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Abstract
Learning effective visual representations without human su-
pervision is a long-standing problem in computer vision. Re-
cent advances in self-supervised learning algorithms have uti-
lized contrastive learning, with methods such as SimCLR,
which applies a composition of augmentations to an image,
and minimizes a contrastive loss between the two augmented
images. In this paper, we present CLAWS, an annotation-
efficient learning framework, addressing the problem of man-
ually labeling large-scale agricultural datasets along with
potential applications such as anomaly detection and plant
growth analytics. CLAWS uses a network backbone inspired
by SimCLR and weak supervision to investigate the effect
of contrastive learning within class clusters. In addition, we
inject a hard attention mask to the cropped input image be-
fore maximizing agreement between the image pairs using
a contrastive loss function. This mask forces the network to
focus on pertinent object features and ignore background fea-
tures. We compare results between a supervised SimCLR and
CLAWS using an agricultural dataset with 227,060 samples
consisting of 11 different crop classes. Our experiments and
extensive evaluations show that CLAWS achieves a compet-
itive NMI score of 0.7325. Furthermore, CLAWS engenders
the creation of low dimensional representations of very large
datasets with minimal parameter tuning and forming well-
defined clusters, which lends themselves to using efficient,
transparent, and highly interpretable clustering methods such
as Gaussian Mixture Models.

Introduction
In the last few years, there have been several advances in
deep learning and artificial intelligence for solving problems
in agriculture, and a lot of this innovation is driven by a large
amount of data at our disposal. More specifically, a vast
amount of data is generated with information about crop
fields, crop type, yield growth, plant phenotyping, and plant
breeding statistics. Additionally, a lot of visual information
is available that can be exploited to solve problems such
as detecting anomalies; for example, taller crops showing
erroneous growth and spanning larger areas can be valuable
insight. While this data has been used to experiment with a
wide range of machine learning and deep learning models,
most of the available data in agriculture is either entirely
unlabeled or partially labeled, which motivates us to tackle
certain problems using an unsupervised approach. We pri-
marily address the problems associated with the downside

Figure 1: UMAP visualization of representations learned by
CLAWS.

of data labeling, the cost of time pertaining to large-scale
data labeling, and the expensive human cost and effort
associated with agricultural big data.

A vast majority of the modern unsupervised learning
research has been driven by contrastive learning and similar
self-supervised learning procedures. Contrastive learning
is a popular method that learns representations of images
without requiring any image labels. We directly build off
of the contrastive learning framework SimCLR, presented
in A Simple Framework for Contrastive Learning of Visual
Representations (Chen et al. 2020a). In SimCLR, each
image is transformed into two correlated views. These
views are then fed through a base network, ResNet, to
represent each view. These representations are then reduced
in dimensionality via a Multilayer Perceptron (MLP)
and compared using a contrastive loss that maximizes
agreement between representations of the same image.
We use the same contrastive loss as SimCLR, Normalized
Temperature-scaled Cross-Entropy (NT-Xent). This loss
is important (Caron et al. 2020) as the contrastive loss re-



Figure 2: Illustration of the architecture in CLAWS. The top of our framework shows the path taken by the full image and the
bottom side shows the crop side of the architecture.

moves the notion of instance classes by directly comparing
images features while the image transformation defines the
invariances encoded in the features.

In this paper, we present an alteration of contrastive learn-
ing that uses focus training. We use a method similar to
(Chen et al. 2020a) along with the addition of our attention
head. This type of an attention head allows us to focus on
important generated features for image representation. The
procedure we follow consists of two networks, one to gen-
erate representations of a given input image and the second
to generate representations of a crop image. Representations
from the cropped image will be passed to our attention head
to focus on important features from both images representa-
tions. Lastly, the NT-Xent loss function is applied to these
outputs. In addition to contrastive learning, we combine this
type of learning with additional supervision to see the per-
formance of this combination of methods while performing
image clustering. In essence, we have two additions to Sim-
CLR, the use of a crop model to generate representations
of crop images and the conception of an attention model to
focus the contrastive loss comparisons.

At a higher level, contrastive learning works by perform-
ing deep comparisons on images and backpropagating errors
on the framework used to do these image representations.
Before we were able to do this type of training, we relied on
methods like principal component analysis (Zitko 1994), in-
dependent component analysis (Bell and Sejnowski 1995)
and self-organizing maps (Kohonen 1998) between other
methods that were traditional and more classical but were
the key to open the idea of what we have today as deep rep-
resentation learning methods. While these classical methods
help lay a good foundation, there has been a lot of progress

in the last few years, and we have numerous methods now
that extend the idea behind contrastive learning in differ-
ent ways. We can start with SimCLR, where the creation of
augmented images enforces the training process; Big Self-
Supervised Models are Strong Semi-Supervised Learners
(SimCLRv2) (Chen et al. 2020b) in which they work with
the combination of label amounts and network sizes. SwAV
(Caron et al. 2021) takes contrastive learning methodology
without having pairwise comparisons. Contrastive Cluster-
ing (Li et al. 2020) introduces a cluster-level contrastive
head in combination with an instance-level head, and Clus-
ter Analysis with Deep Embeddings and Contrastive Learn-
ing (Sundareswaran et al. 2021) uses a three-prolonged ap-
proach with an instance-wise contrastive head, a clustering
head, and an anchor head to perform efficient image cluster-
ing. Although our idea is based on these preceding works,
other interesting works ((Bachman, Hjelm, and Buchwalter
2019; van den Oord, Li, and Vinyals 2019; Wu et al. 2018;
Hjelm et al. 2019; He et al. 2020; Grill et al. 2020; Chen
and He 2021)) have also been proposed that use contrastive
learning and bring out different perspectives.

Methods
An overview of our model architecture is given in Figure
2. Similar to SimCLR, our method learns representations
by maximizing agreement between differently augmented
views of the same image. The first augmentation retains the
full image size and is fed into a base network that is opti-
mized for full-size images. The second augmentation takes
a small crop from the original image and is fed into a base
network that is optimized for small crops of images. An at-
tention mask is then applied to both of the representations
generated by the base networks, and the attention-filtered
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Figure 3: 3D plot containing clusters and outliers (blue) within a specific class, (a) represents Corn samples and (b) is showing
Cotton samples. For (a) top and bottom row represents green cluster, images at the right represents red cluster and left represents
blue cluster. Image (b) has a column of images at the right that represents red cluster, bottom images are to show the green cluster
and finally the top images represents outliers.

representations are then compared using a contrastive loss.
The differences between our model and SimCLR can be cat-
egorized into 3 major components: 1) the way images are fed
into for inference before comparison, 2) the use of two sep-
arate base networks instead of one siamese network, and 3)
application of an attention mask to the output of each base
network before the contrastive loss is calculated. This is also
complemented with the use of weak supervision, the two
parts of our model (full image network and crop image net-
work) are trained by using cross-entropy loss and NT-Xent.

Our models outputs can be seen as:

Hi = fθ(Xi) = EfficientNet(Xi) (1)

Hj = gθ(Xj) = EfficientNet(Xj) (2)

were Xi and Xj are a pair of augmented images drawn
from X which is the original image. The hidden layers are
Hi and Hj representing the output of the fθ and gθ, now the
hidden layers are then passed to a projection head to produce
image representation with 32 features, i.e, Zi = p1(Hi) and
Zi = p2(Hj). To calculate the attention output we send Zj

to our attention network mθ to generate M which is a mask
that use to focus training on the important features (further
explanation in section 3.3).

Dataset
The single dataset used for this research is composed of 11
classes of images. Data was obtained while driving over dif-
ferent fields containing one of the possible crops types. A
total of 227,060 samples were collected and labeled. The
time in which they were collected varies, therefore there is
a different variation of lighting over the dataset. The labels

of the data are composed by crop fields of Wheat, Cotton,
Sorghum, Corn, Peanuts, No crop, Oats, Soybeans, Canola,
Sugar, WheatStubble.

Preprocessing

SimCLR augmented images with a composition of a ran-
dom crop, random flips (horizontal and vertical), and color
distortion. This composition is applied twice to the same im-
age to generate two distinctly augmented images. We follow
the same augmentation process, except performing Gaus-
sian blur. We apply two separate augmentation compositions
to generate augmented images (full image and crop image).
Note that when SimCLR applied random cropping, the crops
were always resized to 100x100 to be fed into the base net-
work. Our base networks have different input sizes, so we
do not resize images after they are cropped.

We use two distinct base networks, fθ and gθ for the full
and crop networks respectively. The network used for the
full image takes RGB images of size 120x190 as input, while
the crop network takes RGB images of size 32x32 as input.
Both networks are a standard EfficientNet (Tan and Le 2020)
architecture, and both produce output embeddings of the
same size, 32 features. Using two separate base networks,
rather than feeding both image augmentations through the
same base network as SimCLR does, provides two notice-
able advantages. First, we do not need to enlarge small crops
to fit an architecture, which can produce unintended artifacts
in the image. Second, each architecture is more specifically
optimized for global or local views.



Attention Mask
The main innovation in our framework is the incorporation
of an attention mask. The mask is generated with a 2-layer
perceptron that takes the output of gθ as input. The output
tensors of both gθ and fθ are multiplied by this mask be-
fore they are compared using a contrastive loss. This created
the attention mechanism that we wanted, we created hard at-
tention meaning that the output from the attention head is
going to be either 0 or 1 (M). Therefore Z′

i = Zi · M and
Z′

j = Zj · M to then be use to calculate the loss using NT-
Xent.

Both base networks need to be able to encode the same
concepts in the same corresponding regions of the embed-
dings they produce. The same mask is applied to both em-
beddings, so if the output of gθ contains mainly a strong
concept, the mask network will remove out every region ex-
cept that. If the same region in fθ output contains a similar
concept, then the two embeddings will be very similar after
the mask is applied.

Results
The models were trained for 300 epochs with a batch size
of 55 and an Adam optimizer. We train with this batch size
because of the way we were gathering the images for the
step, here instead of randomly picking images we specify 5
images per class so that in every step we can train the model
in each class.

Evaluation
To perform evaluation we wanted to focus on the quality
of the image representation. Therefore, we compared ours
against SimCLR with an adaptation, similar to our model
we added a supervised section for it. Now, SimCLR and
CLAWS were trained using NT-Xent in combination with
supervision by adding an MLP to generate labels from the
outputs of the projection head. This way we can do a fair
comparison over our agricultural dataset. To evaluate both
models after training we did not used the classifier section,
we generated the representation of the images, i.e., ran the
models over each image up to the output of the projection
heads. Given the creation of all the represenation, we pass
it to a K-Means clustering method and generated labels for
each data point. Finally, we calculated the quality by com-
puting NMI, AMI and ARI scores.

Method NMI ARI AMI

SimCLR 0.6101 0.2873 0.6101
CLAWS(Ours) 0.7325 0.5069 0.7324

In table 1 we can see that our results outperforms Sim-
CLR with supervision. This is also specific for the quality of
the represenation of the images. Meaning that by focusing
the training with the use of an attention head does helps on
focusing on features that relate between the corp image and
the full image.

Gaussian Mixture Models
Furthermore, we implemented Gaussian Mixture Models
(GMM) over our image representation. Now we did not used
the full dataset, we focus on seeing how our model behaved
within a class. To perform this we picked Corn and Cotton
and set the output of GMM to be two clusters and an addi-
tional one to detect outliers. In figure 3, we can see the out-
put of GMM in the two mentioned crop types. As mentioned
before (a) represents Corn and (b) represents Cotton. For (a)
image the top and bottom row represents green cluster, im-
ages at the right represent red cluster and the left represents
blue (outliers) cluster. Image (b) has a column of images at
the right that represents red cluster, the bottom images are to
show the green cluster, and finally, the top images represent
outliers. An important thing to mention about figure 3 is that
we are randomly choosing three dimensions from the 32 that
represent an image. Therefore, we are not going to see the
full relation between clusters in just three dimensions but we
can see that even with the use of the raw representation there
is a relation preserved in the plot.

Focusing on outliers is our main reason for using GMM,
having the ability to generate image representation on then
pass it to these models to detect outliers can help in the re-
duction of the inspection time. It also allows fast customiza-
tion depending on the task, because it is an unsupervised
method, we can change the cluster dimensions and get fast
results from it. An example of its use can be seen in figure
3, (a) contains 19,792 samples of Corn the GMM detects
315 outliers in which if we inspect them, images that have
residue on the ground, are empty, the crop wrongly planted
or bad image capture. This means that even when the model
generates a similar representation for a specific class, we can
detect, within a class, bad samples. Another example, (b)
shows samples from Cotton, with 66,053 samples and GMM
detected 3,401 outliers in which we can also see that for both
classes the outliers resemble. Here, again, the images were
empty, not correctly taken, contain residues and bad planta-
tion. In addition to GMM clusters, if we talk about the other
clusters, we can notice that there is no big issue separating
them. The reason to be separated is that these crops can be
going through a different stage of growth or other reasons. In
figure 3, (a) top row we see images that contain weeds, the
bottom row show images captured closer. On the (b) bottom,
we notice images with tire marks on the ground. Therefore,
they are assigned to another cluster (within a class) because
of many reasons (leaf size, plant height, and image bright-
ness between other factors).

Conclusion
This work built upon SimCLR to achieve better represen-
tations of images using contrastive learning combined with
supervision. Our framework incorporated two distinct base
networks and an attention mask, which allowed the network
to learn and recognize parts that strongly represent images.
With this methodology, we created CLAWS and were
able to show encouraging results within class clusters. Fur-
ther work on this relies on completely unsupervised training.
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