the Ornstein-Uhlenbeck param-714

eterization:715

dyt = −1

2
β(t)ytdt+

√
β(t)dWP

t716

where WP
t is a P-Brownian motion. The associated717

reverse-time process under Q becomes:718

dyt =

[
−1

2
β(t)yt − β(t)∇y log pt(yt|x, s)

]
dt719

+
√

β(t)dWQ
t720

By Girsanov’s theorem, the measure change sat-721

isfies:722

dQ
dP

= exp

(
−
∫ T

0
∇y log pt(yt|x, s) · dWP

t723

−1

2

∫ T

0
∥∇y log pt(yt|x, s)∥2dt

)
724

Thus identifying Mt ∝ dQ/dP|Ft . From asset725

pricing theory, the fundamental pricing equation726

states:727

EP
t [Mt+1Rt+1] = 1728

where Rt+1 = yt+1/yt. Substituting the measure729

change relation:730

EQ
t [Rt+1] = EP

t

[
Mt+1

Mt
Rt+1

]
= 1731

The score function emerges through the Fokker- 732

Planck equation for the reverse process: 733

∂pt
∂t

= −∇y · [µθpt] +
1

2
β(t)∆pt 734

Substituting µθ from Equation (9), we derive: 735

∇y log pt(y|x, s) 736

=EQ
[
MT

Mt
∇y log qT (yT |x, s)

∣∣∣∣Ft

]
737

This establishes the score function as a weighted 738

expectation of future SDF-adjusted gradients. 739

Reformulate the denoising objective using Doob- 740

Meyer decomposition: 741

ϵθ(yt, t,x, s) = EP[y0|yt]︸ ︷︷ ︸
Physical expectation

− EQ[y0|yt]︸ ︷︷ ︸
Risk-neutral expectation

742

Substituting the Radon-Nikodym derivative: 743

ϵθ =

∫
y0

(
pt(y0|yt)

qt(y0|yt)
− 1

)
qt(y0|yt)dy0 744

This reveals ϵθ as the covariance between future 745

returns and SDF innovations: 746

ϵθ = CovP(y0,M0t|yt) 747

where M0t = Mt/M0. 748

The training objective L(θ) in Equation (12) in- 749

duces a variational problem: 750

min
θ

EP
[
∥ϵθ − CovP(y0,M0t|Ft)∥2

]
751

First-order conditions yield: 752

EP
[
ϵθ
∂M0t

∂θ

]
= 0 ∀θ 753

This orthogonality condition enforces the Law of 754

One Price: assets with identical exposure to SDF 755

risk must have equal expected returns under P. 756

757

B Dataset 758

The origin 792,684 news articles are sourced from 759

Dow Jones News Services and the Wall Street Jour- 760

nal, and stored as structured XML files. The struc- 761

tured dataset comprises eight key variables, includ- 762

ing {Publication_datetime, Company_code, Com- 763

pany_code, Title, Body, Word_count}. Using the 764

‘Company_code’ variable, we filtered and identi- 765

fied 129,753 news articles about individual S&P 766
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500 firms, covering the period from March 8, 2001,767

to June 30, 2024.768

The corresponding daily stock price data for769

S&P 500 firms from 2001 to 2024 was obtained770

from the Center for Research in Security Prices771

(CRSP) database. The collected variables include772

Date, Volume, Open, High, Low, Close, and Com-773

pany_code. To align the stock price data with the774

news data, we used the publication date of each775

news article and the company code as the reference776

point. Specifically, news published before the close777

of the market was associated with the same trading778

day, while news published after the market close779

was assigned to the next trading day. By matching780

the Company code and Publication date between781

the two datasets, we constructed (news, price) pairs,782

resulting in a total of 126,521 pairs. Detailed de-783

scriptions of the variables within these pairs are784

provided in Table 7. To identify stocks exhibiting785

significant price changes influenced by news events786

within a given time lag (denoted as i), we employed787

the Bollinger Bands methodology. The bands are788

calculated as BB = MAN ± K × SD(MAN ),789

where MAN is the moving average over N days,790

SD(MAN ) is the standard deviation of the mov-791

ing average, K is set as 2, and N is set as 20 be-792

cause MA20 represents a monthly average. If the793

stock price on day i, denoted as pricei, satisfies794

the condition pricei ≥ MA20 + 2SD(MA20) or795

pricei ≤ MA20−2SD(MA20), we consider the796

(news, price) pair meets the ‘jump’ criterion. The797

relationship between the specific time lag i and the798

selected pairs is shown in Table 8.799

C Hyperparameters800

We conducted extensive experiments and per-801

formed a grid search to determine the following802

hyperparameters, as shown in the Table 9. These803

settings provide a good balance between training804

speed and performance. During the training pro-805

cess, our textual encoder is frozen, which means806

that the number of parameters requiring fine-tuning807

is relatively small.808

D Prompts809

System Setting You are an advanced AI system810

capable of understanding and processing temporal811

and textual data. Your task is to predict future812

financial time series values using historical data and813

relevant news articles. Leverage statistical analysis,814

natural language processing, and machine learning815

to generate accurate predictions. 816

Input The input consists of two components: 817

News Article, which is a recent news headline 818

or content in text format, and Historical Finan- 819

cial Data, a time series of past financial values 820

represented as numerical data. 821

Output The output should strictly follow the for- 822

mat outlined below. Ensure the following structure 823

is maintained: - The output must be a JSON object. 824

- It should include a "predictions" field containing 825

an array of prediction objects. - Each prediction 826

object must include a "date" field (in the format 827

"YYYY-MM-DD") and a "value" field (as a numer- 828

ical value). 829

Input/Output Examples: 830

Sample Input 831

{ 832
"news": { 833
"title": "Company X Launches New Product...", 834
"content": "..." 835

}, 836
"time_series": { 837
"2023-10-01": 100.5, 838
"2023-10-02": 101.2, 839
"2023-10-03": 102.3, 840
... 841

} 842
} 843

Sample Output 844

{ 845
"predictions": [ 846
{"date": "2023-11-20", "value": 121.5}, 847
... 848

] 849
} 850

E Asset Pricing Models 851

In asset pricing theory, the Capital Asset Pricing 852

Model (CAPM), the Fama-French Three-Factor 853

Model (Fama 3), and the Fama-French Five-Factor 854

Model (Fama 5) represent significant frameworks 855

for explaining the expected return on assets by ac- 856

counting for various market factors. Below is a 857

brief overview of each model. 858

E.1 The Capital Asset Pricing Model (CAPM) 859

The CAPM, introduced by William Sharpe in 1964, 860

seeks to explain an asset’s expected return in re- 861

lation to its sensitivity to market risk. The model 862

assumes rational investors, efficient markets, and a 863

risk-free asset. CAPM posits that the return on an 864
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Variable Description

Publication_date News article publication date. If the news article was officially published before the
close of market, this variable records the same date, else it marks the next date.

Company_code Unique identifier or code for the relevant company. A unique code that identifies the
company mentioned in the news and the prices.

Title Title of news article. A brief headline that summarizes the main topic or event
described in the news article.

Body The detailed news content.
Word_count Number of total word count in the body of the news article.

Volume The number of shares traded on the publication date.
Open The opening price of the corresponding company on the publication date.
High The highest stock price of the corresponding company on the publication date.
Low The lowest stock price of the corresponding company on the publication date.
Close The closing price of the corresponding company on the publication date.

Table 7: The variables in the collected news articles dataset.

Time Lag Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8 Lag=9 Lag=10
Influenced Rate 0.2361 0.2251 0.2067 0.1915 0.1842 0.1811 0.1750 0.1758 0.1706 0.1737
Influenced Pairs 29,869 28478 26148 24224 23308 22907 22141 22238 21586 21979

Table 8: The influenced paired for different time lags.

asset is determined by its exposure to the overall865

market’s risk, represented by the asset’s beta (βi).866

The formula for CAPM is:867

E(Ri) = Rf + βi (E(Rm)−Rf )868

where E(Ri) is the expected return on asset i,869

Rf is the risk-free rate, and βi is the asset’s sensi-870

tivity to the market return E(Rm). CAPM’s sim-871

plicity is one of its strengths, though it has faced872

criticism for not accounting for other factors that in-873

fluence asset returns, which led to the development874

of more sophisticated models.875

E.2 The Fama-French Three-Factor Model876

(Fama 3)877

In 1993, CAPM is extended by introducing the878

Fama3. They found that two additional fac-879

tors—size and value—helped explain stock returns880

more effectively. The model builds on the CAPM881

framework by adding two components: the SMB882

(Small Minus Big) factor, which represents the re-883

turn difference between small-cap and large-cap884

stocks, capturing the size effect, and the HML (High885

Minus Low) factor, which measures the return dif-886

ference between value stocks (high book-to-market887

ratio) and growth stocks (low book-to-market ra-888

tio), capturing the value effect.889

The Fama-French Three-Factor Model is repre- 890

sented as: 891

E(Ri) = Rf + βi (E(Rm)−Rf ) 892

+ βSMB · SMB 893

+ βHML ·HML 894

This model significantly improves upon CAPM 895

by addressing the role of firm size and value char- 896

acteristics in determining asset returns. 897

E.3 The Fama-French Five-Factor Model 898

(Fama 5) 899

Fama 5, introduced in 2015, further extends the 900

Three-Factor Model by adding two more factors: 901

profitability and investment. The model acknowl- 902

edges that a firm’s profitability and investment 903

strategies can influence its stock returns, provid- 904

ing a more comprehensive explanation of asset 905

pricing. The two new factors are RMW (Robust 906

Minus Weak), which reflects the return difference 907

between highly profitable and less profitable firms, 908

and CMA (Conservative Minus Aggressive), which 909

captures the return difference between firms with 910

conservative vs. aggressive investment strategies. 911
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Hyperparameter Default Value Description

num_epochs 10 Number of training epochs, default 10
batch_size 32 Training batch size, default 32
lr 1× 10−5 Learning rate, default 1× 10−5

d_model 128 Dimensionality of the model, default 128
latent_space_dim 512 Latent space dimension, default 512
dropout 0.1 Dropout rate, default 0.1
nhead 4 Number of attention heads in the MHA block, default 4
num_layers 2 Number of layers in the MHA block, default 2

Table 9: Hyperparameter Settings

The Five-Factor Model is expressed as:912

E(Ri) = Rf + βi (E(Rm)−Rf )913

+ βSMB · SMB + βHML ·HML914

+ βRMW ·RMW + βCMA · CMA915

By adding the RMW and CMA factors, the Five-916

Factor Model provides a deeper and more nuanced917

understanding of asset pricing, incorporating firm-918

specific characteristics such as profitability and in-919

vestment behavior.920
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