
LightZero: A Unified Benchmark for Monte Carlo
Tree Search in General Sequential Decision Scenarios

Yazhe Niu1,3 Yuan Pu2 Zhenjie Yang1 Xueyan Li2 Tong Zhou1

Jiyuan Ren2 Shuai Hu1 Hongsheng Li3,4 ∗ Yu Liu1,2

1SenseTime Group LTD
2Shanghai Artificial Intelligence Laboratory

3The Chinese University of Hong Kong
4Centre for Perceptual and Interactive Intelligence

Abstract
Building agents based on tree-search planning capabilities with learned models has
achieved remarkable success in classic decision-making problems, such as Go and
Atari. However, it has been deemed challenging or even infeasible to extend Monte
Carlo Tree Search (MCTS) based algorithms to diverse real-world applications,
especially when these environments involve complex action spaces and significant
simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the
first unified benchmark for deploying MCTS/MuZero in general sequential decision
scenarios. Specificially, we summarize the most critical challenges in designing a
general MCTS-style decision-making solver, then decompose the tightly-coupled
algorithm and system design of tree-search RL methods into distinct sub-modules.
By incorporating more appropriate exploration and optimization strategies, we can
significantly enhance these sub-modules and construct powerful LightZero agents
to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo,
MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential
of such methods in building scalable and efficient decision intelligence. The code
is available as part of OpenDILab at https://github.com/opendilab/LightZero.

1 Introduction
General decision intelligence needs to solve tasks in many distinct domains. Recent advances
in reinforcement learning (RL) algorithms have addressed several challenging decision-making
problems [1, 2] and even surpassed top-level human experts in performance [3]. However, these state-
of-the-art RL agents often exhibits poor data efficiency and face significant challenges when handling
a wide range of diverse problems. Different environments present specific learning requirements
and difficulties that prompted currently various algorithms (e.g. DQN [4], PPO [5], R2D2 [6], SAC
[7]) and system architectures such as IMPALA [8] and others [9, 10, 11]. Designing a general and
data-efficient decision solver needs to tackle various challenges, while ensuring that the proposed
algorithm can be universally deployed anywhere without domain-specific knowledge requirements.

Monte Carlo Tree Search (MCTS) is a powerful approach that utilizes a search tree with simulation
and backpropogation mechanisms to train agents with a small data budget [12]. To model high-
dimensional observation spaces and complex policy behaviour, AlphaGo [13] enhances MCTS with
deep neural networks and designs the policy and value network that identify optimal actions and
winning rates respectively, which was the first to defeat the strongest professional human player in Go.
Despite the impressive results, MCTS-style algorithms rely on a series of necessary conditions, such
as knowledge of game rules and simulators, discrete action space and deterministic state transition,
which severely restrict the application scope of these methods. In recent years, several successors

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

to AlphaGo have attempted to extend its capabilities in various directions. MuZero [14] relaxes the
requirements for prior knowledge of environments by training a set of neural networks to reconstruct
reward, value and policy. Sampled MuZero [15] successfully applies MCTS to various complex
action space with a novel planning mechanism based on sampled actions. [16, 17, 18] improve
MuZero in terms of planning stochasticity, representation learning effectiveness and simulation
efficiency respectively. These emerging algorithm insights and techniques have contributed to the
development of more general MCTS algorithms and toolchains.

In this paper, we present a unified algorithm benchmark named LightZero that first comprehensively
integrates different MCTS/MuZero algorithm branches, including 9 algorithms and more than 20
decision environments with detailed evaluation. To better understand the potential of MCTS as an
efficient general-purpose sequential decision solver, we revisit the development history of MCTS
methods [19] and the diverse criterions of newly proposed RL environments [20, 21, 22]. As shown
in Figure 2, we outline the six most challenging dimensions in developing LightZero as a general
method, including multi-modal and high-dimensional observation space [23], complex action space,
reliance on prior knowledge, inherent stochasticity, simulation cost, and hard exploration.

Furthermore, highly coupled algorithm and system architectures greatly increase the cost and barriers
of migrating and improving MCTS-style methods. Some special mechanisms like tree search and data
reanalyze [24] seriously hinder the simplification and parallel acceleration of code implementation.
To overcome these difficulties, LightZero designs a modularly pipeline to enable distinct algorithm
components as plug-ins. For example, the chance node planning for modelling stochasticity can also
be used in continuous control or hybrid action environments. From the unified viewpoint provided by
LightZero, we can systematically divide the whole training scheme of MCTS-style methods into four
sub-modules: data collector, data arranger, agent learner, and agent evaluator. LightZero’s decoupled
architecture empowers developers to focus intensively on the customization of environments and
algorithms. Meanwhile, some techniques like off-policy correction and data throughput limiter can
ensure the steady convergence of the algorithm while achieving runtime speedups.

Based on these supports, LightZero also explores the advantages of combining some novel insights
from model-based RL with MCTS approaches. In particular, the misalignment problem [25] of
state representation learning and dynamics learning can result in the problematic optimization for
MuZero, thus a simple self-consistency loss can significantly speed up convergence without special
tuning. Besides, intrinsic reward mechanism [26] [27] [28] can address the exploration deficiency of
tree-search methods with hand-crafted noises. Subsequently, we evaluate the ability of LightZero
as a general solver for various decision problems. Experiments on different types of environments
demonstrate LightZero’s rich application ranges and data efficiency regimes with few hyper-parameter
adjustments. At last, we provide discussions on the future optimization directions of each sub-module.

In general, we summarize the three key contributions of this paper as follows:

• We present LightZero, the first general MCTS/MuZero algorithm benchmark that systematically
evaluates related algorithms and system designs.

• We outline the most critical challenges of real-world decision applications. To address these issues,
we decouple the algorithm and system design of MCTS methods and design a modular training
pipeline, which can easily integrate novel insights for better scalability.

• We demonstrate the capability and future potential of LightZero as a general sequential decision
solver, which can be trained and deployed across diverse domains.

2 Background
Reinforcement Learning models a decision-making problem as a Markov Decision Process (MDP)
M = (S,A,P,R, γ, ρ0), where S and A denote the state space and action space, respectively. The
transition function P maps S × A to S, while the expected reward function R maps S × A to R.
The discount factor γ ∈ [0, 1) determines the importance of future rewards, and ρ0 represents the
initial state distribution. The goal of RL is to learn a policy π : S → A that maximizes the expected
discounted return over the trajectory distribution J(π) = Eπ,ρ0,P,R[

∑∞
t=0 γ

trt].

2

2016 2020 202120182017

AlphaGo
Nature 2016

with Expert Data, Domain
Knowledge and Known Rules;

Value NN, Policy NN;
Env: Go

AlphaZero
Science 2018

with Known Rules;
Restructure Self-Play;
Env: Go, Chess, Shogi

Stochastic MuZero
ICLR 2022

Stochastic Model;
Stochastic Tree Search;

Env: 2048, Backgammon, Go

VQVAE MuZero
ICML 2021
VQ Model;

Stochastic MCTS;
Env: Chess Dataset, DM Lab

Sampled MuZero
ICML 2021

Sample-Based Policy Iteration;
Extend to Complex Action Space;

Env: Go, DMC, RWRL

MuZero
Nature 2020

without Any Knowledge;
Representation State;

Model-Based;
Env: Go, Chess, Shogi, Atari

AlphaGo Zero
Nature 2017

with Known Rules;
A single Residual NN;

Self-Play;
Env: Go

EfficientZero
NeurIPS 2021

Self-Supervised Consistency Loss;
Value Prefix Prediction;

Model-Based Off-Policy Correction;
Env: Atari, DMC

Gumbel MuZero
ICLR 2022

 Planning with Gumbel;
Planning at Non-Root Nodes;

Env: Go, Chess, Atari

MuZero Unplugged
NeurIPS 2021

Reanalyse;
Offline RL;

Env: Atari and DMC Dataset

2022

(a) Board Games (b) Atari

(c) MiniGird (d) GoBigger

LightZero

Figure 1: Overview of LightZero. The left side depicts the development of MCTS, while the right
side showcases various RL environments. LightZero incorporates and extends recent advances within
the MCTS/MuZero sub-domain and effectively applies them across diverse environments.
AlphaZero [29] is a generalized version of AlphaGo [13], eliminating the reliance on supervised
learning from game records. It is trained entirely through unsupervised self-play and achieves
superhuman performance in various board games, such as chess, shogi, and Go. This approach
replaces the handcrafted features and heuristic priors commonly used in traditional intelligent
programs. Specifically, AlphaZero employs a deep neural network parameterized by θ, represented
as (p, v) = fθ(s). Given a board position s, the network produces a action probability pa = Pr(a|s)
for each action a and a scalar value v to predict the expected return z, i.e. v → z.

MuZero [14] achieves superhuman performance in more complex domains with visual input [30],
without knowledge of the environment’s transition rules. It combines tree search with a learned
model, using three networks: 1 Representation Network: s0 = hθ(o1, . . . , ot). This network
represents the root node (at time t) as a latent state, obtained by processing past observations
o1, . . . , ot, 2 Dynamics Network: rk, sk = gθ(s

k−1, ak). This network simulates the dynamics
of the environment. Given a state and selected action, it outputs the transitioned next state and
corresponding reward. 3 Prediction Network: pk, vk = fθ(s

k). Given a latent state, this network
predicts the action probability and value. Notably, MuZero searches within the learned latent
space. For the MCTS process in MuZero, assume the initial root node s0 is generated from the
original board state through the representation network, each edge stores the following information:
N(s, a), P (s, a), Q(s, a), R(s, a), S(s, a), respectively representing visit counts, policy, mean value,
reward, and state transition. The MCTS process in the latent space can be divided into three phases:

• Selection: Actions are chosen according to the Upper Confidence Bound (UCB) [31] formula:

a∗ = argmax
a

Q(s, a) + P (s, a)

√∑
bN(s, b)

1 +N(s, a)
[c1 + log(

∑
b N(s, b) + c2 + 1

c2
)]

where, N represents the visit count, Q is the estimated average value, and P is the policy’s prior
probability. c1 and c2 are constants that control the relative weight of P and Q.

• Expansion: The selected action is executed in the learned model, continuing until a leaf node is
encountered. At this point, a new state node sl is generated, and its associated predicted reward
rl is determined. Utilizing the prediction function, we obtain the predicted values pl and vl.
Subsequently, this node is incorporated into the search tree.

• Backup: The estimated cumulative reward at step k is calculated based on vl, denoted as: Gk =
l−1−k∑
τ=0

γτrk+1+τ + γl−kvl. Subsequently, Q and N are updated along the search path.

After the search is completed, the visit count set N(s, a) is returned at the root node s0. These visit
counts are normalized to obtain the improved policy:

Iπ(a|s) = N(s, a)1/T /
∑
b

N(s, b)1/T

3

Multi-modal Observation Space

Complex Action Space

Inherent Stochasticity

Reliance on Prior KnowledgeSimulation Cost

Hard Exploration

Data Efficiency

0

1

2

3

4

5

Model-free RL
AlphaZero
MuZero
LightZero

Figure 2: Radar chart comparison of MCTS-style methods and model-free RL (e.g. PPO) on six
environment challenges and another data efficiency dimensions. We categorize the critical capabilities
of general decision solvers as follows: multi-modal observation space, complex action space, inherent
stochasticity, reliance on prior knowledge, simulation cost, hard exploration and data efficiency.
Each curve in the graph represents the score of an algorithm across these six categories. A score
of 1 indicates that the algorithm perform poorly in this dimension and is only applicable to limited
scenarios, while a higer score means a large application scope and better performance. In particular,
model-free RL methods need no simulation and have little dependence on priors, so it achieves high
score in corresponding dimensions. Please note that within this context, the term LightZero refers
to the specical algorithm that embodies the optimal combination of techniques and hyperparameter
settings within our framework. Details about qualitative score rules can be found in Appendix D.

where T is the temperature coefficient controlling the exploration degree. Finally, an action is sampled
from this distribution for interaction with the environment or self-play. During the learning phase,
MuZero perform end-to-end training with the following loss function, where lp, lv and lr are loss
functions for policy, value and reward respectively, and the final term is weight decay.

lt(θ) =

K∑
k=0

lp(πt+k, p
k
t) + lv(zt+k, v

k
t) + lr(ut+k, r

k
t) + c||θ||2

3 LightZero
In this section, we will first introduce the overview of LightZero, followed by a comprehensive
analysis of challenges in various decision environments. Additionally, we propose a specific training
pipeline design for a modular and scalable MCTS toolchain. We will conclude this section with two
algorithm insights inspired by the decoupled design of LightZero.

3.1 Overview

As is shown in Figure 1, LightZero is the first benchmark that integrates almost all recent advances in
the MCTS/MuZero sub-domain. Specifically, LightZero incorporates nine key algorithms derived
from the original AlphaZero [29], establishing a standardized interface for training and deployment
across diverse decision environments. Unlike the original versions of these derived algorithms,
which focused on specific avenues of improvement, LightZero provides a unified viewpoint and
interface. This unique feature enables exploration and comparison of all possible combinations of
these techniques, offering an comprehensive baseline for reproducible and accessible research. The
concrete experimental results are thoroughly described in Section 4 and Appendix B.

3.2 How to Evaluate A General MCTS Algorithm: 6 Environment Challenges

The algorithm extensions integrated in LightZero have greatly relaxed the constraints and broadened
the applicability of MCTS-style methods. In the following part, we hope to delve deeper into the key

4

Data Collector Data Arranger

Agent Learner Agent Evaluator

Offline Dataset

representation
learning

model-based
rollout

distributional
prediction

value/reward
normalization

optimizer
gradient clip

data parallel
 mixed precision

4.2 3.2 5.5 4.3 0.3 4.15.9 1.1

throughput
limiter

data
reanalyzer

priority
recomputer

Prioritized Replay Buffer (FIFO)

Training Techniques/Tricks Networks
(Model)

Online Agent-Env
Interaction Loop

EnvAgent

Search Tree

State/Reward

Action

Online Agent-Env
Interaction Loop

EnvAgent

Search Tree

State/Reward

Action

evaluation
tricks

evaluation
metrics

efficiency
profiler

Context

Exchanger

Figure 3: Four core sub-modules of the training pipeline in LightZero. Context Exchanger is
responsible for transporting configurations, models and trajectories among different sub-modules.

issues in the design of general and efficient MCTS algorithms. In order to systematically complement
this endeavor, we conducted an analysis of a set of classic and newly proposed RL environments to
identify common characteristics. Based on this analysis, we have summarized six core challenging
dimensions, which are presented in a radar plot depicted in Figure 2. Concretely, The intentions
and goals of six types of envionmental capabilities are: 1) Multi-modal observation spaces pose a
challenge for agents as they must be able to extract different representation modalities (e.g., low-
dimensional vectors, visual images, and complex relationships) while effectively fusing distinct
embeddings. 2) Complex action space necessitates the agent’s proficiency in generating diverse
decision signals, encompassing discrete action selection, continuous control, and hybrid structured
action space. 3) Reliance on prior knowledge is a major drawback of methods like AlphaZero. These
approaches inherently require accessibility to a perfect simulator and specific rules of the environment.
In contrast, MuZero and its derived methods address this limitation by learning an environment
model to substitute the simulator and related priors. 4) Inherent stochasticity presents a fundamental
challenge in tree-search-based planning methods. The uncertainty of environment dynamics and
partially observable state spaces both can lead to misalignment of planning trajectories, resulting
in a large number of useless or conflicting search results. 5) Simulation cost stands as the primary
contributor to wall-time consumption for MCTS-style methods. At the same time, the algorithm
performance will degrade a lot if the algorithm fails to visit all the necessary actions during the
simulation process. 6) Hard exploration represents a crucial challenge that is often overlooked. While
search trees can enhance efficiency by reducing the scope of exploration, MCTS-style methods are
susceptible to difficulties in environments with numerous non-terminating cases, such as mazes.

3.3 How to Simplify A General MCTS Algorithm: Decouple Pipeline into 4 Sub-Modules

The impressive performance of MCTS-style methods is often accompanied by a notable drawback:
the complexity of implementations, which greatly restricts their applicability. In contrast to some
classic model-free RL algorithms like DQN [32] and PPO [5], MCTS-style methods require multi-
step simulations using search trees at each agent-environment interaction. Also, to improve the quality
of training data, MuZero Unplugged [24] introduce a data reanalyze mechanism that uses the newly
obtained model to compute improved training targets on old data. However, both of these techniques
require multiple calls to simulators or neural networks, increasing the complexity across various
aspects of the overall system, including code, distributed training, and communication topology.

5

Therefore, it is necessary to simplify the whole framework based on the integration of algorithms.
Figure 3 presents a depiction of the complete pipeline of LightZero with four core sub-modules.

Firstly, LightZero offers support for both online and offline RL [33] training schemes. The distinction
between them lies in the utilization of either an online interaction data collector or direct usage of an
offline dataset. Secondly, LightZero restructures its components and organizes them into four main
sub-modules, based on the principle of high cohesion and low coupling. Data collector is responsible
for efficient action selection using policy network and search tree. It also contains various exploration
strategies, data pre-processing and packaging operations. Data arranger plays a unique role in
MCTS by effectively storing and preparing valuable data for training purposes. This sub-module
involves the data reanalyze technique [24] to correct off-policy and even offline data. Furthermore, the
modified priority sampling [34] ensures training mini-batches have both sufficient variety and high
learning potential. To balance these tricks with efficiency, the throughput limiter controls the ratio of
adding and sampling data to ensure optimal data utilization within a fixed communication bandwith.
Agent learner is responsible for training multiple networks. It can be enhanced through various
optimization techniques, such as self-supervised representation learning [35, 36], model-based rollout
[37, 38], distributional predicton [39] and normalization [40, 41]. These techniques contribute to
the policy improvement and further enhance the overall performance of the agent. Agent evaluator
periodically provides the diverse evaluation metrics [42] to monitor the training procedure and assess
policy behaviour. It also integrates some inference-time tricks like beam search [43] to enhance test
performance. We provide a detailed analysis of how these sub-modules are implemented in specific
algorithms in Appendix F. Built upon these abstractions, LightZero serves as a valuable toolkit,
enabling researchers and engineers to develop enhanced algorithms and optimize systems effectively.
For example, the exploration strategies and ensuring the alignment of a learned model in MCTS
is crucial, and this will be discussed in the subsequent sub-section. In addition, exploring parallel
schemes for multiple vectorized environments and search trees can be an insightful topic for machine
learning system. The associated dataflow and overhead analysis will be presented in the Appendix E.

3.4 How to Improve A General MCTS Algorithm: 2 Examples

In this section, we present two algorithm improvement examples inspired by LightZero. The below
dimensions pose necessary challenges in designing a comprehensive MCTS solver. LightZero ad-
dresses these challenges through various improvements, resulting in superior performance compared
to individual algorithm variants across different domains (Section 4 and 5).

Intrinsic Exploration While tree-search-based methods perform well in board games with only
eventual reward, they may encounter challenges or perform poorly in other environments with sparse
rewards, such as MiniGrid [44]. One crucial distinction between these two problems is that in the
former, the search tree can always reach several deterministic final states, whereas in the latter, it
may encounter various non-termination states due to the limitation of maximum episode length. To
address this issue, LightZero incorporates the idea of intrinsic reward methods [28] and implement it
efficienctly within MuZero’s learned models. Further details can be found in Section 5.1.

Alignment in Environment Model Learning MuZero employs a representation network to generate
latent states and a dynamics network to predict next latent states. However, there is no explicit super-
vision guiding the desired properties of the latent space. Traditional self-supervised representation
learning methods often fail to align these proxy tasks with RL objectives. The difference of rollouts
between the perfect simulator and the learned model is also a problems that can not be ignored.
Further exploration of misalignments across different environments are discussed in Section 5.2.

4 Experiments
In Section 4.1, we initially present some representative experiments of LightZero, with detailed
experimental settings and more comprehensive results outlined in the Appendix B. Subsequently,
in Section 4.2, we delve into key observations and reflections based on these benchmark results,
introducing some critical insights. Particularly regarding the exploration and the alignment issues of
environment model learning, we conduct an in-depth experimental analysis in Section 5.

6

0M 0.2M 0.4M 0.6M 0.8M
Env Steps

0

100

200

300

400

500

R
et

ur
n

BreakoutNoFrameskip-v4
MuZero
MuZero w/ SSL
EfficientZero
Sampled EfficientZero (K=3)

Figure 4: Comparisons of mean episode return for algorithm variants in LightZero across diverse
environments: Atari with discrete action and partial-observable state (Qbert, Breakout, MsPacman),
GoBigger [23] with complex observation and multi-agent cooperation, continuous control with
environment stochasticity (Bipedalwalker), and Gomoku with varying accessibility to simulator.

4.1 Benchmark Results

To benchmark the difference among distinct algorithms and the capability of LightZero as a general
decision solver, we conduct an extensive comparisons across a diverse range of RL environments. The
algorithm variants list contains AlphaZero [29], MuZero [14], EfficientZero [17], Sampled MuZero
[15], Stochastic MuZero [16], Gumbel MuZero [18] and other improved versions of LightZero. For
each scenario, we evaluate all the possible variants on corresponding environments. In Figure 4, we
show some selected results as examples. For detailed settings, metrics, comprehensive benchmark
results and related analysis, please refer to Appendix B.

4.2 Key Observations and Insights

Building on the unified design of LightZero and the benchmark results, we have derived some
key insights about the strengths and weaknesses of each algorithm, providing a comprehensive
understanding of these algorithms’ performance and potential applications.

O1: In board game environments, AlphaZero’s sample efficiency greatly exceeds that of MuZero.
This suggests that employing AlphaZero directly is advantageous when an environment simulator is
available; however, MuZero can still achieve satisfactory results even in the absence of a simulator.

O2: Self-supervised loss substantially enhances performance in most Atari environments with image
inputs. Figure 7 demonstrates that MuZero with SSL performs similarly to MuZero in MsPacman,
while outperforming it in the other five environments. This result highlights the importance of SSL
for aligning the model and accelerating the learning process in image input environments.

O3: Predicting value_prefix instead of reward does not guarantee performance enhancement. For
example, in Figure 7, EfficientZero outperforms MuZero with SSL only in the MsPacman and
Breakout environments, while showing similar performance in the other environments. In certain
specific scenarios, such as the sparse reward environments depicted in Figure 12, EfficientZero’s
performance is significantly inferior to that of MuZero with SSL. Therefore, we should prudently
decide whether to predict value_prefix, taking into account the attributes of the environment.

O4: MuZero with SSL and EfficientZero demonstrate similar performance across most Atari environ-
ments and in complex structured observation settings, such as GoBigger. This observation suggests

7

that environments with complex structured observations can benefit from representation learning and
contrastive learning techniques [35] to enhance sample efficiency and robustness.

O5: In discrete action spaces, Sampled EfficientZero’s performance is correlated with action space
dimensions. For instance, Sampled EfficientZero performs on par with EfficientZero in Breakout
(action space dimension of 4), but its performance decreases in MsPacman (dimension of 9).

O6: Sampled EfficientZero with Gaussian policy representation is more scalable in continuous
action spaces. The Gaussian version performs well in traditional continuous control and MuJoCo
environments, while factored discretization [45] is limited to low-dimensional actions.

O7: Gumbel MuZero achieves notably better performance than MuZero when the number of
simulations is limited, which exhibits its potential in designing low time-cost MCTS agent.

O8: In environments with stochastic state transitions or partial observable states (such as Atari
without stacked frames), Stochastic MuZero can obtain slightly better performance than MuZero.

O9: The self-supervised loss proposed in [17], sampling-related techniques in Sampled MuZero
[45], computational improvements in Gumbel MuZero [18] for utilizing MCTS searched information,
and environment stochasticity modeling in Stochastic MuZero [16] are orthogonal to each other,
exhibiting minimal interference. LightZero is exploring and developing ways to seamlessly integrate
these characteristics to design a universal decision-making algorithm.

5 Two Algorithm Case Studies for LightZero
5.1 Exploration Strategies in MCTS

Motivation Finding the optimal trade-off between exploration and exploitation is a fundamental
challenge in RL. It is well-known that MCTS can reduce the policy search space and facilitate
exploration. However, there exists limited research on the performance of MCTS algorithms in hard-
exploration environments. Based on the above benchmark results, we conduct a detailed analysis of
the algorithm behaviours between challenging sparse reward environments and board games, as well
as insights behind the selection of exploration mechanisms in this section and Appendix C.1.

Settings We performed experiments in MiniGrid environment, mainly on the KeyCorridorS3R3
and FourRooms scenarios. Expanding upon the naive setting (handcrafted temperature decay), we
conducted a comprehensive investigation of six distinct exploration strategies in LightZero. A detailed
description of each exploration mechanism is provided in Appendix C.1.

0M 0.2M 0.4M 0.6M 0.8M
Env Steps

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

MiniGrid-KeyCorridorS3R3-v0
IntrinsicExploration
EpsGreedy
PolicyEntropyRegularization-0.05
PolicyEntropyRegularization-0.005
FixedTemperature
NaiveDoubleSimulation
Naive

Figure 5: Performance of various MCTS exploration mechanisms in MiniGrid environment (Return
during the collection phase). Under the naive setting, the agent fails due to inadequate exploration.
Merely increasing search budgets with the NaiveDoubleSimulation approach does not yield any
significant improvement. EpsGreedy, FixedTemperature and PolicyEntropyRegularizatio-x display
higher variance as they cannot guarantee enough exploration. IntrinsicExploration effectively explores
the state space by leveraging curiosity mechanisms, resulting in the highest sample efficiency.

Analysis Figure 5 indicate that simply increasing search budgets does not yield improved perfor-
mance in challenging exploration environments. Instead, implementing a larger temperature and

8

0M 0.2M 0.4M 0.6M 0.8M 1M
Env Steps

20

10

0

10

20

R
et

ur
n

PongNoFrameskip-v4

MuZero w/ SSL
MuZero w/o SSL

0M 0.5M 1M 1.5M 2M 2.5M 3M
Env Steps

1000

500

0

R
et

ur
n

LunarLander-v2

MuZero w/o SSL
MuZero w/ SSL

0M 0.05M 0.1M 0.15M 0.2M
Env Steps

0.25

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

TicTacToe

MuZero w/ SSL
MuZero w/o SSL

Figure 6: Impact of self-supervised consistency loss across different environments with various
types of observations. From left to right, performance comparisons involve standard image input,
compact vector input, and unique board image input, considering cases with and without consistency
loss. Experiments show that the consistency loss proves to be critical only for standard image input.

incorporating policy entropy bonus can enhance action diversity during data collection, albeit at the
cost of increased variance. However, theoretically, they cannot guarantee sufficient exploration, often
resulting in mediocre performance and a higher likelihood of falling into local optima due to policy
collapse. Epsilon-greedy exploration ensures a small probability of uniform sampling, which aids in
exploring areas with potentially high returns. EpsGreedy has varying effects in different environments
in early stages, but theoretically, due to its ability to ensure sufficient exploration, it may achieve
good results in the long run. A more effective strategy involves curiosity-driven techniques, such as
RND [27], which assigns higher intrinsic rewards to novel state-action pairs, bolstering the efficiency
of exploration. The performance of the IntrinsicExploration method supports this assertion, and it
can be integrated into MuZero with minimal overhead (Appendix C.1.3).

5.2 Alignment in Environment Model Learning

Motivation Aligned and scalable [25] environment models are vital for MuZero-style algorithms,
with factors such as model structure, objective functions, and optimization techniques contributing to
their success. The consistency loss proposed in [17] could serve as an approach for aligning the latent
state generated by the dynamics model with the state obtained from the observation. In this section,
we investigate the impact of consistency loss on learning dynamic models and final performance in
environments with diverse observations (vector, standard images, special checkerboard images).

Settings To study the impact of the consistency loss on various types of observation data, we employ
the MuZero algorithm as our baseline. To ensure the reliability of our experimental results, we
maintain the same configurations across other settings, with additional experimental details provided
in Appendix C.2. In the experiments, we use Pong as the environment for image input, LunarLander
for continuous vector input, and TicTacToe for special image input (checkerboard) environments.

Analysis In Figure 6, consistency loss is critical for standard image input. Removing the consistency
loss results in significant decline in performance, indicating the challenge of learning a dynamic
model for high-dimensional inputs. For vector input environments like LunarLander, consistency
loss provides a minor advantage, suggesting that learning a dynamic model is relatively easier on
the compact vector observations. In special two dimension input environments like TicTacToe, the
consistency loss remains large, highlighting the difficulty of achieving consistency between latent
state outputs. Additionally, adding consistency loss with inappropriate hyper-parameters may lead to
non-convergence (Appendix C.2). In conclusion, our experiments demonstrate that the effectiveness
of the consistency loss depends on the special observation attributes. For board games, a future
research direction involves investigating suitable loss functions to ensure alignment during training.

6 Related Work
Sequential Decision-making Problems In the domain of sequential decision-making problems,
intelligent agents aim to make optimal decisions over time, taking into account observed states and
prior actions [46]. However, these problems are often compounded by the presence of continuous
action spaces, dynamic transitions, and exploration difficulties. To address such problems, model-free
RL methods [5, 7, 32] focus on learning expected state rewards, optimizing actions, or combining

9

both strategies to achieve optimal policy learning. Conversely, model-based RL [25] incorporates the
environment’s transition into its optimization objective, aiming to maximize the expected return on
trajectory distribution. MCTS [19] is a modeling approach derived from search planning algorithms
such as minimax [47] and alpha-beta pruning [48]. Unlike these algorithms, which recursively
search decision paths and evaluate their returns, MCTS employs a heuristic search on prior-guided
simulations, effectively addressing excessive search consumption in complex decision spaces.

MCTS Algorithms and Toolkits Despite the impressive performance and efficiency of the
MCTS+RL approach, constructing the training system and dealing with intricate algorithmic details
pose significant challenges when applying these algorithms to diverse decision intelligence domains.
Recent research has made progress in this direction. MuZero Unplugged [24] introduced the Rean-
alyze technique, a simple and efficient enhancement that achieves good performance both online
and offline. ROSMO [49] investigated potential issues with MuZero in offline RL and suggested a
regularized one-step lookahead approach. The lack of comprehensive open-source implementations
of various algorithms remains a challenge within the research community. For example, Sampled
MuZero [15] lacks a public implementation. AlphaZero-General [50] and MuZero-General [51]
each support only a single algorithm, and neither offers distributed implementations. Although
EfficientZero [17], does support multi-GPU implementation, it is limited to the single algorithms.
KataGo [52], while primarily focused on the AlphaZero and Go game, requires substantial computa-
tional resources during training, potentially posing hardware barriers for ordinary users. As a result,
the research community continues to seek more efficient and enhanced open-source tools.

Standardization and Reproducibility In the realm of Deep RL, the quest for standardizing algorithm
coupled with the creation of unified benchmarks has ascended as focal points of growing significance.
[53] emphasize the critical necessity of not only replicating existing work but also accurately assessing
the advancements brought about by new methodologies. However, the process of reproducing extant
Deep RL methods is far from straightforward, largely due to the non-determinism inherent in
environments and the variability innate to the methods themselves, which can render reported results
challenging to interpret. [54] proposed a set of metrics for quantitatively measuring the reliability of
RL algorithms. These metrics, focusing on variability and risk both during and after training, are
intended to equip researchers and production users with tools to evaluate and enhance the reliability
of RL algorithms. In [55], a large-scale empirical study was undertaken to identify the factors that
significantly influence the performance of on-policy RL algorithms within continuous control tasks.
The insights garnered from this research offer valuable, practical suggestions for the training of
on-policy RL algorithms. Despite these advancements, there remains a noticeable dearth of work
specifically investigating benchmarks and the details of reproducing studies in the domain of MCTS.

7 Conclusion
In this paper, we introduce LightZero, the first unified algorithm benchmark to modularly integrates
various MCTS-style RL methods, systematically analyze and address the challenges and opportu-
nities for deploying MCTS as a general and efficient decision solver. Through the incorporation
of decoupled system design and novel algorithm insights, we conduct detailed benchmarks and
demonsrate the potential of LightZero as scalable and efficient decision-making problem toolchains
for the research community. Besides, based on this benchmark and related case studies, We also
discuss existing limitations and valuable topics for future work in Appendix I.

8 Acknowledgements

This project is funded in part by National Key R/D Program of China Project 2022ZD0161100, by
the Centre for Perceptual and Interactive Intelligence (CPII) Ltd under the Innovation and Technology
Commission (ITC)’s InnoHK, by General Research Fund of Hong Kong RGC Project 14204021.
Hongsheng Li is a PI of CPII under the InnoHK. We thank several members of the SenseTime and
Shanghai AI Laboratory for their help, support and feedback on this paper and related codebase. We
especially thank Shenghan Zhang for informative and inspiring discussions at the beginning of this
project. We are grateful to the assistance of Qingzi Zhu for many cute visual materials of LightZero.

10

References
[1] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvit-

skyi, Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human
benchmark. In International conference on machine learning, pages 507–517. PMLR, 2020.

[2] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. arXiv preprint arXiv:2206.08853, 2022.

[3] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforcement
learning. Nat., 575(7782):350–354, 2019.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[6] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International conference on learning
representations, 2019.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[8] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on machine
learning, pages 1407–1416. PMLR, 2018.

[9] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv preprint
arXiv:1803.00933, 2018.

[10] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed
rl: Scalable and efficient deep-rl with accelerated central inference. arXiv preprint
arXiv:1910.06591, 2019.

[11] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

[12] David Silver and Joel Veness. Monte-carlo planning in large pomdps. Advances in neural
information processing systems, 23, 2010.

[13] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

11

[14] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P.
Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning with a learned
model. CoRR, abs/1911.08265, 2019.

[15] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pages 4476–4486. PMLR, 2021.

[16] Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver.
Planning in stochastic environments with a learned model. In International Conference on
Learning Representations, 2021.

[17] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari
games with limited data. Advances in Neural Information Processing Systems, 34:25476–25488,
2021.

[18] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by
planning with gumbel. In International Conference on Learning Representations, 2022.

[19] Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo
tree search: A review of recent modifications and applications. Artificial Intelligence Review,
56(3):2497–2562, 2023.

[20] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for
reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.

[21] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck,
Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-
ended learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

[22] Joshua Albrecht, Abraham Fetterman, Bryden Fogelman, Ellie Kitanidis, Bartosz Wróblewski,
Nicole Seo, Michael Rosenthal, Maksis Knutins, Zack Polizzi, James Simon, et al. Avalon:
A benchmark for rl generalization using procedurally generated worlds. Advances in Neural
Information Processing Systems, 35:12813–12825, 2022.

[23] Ming Zhang, Shenghan Zhang, Zhenjie Yang, Lekai Chen, Jinliang Zheng, Chao Yang, Chuming
Li, Hang Zhou, Yazhe Niu, and Yu Liu. Gobigger: A scalable platform for cooperative-
competitive multi-agent interactive simulation. In The Eleventh International Conference on
Learning Representations, 2023.

[24] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

[25] Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhut-
dinov. Simplifying model-based rl: Learning representations, latent-space models, and policies
with one objective. arXiv preprint arXiv:2209.08466, 2022.

[26] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[27] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

[28] Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

12

[29] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[30] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[31] Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

[32] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[33] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[34] Yixuan Mei, Jiaxuan Gao, Weirui Ye, Shaohuai Liu, Yang Gao, and Yi Wu. Speedyzero:
Mastering atari with limited data and time. In The Eleventh International Conference on
Learning Representations, 2023.

[35] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages
5639–5650. PMLR, 2020.

[36] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[37] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. Advances in neural
information processing systems, 31, 2018.

[38] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. Advances in neural information processing systems, 32,
2019.

[39] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

[40] Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning
values across many orders of magnitude. Advances in neural information processing systems,
29, 2016.

[41] Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David
Budden, Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerík, et al. Observe and
look further: Achieving consistent performance on atari. arXiv preprint arXiv:1805.11593,
2018.

[42] Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. arXiv preprint arXiv:1912.05663,
2019.

[43] Sam Wiseman and Alexander M Rush. Sequence-to-sequence learning as beam-search opti-
mization. arXiv preprint arXiv:1606.02960, 2016.

13

[44] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[45] Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pages 4476–4486. PMLR, 2021.

[46] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. IEEE Transactions on
Neural Networks, 16:285–286, 1988.

[47] Ronald L Rivest. Game tree searching by min/max approximation. Artificial Intelligence,
34(1):77–96, 1987.

[48] Donald E Knuth and Ronald W Moore. An analysis of alpha-beta pruning. Artificial intelligence,
6(4):293–326, 1975.

[49] Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and Zhongwen Xu. Efficient offline policy
optimization with a learned model. In International Conference on Learning Representations,
2023.

[50] Shantanu Thakoor, Surag Nair, and Megha Jhunjhunwala. Learning to play othello without
human knowledge, 2016.

[51] Aurèle Hainaut Werner Duvaud. Muzero general: Open reimplementation of muzero. https:
//github.com/werner-duvaud/muzero-general, 2019.

[52] David J Wu. Accelerating self-play learning in go. arXiv preprint arXiv:1902.10565, 2019.

[53] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David
Meger. Deep reinforcement learning that matters. In Proceedings of the AAAI conference on
artificial intelligence, 2018.

[54] Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio Guadarrama.
Measuring the reliability of reinforcement learning algorithms. arXiv preprint arXiv:1912.05663,
2019.

[55] Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael
Marinier, Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters in on-policy reinforcement learning? a large-scale empirical
study, 2020.

[56] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. CoRR, abs/1606.01540, 2016.

[57] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy,
Richard Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement learning.
In International Conference on Learning Representations, 2020.

[58] Erin Catto. Box2D. https://github.com/erincatto/Box2D, 2017.

[59] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm control: Software and tasks
for continuous control. Software Impacts, 6:100022, 2020.

[60] Thomas Hirtz. gym-hybrid. https://github.com/thomashirtz/gym-hybrid, 2020.

14

https://github.com/maximecb/gym-minigrid
https://github.com/werner-duvaud/muzero-general
https://github.com/werner-duvaud/muzero-general
https://github.com/erincatto/Box2D
https://github.com/thomashirtz/gym-hybrid

[61] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

[62] Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou.
Metadrive: Composing diverse driving scenarios for generalizable reinforcement learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[63] Gabriele Cirulli. 2048. https://github.com/gabrielecirulli/2048, 2014.

[64] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[65] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimiza-
tion. In Proceedings of the aaai conference on artificial intelligence, 2020.

[66] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[67] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

[68] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

[69] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:15032–15043, 2021.

[70] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

[71] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

[72] Zhao-Heng Yin, Weirui Ye, Qifeng Chen, and Yang Gao. Planning for sample efficient imitation
learning. arXiv preprint arXiv:2210.09598, 2022.

[73] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[74] DI engine Contributors. DI-engine: OpenDILab decision intelligence engine. https://
github.com/opendilab/DI-engine, 2021.

[75] Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van Den Oord, and Oriol
Vinyals. Vector quantized models for planning. In International Conference on Machine
Learning, pages 8302–8313. PMLR, 2021.

[76] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

15

https://github.com/gabrielecirulli/2048
https://github.com/opendilab/DI-engine
https://github.com/opendilab/DI-engine

[77] Peng Wu. Pytorch 2.0: The journey to bringing compiler technologies to the core of pytorch
(keynote). In Christophe Dubach, Derek Bruening, and Ben Hardekopf, editors, Proceedings
of the 21st ACM/IEEE International Symposium on Code Generation and Optimization, CGO
2023, Montréal, QC, Canada, 25 February 2023- 1 March 2023, page 1. ACM, 2023.

[78] Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
gumbel-top-k trick for sampling sequences without replacement. In International Conference
on Machine Learning, pages 3499–3508. PMLR, 2019.

[79] Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action
space. arXiv preprint arXiv:1511.04143, 2015.

[80] Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng,
and Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid
action representation. arXiv preprint arXiv:2109.05490, 2021.

[81] Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sas-
try, A Askell, S Agarwal, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[82] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[83] Andreas Doerr, Christian Daniel, Martin Schiegg, Nguyen-Tuong Duy, Stefan Schaal, Marc
Toussaint, and Trimpe Sebastian. Probabilistic recurrent state-space models. In International
conference on machine learning, pages 1280–1289. PMLR, 2018.

[84] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

16

A Environment

Environment Attributes Possible Categories Environment Instances

Observation Space • Vector Observation Space

• Image Observation Space

• Structured Observation Space

• Classical Control [56], Bsuite [57],
Box2D [58], DMControl [59],
Gym-Hybrid [60]

• Board Games, Atari [30], Bsuite,
MiniGrid [44], ProcGen [61], 2048

• MetaDrive [62], GoBigger[23]

Action Space • Discrete Action Space

• Continuous Action Space

• Hybrid Action Space

• Board Games, Atari, Bsuite,
MiniGrid, ProcGen, 2048 [63]

• MuJoCo [64], Classic Control,
Box2D, DMControl, MetaDrive

• Gym-Hybrid, GoBigger

Reward Space • Sparse Reward

• Normal Dense Reward

• Multi-Objective Dense Reward

• MiniGrid, Board Games, Atari,
ProcGen, Bsuite

• Classical Control, Bsuite, Box2D,
DMControl, Gym-Hybrid, Atari,
ProcGen, 2048

• MetaDrive, GoBigger

Transition Function • Stochastic
• Back-traceable

• 2048, Atari, Bsuite
• Board Games, 2048, MiniGrid

Table 1: Overview of various attributes associated with decision-making environments, their
respective potential categories crucial for the design of MCTS-style methods, and specific
instances of environments that exemplify each category. Please note that each environment can
encompass a series of different sub-environments (e.g. Atari typically consists of 57 distinct video
games), thus some environments can simultaneously belong to multiple categories. While most
categories are self-explanatory, there are two special cases worth noting: Multi-Objective Dense
Reward indicates that there are multiple, distinct rewards to be balanced for varying decision targets
(e.g. balancing route optimization, speed, and stability in autonomous driving tasks). Back-traceable
is a critical property for AlphaZero-like methods that requires a perfect simulator to return to the
original state after each simulation. While Board Games can easily store and restore old states, most
control tasks and video games are practically impossible to revert to their previous states.

In this section, we introduce various types of RL environments integrated in LightZero and their
respective characteristics. These environments encompass a wide range, including Board Games,
Classical Control, Atari, MuJoCo, the sparse reward example environment (MiniGrid), the structured
action space example environment (GoBigger). We categorize these environments based on different
attributes in Table 1, followed by a detailed description of each environment.

Board Games This types of environment includes TicTacToe, Connect4, Gomoku, Chess, Go, where
uniquely marked boards and explicitly defined rules for placement, movement, positioning, and
attacking are employed to achieve the game’s ultimate objective. These environments feature a
variable discrete action space, allowing only one player’s piece per board position. In practice,
algorithms utilize action mask to indicate reasonable actions.

Classic Control In the reinforcement learning domain, classical control environments like Cartpole
and Pendulum are built upon physical principles and provide explicit action and state spaces. They
are commonly used as benchmark environments to evaluate the initial performance of reinforcement
learning algorithms in discrete or continuous action spaces.

Box2D All of these environments in this suite feature toy games centered around physics control (e.g.,
LunarLander and BipedalWalker), utilizing Box2D-based physics and PyGame-based rendering.

17

Their straightforward simulation mechanics and meaningful visual outputs have made them popular
benchmarks for RL beginners. Moreover, they are suitable for visualizing the tree search process.

Atari This category includes sub-environments like Pong, Qbert, Ms.Pacman, Breakout, UpNDown,
and Seaquest. In these environments, agents control game characters and perform tasks based on
pixel input, such as hitting bricks in Breakout. With their high-dimensional visual input and discrete
action space features, Atari environments are widely used to evaluate the capability of reinforcement
learning algorithms in handling visual inputs and discrete control problems.

MuJoCo This category includes sub-environments such as Hopper-v3, HalfCheetah-v3, Walker2d-v3,
and Humanoid-v3. MuJoCo is a precise and efficient physics simulation engine capable of simulating
intricate digital mechanical systems, such as bipedal robots and robotic arms. These environments
serve as testbeds for assessing the performance of reinforcement learning in control tasks like robot
balancing or robotic arm object grasping. MuJoCo environments are characterized by continuous
state and action spaces, and real-world physical laws, commonly used to evaluate the ability of
reinforcement learning algorithms to handle continuous control and high-dimensional input problems.

MiniGrid In addition to the difficulty levels of action and observation spaces, the sparsity or density
of reward spaces is another major consideration. For example, MiniGrid series environments, like
MiniGrid-Empty-8x8-v0 and MiniGrid-FourRooms-v0, provide simple and scalable sparse reward
environments. In these environments, agents navigate in a grid world and complete various tasks.
Sparse reward environments pose challenges to the exploration capabilities of reinforcement learning
algorithms, as agents receive limited useful feedback most of the time.

GoBigger GoBigger is a multi-agent reinforcement learning environment that emphasizes cooperation
and competition. It features structured observation spaces where each agent is represented by one
or more clone balls. The goal of the agents is to collide and merge with other balls within a limited
time, thereby increasing their size. The observation space includes all unit information within the
agent’s local view, and rewards depend on the size difference between consecutive time steps. This
environment offers diverse sub-environments for different tasks, such as t2p2, t3p2, t4p3, etc. Here,
the number following t represents the number of teams, and the number following p indicates the
number of agents per team. In our experiments, we set t = p = 2.

2048 2048 is a numerical game in which players need to merge adjacent blocks with the same number
in a 4x4 grid by swiping up, down, left, or right. The randomness of the game lies in the fact that after
each swipe, a block with a value of 2 or 4 is randomly generated. Theoretically, there are up to 32
possibilities after each move, which poses challenges for model-based RL algorithms. For algorithms
in the MCTS family, solving such problems requires modeling the randomness of the environment
and considering various possibilities during the search process.

B Details about Main Experiment

B.1 Benchmark Settings

Environments In Table 1, we provide a categorization of common sequential decision-making
environments, each presenting distinct challenges. These environments encompass the majority of the
cases previously discussed in Section 3.2. We have undertaken a thorough and impartial evaluation
of the algorithms incorporated into LightZero, across these varied environments.

Algorithms In our main benchmark experiments, we assessed a series of algorithm variants, including
AlphaZero, MuZero, MuZero w/ SSL (MuZero with Self-Supervised Learning Consistency Loss),
EfficientZero, Sampled EfficientZero, Stochastic MuZero, and Gumbel MuZero.

Note that in this context, MuZero w/ SSL represents the original MuZero algorithm augmented with
the self-supervised loss proposed in [17]. EfficientZero refers to the MuZero algorithm enhanced with
the self-supervised loss and value_prefix from [17]. We decided not to open the third improvement
discussed in the [17], as it was shown to have limited performance benefits and be highly time-
consuming. Consequently, it was omitted from our primary benchmark experiments. Sampled

18

EfficientZero is based on the previously described EfficientZero, incorporating sampling-related
modifications from [45]. This enables the algorithm to simultaneously handle environments with
discrete and continuous action spaces.

Metrics In all our experimental evaluations, the primary metric employed to gauge performance
was the mean Return calculated over the evaluated episodes for each algorithm. Each algorithm was
independently executed five times with unique seeds to ensure the integrity and reliability of our
results. In the results graphs, the shaded regions illustrate the standard deviation in different runs,
indicating the variability or spread of the runs under different seeds. On the other hand, the solid lines
represent the mean, providing the average performance across the different runs.

The horizontal axis, labeled as Env Steps (environment steps), represents the number of steps taken in
the environment during each run. The vertical axis represents the average Return over the evaluated
20 episodes, serving as a measure of the algorithm’s effectiveness in each run.

B.2 Main Benchmark

In this section, we provide an comprehensive benchmark results for LightZero. This encompasses
baseline performances in discrete action spaces detailed in Section B.2.1, and continuous action
spaces in Section B.2.2. In addition, we include comparative analyses of Gumbel MuZero and
Stochastic MuZero, delineated in Sections B.2.3 and B.2.4 respectively. Furthermore, we extend our
investigation to present the baseline evaluations in sparse reward scenarios like MiniGrid (Section
B.2.5), and in multi-agent environments exemplified by GoBigger (Section B.2.6).

For a thorough examination and in-depth discussion of these benchmark results, we encourage readers
to refer to Section 4.2, where we provide key observations and insights derived from our experiments.

B.2.1 Discrete Decision Benchmark

In Figure 7, we present a comparative performance evaluation of four key algorithms—MuZero,
MuZero with SSL, EfficientZero, and Sampled EfficientZero—across a selection of six representative
environments from the classic Atari image input domain.

Figure 8 showcases a performance comparison of AlphaZero and MuZero on two representative board
games—Connect4 and Gomoku (board_size=6). What stands out is that while AlphaZero’s sample
efficiency significantly surpasses that of MuZero, the latter still manages to produce satisfactory
results, even in the absence of a simulator.

B.2.2 Continuous Control Benchmark

In the upper of Figure 9, we present the performance of Sampled EfficientZero with different
policy modeling approaches on the classical continuous benchmark environment, Pendulum-v1 and
LunarlanderContinous-v2. In the bottom of Figure 9, we present the performance of Sampled
EfficientZero with different policy modeling approaches on the conventional continuous benchmark
environment, MuJoCo, exampifed by Hopper-v3 and Walker2d-v3.

The dimensions of the action space for the four aforementioned environments are 1, 2, 3, and 6,
respectively, with the number of discrete bins set to 11, 7, and 5. Consequently, the final dimensions of
the factored categorical distributions [65] stand at 111 = 11, 72 = 49, 53 = 125, and 56 = 15625, in
the same order. Notably, the dimensionality of the discretized action space undergoes an exponential
increase with the dimension of the original continuous action space. Under conditions of a fixed
simulation cost, specifically with the number of sampled actions K set to 20, and the number of
simulations per search sim set to 50, we witness a steady decline in the performance of the factored
policy representation as the dimensionality increases. Conversely, the Gaussian policy representation
maintains a relatively stable performance, demonstrating its robustness in higher-dimensional spaces.

However, even the Gaussian policy representation does not achieve the performance of model-
free methods in MuJoCo. We speculate that this is due to the unique reward mechanism of the

19

0M 0.2M 0.4M 0.6M 0.8M
Env Steps

0

100

200

300

400

500

R
et

ur
n

BreakoutNoFrameskip-v4
MuZero
MuZero w/ SSL
EfficientZero
Sampled EfficientZero (K=3)

0M 0.2M 0.4M 0.6M 0.8M 1M
Env Steps

0

25000

50000

75000

100000

125000

150000

175000

200000

R
et

ur
n

UpNDownNoFrameskip-v4
MuZero
MuZero with/ SSL
EfficientZero
Sampled EfficientZero (K=3)

Figure 7: Performance comparison of algorithms integrated in LightZero on six representative image-
based Atari environments. The horizontal axis represents Env Steps (environment steps), while the
vertical axis indicates the average Return over 20 assessed episodes. In this context, MuZero w/ SSL
denotes the original MuZero algorithm augmented with self-supervised loss. EfficientZero refers to
the MuZero algorithm enhanced with self-supervised loss and value_prefix. Sampled EfficientZero
builds upon EfficientZero with additional modifications related to sampling.

Figure 8: Performance comparison of AlphaZero and MuZero on Connect4 and Gomoku
(board_size=6). AlphaZero exhibits significantly higher sample efficiency compared to MuZero. This
suggests that deploying AlphaZero directly could be advantageous when an environment simulator is
readily available. However, even in the absence of a simulator, MuZero can still yield comparable
results, which underscores its broad applicability.

20

0M 0.2M 0.4M 0.6M 0.8M 1M
Env Steps

0

500

1000

1500

2000

2500

R
et

ur
n

Hopper-v3
Sampled EfficientZero (Gaussian Policy)
Sampled EfficientZero (Factored Policy)

0M 0.2M 0.4M 0.6M 0.8M 1M
Env Steps

0

500

1000

1500

2000

2500

R
et

ur
n

Walker2d-v3
Sampled EfficientZero (Gaussian Policy)
Sampled EfficientZero (Factored Policy)

Figure 9: Upper: Performance comparison of Sampled EfficientZero utilizing different policy
modeling techniques in continuous action space environments. Bottom: Performance comparison of
Sampled EfficientZero using various policy modeling methods in MuJoCo continuous action space
environments. Performance of the factored policy representation declines gradually with increasing
action space size, while the Gaussian policy representation exhibits more stable performance.

MuJoCo environment, where the optimal policy actions are likely extreme values of −1 or 1 in
most times. Sampling from a Gaussian distribution makes it challenging to obtain these extreme
actions, which leads to suboptimal performance. To enhance performance in MuJoCo environments,
a straightforward idea for future work is to augment extreme actions during the sampling process.

B.2.3 Gumbel MuZero Benchmark

In Figure 10, we present the performance comparison of Gumbel MuZero and MuZero under dif-
ferent simulation costs (i.e. the number of simulations in one search) on Gomoku (board_size=6),
Lunarlander-v2, PongNoFrameskip-v4 and Ms.PacmanNoFrameskip-v4. Original Monte Carlo Tree
Search methods have to visit almost all the possible nodes to ensure stable optimization. The demands
of high simulation counts have become the main time-consuming source of MCTS-style methods.
In our benchmark, we validate that Gumbel MuZero can achieve notably better performance than
MuZero when the number of simulations is limited. Besides, we don’t tune the balance weight of
the completedQ proposed in Gumbel MuZero, it may siginicantly influence the final performance in
some environments, which maybe the reason why Gumbel MuZero shows lower episode return in the
high simulation times case.

B.2.4 Stochastic MuZero Benchmark

In Figure 11, we present a comparative performance analysis between Stochastic MuZero and MuZero,
conducted within 2048 environments that exhibit intrinsic randomness. Specifically, our attention is
focused on the environments typified by standard 2048 settings, where num_chances=2 (potential
random tiles being {2, 4}), and a variant environment with increased stochasticity, num_chances=5
(potential random tiles are {2, 4, 8, 16, 32}). Stochastic MuZero exhibits a distinct performance advan-

21

Figure 10: Performance comparison of Gumbel MuZero and MuZero under varying simulation costs.
Gumbel MuZero demonstrates significantly better performance than MuZero when the number of
simulations is limited, showcasing its potential for designing low time-cost MCTS agents. For
Gomoku (board_size=6), we evaluate sim={20, 10}. For LunarLander-v2, we assess sim={20, 10, 5}.
For Atari Games, we examine sim={50, 16, 2}.

0M 0.5M 1M 1.5M 2M
Env Steps

0

10000

20000

30000

40000

R
et

ur
n

2048 (num_chances=2)
MuZero
Stochastic MuZero

0M 0.5M 1M 1.5M 2M
Env Steps

0

2000

4000

6000

8000

R
et

ur
n

2048 (num_chances=5)
MuZero
Stochastic MuZero

Figure 11: Performance comparison between Stochastic MuZero and MuZero in 2048 environments
with varying levels of chance (num_chances=2 and 5). In environments characterized by stochastic
transition dynamics, Stochastic MuZero marginally surpasses MuZero. However, as the level of
stochasticity escalates, the performance of Stochastic MuZero begins to face limitations.

tage over MuZero when the environment’s transition encapsulates elements of stochasticity. However,
as the stochasticity escalates, the performance of Stochastic MuZero begins to face limitations. This
implies that intricate randomness remains a substantial challenge for MCTS algorithms.

B.2.5 MiniGrid Benchmark

In Figure 12, we present a performance comparison using the example environment MiniGrid-
KeyCorridorS3R3-v0 from the MiniGrid suite. The figure on the left demonstrates the application of

22

0M 0.2M 0.4M 0.6M 0.8M
Env Steps

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

MiniGrid-KeyCorridorS3R3-v0
IntrinsicExploration
EpsGreedy
PolicyEntropyRegularization-0.05
PolicyEntropyRegularization-0.005
FixedTemperature
NaiveDoubleSimulation
Naive

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M
Env Steps

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

MiniGrid-KeyCorridorS3R3-v0

MuZero
MuZero w/ SSL
EfficientZero
Sampled EfficientZero (K=5)

Figure 12: Left: Performance comparison of various exploration strategies applied to the MiniGrid-
KeyCorridorS3R3-v0 environment (Return during the collection phase). The IntrinsicExploration
strategy, which leverages curiosity mechanisms to explore the state space, demonstrates superior
sample efficiency. Right: Performance comparison of algorithms implemented in LightZero on
MiniGrid-KeyCorridorS3R3-v0. In environments characterized by high-dimensional vector obser-
vations and sparse rewards, the self-supervised learning loss assists model alignment. However,
predicting the value_prefix can pose challenges and potentially impede learning.

various exploration strategies on this environment, utilizing MuZero with Self-Supervised Learning
(SSL). The right figure shows four algorithms—MuZero, MuZero with SSL, EfficientZero, and
Sampled EfficientZero on it. From the experimental results, it can be observed that only MuZero with
SSL achieved near-optimal performance, while the other three algorithms did not show significant
progress. This suggests that in high-dimensional vector input environments with sparse rewards, self-
supervised learning loss is crucial for aligning model learning. However, predicting the value_prefix
may be more challenging than predicting the reward, which could, in turn, hinder the learning process.

B.2.6 Multi Agent Benchmark

Compared to single-agent environments, multi-agent environments confront more complex challenges,
including, but are not limited to, joint state-action spaces, multi-dimensional optimization objectives,
non-stationarity and credit assignment issues [66]. To tackle these challenges, our preliminary
experiments in multi-agent environments mainly adopted the independent learning paradigm [67]. In
this paradigm, we regard other agents as part of the environment, with each agent making decisions
independently, and all agents sharing a common policy-value network. During the Monte Carlo Tree
Search process, each agent also conducts searches independently.

To investigate the impact of the number of agents on algorithm performance, we conducted exper-
iments in the GoBigger environment [23] using our custom T2P2 and T2P3 scenarios (all other
environment parameters remained the same except for the number of agents (P)). As demonstrated
in Figure 13, in both two scenarios, our algorithm can achieve stable convergence in confrontations
with built-in bots, and its sample efficiency has improved about six-fold compared to non-MCTS
methods. For comparison, in the T2P2 scenario, the MuZero algorithm requires approximately 400K
Env Steps to reach a return of 150K, while algorithms such as MAPPO [68] necessitate about 3M Env
Steps to achieve the same level of performance according to the paper [23]. This evidence proves that,
aside from increased time expenditure, the performance of the MCTS algorithm is not significantly
impacted when the number of agents is not very large. These initial attempts underscore the vast
potential of sample-efficient MCTS-like algorithms in multi-agent environments.

In the future, we aim to provide baseline results of various algorithms integrated into LightZero on
more multi-agent baseline environments (such as PettingZoo [69], MAMuJoCo [70]). Additionally,
we plan to delve deeper into how to leverage the unique characteristics of multi-agent environments
and multi-agent reinforcement learning (MARL) techniques such as Centralized Training Decentral-

23

Figure 13: Performance comparison between MuZero and EfficientZero, both trained in the inde-
pendent learning paradigm on the representative multi-agent environment GoBigger in T2P2 and
T2P3 scenarios. Both algorithms demonstrate the ability to achieve stable convergence when pitted
against built-in bots, and their sample efficiency showcases about a six-fold improvement over other
non-MCTS methods [23].

ized Execution (CTDE) paradigm [66] [71] to conduct efficient MCTS searches, with the goal of
designing superior cooperative and adversarial agents.

C Details about Two Case Studies

C.1 Exploration Mechanism in MCTS

C.1.1 Details about Motivation

Striking the right balance between exploration and exploitation [26] [27] [28] is a fundamental
challenge in reinforcement learning. For the MCTS algorithms integrated into LightZero, determining
the optimal balance is also crucial. However, there has been limited research on the performance of
MCTS algorithms in sparse reward environments. Recently, [72] investigated the combination of
adversarial imitation learning and MCTS in the DeepMind Control Suite [59]; however, they did not
delve into performance in sparse reward environments like MiniGrid [44].

Our preliminary experiments revealed that in some simple sparse reward environments in MiniGrid,
MuZero struggles to make substantial progress within 1M steps. We observed that while board games
also exhibit sparse rewards, each game has a clear win/draw/loss outcome, providing a supervisory
signal for assessing the quality of the game state. In contrast, in other sparse reward environment
like MiniGrid, non-zero rewards are only obtained upon reaching the goal, with all other states
yielding zero rewards. This makes it challenging to collect trajectories with supervisory signals. As
searching in some intermediate states of MiniGrid may be of limited value due to zero rewards, we
hypothesize that increasing the number of simulations may not significantly improve performance.

In Table 2, we provide a comprehensive comparison of exploration strategies employed in MCTS
algorithms as part of the LightZero framework. In this study, our main emphasis is on the general
exploration strategies applied to decision-making algorithms. As for the unique exploration param-
eters specific to MCTS, previous research has predominantly used default values, which are likely
near-optimal settings. A detailed examination of these unique parameters falls outside the scope of
our current work and will be addressed in future research efforts.

C.1.2 Details about Settings

We performed experiments in the MiniGrid environment, focusing on the MiniGrid-KeyCorridorS3R3-
v0 nd MiniGrid-FourRooms-v0 scenarios. We set up the two environments with a maximum step
limit of 300 and used the Adam optimizer with a learning rate of 3 × 10−3. The other parameter
settings are consistent with those in Table 7.

24

Categories Strategies Default Settings in LightZero
MCTS Unique Exploration
Strategies

• Adding Dirichlet noise at the root
node (also known as the decision
node).

• Balancing the weight of prior prob-
ability P and MCTS-derived Q es-
timates at intermediate nodes using
the PUCT formula [31].

• The alpha value in the Dirichlet dis-
tribution is 0.3. The noise weight
is 0.25.

• The base constant c1=1.25, the ini-
tialization constant c2=19652.

General Exploration Strate-
gies in RL

• Data collection phase:
• Decaying temperature coeffi-

cient for visit count distribu-
tion.

• Epsilon-greedy exploration
strategy.

• Learning phase:
• Policy entropy regulariza-

tion.
• Intrinsic exploartion, e.g.,

NGU [28].
• Imitation learning tech-

niques, e.g., Efficient Imitate
[72].

• The temperature transitions from 1
to 0.5 and then to 0.25 in a fixed
traininng steps.

• By default, not used.

• Default policy entropy loss weight
is 0.

• NGU [28]

• N/A

Table 2: Overview of Exploration Strategies in MCTS algorithms implemented in LightZero.

Here, we provide detailed explanations of the various enhanced exploration strategies used in Figure
5 of Section 5.1.

• Naive: This is the default exploration strategy, which includes a manual temperature decay
mechanism. The initial temperature is 1, and the temperature decays twice during training, to
0.5 and 0.25, respectively. The decay timings are controlled by a parameter. At 50% of this
parameter’s value multiplied by the training steps, the temperature decays to 0.5. At the 75% point,
the temperature decays to 0.25. Afterward, the temperature remains fixed at 0.25.

• NaiveDoubleSimulation: Same configuration as Naive except use double number of simulations.

• FixedTemperature-1: A fixed temperature parameter was utilized throughout the training period,
with the specific value set to x=1.

• PolicyEntropyRegularization-x: An additional policy entropy regularization term was added to
the original loss of MuZero [14] algorithm, with policy entropy loss weights of 0.05 or 0.005.

• EpsGreedy: Inspired by common exploartion settings in value-based RL methods [4], actions
were selected uniformly with probability ϵ, and with probability 1− ϵ with the argmax operation.

• IntrinsicExploration: An additional fixed target network and predictor network were introduced.
The predictor network was employed to predict the output of the target network, and the normalized
MSE loss was used to obtain the intrinsic reward. For specific details, please refer to Section C.1.3.

C.1.3 Details about Intrinsic Exploration

The core idea of intrinsic rewards is to encourage the agent to visit novel states as much as possible
throughout the learning process or from a life-long perspective. In theory, any long-term novelty
estimator can be used to generate this incentive. The RND (Random Network Distillation) [27]
algorithm demonstrates good performance, is easy to implement, and can be parallelized, so we use it
as an example to generate intrinsic rewards, denoted as ri.

25

Original MSE loss Specifically, it utilizes two neural networks:(1) Random Network: g : O → Rk,
a fixed network with randomly initialized parameters that takes the observed observation xt as
input and outputs its encoding g(xt). (2) Prediction Network: ĝ : O → Rk, a network that takes
the observation xt as input and outputs the predicted value ĝ(xt; θ) for the observation encoding
g(xt). The networks are trained on the data collected by the agent using stochastic gradient descent,
updating the parameters θ by minimizing the mean squared error err(xt) = ∥ĝ(x; θ)− g(x)∥2. The
fundamental concept of this approach is to leverage the neural networks’ ability to model dataset
distributions in a manner akin to supervised learning. A larger prediction error for a particular
observation suggests that the agent has visited the surrounding observations in the observation space
less frequently, indicating a higher degree of novelty for that observation.

Reward normalization To mitigate the impact of significant magnitude variations in the mean
squared error across training and different environments, the final intrinsic reward is defined using
min-max normalization. The combined reward at time t is then defined as: rt = ret + βrit, where
ret denotes the external reward provided by the environment at time t, rit represents the normalized
intrinsic reward generated by the exploration module, and β is a positive number serving as the
weight factor for the intrinsic reward. In this paper, we set β to 1

300 to ensure that the sum of intrinsic
rewards in a single episode is less than the maximum original external reward of 1, thus preventing
intrinsic rewards from dominating the original objective.

Key designs In the specific implementation, a critical aspect is the selection of the input xt. In
our preliminary experiments, we used the latent state from the MuZero model but observed subpar
performance. We hypothesize that this is due to the distribution of latent states changing throughout
the training process, causing the target values obtained by the random network to continuously shift
and resulting in intrinsic rewards that essentially resemble noise. Ultimately, we chose to use the
environment’s original observation ot as the input observed state and achieved satisfactory results.

It is worth mentioning that combining efficient exploration methods, such as intrinsic rewards, with
the unique MCTS exploration strategies detailed in Table 2, represents an intriguing research direction.
We leave this integration as a potential area for future investigation.

C.2 Alignment in Environment Model Learning

Alignment In this section, we examine case studies centered on the essential objective functions.
Drawing inspiration from the paper [25], the importance of alignment in training the representation,
policy and model is emphasized. The policy should only access accurate model states, while the
representation must encode task-relevant and predictable information. The consistency loss proposed
in [17] serves as a candidate technique: at each unroll step, the latent state generated by the dynamic
model should be aligned (similar/consistent) to the latent state directly obtained from the original
observation via the representation network.

Setting To investigate the impact of self-supervised consistency loss on different types of observation
data, we use the MuZero algorithm as our baseline. The Adam optimizer is employed with a learning
rate of 3× 10−3. The notation "MuZero w/ SSL" signifies that the consistency loss weight is 2, while
"MuZero" means the consistency loss weight is 0. The other hyperparameters remain the same as
those described in Section G.4.

Special case in board games As shown in Figure 14, for special image input environments (checker-
board with discrete values) like TicTacToe, the cosine similarity relatively low, around 0.662. This
highlights the challenge of achieving consistency between the latent state output from the dynamic
model and the latent state derived from the observation via the representation network. Since adjacent
observations differ only in one position, adding consistency loss with inappropriate optimization
settings might hinder the learning progress of other parts of the algorithm. To verify this, we con-
ducted an experiment on TicTacToe using the SGD optimizer and compared the performance with
and without the consistency loss, as shown in the right panel of Figure 14. We observed that the
addition of consistency loss hampers the learning progress in the early stages, which further supports
our conjecture. That is to say, our experiments demonstrate that the consistency loss proposed in

26

Env. Name TicTacToe LunarLander Pong

cos (0M) 0.782 0.913 0.875

cos (0.4M) 0.678 0.971 0.973

cos (0.8M) 0.662 0.974 0.987

0M 0.05M 0.1M 0.15M 0.2M
Env Steps

1.0

0.5

0.0

0.5

1.0

R
et

ur
n

TicTacToe

MuZero w/ SSL
MuZero w/o SSL

Figure 14: Left: The change of cosine similarity (i.e. negative consistency loss, cos=1.0 indicates
that the two vectors have the same direction.) for three input types throughout the MuZero training.
In special image input environments such as TicTacToe, characterized by checkerboard patterns with
discrete values, the cosine similarity between the latent state output from the dynamic model and the
latent state derived from the observation via the representation network remains relatively low. This
emphasizes the challenge of attaining consistency between these two latent states. Right: Effects of
self-supervised consistency loss on board games when using SGD [73] optimizer with momentum.
The inclusion of consistency loss impedes the learning progress during the initial stages.

[17] is suitable only for environments with specific attributes. For board games, devising a suitable
alignment constraint to ensure consistent model learning remains a topic for future research.

D Explanation for Figure 2

In this section, we will introduce the score rules in Figure 2. We categorize the critical capabilities
of general decision solvers into the following dimensions: multi-modal observation space, complex
action space, inherent stochasticity, reliance on prior knowledge, simulation cost, hard exploration,
and data efficiency. We then compare four algorithms including Model-free RL (e.g. PPO), AlphaZero,
MuZero, and LightZero. Please note that in this section, the term LightZero refers to the algorithm that
embodies the optimal combination of techniques and hyperparameter settings within our framework.
We will elaborate on the specific interpretation of each algorithm depicted in Figure 2.

Model-free RL (PPO) We use the standard on-policy PPO implementation and DI-engine [74] bench-
mark results. This implementation includes optimized hyper-parameters and incorporates various
techniques to enhance performance across different environments. The list of typical hyperparameters
for PPO is presented in Table 3.

Hyperparameter Value
Epoch per collect 10
Num of samples per collect 3200
Batch size 320
Discount factor 0.99
GAE lambda 0.95
Recompute advantage True
Entropy weight 0.001
Dual clip True
Gradient norm 0.5
PopArt True

Table 3: Key hyperparameters of model-free PPO methods.

AlphaZero We use the default implementation of AlphaZero provided by LightZero, following the
settings from the original AlphaZero paper [29].

27

MuZero We employ the default implementation of MuZero provided by LightZero, following the
settings described in the original MuZero paper [14] and the public codebase MuZero-General [51].

LightZero We have incorporated the relevant MCTS/MuZero algorithm techniques, each tailored
for diverse environments with unique challenges. This integration has given rise to a specialized
algorithm version, dubbed LightZero, within our framework.

The score assigned to each algorithm in the distinct dimensions indicates their performance and
applicability. A score of 1 suggests poor performance and limited applicability, while a higher score
implies a broader application scope and better performance. That is to say, a score of 2 means that this
algorithm can deal with some parts of envionments or problems in this dimension. A score of 3 means
that it can tackle more than a half of issues while 4 indicates it has already been capable of many
challenges but there is still some improved space. The highest score 5 is assigned to those methods
that could be state-of-the-art results in this dimension or don’t need to care about this problem. We
conduct a qualitative analysis to compare the following algorithm versions.

Multi-modal Observation Space AlphaZero is customized to model the 2D image-like observation
in board games, receiving a score of 2. MuZero extends this capability and is able to handle more
general 2D image observations including video games. Model-free RL methods and LightZero
utilize extra self-supervised learning representation learning techniques, enabling them to work
effectively with high-dimensional and complex states. However, challenges still exist in learning
abstract decision behaviors within multi-modal representations.

Complex Action Space In terms of action spaces, AlphaZero is limited to discrete actions in board
games. MuZero extends it to various discrete action spaces. Model-free RL methods are also
able to handle both discrete and continuous actions. However, in more complex hybrid action
space, these methods often require special mechanisms, such as the autogressive action prediction
used in AlphaStar [3]. Sampled MuZero represents a significant endeavor to implement MCTS in
continuous action spaces, employing finite action samples as the primary basis for action selection.
However, when the number of samples is insufficient, performance may suffer due to inadequate
approximation. Despite this, LightZero, which incorporates this sampling mechanism, achieves a
score of 4, effectively showcasing its ability to address these challenges.

Inherent Stochasticity Ths stochasicity of environment dynamics poses a significant challenge
for RL algorithms. Conventional MCTS algorithms face planning issues due to inconsistent state
transitions. Value-based RL methods, such as DQN, often face difficulty adapting to variable reward
signals for identical actions within a particular state, leading to suboptimal performance. Actor-Critic
algorithms like PPO somewhat mitigate this issue. LightZero adopts insights from [16] and [75],
employing an enhanced model that simultaneously learns the distribution of latent chances for various
scenarios. These learned probabilities are subsequently incorporated into the tree search nodes.
While these adjustments have bolstered MCTS’s ability to handle inherent dynamics randomness
and the partially observable state, the challenge remains substantial when addressing real-world
decision-making scenarios.

Reliance on Prior Knowledge One key limitation of AlphaZero is its reliance on prior knowledge
of environments, such as the perfect simulator or game rules and records. MuZero addresses this
limitation by designing a dynamics model that learns the reward and transition function, significantly
relaxing this requirement. For model-free RL methods and LightZero, they are more flexible but
still require some prior-oriented operations like observation pre-processing and reward shaping, to
transform the original problem into a more standard MDP. Therefore, a score of 4 is suitable for them.

Simulation Cost Although MCTS-style methods show great data effciency, it is important to
acknowledge that the wall-time of related training programs can be astonishing due to the simulation
cost. These methods necessitate the establishment of comprehensive search trees to assure adequate
visit counts and precise value estimation LightZero, by integrating core ideas from the Gumbel
MuZero paper and utilizing other optimization techniques, effectively minimizes this overhead.
However, due to its inherent model-based nature, it still demands a longer runtime compared to
model-free RL methods.

28

Hard Exploration Tree-search-based planning methods enhance exploration capabilities by reducing
the search space for the optimal policy. Conversely, traditional model-free RL methods often struggle
in sparse reward environments without specific techniques. AlphaZero gains a slight advantage in this
dimension by utilizing a perfect simulator rather than models that are incrementally trained over time.
LightZero incorporates additional exploration strategies at minimal cost and successfully tackles the
hard exploration task efficiently (such as MiniGrid).

Data Efficiency MCTS-style methods excel in data efficiency compared to model-free RL methods,
offering impressive performance on academic benchmarks like Atari-100K and DMControl-500K.
LightZero implements specialized data sampling with staleness and reuse limitation and management
mechanisms (e.g. throughput limiter) to further improve data efficiency.

E Efficiency Analysis in LightZero

This section first lists the computational hardware configurations of all the experiments. For nearly all
basic experiments and ablations, we aim to validate the runtime efficiency on a small resource budget,
thus we deploy each experiment instance on the Kubernetes cluster with computational resource of 1
A100 40G GPU, 24 CPU cores and 100GB RAM. Given these settings, LightZero can train Atari
agents for 100K steps in 4 hours, and it can conduct 100K steps of self-play on Gomoku in 5 hours.
Furthermore, we profile the entire training pipeline of these tiny instances. Based on these analysis,
we can identify several bottlenecks in the runtime of the MCTS/MuZero training pipeline and found
some practical, albeit imperfect, solutions to these bottlenecks.

Environment Latency RL environments usually vary in the execution time of reset and step methods.
For AlphaZero-style methods, environment’s step method are called many times (e.g. more than 50
in one action selection) and lead to the huge time cost. Particularly, AlphaZero deployed on board
games may spend more than a half of the whole training time in environments. In practice, we use
the vmap and jit mechanisms provided by JAX [76] and the LRU (Least Recently Used) cache trick
to accelerate these methods. Thanks to many for-loop and duplicate operations in classic board game
implementations, we can significantly reduce the associated overhead and efficiently implement
self-play training.

Tree Search Although the tree search process doesn’t contain many complex mathematical operations,
it is still a non-neglected component in the efficiency optimization. Moreover, the naive vectorized
environment scheme shows no obvious gain in tree search methods because each envionments needs
a unique search tree, which is not siutable to use the batch processing to speed up. On the other
hand, due to the large number of call times, some basic python primitives like getattr and setattr have
become a drawback of this module, thus LightZero implements a variety of tree search operations in
MCTS/MuZero algorithm variants with cpp and Cython extension for Python, and it offers obvious
improvements in various fine-grained code blocks.

Model Inference As MuZero-style methods utilize a learned model in place of the perfect simulator,
they spend more time on the inference procedure of neural network models. To tackle the efficiency
issues associated with more complex network architectures and larger network parameters, LightZero
leverages various tools from the open-source community, including some features of PyTorch 2.0
[77], some tricks about mixed precision training and large batch training in RL.

Parallel MCTS Utilizing a large CPU cluster and enabling multiple parallel data collectors has proven
successful in many decision-making tasks [9, 8]. When it comes to MCTS-style methods, due to the
difficulty mentioned in tree search part, previous methods [14, 34] mainly use the collector-parallel
scheme, each collector is composed of an environment, a search tree and a RL agent. Naive batch
processing inside the collector can lead to significant waiting time between the three components:
env step time, model inference time and tree search time (shown in Figure 15 (d)), which severely
underutilized computational resources. As suggested in Figure 15(e), LightZero launches multiple
(k) environments and search trees in a collector, but divides these modules into several groups, the
number of group should be determined by three concrete time counts for a specific environment.

29

env step
time

model inference
 time

tree search
time

Time

a) Model-free RL rollout

b) AlphaZero-like rollout

c) MuZero-like rollout MCTS

MCTS

d) Naive Batched MuZero-like rollout (k envs and k search trees)

MCTS

e) Advanced Batched MuZero-like rollout (k envs and k search trees)

root node

selected child

expanded node

Figure 15: Comparison of various data collection pipelines. a), b), c) illustrate simple serial pipelines
for different types of algorithms. d) and e) depict two distinct parallel MCTS schemes, the former
will cause the obvious waiting time while the latter can utilize all types of computation resources as
much as possible, which makes three different parts overlapped with each other.

Specifically, data collector alternate between different groups to execute corresponding steps. For
example, even when the first group of environments has completed its steps, the corresponding CPUs
are not idle as they can execute environment simulation steps for the second group. Correspondingly,
RL agents can use the similar strategies to improve the utilization on GPU. Although the ideal case
illustrated in Figure 15(e) is challenging to achieve perfectly, this grouping and buffering mechanism
can significantly enhance the parallel capabilities of MCTS in practical data collection.

Multi-GPU Training Leveraging the Distributed Data Parallel module from PyTorch, we’ve imple-
mented multi-GPU training capabilities into the LightZero codebase. This functionality has been
rigorously tested with the EfficientZero model within the Atari PongNoFrameskip-v4 environment,
using 1, 2, and 4 GPUs. The results, depicted in Table 4, demonstrate that by training with 4 GPUs, we
observe an approximate five-fold increase in speed, while maintaining similar levels of performance.
Consequently, with access to additional GPU computing resources, we anticipate an even greater
acceleration of the training process.

Reanalyze From the viewpoint of system design, data reanalyze is the most special component
in MuZero-style methods. SpeedyZero [34] explores the necessity and best practice of separate
reanalysis nodes in distributed training. They use different model replicas to compute priority for
sampling and new targets for training. LightZero optimizes the cost of reanalyze modules with a

30

Number of GPUs Approximate Time to 1M Env Steps (mins)
1 844
2 363
4 152

Table 4: Approximate training times for EfficientZero on the PongNoFrameskip-v4 environment with
different numbers of GPUs. The results show that training with 4 GPUs can improve the speed by
about 5 times with similar performance, which is in line with our expectations.

simple yet effective selection mechanism: only the data with high training potential (e.g., appropriate
state-action novelty and high temporal difference error) and sufficient training stability require a
high-frequency reanalysis ratio; other data can undergo fewer reanalysis operations to save time.

Communication Transporting model and data is two main communications in the distributed RL
training. To ensure the stable convergence of agents, the entire training pipeline cannot collect
excessive data or training the network two many times. The former shows few performance gain or
even lead to some harmful training batch, while the latter can result in severe over-fitting. According
to the actual speed of sending models (from agent learner to data collector and data arranger) and
sending collected data, LightZero designs a throughput limiter to control the ratio between generating
new data and sample training batch. By using a fixed batch size, we can adjust the ratio within a
reasonable range (such as 0.8x-1.2x of original settings). Besides, there is a unnecessary dataflow
of the RL training pipeline, which is described in Figure 16. In classic RL frameworks, the latest
generated data in data collector is located in the inference GPU, however, it has to go through many
steps to become serialized bytes data and then it is sent to agent learner by normal communication
techniques like socket. To address this problem, we utilize the RDMA (Remote Direct Memory
Access) technique to send the training data from inference GPU to training GPU directly. With the aid
of this improvement, LightZero can expedite data collection in the P2P (Peer-to-Peer) communication
mechanism, bypassing a series of previously complicated operations.

Agent Env

GPU Tensor CPU Tensor Compressed
Data

Serialized
Data

Deserialized
Data

Decompressed
Data

Numpy Data

Numpy DataGPU Tensor CPU Tensor

Agent

Normal Communication

Collector

Learner

action

obs/reward

Optimizer
loss

gradient

Collected Data

Training Data

P2P Communication

Figure 16: Comparison of various algorithms during the data collection phase. Utilizing Peer-to-Peer
(P2P) communication with the Remote Direct Memory Access (RDMA) technique significantly
reduces the time required in the data collection process, bypassing the complex operations typically
employed in conventional communication methods.

F Detailed sub-modules description of MuZero

To elucidate the application of specific algorithms into the various sub-modules that constitute
LightZero, we delve into the implementation of the MuZero algorithm. This discussion is structured
around the sub-modules as outlined in Figure 3:

31

Data Collector MuZero is representative of online Reinforcement Learning (RL) algorithms, demand-
ing substantial interactions between the agent and the environment to amass training data. Within this
sub-module, we leverage a vectorized environment manager and a deeply optimized batch-parallel
search tree, facilitated by Cython/C++ extensions. These elements work collaboratively to ensure a
high-throughput data collection process.

Data Arranger The function of the Data Arranger sub-module is to maximize the utility of different
stale data. In the context of MuZero, the first step entails storing complete trajectories or episodes
in a prioritized replay buffer to maintain their temporal sequence. Subsequently, we institute a
priority recomputer mechanism to periodically determine the sampling priority of the stored data.
The calculated priority is proportional to the likelihood of the data being sampled for training.
Furthermore, to rectify any off-policy bias and enhance the stability of training, a data reanalyzer
updates the target value stored in data, utilizing the latest network parameters. Recognizing the
intricate "producer-consumer" relationship between the Data Collector and Agent Learner, MuZero
incorporates a throughput limiter to monitor the number of push/pop data operations and regulate the
allocation of computational resources.

Agent Learner The Agent Learner sub-module amalgamates an array of deep learning and rein-
forcement learning techniques to train a set of neural networks as defined in MuZero. Components
of this sub-module include the distributional RL module, which models the inherent randomness
of environmental reward, and the data parallel and mixed precision training utilities that expedite
per-iteration time. These features can be conveniently enabled or disabled via the corresponding
configuration fields.

Agent Evaluator Throughout the training process, MuZero necessitates the evaluation of the per-
formance of the newly trained network. The Agent Evaluator sub-module encompasses several
evaluation strategies such as low-temperature sampling and beam search to enhance results. This
sub-module also employs a broad spectrum of metrics and visualizations for agents.

Context Exchanger To achieve asynchronous execution across four sub-modules and to efficiently
scale the entire training pipeline, we employ a Context Exchanger. This component incorporates
novel communication elements to facilitate the efficient transfer of necessary context information.

By dissecting the implementation of the MuZero algorithm into these sub-modules, we demonstrate
the flexibility and modularity of LightZero, and how it can be effectively employed in the design and
execution of complex RL algorithms.

G Details about Algorithm Implementation

In this section, we first provide an overview of the subsequent algorithm extensions of MuZero,
followed by a comprehensive algorithm overview diagram illustrating the implementation of various
integrated algorithms in LightZero (e.g., Figure 19). Next, we introduce the model’s network
architecture, including the representation, dynamics, and prediction network. Finally, we present the
hyperparameter settings for each algorithm and environment used in the baseline results.

G.1 MuZero’s Extensions

In recent years, MuZero has been extended through various algorithmic innovations to enhance its
efficiency and stability across different scenarios. These extensions mainly include:

Sampled MuZero [45] This approach introduces a general framework called the sample-based policy
iteration, which can be theoretically applied to any types of action spaces. The core idea is to compute
improved policies within a subset of the original action space. As the number of sampled actions
gradually increases towards the size of the entire action space, the sampled improved policy converges
probabilistically to the improved policy over the entire action space.

Gumbel MuZero [18] is an extension designed to enhance performance in environments with low
simulation costs by leveraging the Gumbel-Top-k trick [78] to select actions that guarantee policy

32

improvement. This approach introduces a new improved policy, π′, which seamlessly integrates the
original visit counts distribution with MCTS searched values. By combining these two sources of
information, Gumbel MuZero efficiently exploits the knowledge acquired during the search process,
leading to more informed decision-making and improved performance in a variety of environments.

Stochastic MuZero [16] This extension enhances MuZero by enabling it to learn and plan with
stochastic models. Specifically, it incorporates a stochastic model that includes afterstates and
conducts stochastic tree searches using this model. Stochastic MuZero achieves competitive or
superior performance compared to state-of-the-art methods in a variety of canonical board games.
such as 2048 and Backgammon, while preserving the superhuman performance demonstrated by the
standard MuZero in Go.

G.2 LightZero Algorithms Overview

In this section, we present a detailed summary of various MCTS/MuZero variants, encapsulated in
algorithm overview diagrams. Specifically, Figure 17 provides an insight into the Monte Carlo Tree
Search (MCTS), while Figure 18 illuminates the mechanics of AlphaZero, a fusion of MCTS and
deep neural networks. Moreover, Figure 19 introduces MuZero, an advancement upon AlphaZero
with a learned model representation. Figure 21 subsequently presents the Sampled MuZero, and
finally, Figure 22 delineates the Gumbel MuZero variant. These overview diagrams serve to highlight
the evolution and interconnections among MCTS, AlphaZero, MuZero, and their related algorithms.

G.3 Model Architecture

We provide the representation network structure of the MuZero series algorithms implemented in
LightZero in Figure 23. The dynamics network and prediction network structures (including both
value and policy networks) are presented in Figure 24. Note that the model structures we provide are
based on Atari environments with image-type observations. For environments with vector-type obser-
vations, such as continuous control tasks, the overall model structure is similar, only replacing the con-
volutional layers in the original model with corresponding fully connected layers. For specific details,
please refer to the model directory through OpenDILab at https://github.com/opendilab/LightZero.

G.4 Hyperparameters

We provide a detailed summary of the key hyperparameters for the MuZero w/ SSL algorithm, as
implemented in LightZero for the Atari environment, in Table 7. The hyperparameters for other
environments and algorithms are generally similar. Unless explicitly stated otherwise, all other
parameters are in accordance with those in Table 7.

Specifically, we highlight the primary differing hyperparameters for the Sampled EfficientZero
algorithm in the Atari environment in Table 8, as well as for continuous control environments such as
MuJoCo in Table 9. In addition, we explain the main distinct hyperparameters for the Gumbel MuZero
algorithm in the Atari environment in Table 10, alongside the Stochastic EfficientZero algorithm in
both the Atari environment, as shown in Table 11, and the 2048 environment, as presented in Table 12.
Lastly, the pivotal hyperparameters for the AlphaZero/MuZero algorithm in the Gomoku environment
are set out in Tables 13 and 14.

H Comparison with Other MCTS Frameworks

LightZero is a comprehensive algorithm benchmark developed using PyTorch, integrating nine distinct
algorithms such as AlphaZero and MuZero. It supports over twenty different environments, including
Atari and Go. On the other hand, the MCTX library2, primarily implemented using JAX, includes
basic implementations of algorithms such as AlphaZero, MuZero, and Gumbel MuZero. However,
the training process across various environments is not yet fully established.

2https://github.com/google-deepmind/mctx

33

https://github.com/google-deepmind/mctx

To offer an intuitive comparison of the differences in integrated algorithms and supported environ-
ments between these two repositories, we present the algorithms and environments supported by
LightZero and MCTX in the following Table 5 and Table 6, respectively.

Please note: "!" denotes that the corresponding item is fully implemented and thoroughly tested.
"�" signifies that the item is currently in development. "—" indicates that the algorithm does not
support the respective environment.

Regarding the comparison table provided, we should note the following two points: Firstly, the list
of algorithms and environments supported by MCTX not only encompasses MCTX itself, but also
includes all derivative repositories based on MCTX. Secondly, all environments associated with
Gumbel MuZero and Stochastic MuZero within the MCTX library are currently in a locked "�"
state. This is because, to our knowledge, neither MCTX nor its derivative repositories have fully
implemented these algorithms and environments. Although the foundational modules for the Gumbel
MuZero and Stochastic MuZero algorithms exist in the original MCTX repository, the development
of a complete training pipeline for these algorithms is still in progress.

Algo Env Classic
Control Box2D Atari MuJoCo Go

Bigger
Mini
Grid Maze Connect

Four Gomoku 2048 Go

AlphaZero — — — — — � � ! ! � !

Sampled AlphaZero — — — — — � � � ! � !

Gumbel AlphaZero — — — — — � � � ! � !

MuZero ! ! ! — ! ! ! ! ! ! !

MuZero w/ SSL ! ! ! — ! ! � � ! ! !

EfficientZero ! ! ! — ! ! � � ! ! !

Gumbel MuZero ! ! ! — ! ! � � ! ! !

Sampled MuZero ! ! ! ! ! ! � � ! ! !

Stochastic MuZero ! ! ! — ! ! � � ! ! !

Table 5: Algorithms and Environments supported by LightZero as of the writing of this paper.

Algo Env ClassicControl Box2D Atari Maze ConnectFour Gomoku Go

AlphaZero — — — ! ! ! !

MuZero ! ! � � � � �

Gumbel MuZero � � � � � � �

Stochastic MuZer � � � � � � �

Table 6: Algorithms and Environments supported by MCTX as of the writing of this paper.

I Limitations and Future Work

Despite its considerable achievements across various benchmark environments, LightZero does bear
certain limitations.

1 Firstly, while efforts have been made to amplify the algorithm’s universality through decoupling
and modularization, certain specific problems may still necessitate tailored adjustments and opti-
mizations. For instance, all current LightZero algorithms do not directly support hybrid action space
environments [79]. However, through the use of action representation [80] and other techniques, they
could potentially be adapted to a wider action space.

2 Secondly, as discussed in Section 3, due to the intrinsic limitations of the MCTS algorithm, our
method may encounter challenges in specific, complex real-world environments. Particularly when
handling environments with high-dimensional action spaces or strong randomness, methods like
Sampled MuZero and Stochastic MuZero could benefit from further optimization and improvement.

34

3 Finally, the high prerequisites of LightZero can pose challenges, especially for those new to
decision intelligence. This is largely due to the inherent complexity of the MCTS+RL algorithms.
While these algorithms are comprehensive, they require a profound understanding and significant time
investment to deploy effectively. This complexity, alongside the computational demands of running
these advanced algorithms, can limit their widespread application. Future enhancements should
concentrate on improving the accessibility of the LightZero framework’s interfaces, enriching the
documentation, and cultivating a vibrant user community that encourages knowledge collaboration.

Despite the aforementioned challenges, we remain optimistic about the potential of the LightZero
framework. For future, we have identified several promising areas for further exploration:

• Broadening Applications: We envision more researchers and developers applying LightZero
across a wider spectrum of practical fields. These include but are not limited to natural language
processing, autonomous driving, and the control and optimization of complex systems.

• Algorithmic Optimization: While we have enhanced our submodules by introducing more suitable
exploration mechanisms and optimizing model loss functions, there remains significant room for
improvement. We invite the community to contribute new exploration and optimization strategies
to further boost the performance of MCTS-style algorithms.

• Integration with Cutting-Edge Technologies: We stress the importance of a seamless integration
between LightZero and future research directions. Two key areas for future exploration stand out:

1. Integration with Large Language Models (LLM) [81] [82]: LLM can serve as a high-level
task planner, breaking down complex decision-making problems into a series of low-level
instructions. LightZero can set these instructions as conditional inputs of the representation
network and serve as an efficient instruction executor. Furthermore, considering the powerful
reanalysis mechanism of MuZero Unplugged, it can be a viable choice for fine-tuning LLMs.

2. Clever Utilization of Model-Based RL Techniques: LightZero has already integrated many
model-based RL techniques, such as the Recurrent State-Space Models (RSSM) [83] used
in DreamerV2 [84], latent state consistency loss used in EfficientZero, and the afterstate
dynamics functions proposed in Stochastic MuZero [16]. We aim to incorporate additional
techniques within the model representation, loss function, and MCTS search process to
enhance the universality and robustness of the LightZero framework.

35

NOTE：The MCTS is divided into four stages, and repeated for a number of simulations.
Once the search is complete, we select the action with the highest number of visit.

A. Selection B. Expansion C. Evaluation

In each node, select action according to the
UCB score:

The selection function is applied recursively
until a leaf node is reached.

Monte Carlo Tree Search

Action values are updated to track the
mean value of all evaluations in the
subtree below that action. are updated
to track how many times the action has
been on the whole MCTS simulations.

The leaf node is added to the
search tree. Each edge from
the newly expanded node is
initialized to:

D. Backpropagation

terminal state

leaf node

Rollout

The leaf node is evaluated by running a
rollout to the end of the game with the fast
rollout policy (potentially random),
then computing the winner with function .

Figure 17: MCTS algorithm overview.

a. Selection

In each node, select action according to the
UCB score:

The selection function is applied recursively
until a leaf node is reached.

Action values are updated to track the
mean value of all evaluations in the
subtree below that action. are updated
to track how many times the action has
been on the whole MCTS simulations.

The leaf node is added to the search tree.
Each edge from the newly expanded
node is initialized to:

d. Backpropagation

leaf node

The leaf node is evaluated by the neural network :
 ;
the vector of policy priors are stored in the
outgoing edges from .

AlphaZero: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play

A. MCTS in AlphaZero

 ()

b. Expansion c. Evaluation

B. Acting（Self-play） C. Training

where, is the game reward from the perspective of the
current player and is the MCTS searched policy at
timestep .

 and is the predicted value and policy from the neural
network .

 is MSE loss, is cross-entropy loss.

Figure 18: AlphaZero algorithm overview.

36

A. Planing B. Acting

C. Training

D. Loss

where, is the observaed reward, is the MCTS serched policy, is the
bootstrapped n-step target:
 ,

 is the MCTS serched value.
In Atari, and is cross-entopy loss, while in board games, is MSE loss and
there is no due to no intermediate reward. is cross-entopy loss for both.

Selection:
In each node, agent select action accordingto the UCB score:

MuZero: Mastering Atari, Go, Chess and Shogi by Planninng with a Learned Model

Backup:
For , we update the statistics for each edge in the
simulation path as follows, ,

,
where, in hypothetical step , we utilize the bootstapped estimate Q
value:

Expansion:
At the leaf node (i.e. final timestep), the reward and hidden state are
computed by the dynamics and stored in the corresponding
tables. The policy and value are computed by the prediction function,

.
A new node, corresponding to state is added to the search tree. Each edge

 from the newly expanded node is initialized to

NOTE： is the dynamic network (MLP, without RNN), value rescale,
categorical distribution for reward and value in Atari, Reanalyze

Figure 19: MuZero algorithm overview.

NOTE： (abbreviated as in the figure) is the dynamics network,
 is value prefix, is reward hidden state.

A. Planing B. Acting

C. Training

where, , , is reanalyzed MCTS root value.

Reference: MuZero target is .

The self-supervised consistency loss.

EfficientZero: Self-supervised coonsistency loss, Value prefix, Off-policy correction

D. Network and Loss

representation

next-state

projector

predictor

projector

representation

similarity

stop-grad

Figure 20: EfficientZero algorithm overview.

37

NOTE： (aka.)is predicted policy (potentially continuous) distribution ,
 is the proposal policy distribution (typically equals), is the empirical policy distribution.

A. Planing

C. Training

D. Loss

where, is the MCTS search policy (normalized visit counts), also called
the sampled-based improved policy , which is a discrete categorical
distribution.

 is the predicted (potentially continuous) policy distribution. The policy
loss (KL divergence) is calculated in the sampled actions.

legal_actions ={ ~ | [1,K]},
which are sampled accoding to the proposal distribution

Selection:

In each node, agent select action accordingto the UCB score:

We usually use , thus .

Sampled MuZero: Learning and Planning in Complex Action Spaces (High Dimensional Discrete or Continuous)

From left to right, current policy , the empirical distribution ,
the sample-based improved policy , the improved policy ,

respectively.As the number of samples K increases, converges to .

Sampled-based Policy Improvement.

B. Acting

Figure 21: Sampled MuZero algorithm overview.

A. Planing B. Acting

C. Training

D. Loss

select action accoding to sequential
halving alg. at root node.

legal_actions ={ | [1,k]}select action at non-root node:

mixed value approximate:

improved policy distribution:

B. ActingB. Acting

Gumbel MuZero: Planning with few simulations in high dimensional discrete action space

Sequential Halving is used to identify the action with
the highest .

The key issue when the num of simulations < num of total actions
 in MCTS search is how to choose which actions to vistis and

how many times.

1. we can control the number of actions sampled without
replacement.
2. we can use a bandit algorithm to efficiently explore the set of
sampled actions.

NOTE： is policy distribution , is the improved policy distribution ,
 is the completed Q values, is the MCTS estimated value (for visited actions).

Figure 22: Gumbel MuZero algorithm overview.

38

Figure 23: The network architecture of the representation network h for image input domain in
LightZero. This network represents the root observation as a latent state.

39

Figure 24: Left: The network architecture of the dynamics network g for image input domains in
LightZero. Given a latent state and a selected action, it outputs the transitioned next latent state and
the corresponding predicted reward. Right: The network architecture of the prediction network f
(encompassing both value and policy networks) for image input domains. Given a latent state, this
network predicts the action probability and value.

40

Hyperparameter Value
Num of frames stacked 4
Num of frames skip 4
Reward clipping True
Optimizer type Adam
Learning rate 3× 10−3

Discount factor 0.997
Weight of policy loss 1
Weight of value loss 0.25
Weight of reward loss 1
Weight of policy entropy loss 0
Weight of SSL (self-supervised learning) loss 2
Batch size 256
Model update ratio 0.25
Frequency of target network update 100
Weight decay 10−4

Max gradient norm 10
Length of game segment 400
Replay buffer size (in transitions) 1e6
TD steps 5
Number of unroll steps 5
Use augmentation True
Discrete action encoding type One Hot
Normalization type Batch Normalization
Priority exponent coefficient 0.6
Priority correction coefficient 0.4
Dirichlet noise alpha 0.3
Dirichlet noise weight 0.25
Number of simulations in MCTS (sim) 50
Reanalyze ratio 0
Categorical distribution in value and reward modeling True
The scale of supports used in categorical distribution 300

Table 7: Key hyperparameters of MuZero with/ SSL on Atari environments.

Hyperparameter Value
Number of sampled actions (K) Different environments have distinct

values for K, shown in Figure 7
Policy loss type Cross Entropy Loss

Table 8: Key hyperparameters of Sampled EfficentZero on Atari environments.

Hyper-parameter Value
Num of frames stacked 1
Num of frames skip 1
Reward clipping False
Number of sampled actions (K) 20
Policy loss type Cross Entropy Loss
Number of simulations in MCTS (sim) 50
Weight of policy entropy loss 0.005
Length of game segment 200
Use augmentation False
Max gradient norm 0.5

Table 9: Key hyperparameters of Sampled EfficentZero used in continuous control environments,
such as, MuJoCo.

41

Hyperparameter Value
Num of max considered actions i.e. Action Space Size
Gumbel Scale 10
Max visit init 50
Value Scale 0.1

Table 10: Key hyperparameters of Gumbel MuZero on Atari environments.

Hyperparameter Value
Chance space size i.e. Action Space Size
Afterstate Dynamics Network Similar with Dynamics Network in Figure 24
Afterstate Prediction Network Similar with Prediction Network in Figure 24
Chance Encoder Two Layer MLP

Table 11: Key hyperparameters of Stochastic MuZero on Atari environments.

Hyperparameter Value
Chance space size 16 ∗ num_of_possible_chance_tile
Afterstate Dynamics Network Similar with Dynamics Network in Figure 24
Afterstate Prediction Network Similar with Prediction Network in Figure 24
Chance Encoder Two Layer MLP
Num of frames stacked 1
Num of frames skip 1
Reward clipping False
Discount factor 0.999
Batch size 512
Length of game segment 200
TD steps 10
Use augmentation False
Number of simulations in MCTS (sim) 100

Table 12: Key hyperparameters of Stochastic MuZero on 2048 environments.

Hyperparameter Value
Board size 6
Num of frames stacked 1
Discount factor 1
Weight of policy loss 1
Weight of value loss 1
Number of simulations in MCTS (sim) 100
Categorical distribution in value modeling False

Table 13: Key hyperparameters of AlphaZero on Gomoku environments.

Hyperparameter Value
Board size 6
Num of frames stacked 1
Discount factor 1
Weight of SSL (self-supervised learning) loss 0
Length of game segment 18
TD steps 18
Use augmentation False
Number of simulations in MCTS (sim) 100
The scale of supports used in categorical distribution 10

Table 14: Key hyperparameters of MuZero on Gomoku environments.

42

	Introduction
	Background
	LightZero
	Overview
	How to Evaluate A General MCTS Algorithm: 6 Environment Challenges
	How to Simplify A General MCTS Algorithm: Decouple Pipeline into 4 Sub-Modules
	How to Improve A General MCTS Algorithm: 2 Examples

	Experiments
	Benchmark Results
	Key Observations and Insights

	Two Algorithm Case Studies for LightZero
	Exploration Strategies in MCTS
	Alignment in Environment Model Learning

	Related Work
	Conclusion
	Acknowledgements
	Environment
	Details about Main Experiment
	Benchmark Settings
	Main Benchmark
	Discrete Decision Benchmark
	Continuous Control Benchmark
	Gumbel MuZero Benchmark
	Stochastic MuZero Benchmark
	MiniGrid Benchmark
	Multi Agent Benchmark

	Details about Two Case Studies
	Exploration Mechanism in MCTS
	Details about Motivation
	Details about Settings
	Details about Intrinsic Exploration

	Alignment in Environment Model Learning

	Explanation for Figure 2
	Efficiency Analysis in LightZero
	Detailed sub-modules description of MuZero
	Details about Algorithm Implementation
	MuZero's Extensions
	LightZero Algorithms Overview
	Model Architecture
	Hyperparameters

	Comparison with Other MCTS Frameworks
	Limitations and Future Work

