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Abstract

Event studies have garnered widespread atten-
tion in academic research due to their signifi-
cant impact on asset prices, playing a crucial
role in both risk management and the under-
standing of market dynamics. However, exist-
ing methods face notable challenges. One such
issue is the lack of effective multimodal align-
ment schemes, with many approaches relying
on discretizing time series data when aligning
it with language modalities. This often leads
to the loss of valuable information, as continu-
ous frameworks are better suited for capturing
the dynamic nature of market behavior and ac-
curately tracking rapid shifts in asset prices,
as demonstrated by extensive theoretical and
empirical work. Additionally, these methods
struggle to model the inherent randomness of
financial systems. To address these challenges,
we introduce a Multimodal Latent Diffusion
model specifically designed for event-driven
asset pricing. Our approach integrates textual
representations of sudden events with finan-
cial time series in a continuous latent space,
preserving subtle temporal variations and fully
leveraging the rich semantic cues embedded
in the event-related text. Through comprehen-
sive experiments and case studies, we demon-
strate that our method consistently enhances
predictive accuracy for event-driven asset pric-
ing, while also expanding practical applications
for risk management.

1 Introduction

Fama’s efficient market hypothesis reshaped fi-
nance (Fama, 1970). Since then, asset pricing has
evolved from modeling stable risk - return rela-
tionships to deciphering how markets digest un-
foreseen shocks. The COVID pandemic offered a
stark lesson (Scherf et al., 2022): when lockdown
announcements triggered simultaneous selloffs in
cruise stocks and surges in cloud computing, clas-
sical factor models failed to explain the speed and
selectivity of repricing. These episodes expose

a fundamental tension in modern finance—while
markets exhibit structured behavior during calm
periods, their responses to discrete events resemble
complex signal-processing systems, decoding nar-
ratives from earnings calls, policy statements, and
supply chain alerts.

Another recent example, as shown in Figure 1,
highlights the importance of event-driven asset pric-
ing is related to Nvidia. The U.S. government re-
leased export control regulations for artificial in-
telligence, introducing uncertainty about the fu-
ture prospects of related tech companies. This
uncertainty led to fluctuations in Nvidia’s stock
price. Following this, DeepSeek (Guo et al., 2025)
launched an open-source model that achieved per-
formance comparable to OpenAI’s (Roumelio-
tis and Tselikas, 2023) model, with significantly
lower computational requirements, which caused
Nvidia’s stock price to decline again. On the other
hand, U.S. tech giants like Google and Amazon
are poised to continue investing in Al, which is
expected to drive up the demand for graphics cards.
This shift in market sentiment subsequently fueled
an increase in Nvidia’s stock price. This series of
events underscores the critical role of event-driven
asset pricing, as it helps investors navigate the mar-
ket’s reaction to sudden, impactful events that can
significantly influence asset values.

However, event-driven asset pricing is a chal-
lenging task due to the dual nature of financial in-
formation. Consider a pharmaceutical company’s
drug trial announcement: the text’s semantic con-
tent (e.g., “statistically significant efficacy’) must
intertwine with the firm’s historical return patterns
to determine its pricing impact. Traditional ap-
proaches (Zhang and Skiena, 2010; Pagolu et al.,
2016; Ma et al., 2023) address this duality through
compartmentalization—event studies analyze text
disclosures as binary signals, while time series
models treat prices as autoregressive processes.
This artificial separation creates what we term
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Figure 1: A recent example involving Nvidia illustrates
that some sudden events can impact company pricing.

the interpretation gap: models either capture the
what of market reactions (magnitude/direction) or
the why (causal drivers), but seldom both. Re-
cent advances in multimodal learning (Yuan et al.,
2025) initially seemed promising, but empirically
underperformed. The root issue traces to a mis-
match in uncertainty handling: language models
output deterministic embeddings that suppress tex-
tual ambiguity, while asset returns inherently em-
body stochasticity from incomplete information.

To address the aforementioned challenges, in
this paper, we propose a latent diffusion based as-
set pricing framework. Our framework introduces
three pivotal advances in bridging modern machine
learning with financial theory.

* Our method aligns the temporal and linguis-
tic modalities in a continuous latent space,
transforming the asset pricing task into a con-
ditional generation task. Our approach ad-
dresses the issue of ineffective alignment in
previous works.

* The stochastic diffusion process in our frame-
work explicitly models financial systems’ in-
herent randomness, adapting to both struc-
tured market regimes and crisis-period dis-
continuities.

* Through extensive comparisons with numer-
ous baselines, our model proves to be excep-
tionally robust. Additionally, we have experi-
mentally verified that our method can be well-
compatible with classic asset pricing theories,
offering strong interpretability.

2 Related Work

Single-modal methods often fail to encapsulate
the full scope of challenges present in financial

tasks (Chen et al., 2023; Yu et al., 2023), partic-
ularly those involving both time series data and
textual information. The recent development of
Large Language Models (LLMs) has brought about
a transformative moment in time series analysis, fa-
cilitating the integration of natural language with
numerical data (Yu et al., 2023; Li et al., 2024).
Some recent LLM-based methods have incorpo-
rated endogenous text derived from numerical data
such as linguistic descriptions of statistical infor-
mation (Gruver et al., 2024; Jin et al., 2023; Cao
et al., 2023; Liu et al., 2024b; Sun et al., 2023; Liu
et al., 2024c). Beyond relying on the capabilities
of LLMs, there have also been efforts to design
multimodal forecasting models (Xu et al., 2024;
Liu et al., 2024a). Rather than using raw text data,
these models typically combine LLM-derived text
embeddings with time series using mechanisms
such as cross-attention (Xu et al., 2024) or integrat-
ing separate forecasting outputs from both modal-
ities (Liu et al., 2024a). Rather than relying on a
frozen LLM to generate the textual embeddings,
Kim et al. (2024) proposed a hybrid model capa-
ble of learning textual embeddings and supported
event forecasting. However, discretizing time se-
ries data risks losing valuable information. Some
works have attempted to mitigate it by plotting time
series into charts (Hao et al., 2024; Daswani et al.,
2024) to ensure continuity between modalities. Our
method integrates textual representations of events
with time series data within a shared latent space,
preserving subtle temporal variations while fully
leveraging the rich semantic cues embedded in the
event-related text.

3 Methodology

3.1 General Asset Pricing Framework

Modern asset pricing theory operates within a prob-
abilistic framework that accounts for evolving eco-
nomic uncertainty. The foundation is a filtered
probability space (€2, F, {F;}t>0,P), where the
sample space () represents all possible trajecto-
ries of economic fundamentals - from routine busi-
ness cycles to unexpected events like geopolitical
shocks or technological disruptions. The filtration
{F:}, an increasing sequence of o-algebras, mod-
els the gradual revelation of market information: at
each time ¢, the o-algebra F; encodes all knowable
events, such as historical price movements, realized
dividends, and central bank policy decisions up to
that moment.



The total cash payoff at ¢ + 1 comprises two
components: dividend income D, and proceeds
from asset resale P 1. Formally:

Total Payoff, ,; = Diy1 + FPiya
~——

Dividend  Resale Price

The fundamental recursive pricing relationship
emerges as:

P, = E¢ [My41(Diy1 + Pig1)] (n

where M; ;1 denotes the stochastic discount fac-
tor that encodes both time preference and risk
adjustments. This equation possesses an inher-
ently recursive structure - the current price P; de-
pends explicitly on the next period’s price P; 1,
which itself satisfies an identical pricing equation.
Through successive substitutions of future prices
Py = Eepn[Mirir1(Degryr + Pigggr)] and
application of the law of iterated expectations, we
derive the explicit present value formula:
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The equivalence between these representations
relies crucially on the transversality condition
im0 Be (T2 Mits)Pryr] = 0, which pro-
hibits self-fulfilling speculative bubbles. Each sub-
stitution step embeds deeper future price dependen-
cies into the current valuation, as demonstrated by
a three-period expansion:

Py =Ky |Myy1Dyyr + My By [
Miy9Diio + My oFsyo [

Mii3 (D3 + Pt+3)”]

Continuing this process infinitely collapses the
recursive structure into the discounted dividend
series of Equation (2). The product operator
Hle M s captures the compounding of stochas-
tic discounting over multiple periods, weighting
each dividend D, by the marginal utility of con-
sumption along each economic path w € ).

3.2 Event-Driven Asset Pricing Framework

The above framework exhibits discontinuous repric-
ings due to stochastic events that alter cash flow dy-
namics and risk perceptions. These events, whose
timing and magnitude are a priori uncertain, can
be formalized through an event impact operator

¢t : © — R adapted to the filtration {F;}, captur-
ing instantaneous changes in fundamentals or pref-
erences. Let I; € {0, 1} denote an F;-measurable
indicator marking event occurrence at time ¢, with
E;_1[I;] = m representing the conditional event
probability.

The total payoff structure generalizes to incorpo-
rate event-driven discontinuities:

Total Payoff, , | = Diy1 + Pey1 + Lip1Ge1, (3)

where (1 quantifies the event’s financial impact.
Substituting into the fundamental pricing equation
yields:

P, = E¢ [Mi41 (Dig1 + Pry1 + Lip1Gt1)] - (D)

Recursive expansion generates two distinct
present value components:

00 k
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Event Risk Premium
The transversality condition now constrains both
terms:

T
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E=T+1
prohibiting explosive paths in both dividend ex-
pectations and event impact projections.
Event risk permeates the stochastic discount fac-
tor through two channels:

u (Crp1 + L1 Gy)
w'(C)

where 6; encodes compensation for event tim-
ing uncertainty. The multiplicative adjustment
(1 + 0.1;41) generates event-specific risk premia,
even when (; and I; are orthogonal to consumption
shocks.

Event impacts decompose into systematic and
idiosyncratic components via:

G =E¢ [GfTe = 1] + G — E¢ [¢e[Ir = 1] .
Unpriced Residual

My =5 (1+6d11),

Priced Impact
Only the conditional expectation E;[(|I; =

1] affects equilibrium prices, reflecting investors’
compensation for predictable event consequences.
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Figure 2: The framework integrates diffusion processes for generating time-series data conditioned on real-world
data. Time-series data (x:s) and news data (news) are encoded into latent representations using layers F, and
FEiest, respectively. The model utilizes a forward diffusion process during training, where DenseNet-based encoders
Dif fEys and decoders Dif f D5 handle the noisy transformations. After training, the model generates a condition
vector, which guides the generative denoising process to produce the final prediction (y;). Once trained, the forward

diffusion process is no longer required during inference.

3.3 Bridging Prediction and Asset Pricing

Conventional price forecasting models operate un-
der fundamentally different assumptions than the
asset pricing framework in Equations (2-5). Where
structural models decompose prices into discounted
cash flows and risk premia, predictive approaches
typically estimate reduced-form mappings P41 =
(P, x¢) + € that ignore the recursive equilibrium
structure. This creates three critical disconnects:

First, the martingale structure in Equation (1)
requires future prices P;11 to be equilibrium ob-
jects rather than exogenous targets. Second, event
impacts I, (; in Equation (3) manifest through both
cash flow shocks and risk premium adjustments,
a dual channel absent in standard prediction tasks.
Third, the transversality condition imposes non-
linear constraints on long-horizon forecasts that
conventional models violate.

Our latent diffusion framework resolves these
tensions by reformulating prediction as structured
expectation estimation. The model targets the de-
composition:
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The diffusion process learns to estimate both
components through its denoising mechanics. Each

reverse step t — t — 1 implicitly computes:
Et [Mt+1(')] ~ ee(yta t,x, S)

where the noise predictor €y encodes time-varying
risk premia through its attention patterns. Textual
inputs s modulate event probabilities 7 and impact
distributions (; via the cross-attention mechanism
in Equation (11), preserving the structure of Equa-
tion (5).

Our approach fundamentally differs from con-
ventional forecasting by maintaining the present
value identity throughout the diffusion process.
The model doesn’t merely predict prices - it esti-
mates the equilibrium value process consistent with
Equation (1) and Equation (4), filtered through mar-
ket data and textual disclosures. Further theoretical
analysis can be found in Appendix A.

3.4 Latent Diffusion for Asset Pricing

Consider an asset pricing problem with triplet ob-
servational data D = {(s;,x;,y:)}}*,, where s;
represents textual metadata (e.g., earnings call tran-
scripts), x; € R denotes L-dimensional histori-
cal market feature vectors (containing time series
data such as returns, trading volume, and macroe-
conomic indicators), and y; € RH represents H -
period forward-looking asset returns. We model the
conditional distribution p(y|x, s) through a latent
space stochastic differential equation, enabling uni-
fied processing of continuous market signals and
discrete event impacts via a coordinated diffusion
mechanism.



3.4.1 Diffusion Mechanism

The forward diffusion process perturbs asset return
trajectories yg according to a volatility-aware noise
schedule {3 }1_;:

a(yilyi—1) =N <Yt; 1- 5t}’t—175t1> (6)
a(yelyo) =N (v Varyo, 1 —a)I) (7

where the cumulative noise scaling factor a; =
[T._,(1 — Bs) is derived through multiplicative
noise scheduling. The reverse process employs
conditional transition probability:

po(yi-1lys, x,8) =N (yi—1; to(ys, t,x,s), 07 1)

®)
explicitly incorporating market state information,
with variance term o7 = S;(1 — ay_1)/(1 — &)
maintaining diffusion process variance conserva-
tion. The mean function:

o= (o motontons)
Vi=F ST

separates fundamental values from speculative
noise, where the noise predictor ¢y : R x N x
R x & — R learns to identify non-fundamental
price components.

3.4.2 Market-Adapted Architecture

The noise prediction network ep implements asset
pricing through tripartite information fusion:
Textual Encoder: A pretrained language model
Fiext extracts semantic features from text s, with
domain-adapted projection matrix W), € R dene
mapping embeddings to financial semantic space:

H, = Wp : Etext(s)

Time Series Encoder: Past sequence x; € R”
encodes historical information through position-
aware embeddings:

E; =W,z + P,

where learnable matrix W, € R?*L enables fea-

ture lifting, and positional encoding P € R*L
captures time-dependent market momentum effects.
P is a trainable matrix. While we also explored us-
ing recurrent neural networks such as LSTM (Lin-
demann et al., 2021) for encoding the time series,
the performance was not as effective as the simpler
encoder described here.

Cross-Modal Attention: Cascaded attention
mechanisms simulate fundamental analysis work-
flows:

-
E' = Softmax <(EWQ)\(/F&“WK ) > EWy (10)
EW! stl T
E” = Softmax <( Q)\(/g ) ) H, W,
(11)

Projection matrices Wg, Wk, Wy € R¥*4 map

inputs to query-key-value spaces. The first stage E’
extracts intrinsic value patterns from market data,
while the second stage E” adjusts valuations based
on textual information. c¢ is the matrix obtained by
applying a trainable matrix projection to E”.

3.4.3 Learning Objective

The model minimizes spectral norms to separate
market noise:

E(Q) :Et,e,x,s [

v@tYO+ Vl—é%G,t,X,S H%

noise-perturbed returns

lle — €q

(12)

where ¢ ~ N(0,I) characterizes market mi-
crostructure noise, forcing the objective function
to distinguish persistent pricing signals (yg) from
transient market frictions (¢).

4 Experiments

In this section, we first introduce the basic setup of
the experiment, including the baselines and evalu-
ation metrics. Subsequently, in Section 4.2, we
present our main results and comparisons with
some baseline models. In Section 4.3, we will
conduct a detailed analysis of the experimental re-
sults from several aspects, including the limitations
of LLMs, the impact of model parameters and the
ablation studies of the model. Due to space limita-
tions, parts that are not presented, such as hyperpa-
rameter settings, can be referred to in Appendix C.

4.1 Experiment Settings

Baselines: For single time series modality, the
selection of baseline is based on Wang et al.
(2024). PatchTST (Nie et al., 2022) owns the best
performance in short-term forecasting, which is
Transformer-based. TimesNet (Wu et al., 2022) is



CNN-based. Mamba (Gu and Dao, 2023) is RNN-
based. TimeLLLM (Jin et al., 2023) is LLM-based.

For considering both text and time series modal-
ities, we select the following six baselines for
new-driven prediction: MAN-SF (Sawhney et al.,
2020), TimeLLM (Jin et al., 2023), Qwen2.5-7B-
Instruct, Qwen2.5-7B (Yang et al., 2024), Llama-2-
7b, Llama-2-7b-chat (Touvron et al., 2023).

Metric: We select the Symmetric Mean Absolute
Percentage Error (SMAPE) and Mean Absolute
Scaled Error (MASE) as metrics, which focus on
absolute errors and reduce the impact of outliers,
providing reliable evaluations of forecast accuracy
across different methodologies.

4.2 Main Results

As illustrated by Table 1 and Table 2, the exper-
imental results offer several key insights into as-
set pricing. Models that rely solely on time se-
ries data face inherent limitations, as demonstrated
by the performance degradation of most baselines
with longer forecasting horizons. For instance,
PatchTST’s SMAPE rises from 2.02 to 2.97 as
the forecast window expands from 2 to 10. This
highlights the difficulty of extracting sufficient pre-
dictive signals from temporal patterns alone.

Although LLMs show strong capabilities in text
comprehension, their limitations in numerical rea-
soning become apparent when applied to time se-
ries forecasting. The Qwen2.5-7B variants and
Llama-2-7b fall short of our model’s performance
by a significant margin—1.25 SMAPE compared
to 0.103 at a forecasting length of 2 when incorpo-
rating news. This underscores that while textual
understanding is valuable, it cannot replace the
need for robust numerical processing in financial
prediction tasks.

Our model excels by leveraging two complemen-
tary mechanisms. Its inherent stochastic model-
ing aligns with the characteristics of financial time
series, as shown by consistently superior MASE
scores in pure time series tasks. Additionally, the
effective integration of event descriptions boosts
predictive power, with a 20-50% improvement in
SMAPE over LLM baselines when news is incor-
porated. The model’s performance continues to
improve with increasing time lags, with SMAPE
rising from 0.103 to 0.205, further demonstrating
its robustness for extended forecasting windows.

4.3 Analysis

Instruction Tuning for LLMs Table 3 reveals
fundamental limitations of LLMs in temporal anal-
ysis for asset pricing. While instruction-tuned mod-
els like QWEN2.5-7B-INSTRUCT show modest
improvements (3.6% SMAPE reduction, 10.2%
MASE reduction), the absolute performance re-
mains poor compared to traditional time series
models. Notably: The best-performing instruction-
tuned model (QWEN2.5-7B-INSTRUCT) still
achieves only 47.43 MASE, where values >1 indi-
cate worse performance than naive forecasts. In-
struction tuning provides marginal benefits (aver-
age 8.7% SMAPE improvement across models)
that fail to meaningfully close the performance gap.
Base models and their instruction-tuned variants
show similar error patterns, suggesting architec-
tural rather than training limitations. These results
challenge the conventional wisdom that instruc-
tion tuning adapts LLMs effectively to specialized
domains. The persistent high errors in both zero-
shot and tuned configurations reveal fundamental
limitations in LLMs’ ability to: (1) model tem-
poral dependencies, (2) understand financial time
series patterns, and (3) perform numerical reason-
ing with market data. This suggests current LLM
architectures may be inherently unsuitable for time-
sensitive financial forecasting tasks, regardless of
tuning approaches.

Choice of Textual Encoder The experimental
results in Table 4, demonstrate limited sensitivity
of model performance to textual encoder selection.
As shown in the table, varying encoder architec-
tures (110M-355M parameters) yield comparable
prediction accuracy across both metrics: SMAPE
fluctuates within a narrow 0.37-0.53 range while
MASE remains confined to 3.25-3.92. Notably,
parameter-efficient DistilBERT (66M) achieves
only marginally higher errors compared to larger
counterparts like RoOBERTa-large (355M), with a
modest 0.16 SMAPE and 0.67 MASE degradation
despite 5.4x fewer parameters. This robustness sug-
gests that textual features primarily serve as auxil-
iary signals rather than dominant predictive factors
in our framework. The observed consistency across
encoder variants implies that downstream market-
adaptive fusion mechanisms effectively mitigate
potential information bottlenecks from text repre-
sentations, prioritizing numeric market dynamics
over linguistic nuances in asset pricing.

Modeling Residuals for Traditional Asset Pric-
ing In our approach, we model the residuals from



PatchTST

TimesNet

Mamba

TimeLLM

Ours

SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE

Forecasting
lengths
len=2 2.02
len=4 2.30
len=06 2.58
len=28 2.75
len =10 2.97

47.23
53.46
61.77
64.05
69.02

0.18
0.26
0.33
0.42
0.46

3.61
5.21
6.93
8.83
9.71

1.58
2.30
1.60
1.63
1.69

35.12
53.54
33.76
35.21
37.42

1.01
1.39
2.71
2.98
3.85

23.64
29.88
63.02
64.74
70.11

0.18
0.16
0.23
0.38
0.56

7.23
1.21
1.82
2.50
3.12

Table 1: The selected baselines and our model take only time series as input. For our model, this means removing
the text encoder and MHA module, degrading it into a conditional generation problem based on past time series.
The len represents the prediction lengths of 2, 4, 6, 8, and 10. All models are trained on the training set. We use the
background color to mark the optimal results, and the background color to mark the suboptimal results.

Time Lag MAN-SF TimeLLM Qwen2.5-7B-Instruct Qwen2.5-7B Llama-2-7b Llama-2-7b-chat Ours
SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE SMAPE MASE
len=2 1.52 33.16 1.32 29.63 1.25 28.07 1.32 29.28 1.48 32.49 1.42 31.52 0.11 1.63
len=4 1.78 39.57 1.41 30.07 1.47 32.12 1.54 34.32 1.67 37.00 1.63 36.50 0.15 2.12
len=6 2.05 45.42 3.79 70.24 1.69 37.33 1.76 39.59 1.88 41.87 1.82 40.17 0.18 2.47
len =8 2.31 52.02 391 72.03 1.91 42.27 1.98 44.63 2.09 46.51 2.01 45.10 0.22 2.81
len =10 2.57 51.78 4.05 74.88 2.13 47.43 2.20 49.97 2.30 51.33 2.25 50.45 0.37 3.25

Table 2: We select the rationality of the baseline to ensure fair comparisons. All models are trained on the training
set. For large language models, we use a similar model size of 7 billion (7b) for comparison. Additionally, for the
base model, we incorporate special tokens during inference. We use background color to mark the optimal results,

and the background color to mark the suboptimal results.

Model Zero Shot Instruction Tuning

SMAPE MASE SMAPE MASE
QWEN2.5-7B-INSTRUCT ~ 2.47 52.79 2.13 47.43
QWEN2.5-7B 2.51 55.63 2.20 49.97
LLAMA-2-7B 2.74 59.03 2.30 51.33
LLAMA-2-7B-chat 2.46 52.37 2.25 50.45

Table 3: We fine-tuned four LLMs using full parameter
fine-tuning. The training was conducted on 4xA800
GPUs, with a batch size of 5 per GPU. The learning rate
was set to 3 x 1077, and we did not use a learning rate
scheduler, keeping it constant throughout the training.
The training lasted for 4 epochs. For the prediction task,
we set the 1en to 10.

Encoder Parameters SMAPE MASE
BERT-base-cased 110M 0.37 3.25
BERT-base-uncased 110M 0.44 3.48
DistilBERT-base-uncased 66M 0.53 3.92
RoBERTa-base 125M 0.47 3.58
RoBERTa-large 355M 0.41 3.42

Table 4: We tested different text encoders in our frame-
work, where "M" denotes millions. The Bert-base-
cased model (Devlin, 2018) is case-sensitive, suitable
for tasks like named entity recognition. The Bert-base-
uncased model (Devlin, 2018) is case-insensitive and
more efficient for tasks where capitalization is not criti-
cal. The Distilbert-base-uncased model (Sanh, 2019)
is a smaller, faster version of BERT. The Roberta-
base (Liu, 2019) and Roberta-large (Liu, 2019) are
optimized for improved performance on complex tasks.

CAPM, Fama3, and Fama$ by training the network
with news and historical time series as input. The
labels for training are the residuals that CAPM,
Fama3, and Fama5 cannot explain. The residuals
are then explained using the predicted results, with
key metrics such as coefficients, R-squared, and
p-values used to evaluate the interpretability of our
method. The results of modeling different residu-

Model Coefficient R-Squared p-value
CAPM Residuals 3.35%* 0.18 0.008
Fama3 Residuals 3.41%* 0.19 0.004
Fama5 Residuals 2.09%* 0.27 0.006

Table 5: This table shows the results of modeling residu-
als for CAPM (Sharpe, 1964), Fama3 (Fama and French,
1992), and Fama5 (Fama and French, 2015) with key
performance metrics: Coefficient, R-Squared, and p-
value. The Coefficient indicates the strength and direc-
tion of the relationship between variables, R-Squared
measures the proportion of variance explained by the
model, and p-value assesses the statistical significance
of the results. The significance levels are indicated as
follows: * p < 0.05, ** p < 0.01, *** p < 0.001. More
introductions about these asset pricing models is pro-
vided in Appendix E

als are shown in Table 5. Our model incorporates
inherent randomness, but it still maintains compat-



Original time series

Forecasting results of MAN-SF

Forecasting results of Ours

() PG

Moderna's Covid-19 vaccine
trial results lead to a Tuesday
selloff, despite showing 94.5%
effectiveness in the trial's first

A) BX B) JNJ
@A) Blackstone Group partnering (B)
with Worthe Real Estate Group
to develop a new office tower
near Burbank and Warner Bros.
studios in California. / interim glimpse.
1§ [
W
(D) INCY (E) vz

Second-quarter results from 125 .
/ S&P 500 companies being reported,

with the main event being the July

U.S. employment report on Friday.

lookback window forecast

window

1\
/\ | V \»\ 1
\ N\ T-Mobile US completes

acquisition of Sprint and
unveils aggressively
priced promotion for new
unlimited plans.

lookback window

Dollar General announces
new traditional distribution
center and creation of
approximately 600 new jobs.

(F) MRK

TYME appoints John Rothman,
Ph.D., as Executive Vice

President, Product Development.

lookback window forecast

window

forecast
window

Figure 3: We selected six representative news articles to showcase the effectiveness of latent diffusion. The gray
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ibility with classical asset pricing theories. The
first mechanism is the underlying diffusion process.
This module allows our model to exhibit a high cor-
relation with traditional stochastic discount factors,
such as those from the Fama models, ensuring that
the randomness introduced does not deviate from
the established asset pricing framework.

Ablation Study From the ablation experiments
shown in Table 6, we conclude disabling cross-
attention mechanisms causes catastrophic perfor-
mance collapse - SMAPE doubles (0.37—0.76)
and MASE deteriorates by 21% (3.25—3.93), con-
firming that market-text interaction modeling con-
stitutes the framework’s analytical core. These re-
sults demonstrate that simple feature concatenation
(via pooling) fails to capture nuanced cross-modal
dependencies essential for asset pricing, while the
text encoder primarily serves as auxiliary regular-
ization rather than a primary signal source.

Model Variant SMAPE| MASE| Speed
Full Model 0.37 3.25 1.31
w/o Text Encoder 0.56 3.14 3.24
w/o Cross-Attention 0.76 3.93 3.85

Table 6: By removing the cross - attention mechanism,
we employ pooling operations to align the text represen-
tations with the temporal representations. The speed is
measured in steps per second.

Case Study Figure 3 illustrates our latent diffu-
sion framework’s capability to capture complex
event-driven market dynamics. By unifying hetero-
geneous events—from strategic expansions (BX)
to clinical trial volatility (MRNA)—the model ef-

fectively separates fundamental drivers (e.g., T-
Mobile’s pricing strategy effects) from transient
noise (e.g., Moderna’s post-news selloff). Its
cross-modal fusion dynamically weights textual
and numerical signals, enabling robust predictions
for both rapid shocks (vaccine updates) and grad-
ual shifts (infrastructure investments). The diffu-
sion mechanism’s inherent noise suppression fur-
ther mitigates overreaction to superficial triggers
(TYME leadership changes), prioritizing material
economic impacts across diverse event types.

5 Limitions and Conclusion

In this work, we propose a novel multimodal latent
diffusion framework for event-driven asset pricing.
This framework addresses critical challenges in
aligning time series with textual event representa-
tions, while explicitly modeling the stochastic na-
ture of financial systems. The extensive empirical
validation demonstrates superior predictive perfor-
mance over conventional baselines. Additionally,
its compatibility with classical asset pricing theo-
ries ensures interpretability, which is an often over-
looked but critical aspect in financial applications.
Despite these strengths, the framework’s perfor-
mance is closely tied to data quality. Noisy, am-
biguous, or contextually incomplete event descrip-
tions may propagate errors through the latent align-
ment process, potentially undermining the frame-
work’s ability to accurately isolate causal relation-
ships between events and price movements. Thus,
the efficacy of our approach may be diminished
when the input data lacks clarity or coherence.
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A Theoretical Analysis

Notation Setup We have P as the physical prob-
ability measure, () as the risk-neutral probability
measure, M; := % ’ P, 38 the stochastic discount
factor (Radon-Nikodym derivative), and y; € R"
as the asset return process at diffusion step . Under
the physical probability measure P, the conditional
probability density is denoted by p:(y | z, s), while
under the risk-neutral probability measure (), the
conditional probability density is represented by
at (y | €, 3)'

Theorem 1. (Diffusion-SDF Duality) Under no-
arbitrage conditions with complete markets, the de-
noising process {y; }7_, defined by Equations (6-9)
implicitly learns the stochastic discount factor M,
through its noise prediction mechanism €y. Specifi-
cally, the learned score function Vy log p(y|x, s)
corresponds to the logarithmic gradient of the risk-
neutral measure.

Proof. Define the continuous-time limit of the for-
ward process using the Ornstein-Uhlenbeck param-
eterization:

dye =~ A(D)ydt + /BOAWT

where W/ is a P-Brownian motion. The associated
reverse-time process under (Q becomes:

dys = —%5@)}’1& — B(t)Vy log pi(yi|x,s)| dt
+V/B(E)AW

By Girsanov’s theorem, the measure change sat-
isfies:

dQ

— = exp

T
aP <—/0 Vy log p¢(y:|x,s) - de

1

T
3 [ 19y oty s) P

Thus identifying M; o« dQ/dP|z,. From asset
pricing theory, the fundamental pricing equation
states:

E;[Me1Re] = 1

where R;11 = y¢+1/y:. Substituting the measure
change relation:

11

The score function emerges through the Fokker-
Planck equation for the reverse process:

Op 1
5 =~V luopi] + 58 Ap,

Substituting g from Equation (9), we derive:

Vy log p(y|x,s)

¢ | {9y logar(yrix.s)| 7]
t
This establishes the score function as a weighted
expectation of future SDF-adjusted gradients.
Reformulate the denoising objective using Doob-
Meyer decomposition:

Eg(yt,t,X, S) = Ep[yolyt] EQ[y0|yt]
—_——

Physical expectation

Substituting the Radon-Nikodym derivative:

_ pe(yolye)

€p = Yo\ —V /"~

a(yolyt)

This reveals €y as the covariance between future
returns and SDF innovations:

— 1) a(yoly:)dyo

g = Cov' (yo, Mog|y:)

where My, = M; /M.
The training objective £(#) in Equation (12) in-
duces a variational problem:

min E” | lleg — Cov* (yo, Mot F3)
First-order conditions yield:

EP |:69 OMo,

00

}:0 Vo

This orthogonality condition enforces the Law of
One Price: assets with identical exposure to SDF
risk must have equal expected returns under P.

O

B Dataset

The origin 792,684 news articles are sourced from
Dow Jones News Services and the Wall Street Jour-
nal, and stored as structured XML files. The struc-
tured dataset comprises eight key variables, includ-
ing {Publication_datetime, Company_code, Com-
pany_code, Title, Body, Word_count}. Using the
‘Company_code’ variable, we filtered and identi-
fied 129,753 news articles about individual S&P

Risk-neutral expectation



500 firms, covering the period from March 8, 2001,
to June 30, 2024.

The corresponding daily stock price data for
S&P 500 firms from 2001 to 2024 was obtained
from the Center for Research in Security Prices
(CRSP) database. The collected variables include
Date, Volume, Open, High, Low, Close, and Com-
pany_code. To align the stock price data with the
news data, we used the publication date of each
news article and the company code as the reference
point. Specifically, news published before the close
of the market was associated with the same trading
day, while news published after the market close
was assigned to the next trading day. By matching
the Company code and Publication date between
the two datasets, we constructed (news, price) pairs,
resulting in a total of 126,521 pairs. Detailed de-
scriptions of the variables within these pairs are
provided in Table 7. To identify stocks exhibiting
significant price changes influenced by news events
within a given time lag (denoted as 7), we employed
the Bollinger Bands methodology. The bands are
calculated as BB = M Ay + K x SD(MAy),
where M Ay is the moving average over N days,
SD(MAy) is the standard deviation of the mov-
ing average, K is set as 2, and [V is set as 20 be-
cause M A20 represents a monthly average. If the
stock price on day 7, denoted as price;, satisfies
the condition price; > M A20 + 25D(M A20) or
price; < M A20—2SD(M A20), we consider the
(news, price) pair meets the ‘jump’ criterion. The
relationship between the specific time lag ¢ and the
selected pairs is shown in Table 8.

C Hyperparameters

We conducted extensive experiments and per-
formed a grid search to determine the following
hyperparameters, as shown in the Table 9. These
settings provide a good balance between training
speed and performance. During the training pro-
cess, our textual encoder is frozen, which means
that the number of parameters requiring fine-tuning
is relatively small.

D Prompts

System Setting You are an advanced Al system
capable of understanding and processing temporal
and textual data. Your task is to predict future
financial time series values using historical data and
relevant news articles. Leverage statistical analysis,
natural language processing, and machine learning

12

to generate accurate predictions.

Input The input consists of two components:
News Article, which is a recent news headline
or content in text format, and Historical Finan-
cial Data, a time series of past financial values
represented as numerical data.

Output The output should strictly follow the for-
mat outlined below. Ensure the following structure
is maintained: - The output must be a JSON object.
- It should include a "predictions" field containing
an array of prediction objects. - Each prediction
object must include a "date" field (in the format
"YYYY-MM-DD") and a "value" field (as a numer-
ical value).

Input/Output Examples:
Sample Input
{

"news"”: {

"title"”: "Company X Launches New Product..."”,
"content”: "..."

}!

"time_series”: {
"2023-10-01": 100.5,
"2023-10-02": 101.2,
"2023-10-03": 102.3,

}

}

Sample Output
{

"predictions”: [
{"date": "2023-11-20", "value": 121.53},

E Asset Pricing Models

In asset pricing theory, the Capital Asset Pricing
Model (CAPM), the Fama-French Three-Factor
Model (Fama 3), and the Fama-French Five-Factor
Model (Fama 5) represent significant frameworks
for explaining the expected return on assets by ac-
counting for various market factors. Below is a
brief overview of each model.

E.1 The Capital Asset Pricing Model (CAPM)

The CAPM, introduced by William Sharpe in 1964,
seeks to explain an asset’s expected return in re-
lation to its sensitivity to market risk. The model
assumes rational investors, efficient markets, and a
risk-free asset. CAPM posits that the return on an



Variable Description
Publication_date | News article publication date. If the news article was officially published before the
close of market, this variable records the same date, else it marks the next date.
Company_code | Unique identifier or code for the relevant company. A unique code that identifies the
company mentioned in the news and the prices.
Title Title of news article. A brief headline that summarizes the main topic or event
described in the news article.
Body The detailed news content.
Word_count Number of total word count in the body of the news article.
Volume The number of shares traded on the publication date.
Open The opening price of the corresponding company on the publication date.
High The highest stock price of the corresponding company on the publication date.
Low The lowest stock price of the corresponding company on the publication date.
Close The closing price of the corresponding company on the publication date.
Table 7: The variables in the collected news articles dataset.
Time Lag Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 Lag=8 Lag=9 Lag=10
Influenced Rate  0.2361 0.2251 0.2067 0.1915 0.1842 0.1811 0.1750 0.1758 0.1706  0.1737

Influenced Pairs 29,869 28478 26148 24224

23308

22907 22141 22238 21586 21979

Table 8: The influenced paired for different time lags.

asset is determined by its exposure to the overall
market’s risk, represented by the asset’s beta (3;).
The formula for CAPM is:

E(R;) = Ry + Bi (E(Rm) — Ry)

where E(R;) is the expected return on asset i,
Ry is the risk-free rate, and (3; is the asset’s sensi-
tivity to the market return E'(R,,). CAPM’s sim-
plicity is one of its strengths, though it has faced
criticism for not accounting for other factors that in-
fluence asset returns, which led to the development
of more sophisticated models.

E.2 The Fama-French Three-Factor Model
(Fama 3)

In 1993, CAPM is extended by introducing the
Fama3. They found that two additional fac-
tors—size and value—helped explain stock returns
more effectively. The model builds on the CAPM
framework by adding two components: the SMB
(Small Minus Big) factor, which represents the re-
turn difference between small-cap and large-cap
stocks, capturing the size effect, and the HML (High
Minus Low) factor, which measures the return dif-
ference between value stocks (high book-to-market
ratio) and growth stocks (low book-to-market ra-
tio), capturing the value effect.

13

The Fama-French Three-Factor Model is repre-
sented as:

E(R;) = Ry + B (E(Ry) — Ry)
+ BsymB - SMB
+ Bumr - HML

This model significantly improves upon CAPM
by addressing the role of firm size and value char-
acteristics in determining asset returns.

E.3 The Fama-French Five-Factor Model
(Fama 5)

Fama 5, introduced in 2015, further extends the
Three-Factor Model by adding two more factors:
profitability and investment. The model acknowl-
edges that a firm’s profitability and investment
strategies can influence its stock returns, provid-
ing a more comprehensive explanation of asset
pricing. The two new factors are RMW (Robust
Minus Weak), which reflects the return difference
between highly profitable and less profitable firms,
and CMA (Conservative Minus Aggressive), which
captures the return difference between firms with
conservative vs. aggressive investment strategies.



Hyperparameter Default Value Description

num_epochs 10 Number of training epochs, default 10

batch_size 32 Training batch size, default 32

1r 1x107° Learning rate, default 1 x 10>

d_model 128 Dimensionality of the model, default 128
latent_space_dim 512 Latent space dimension, default 512

dropout 0.1 Dropout rate, default 0.1

nhead 4 Number of attention heads in the MHA block, default 4
num_layers 2 Number of layers in the MHA block, default 2

Table 9: Hyperparameter Settings

The Five-Factor Model is expressed as:

E(R;) = Ry + 5 (E(Rm) — Ry)
+ Bsmp - SMB + By - HML
+ Bryuw - RMW + Boya - CMA

By adding the RMW and CMA factors, the Five-
Factor Model provides a deeper and more nuanced
understanding of asset pricing, incorporating firm-
specific characteristics such as profitability and in-
vestment behavior.
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