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ABSTRACT

Deploying reinforcement learning (RL) in robotics, industry, and health care is
blocked by two obstacles: the difficulty of specifying accurate rewards and the
risk of unsafe, data-hungry exploration. We address this by proposing a two-
stage framework that first learns a safe initial policy from a reward-free dataset
of expert demonstrations, then fine-tunes it online using preference-based human
feedback. We provide the first principled analysis of this offline-to-online ap-
proach and introduce BRIDGE, a unified algorithm that integrates both signals
via an uncertainty-weighted objective. We derive regret bounds that shrink with
the number of offline demonstrations, explicitly connecting the quantity of offline
data to online sample efficiency. We validate BRIDGE in discrete and continuous
control MuJoCo environments, showing it achieves lower regret than both stan-
dalone behavioral cloning and online preference-based RL. Our work establishes
a theoretical foundation for designing more sample-efficient interactive agents.

1 INTRODUCTION

Deploying reinforcement learning (RL) (Sutton & Barto, [2018) on physical robots, industrial
processes, or in healthcare remains notoriously difficult for two reasons. First, exploration is
both risky and data-hungry (Dulac-Arnold et al., 2019): a policy that begins from scratch can
damage hardware, or user trust, long before gathering enough experience to learn. Second, reward
mis-specification: even experienced domain experts often find it hard to translate informal task
goals into a correct and safe numerical reward signal (Leike et al., 2018)).

A promising solution addresses both challenges simultaneously: it combines reward-free expert
demonstrations with online preference-based feedback, allowing practitioners to leverage safe im-
itation learning while enabling corrective refinement through simple comparative judgments. This
hybrid approach has achieved remarkable empirical success across domains. It is the core technique
behind modern dialogue agents like ChatGPT, which is first trained to imitate curated demonstra-
tions of desirable responses and then fine-tuned via RL from human feedback (RLHF) (Ouyang
et al} 2022). Similar approaches have achieved near-expert performance in complex games like
Atari and control tasks like MuJoCo (Christiano et al.,[2017) and enabled safe real-world robot ma-
nipulation by ranking tele-operated clips before on-hardware fine-tuning (Brown et al., | 2020). Our
reward-free setting is distinct from a related line of successful work that also pre-trains offline but
assumes access to a ground-truth reward signal for online fine-tuning (Nair et al., 2020; |[Kostrikov
et al.,[2022; Tang et al.l 2025; [Park et al.| 2024; [Tirinzoni et al., [2025)).

However, despite its widespread practical success, the theoretical foundations of offline-to-online
preference learning remain unexplored. Existing theory analyzes either imitation learning or
preference-based RL in isolation. This leaves fundamental questions unanswered: How exactly do
offline demonstrations improve online preference learning? What are the precise trade-offs between
the quantity of offline data and the number of online queries? When is this combination provably
better than either approach alone? This theoretical gap prevents a principled understanding of the
method’s limits and leaves practitioners without formal guidance for designing such systems.

We provide the first theoretical analysis of this empirically important paradigm. We formalize the
“offline imitation + online preference fine-tuning” setting and develop rigorous regret bounds that
quantify how offline expert data reduces online learning complexity. We introduce a new algorithm,
Bounded Regret with Imitation Data and Guided Exploration (BRIDGE) that achieves the predicted
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theoretical benefits in experiments on discrete and continuous control tasks. Our key contributions
are:

* The first theoretical framework for offline-to-online preference learning. We provide
the first rigorous regret analysis for this reward-free approach. Our framework (Theo-
rem uses the Hellinger distance between trajectory distributions to construct confi-
dence sets whose radii, O(1/+/n), directly connect the quantity of offline data n to online
learning efficiency.

* A regret bound showing offline data reduces online regret. We prove that our algorithm,
BRIDGE (Algorithm [1)) achieves an optimal /T regret dependence on the online horizon
T, while explicitly showing how offline demonstrations improve online performance (The-
oremf.T)). Our bound formally shows that as the number of offline demonstrations n — oo,
the online regret approaches zero, theoretically validating that high-quality offline data dra-
matically improves preference learning efficiency.

We review related work on the offline-to-online paradigm in Section [ and formalize our problem
setting and regret measure in Section [3] We then present our algorithm, BRIDGE, along with its
theoretical regret bounds in Sectiond] Finally, we validate our theory with experiments on discrete
and continuous control tasks in Section[3

2 RELATED WORK

Imitation Learning. Behavioral Cloning (BC) ALVINN (Pomerleau, [1988), learns policies from
expert data via supervised learning. Recent advances in theory e.g. establish horizon-free sample
complexity bounds for BC (Foster et al., 2024). The DAGGER algorithm mitigates covariate shift
at deployment time (when facing states outside the training data), with iterative expert corrections,
achieving no-regret guarantees (Ross et al., 2011). However, its reliance on a constantly available
expert is often impractical. Our approach inherits BC’s simplicity but replaces this online expert
with preference-based refinement.

Hybrid offline-to-online RL. Learning entirely online from a cold start is often sample-inefficient
and (initially) unsafe. Our work fits into the hybrid paradigm, which avoids this by using offline
data to warm-start a policy before online refinement, with early contributions including model-based
algorithms (Ross & Bagnell, 2012). This area has seen significant empirical progress (Rajeswaran
et al., 12017; [Hester et al., 2018} [Nair et al., 2018} |Vecerik et al., 2017} |[Lee et al.| 2022} |Ball et al.,
2023) and theoretical advances in statistical approaches to efficiently combine offline and online
datasets (Song et al., 2023; Wagenmaker & Pacchianol [2023; [Tang et al., [2023). However, this
entire line of work is fundamentally different from ours as it assumes access to a ground-truth
reward function during online fine-tuning. For instance, prior theory shows that for non-expert
offline data, pre-training offers no statistical improvement in this reward-based setting (Xie et al.,
2021). We show, in contrast, that offline expert data provides a provable statistical advantage when
combined with reward-free, online preference-based feedback.

In summary, prior imitation-only approaches lack robustness outside the demonstration manifold,
while existing offline-to-online methods demand ground-truth rewards. Our work bridges these
gaps by (i) proving that expert demonstrations plus a modest preference-query budget yield sharper
regret bounds, and (ii) showing empirically that preference-guided exploration corrects for blind
spots with far fewer risky interactions than pure online RL.

3 PROBLEM FORMULATION

We address the challenge of learning optimal policies by combining information from two com-
plementary sources: offline expert demonstrations and online preference feedback. In this hybrid
learning paradigm, we first leverage a dataset of trajectories collected from an expert policy to
establish strong priors over the policy space. Then, we strategically utilize these priors to guide
an online preference-based learning process, where an expert provides binary feedback comparing
pairs of trajectories. This framework enables us to efficiently narrow the search space using of-
fline demonstrations while refining our understanding of the expert’s underlying preference model
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through targeted online queries. We aim to quantify how knowledge from offline demonstrations
translates to improved regret bounds in the online preference learning phase.

Finite MDP setting (reward-free). Consider a finite-horizon Markov Decision Process (MDP) de-
fined by the tuple M = (S, A, P, H), where S is a finite state space, A is a finite action space,
H € N is the horizon length, and P = {Py},¢[m) represents the time-dependent transition dy-
namics, with P}, (+|s, a) denoting the probability distribution over next states given state-action pair
(s,a) at step h. A policy T = {7y, }ne[s) consists of a collection of mappings 7, : S — A(A),
where A(.A) is the probability simplex over actions. A trajectory 7 = {(sn, an) } ne[m) is @ sequence
of state-action pairs generated by executing a policy 7 in the environment following dynamics P.
We denote the space of all possible trajectories of fixed length H as 7. We assume the trajectories
have a continuous distribution with respect to the counting or Lebesgue measure. For ease of nota-
tion, we will write P for the density function of the trajectory distribution induced by policy 7 and
dynamics P.

Offline demonstrations. We assume access to an offline dataset DX = {7i}ie[n) consisting of n

independent trajectories of length H, where each 7; ~ IP”];;. This represents an imitation learning
framework where trajectories are generated by an expert policy 7* interacting with the true environ-
ment dynamics P*.

Online preference queries. We formalize preference-based learning through feature embeddings
and a probabilistic preference model (Christiano et al., [2017;|Saha et al.,|2023)). For each trajectory
T € T, we assume the existence of a trajectory embedding function ¢ : 7 — R that is known to
the learner. The offline demonstrations capture raw expert behavior, while the known embedding
function ¢ provides the necessary structure for efficient online preference learning. The trajectory
embedding function ¢ serves a critical purpose in our framework by enabling meaningful prefer-
ence comparisons that would be difficult to perform on raw trajectories. This embedding approach
provides a versatile framework that can accommodate various types of trajectory information. The
flexibility of this representation allows our method to adapt to different domains and preference
structures without changing the underlying learning algorithm. We define the policy embedding as
the expected feature representation: ¢ (1) = E, gy [(7)].

We adopt two commonly used assumptions, bounded trajectory embeddings (Saha et al., 2023}
Parker-Holder et al.l 2020b) and bounded weight vectors (Filippi et al., [ 2010; |[Faury et al.l 2020).

Assumption 1. We require (i) bounded features: ||¢(7)||2 < B for all T € T and some known
B < oo, and (ii) bounded weights: w* € {v € R? : ||[v||o < W} for a known W < cc.

We measure the degree of non-linearity of the sigmoid o(z) = (1 + e~*)~! over the parameter
space (where ¢’ is the first derivative of o) with k := SUPzeBd(B),weBd (W) m

We use a Bradley-Terry model for the preference feedback. Given two trajectories 7% and 72, the
binary preference outcome 01 2 ~ Ber(PP) is modeled as:

P(r! = 7%) = P(o1,2 = 17", 7%) = o((¢(1") — o(7%), w")).

This corresponds to a latent utility model where the inner product (¢(7), w*) represents the utility
of trajectory 7. We can extend this to policies, defining P(7! = 72) = o((¢p(7!) — ¢(72), w*)).
This represents an expected preference over the distribution of trajectories, and captures the average
preference when comparing behaviors induced by different policies. From this model, we derive a
score function for trajectories s(7) = (¢(7), w*) and extend it to policies as s” () = Epx [s(7)].

Offline estimation quality. For the offline phase, we measure the quality of estimation using dis-
tributional distance metrics in the space of trajectory distributions. Specifically, we will construct
confidence sets in the form of Hellinger balls around our estimated density policy and dynamics.
Notably, the Hellinger distance relates directly to the L? norm between square-root densities, en-
abling a geometric interpretation of our confidence sets as Euclidean balls in the space of density
embeddings, with computational advantages over alternative divergences. The precise construction
of these confidence sets and their properties is shown in Section 4]

Online regret. We quantify our online learning phase’s performance through regret measurement.

In each round ¢t € [T] of online learning, the agent selects policies 7} and 72, receives binary
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preference feedback o; € {0, 1}, and accumulates regret measured agalnst the optimal policy. We
specifically use the pseudo-regret with respect to the policy class II as in|Saha et al. (2023)ﬂ

~ [207 (1) — 7 (m}) — 7 (7)) T :Z%P*(ﬂ*)—(s () + 87 (n}))

PST L _
R} = max 5 ,

mell 2

where 7* := arg max ¢ s(7). All our performance guarantees will be expressed in terms of the
MDP parameters (state space size |S|, action space size |.A|, horizon length H), offline data quantity
n, online interaction rounds 7', and confidence level § of the offline estimation - establishing a
direct connection between offline data quality and online learning efficiency.

Notation. We denote [H] = {1,...,H} for H € N. For probability distributions P, Q, H?(P, Q)
is the squared Hellinger distance and TV(P, Q) the total variation distance. We denote as BS(R) :=
{x € R?: ||z||2 < R} the Euclidean ball of radius R, and define 2 := 22T as the outer product.

4 BRIDGING OFFLINE BEHAVIORAL CLONING AND ONLINE
PREFERENCE-BASED FEEDBACK

Our approach, BRIDGE, leverages offline expert demonstrations to improve the efficiency of online
preference learning. The core idea is to use the offline expert data to construct a set in policy
space that contains the expert with high confidence, drastically shrinking the search space for the
subsequent online learning. This process contains three steps:

1. Offline imitation: We first use the offline dataset to learn an initial policy via Behavioral

Cloning (BC), and a transition model estimate via maximum likelihood estimation (MLE).
2. Confidence set construction: Next, we construct a confidence set H?ffige centered on
the BC policy in trajectory distribution space. We define the set as a ball in the space
of trajectory distributions using the Hellinger distance. This provides a clean geometric
interpretation, namely a ball defined by a single scalar quantity (its radius), and makes the
theoretical analysis tractable. We prove that the radius shrinks at a rate of O(1/+/n), where
n is the number of offline expert demonstrations. More offline data directly translates to a
tighter ball and a smaller, more focused search space for online learning.

3. Constrained online learning: Finally, we perform online preference-based RL, but with
exploration constrained to policies that lie within the pre-computed Hellinger ball. This
prevents the agent from exploring highly suboptimal or unsafe regions of the policy space.

This framework is illustrated in Figure [I] implemented in detail in Algorithm [I] experimentally
verified in Section[5|and supported by our main theoretical result. The following theorem formalizes
the intuition that more offline data improves online performance by providing a high-probability
regret bound that explicitly depends on n. The full proof is found in Appendix [E.T}

Theorem 4.1 (Main result: Offline data reduces online regret). Let n be the number of offline
demonstrations from an expert policy satisfying Assumption |3} where Vmin > 0 is the minimum
nonzero visitation probability under the expert policy’s distribution. Then, with probability at least
1 — 6, the regret of BRIDGE is bounded by

N T VT
RTSC’)(\/T. 1og<1+n>+nm> (1)

This regret bound represents our core theoretical contribution. While the regret’s scaling in /T
matches [Saha et al.|(2023)’s, it now also depends inversely on the number of offline demonstrations
n. Crucially, the regret vanishes as n — oo, for a fixed 7". This formally captures our claim that
high-quality offline data can arbitrarily reduce the complexity of online preference-based learning.

The remainder of this section substantiates these claims. We first detail the construction of the
Hellinger-based offline confidence set in Section d.T]and then describe how we link it to the online
preference-learning algorithm that operates within this set in Section 4.2}

!They show equivalence of the standard preference-based formulation up to constant factors, if B, W < 1.
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Figure 1: Overview of the BRIDGE framework. Offline estimation derives estimators 7"~ and

P using the dataset DX and constructs a confidence set in trajectory distribution space P(7) as
a Hellinger ball (left), which translates to the offline policy confidence set I1°M" in policy space
IT likely to contain 7* (middle). The confidence set IT°M" is then used to constrain the online
preference learning phase (right), where policies are sampled from within this set and presented to
the expert for preference feedback.

Algorithm 1 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration

1: Input: offline dataset D/, no. of iteratlons T

2: Estimate P and 7€ via MLE (Egs. and ) and compute confidence set H"fﬂ“‘e (Theo-
remf4.2)

3: Initialize model P, + P, data matrix V; PV

4: fort = 1,...,Td0

5: Compute w}™ via constrained MLE (Equatlon ')

6: Define policy set I1; based on H‘l’f_ﬂ‘g‘e and wt ol (Lemma

E (7Ttl7 7‘—%) < arg maXz1 r2¢r1, {’Yt : ||¢Pt (ﬂ—l) - ¢Pt( )Hvt_

+ Bt(w17 2W B, 6onlz’ne) + Bt(WQ, 2W B, 607Lline)}
1 2
8: Sample trajectories 7} ~ [P’};t L TE ~ ]}D’I[; and obtain preference o; = (7} > 72)
o Update matrix V41 < Vi + (¢P‘ (mf) — ¢pt (72))®2 and model Py,

10: end for

11: return Best policy from Iy using final weight estimate w?™

4.1 STAGE 1: OFFLINE CONFIDENCE SET CONSTRUCTION

The goal of our offline phase is to use the expert dataset DX to construct a policy confidence set
H"fﬂ‘"e that is guaranteed to contain the expert policy 7* w1th high probablhty (1 — 6). The key
result of this stage is a computable confidence set whose radius shrinks with increasing amounts
of offline data, which we formalize in the following theorem. The proofs of both this theorem and
Lemma .4 are shown in Appendix[C.4]

Theorem 4.2 (Offline confidence set radius). Define constants o = /4 -|S| - log(|A] - 2/6),
B:=+/4-1S]2-|A] - log(nH -2/9). UnderAssumption the policy set

Hz{fft’ge — {W ‘ Hz(]pfrp’pgc) < Radius}7

is a confidence set of level 1 — § containing 7 with probability at least 1 — §, where

Radius—jﬁ+jﬁ-<l+\/H~(l+W)>.

This result provides the fundamental connection between offline data and online learning efficiency:
the confidence set radius scales as O(1/+/n) with the offline sample size n. As we collect more
expert demonstrations, the confidence set shrinks, constraining the online policy search space more
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tightly. Since our online regret bounds will directly depend on the size of this confidence set, this
establishes a quantifiable trade-off between offline data collection and online preference query effi-
ciency, a key contribution of our work. We now detail the components required to construct this set.
Relevant corollaries and their proofs are presented in Appendix [C|

Policy and model estimation. To construct the confidence set, we first obtain estimators for the
policy and transition dynamics from the offline data, assuming realizability. We apply maximum
likelihood estimation (MLE) on the expert trajectories DX to learn the BC policy estimator 75 and
the transition model estimator P.

Assumption 2 (Realizability). The optimal policy and true transition function belong to their re-
spective function classes: ™ € Il and P* € P.

The BC estimator wB€ is found via log-loss Behavioral Cloning (BC), and the MLE transition esti-
mator P is found similarly using Maximum Likelihood Estimation (MLE):

= arg max Z Z log(mp (ak|sh)), (2)

[n] he[H]

—argmaxZ > (log sh+1lsz,a§,,)]>- 3)

[n] he[H]

We provide concentration bounds for these estimators in Appendix which characterize their
error in terms of the Hellinger distance

Bounding concentrability. A key challenge in leveraging these estimators is that our bounds depend
on the unknown true dynamics P*. To create a computable confidence set, we must eliminate this
dependency. We do so by bounding the concentrability coefficient, which measures the maximum
divergence between the state-action distributions of an estimated policy 7B¢ and the expert 7*.
Commonly encountered in offline RL literature (Chen & Jiang, 2019), it is defined as:

C (B¢, 7*) = sup sup — .
te(H] (s,a)ESXA:d;i’t(s,a)>0 dP* (Sa a)

To bound this quantity without requiring broad data coverage, we instead make a mild assumption
on the expert’s policy structure.

Assumption 3 (Expert policy concentration). The expert policy m* has a minimum visitation prob-
e . ) . . ¥t
ability Ymin > 0 for state-actions it visits, i.e., Min, o 407 (5,0)>0 dp."(s,a) > Ymin.

Intuitively, this assumption characterizes the expert’s intrinsic behavior. A smaller +,,,;,, corresponds
to a more specialized expert with sharp preferences for certain state-actions, while a larger value
implies a more uniform visitation pattern. This contrasts a standard assumption in offline RL of a
minimum dataset coverage across all state-actions (Levine et al., [2020; [Chen & Jiang, 2019).

We can now bound the concentrability coefficient using only the Hellinger error R of our policy
estimator and the expert’s concentration pattern . For the proof, see Appendix[C.3.3]

Lemma 4.3 (Concentrability coefficient bound). Under Assumption (3| for a policy estimator wB€

satisfying H?( 715[10, }B) < R, the concentration coefficient is bounded by
2
C(mBC, ) <1+ i

fY’mm

Final confidence set construction. By combining our concentration results for 75€ and P (Corol-
laries[C.5]and[C.9) with the deterministic bound on concentrability, we can construct the final offline
confidence set. The following lemma provides the general form, which uses only quantities com-
putable from our offline data and estimators, leading directly to the explicit radius in Theorem

2While we present theoretical results for tabular, stationary transitions here, our framework readily adapts
to other transition model classes by deriving appropriate covering number bounds using the general results in
Appendix@ We show experiments and an implementation for continuous MDPs in Sections E]and@
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Lemma 4.4 (Offline Policy Confidence Set). Ler R1(6/2) and R2(0/2) be high-probability up-
per bounds on the Hellinger estimation errors for the policy and transition model, such that with
probability at least 1 — §/2 each:

H2(PE.PE.) < Ri(6/2) and H*(PY ,Ph.) < Ro(5/2).
Then, under Assumption[3] the offline confidence policy set

i BC 2
e = {”EH’ H2(PT, P, )SJE+JE~<1+\/H. <1+ VE))}

Ymin

contains the expert policy w* with probability at least 1 — 6.

4.2 STAGE 2: CONSTRAINED ONLINE PREFERENCE LEARNING

In the online stage, our goal is to efficiently learn the true preference reward vector w* by leveraging
the confidence set I1°™"¢ constructed previously. Our approach follows the generalized linear model
(GLM) framework for preference-based RL of|Saha et al.[(2023), who themselves adapt GLMs from
parametric bandits (Filipp1 et al., 2010; Faury et al.,[2020). We first summarize its core components,
and then show our novel adaptations. All derivations and proofs are provided in Appendix D}

Preference-based online learning framework. The online algorithm learns a preference vector
w* by iteratively presenting pairs of trajectories (71, 72) to an expert and receiving a binary pref-
erence. At each step ¢, the method computes a regularized maximum likelihood estimate wM-E,
based on past preference queries. Since this initial estimate may not satisfy our boundedness As-
sumption |1} it is projected onto a valid set. This projection uses the empirical data matrix V; =
kMg + Zz;i (¢(1}) — ¢(73))®2, which captures the information gathered from past queries, and
a transformation function given by g(w) = Zf;ll o ((a(r}) — o(72), w)) (o(7}) — &(77)) + Aw.

The projected estimate w?™ is then found by solving the following optimization problem:

wi = arg min g,(w) — go(w™) ||y, . )
weBZd (W) t

The matrix V; serves a dual role: It defines a confidence ellipsoid around w}® that contains w*
with high probability, and it guides exploration towards directions of highest uncertainty via its
Mahalanobis norm. To obtain our distributional guarantees, we need to relate this empirical matrix,
built from single trajectory realizations, to its expected counterpart V;, which averages over the
sampling randomness of the trajectories: V; = sAI; + S0 1 (67 (m}) — ¢F* (72))®2. Relating
these matrices allows our bounds to account for both model uncertainty and sampling variance.

Our work introduces two important modifications to this framework to integrate the offline informa-
tion and guide online exploration.

1. Offline-online transition model integration. We improve the online transition model estimator’s
sample efficiency by pooling offline and online data. We initialize it using the offline MLE estimator
from Equation (3), which in the tabular setting is a simple count-based estimator. We then update it
at each step ¢ using the combined counts:

Nog(s', s,a) + Ni(s',8,a)

Py(s =
W(s'ls, a) Noge(s,a) + Ny(s,a)

Consequently, to account for the uncertainty in the estimator, we adapt the exploration bonus from
Chatterji et al.| (2021) to use these combined counts:

A Uh
B J) = ETN - i 2 ,4
t(m,1,0) P5, hez[;ﬂ i ( n n\/Noﬁ‘(Sh, ap) + Nt(smah))

where U}, is a logarithmic term dependent on the state-action space size and the confidence §

(Lemma . This bonus B; encourages exploring parts of the state-action space where our com-
bined offline-online transition model is less certain.
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2. Constrained and uncertainty-guided policy selection. We constrain all online exploration to

the offline confidence set H‘l’f_ﬁi(‘;e. Within this safe set, the algorithm actively seeks to reduce uncer-

tainty. At each step (line 7 of Algorithm , it selects the pair of policies (7}, 72) that maximizes

a total exploration objective. This objective combines the uncertainty in the preference model (the

I| - ||V71 term) with the uncertainty in the transition model (the Bt bonus). The following lemma

formalizes the adaptive online confidence set II; from which we sample guaranteeing that this ex-
ploration strategy remains sound. The confidence radius multiplier 7 is defined in Appendix [D.4]

Lemma 4.5 (Online policy confidence set). With probability at least 1 — §°"", the optimal policy

6nulme

7* is contained in the set 1L, C I for all t € [T), where §' = spapsT and Uy is defined as
I, = {7 e M |va' e I .
(67 (m) = ™ (), W) + 3 - 167 () — ¢™ (1)l
+ By(m,2WB,§') + B,(n',2WB,§') > 0 b+ Lemma

4.3 THE BRIDGE: HOW OFFLINE DATA REDUCES ONLINE REGRET

‘We now explain the core theoretical mechanism connecting the quality of our offline estimate to the
final online regret (lemmas[B.4and [E.6).

Regret bounds in online learning are fundamentally tied to controlling the cumulative exploration
variance of queried policy pairs, trf(V;) = 3, _, p(xt) — p(xh )||3. Standard analyses (Lattimore
& Szepesvari, 2020) rely on worst-case bounds. |Saha et al. (2023), using the bounded feature
assumption[] obtain a worst-case uniform bound on the feature differences ||¢(m ) —¢(m2) |2 < 2B,
leading to a total variance that scales linearly with the online horizon 7.

Our key insight is that by constraining policy selection to m € H‘if_ﬂige (line 7 of Algorithm ) , We es-
tablish a tighter, offline data-dependent bound. The properties of our Hellinger-based confidence set
(Lemma[4.4) and the connection between Hellinger distances and feature distances (Appendix
allow us to prove that for any pair of policies 71, Ty € H‘{f_ﬂige:

om0 o ()l < 222

This result directly injects the offline data size n into the online variance term at each step. It is the
central mechanism by which the offline confidence set’s O(1/+/n) radius improves our final regret
bound (Theorem [4.1)), formally establishing the trade-off between offline data collection and online
query efficiency.

5 EXPERIMENTS

We conduct experiments to validate our theoretical claims and demonstrate the empirical effec-
tiveness of BRIDGE. We implement our algorithm for both discrete and continuous MDPs. As
baselines, we implement [Foster et al.| (2024)’s offline Behavioral Cloning (BC) and [Saha et al.
(2023)’s online preference-based RL (PbRL) algorithms (for which no implementations are publicly
available). BRIDGE outperforms both baselines’ cumulative regret in both discrete and con-
tinuous control environments. We conduct ablation studies comparing the impact of the radius,
expert suboptimality, number of offline trajectories, and embedding functions. We refer to the ap-
pendix for details on the ablations (A.T)), environments (A.2)), embeddings and descriptions of
the algorithm implementations (A.4).

Discrete and continuous environments. We provide a separate implementation of BRIDGE
and PbRL for both types of environments, detailed descriptions are in Appendix We eval-
vate BRIDGE against offline BC and online PbRL baselines in two discrete (StarMDP and
Gridworld) and continuous control (Reacher and Ant) environments. For each algorithm,
we measure regret as the difference in expected reward between the currently selected “best” policy
and the expert policy. As shown in Figure[2] BRIDGE achieves lower cumulative regret than both
baselines across all environments. Figure [3|shows that BRIDGE refines its policy search space II;
faster than the PbRL baseline.
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Figure 2: Cumulative regret versus baselines across four environments. Our method, BRIDGE,
achieves lower regret than the offline BC (Foster et al.| [2024)) and online PbRL (Saha et al., 2023)
baselines in both discrete tasks (a & b) and continuous control tasks (¢ & d). Dotted lines show BC
(green) and expert (red) regret. Mean and 95% CI over 20 seeds.
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Figure 3: Policy set size refinement for discrete (St arMDP, left) and continuous (Reacher, right)
environments. Our BRIDGE rapidly prunes the policy search space compared to the online PbRL
baseline, which explores more broadly. Mean and 95% CI over 20 seeds.

Ablations. We performed several ablations, with full details found in Appendix Our find-
ings show performance is sensitive to the confidence set radius: A large radius is less effective as
the search space is poorly constrained, while a radius that is too small can break theoretical guar-
antees by excluding the optimal policy 7* (Lemma [4.3). The quantity and quality of offline data
also directly impact performance, as more high-quality trajectories shrink the confidence set and
improve performance, while less-optimal data leads to less shrinkage. Finally, the choice of feature
embedding ¢ is critical. Embeddings that are better aligned with the ground-truth reward signal
significantly improve performance for both our method and the baseline.

6 CONCLUSION

We introduce BRIDGE, an algorithm that addresses the real-world challenges of learning without
specifiable reward functions and risky exploration by fine-tuning imitation policies with online pref-
erence feedback. We provide the first theoretical regret bound for this hybrid paradigm, proving that
an offline-built confidence set shrinks the online search space to provably reduce regret. Our ex-
periments in discrete and continuous control tasks validate this theory, showing BRIDGE achieves
lower regret than both offline-only and online-only baselines. Our work opens new directions for
developing interactive learning systems that can safely and efficiently improve from human input
without explicit reward signals.
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A EXPERIMENTS

We compare our algorithm with the log-loss behavioral cloning method of [Foster et al.[(2024)) and
the preference-based online learning algorithm of [Saha et al.| (2023). We could not find publicly
available implementations for either of the two, so we made adaptions to achieve a computable im-
plementation. Our separate implementations for discrete and continuous environments are described

in Appendix [A.4.T|and [A.4.2]respectively.

All discrete experiments were run on an M1 Max CPU with 32GB of RAM, with a wall-clock
time of roughly 3 seconds per iteration of the online loop for BRIDGE. The main computational
bottleneck in the discrete implementation is the simulation of trajectories for approximating the ex-
pectation within ¢(7), so runtime does not vary significantly between the different environments,
if normalized for episode length. Throughout, we use deterministic, tabular policies, i.e., they are
represented by a matrix of size S x A, where each row is a one-hot vector defining the deterministic
action taken in that state. The figures shown display results averaged over 30 seeds, with thick lines
representing the average, and shaded areas the results contained within one standard deviation to
either side of the average. The continuous control experiments were run on an HPC cluster on a
variety of nodes with both AMD and Intel server CPUs of mixed generations (32- to 256-core), on
20 parallel seeds each using a separate core, and using less than 2GB of RAM per core. On these
more complex environments, simulating rollouts and filtering the online confidence set at each itera-
tion is considerably more expensive, and observed wall-clock experiment runtime for 200 iterations
reached up to 8 hours (much faster, at only small performance loss, if forgoing online confidence set
filtering). Runtime strongly varies between environments, as e.g. a higher dimensional state space
and more complex transition dynamics increase memory and computation requirements.

Our main regret and search space size figures contain two types of plots. The first (cf. Figure [2)
displays the (sub)optimality of the current best policy chosen by each online algorithm at each
iteration. At the end of an iteration, this policy is chosen as the one from the offline confidence set
T19"™%° which maximizes the learned score function s” () = E.pz [(6(7), w;"*)]. Its expected
reward is simulated and compared to the optimal policy’s (red dotted line) to calculate the regret.
The green dotted line is the expected reward of the Behavioral Cloning policy estimated using Foster,
et al| (2024). The second plot (cf. Figure [3) illustrates the speed at which the algorithms pare down
the size of the policy confidence set II; — once the set contains only a single element, we consider
the algorithm converged, as that element is the algorithm’s estimate of the optimal policy 7*.

A.1 ABLATIONS

Impact of radius on BRIDGE performance. On the Reacher continuous control environment
with 20 offline trajectories, we vary the radius BRIDGE uses to filter the candidates. Figure[d]shows
that higher radii lead to less filtering, and performance that approaches the online PbRL baseline’s.
Reducing the radius improves performance up to a point — if reduced by too much, the expert may
no longer be contained in the filtered I1°M" and thus the search space II;, leading to worsening
regret.

Impact of offline data amount and suboptimality on confidence set size. This ablation validates
our central theoretical contributions: increasing the amount and quality of offline data constrains
the policy search space, which in turn improves online regret and enables more sample-efficient
preference learning. We conduct the ablation on the Gridwor1d environment. We vary the amount
of offline expert trajectories in D from Nofine = 10 to 1000. Additionally, we vary the quality
of the data using a noise parameter ranging from 0% to 20% that represents the probability that an
expert action in the dataset is corrupted to a random action. Results shown are averaged over 100
random seeds.

Table [I] shows the percentage of policies remaining in the confidence set after Hellinger distance
filtering, such that 100% indicates no constraint and no filtering, and lower values show tighter
constraints and stronger filtering. We observe that on clean data, a 100-fold increase in training
data leads to a 12.4x reduction in search space size (99.9% — 8.0%), roughly a O(1/, /Mo gine)
scaling. Our experiment shows that BRIDGE’s filtering still works under noisy data, with filtering
effectiveness weakening as noise increases.
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Figure 4: BRIDGE performance for different values of the radius used to filter candidate policies
and create the offline confidence set. Higher radii lead to less filtering and performance that ap-
proaches the online PbRL baseline’s, while a radius too small excludes (near-)optimal candidates,
leading to unavoidable regret.

] Confidence Set Size (%)
Toffline | (g, Noise 10% Noise 20% Noise

10 99.9+0.3 99.9+0.3 100.0£0.0
20 92.4+8.7 96.2+6.4 99.0+1.8
40 58.5+16.3  80.4+14.3 95.3+5.8
80 28.9+17.1  66.3+16.3 92.0+7.4
1000 8.0+4.8 65.6+10.0 95.4+3.3

Table 1: Empirical validation of confidence set scaling with offline data size and demonstration
noise. Results averaged over 100 statistical runs.

Impact of offline dataset size on BRIDGE performance. We run an ablation comparing the im-
pact of the amount of offline data D% | given on BRIDGE’s performance. The experiment is again
carried out on the Reacher continuous control environment. If given more offline trajectories, the
quality of the BC policy 75€ and thus also BRIDGE’s candidate set of policies IT°™" improves.
We observe that BRIDGE quickly converges to best policy in its candidate set, so more offline data,
as expected, leads to a lower regret.

BRIDGE (N=10)
—— BRIDGE (N=15)
—— BRIDGE (N=20)
—— BRIDGE (N=25)
—— BRIDGE (N=30)

200

100

Cumulative regret

50

0 25 50 75 100 125 150 175 200
Iteration

Figure 5: BRIDGE performance for different amounts of offline demonstration trajectories given.
As the number of offline trajectories increases, BRIDGE’s regret is reduced.

Impact of choice of embedding » on BRIDGE performance. The choice of embedding has
an outsized impact on both PbRL’’s and BRIDGE’s performance. We illustrate this again on the
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Reacher continuous control environment. We show three embeddings: one that approximates the
true reward signal in this environment, and the environment-agnostic average state-action and last
state embeddings. See Appendix for a detailed description of all embeddings used. Figure [6]
illustrates how embeddings that more closely approximate the reward signal improve preference-
learning performance. The average reward-emulating embedding massively simplifies the learning
problem by making it easy to distinguish good from bad policies — the only downside being that
it has to be handcrafted for this specific environment, which is harder the less one knows about
the nature of the reward signal (but is trivial in a well-specified sim like MuJoCo). The alternative
are the two state-agnostic embeddings, which show slower and worse convergence, with the richer
average state-action embedding showing slightly better convergence of BRIDGE. This environ-
ment’s rewards contain components that are non-linear in the observations, e.g., the total magnitude
of acceleration ||a;||3, to punish harsh movements. These two embeddings cannot represent those
components. We cannot expect them to fully converge purely from preference signals: their search
space may contain several potentially optimal policies whose trajectories differ only in those non-
linear components and who thus cannot be distinguished using those embeddings and our linear
model.

120 — BRIDGE — BRIDGE

—— Online PbRL —— Online PbRL
200 200

150
—— BRIDGE

—— Online PbRL 2 100 100

Cumulative regret
a
3
Cumulative regret
Cumulative regret

@
3

50

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Iteration Iteration Iteration

(a) average reward-emulating (b) average state-action (c) final state

Figure 6: Ablation showing BRIDGE’s performance using three different embeddings in continu-
ous environments. Embeddings that are closer to the true reward signal predictably perform better.

A.2 ENVIRONMENTS

Figure 7: Star MDP. Transition probabilities are 0.7 for all solid arrows, otherwise the action takes
the agent randomly to one of the other states.

StarMDP (custom). We illustrate the transition dynamics underlying the StarMDP in Figure
This environment features 5 states and 4 actions ag, a1, a2, as that correspond to right, left, up
and down respectively. Actions have a probability of 0.7 of success, with an agent being moved to a
different, random state with a probability of 0.3. Taking an “impossible” action such as going left
in state s4 will result in not moving with probability 1. Episodes have length H = 8 and start from
so. The offline expert’s dataset consists of 2 trajectories.
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20

10

Figure 8: Gridworld environment. Rewards at every state are indicated if non-zero. Transition prob-
abilities are 0.9. Thick lines indicate an obstacle, through which state transitions have probability
Zero.

Gridworld (custom). We illustrate the gridworld environment in Figure[8] The environment con-
sists of a 4 x 4 grid with states associated with different rewards, including a negative-reward region
in the top-right corner, a high-reward but unreachable state, and a moderate-reward goal state at the
bottom right corner. Each episode has length H = 10 and starts in the top-left corner. Each of the
four actions (up, left, down, right) has a success probability of 0.8, whereas with proba-
bility 0.2 a randomly chosen different action is executed. Action stay remains in the current state
with probability 1. Transitions beyond the grid limits or through obstacles have probability zero,
with the remainder of the probability mass for each action being distributed among other directions
equally. The offline dataset consists of 10 expert trajectories.

Reacher (MuJoCo, v5). This environment is part of the MuJoCo continuous control suite, which
we use via Gymnasium (Towers et al., 2024). The agent controls a two-jointed robot arm on a 2D
plane and needs to move its tip to a location that is sampled at random at the start of each episode.
Rewards are a weighted combination of the distance between tip of the arm and the target, and a
penalty term given as the euclidian norm of the action. The environment features a 10-dimensional
observation space and 2-dimensional action space (torque at each joint). We train our own expert on
this environment, using a Stable-Baselines 3 PPO agent with training hyperparameters taken from
RL Baselines3 Zoo’s (Raffin, [2020) reference implementations. We use it to generate an offline
dataset of n = 20 trajectories, each of length H = 50 (the default).

Ant (MuJoCo, v5). This is the second of our two continuous control environments, again accessed
via Gymnasium. It is more complex as a control task than Reacher, but contains less stochastic
elements. The agent is a 3D quadruped robot with four legs, that each feature two controllable
joints. The aim is to move across a plane, with a slightly randomized initial location and orientation.
Rewards are given for achieving a maximal distance in direction of the x-axis, with penalties for large
action amplitudes and a bonus for survival (not flipping over). Our goal in selecting this environment
is that the survival aspect allows behavioral cloning to quickly achieve a close-to-optimal policy,
but to have the remaining nonzero probability of sudden catastrophic failure require many more
offline trajectories to fully converge. The action space has 8 dimensions. The 105-dimensional
observation space is much bigger than in ‘Ant‘. RL Baselines3 Zoo provides pre-trained experts for
many MuJoCo environments, but these are based on —v3 versions of the environments, which in
Ant’s case features a slightly different action space than our —v5 version, thus making the agent
incompatible. Just like in the Reacher environment, we used their training hyperparameters to
train our own expert to convergence with TD3. The expert is used to generate an offline dataset of
n = 30 trajectories, each of length 100 (truncating from the default 1000).

A.3 EMBEDDINGS
The choice of embedding function ¢ has implications on computational complexity and learning

speed. Concretely, both a small dimension d and upper bound B for the norm of embedded trajecto-
ries are desirable. We present embeddings for both discrete (tabular) and continuous environments.
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SeePacchiano et al.|(2020) and [Parker-Holder et al.|(2020a)) for more possible embedding functions
and analyses of their performance in different RL tasks.

Our experiments use the true reward signal to model the preferences. A general observation we make
is that confirming intuition, the more closely an embedding approximates the true reward, the easier
the learning problem is and the faster preference learning (both BRIDGE and the PbRL baseline)
converges. If one has information about the nature of the true preferences (in our case, rewards),
it seems helpful to incorporate those by crafting environment-specific embeddings, which we have
done in the continuous case.

Discrete environments. We considered four options, defined on the space of trajectories.

Table 2: Discrete embedding definitions and properties

Name Definition ¢(7) d B
identity_long  (so,ao0,---,8m,ag) H(S|+]|A]) V2H
identity_short >, (st ar) |S| + |A]| V2H
state_counts e (se) |S] H
final_state SH |S] 1

In the experiments shown we use two embeddings that strike a good balance between dimension,
norm bound, and expressiveness. The StarMDP experiments use the identity_short embed-
ding. The Gridworld experiments use the state_counts embedding. States and actions are
represented as one-hot vectors.

Continuous environments. We use both environment-agnostic, and environment-specific embed-
dings, as shown in Table [3] Our main experiments for both Reacher and Ant (Section [5) use
the average_state—action embedding, which is similar to the discrete identity_short
embedding. We show the impact of using the env-agnostic final_state and env-specific
reacher_reward embeddings in an ablation in Appendix [A.T]

Table 3: Continuous embedding definitions and properties

Name Definition ¢(7) d B
average_state-action % > n<m(Shsan) S|+ Al V/IS]+ |A]
final_state SH |S]| VS|
reacher_reward + ZhSH(Hdist-to-targeth||27 llan|?) 2 2v/2

A.4 PRACTICAL IMPLEMENTATIONS OF BRIDGE

We provide two different implementations of BRIDGE, one for tabular, and the other for continuous
environmentsE] The discrete implementation aims to implement BRIDGE as close to the theoret-
ical description as possible, while the continuous one implements its main ideas, but has to take
more liberties in details to stay computable. Appendix shows the discrete implementation,
Appendix [A.4.2] the continuous one, and Appendix [A.4.3|presents a computationally efficient way
to calculate the Hellinger distance in the discrete case, which we use in our discrete implementation.

A.4.1 DISCRETE IMPLEMENTATION

Offline learning For both our testing environments StarMDP and Gridworld, we obtain the
(tabular) optimal policy 77* by solving a linear program using cvxopt. We sample trajectories from
this policy to create a dataset of offline trajectories DX . The learned transition models are trained on
the offline trajectory dataset. The model for St arMDP is a Maximum Likelihood Estimator (MLE)
based on the state visitation counts, while Gridworld is a 2-layer MLP with a hidden dimension

3Placeholder footnote during review period: will hold link to github upon acceptance of the paper.

17



Under review as a conference paper at ICLR 2026

of 32 and ReLu activations trained to predict next states with a cross-entropy loss. We estimate the
optimal policy on the offline dataset with log-loss Behavioral Cloning (LogLossBC in|Foster et al.
(2024)) using Adam, resulting in 7.

To obtain II$™0¢, we use rejection sampling, although the search space of policies depends on
the MDP. In StarMDP, we construct all |TII] = 1024 deterministic, stationary policies and iterate
through each of them, calculating its Hellinger distance to 7 and adding it to H(l’f_ﬂi(‘;e if the distance
is less than R. In larger MDPs this is infeasible as |II| quickly grows. In Gridworld, we sam-
ple 500,000 random policies, and build II$™0¢ by iterating through that sample. This sample is
large enough to contain close-to-optimal policies with near certainty while staying computationally
feasible to exhaustively check. Larger MDPs may require larger samples.

The purely online baseline PbRL in principle searches the space of all (deterministic, stationary)
policies II. This is feasible in StarMDP, but in Gridworld, we have to make a pragmatic adap-
tion. We define PbRL’s search space as I1$™ (which is on the order of < 50 policies), augmented
by random policies to reach a set of size 1000.

Online, preference-based learning In the online loop, to estimate ¢(m) = E,p,. [¢(7)] for

any m, we sample 100 trajectories 7 and average the returned embeddings. To start the online
proj

loop, we initialize w(, ~ as a vector of random normal values with mean 0 and variance 1. In
subsequent iterations ¢, w/E¥ is initialized as a normalized vector of ones (this does improve

convergence compared to random initialization) and trained on all online trajectories observed so far
using a regularized binary cross-entropy loss (as in|Saha et al.[(2023]), Section 3.1) and Adam for 10
episodes. After preferences have been collected, we update the learned transition model, obtaining

Pt—i—l by retraining from scratch the same models and losses as described in the offline part on all
online trajectories observed so far. At the end of each iteration, we find the policy with the highest
predicted score {¢(7), wl"?’) and calculate its average reward as well as the true optimal policy 7*’s
over 1000 sampled trajectories under the true transitions and compare the two in our suboptimality

plots.

A.4.2 CONTINUOUS IMPLEMENTATION

Offline learning. For both environments Reacher and Ant, we train agents using the hyperpa-
rameters from RL Baselines3 Zoo. We sample trajectories from this policy to create a dataset of
offline trajectories DZ. Unlike in the discrete implementation, for simplicity, we do not implement
a learned transition model (implementation would work exactly the same as in the discrete case).
We again obtain an estimate 7€ of the optimal policy on the offline dataset with log-loss Behav-
ioral Cloning using Adam (LogLossBC in|Foster et al.|(2024)). Policies are modeled as Gaussian
policies with a 2-layer MLP of 64 (Reacher) or 256 (Ant) neurons per layer.

As the size of the true policy space is infinite and the rejection sampling from random policies
(our approach in discrete MDPs) is computationally infeasible, we obtain the offline confidence set
H(l’f_ﬂige constructively. An alternative approach would be to discretise the state- and action space to
land back at a discrete setting, but we show here how to adapt BRIDGE to the fully continuous
setting.

We first construct a proxy II to the true policy space II. The learning problem for BRIDGE and
PbRL is fundamentally to learn to distinguish between “good” and “bad” policies, in our case in
terms of expected reward. Policies with zero or near-zero expected reward are easily distinguishable
from the others by both algorithms and regardless of embedding. They also form the overwhelm-
ing majority of all policies in the true II or a random sample of it. Including them thus simply
increases computation time without meaningfully impacting both algorithms’ dynamics. Our goal
is to construct a proxy for II that is computationally feasible to search and contains policies ranging
in performance from near-zero to near-optimal or even optimal in roughly even proportions, skewed
toward including more worse policies, but not to the extremely lopsided degree of the true 1I. Our
solution is to construct a union of two sets:

IT := {xBC, 7BC 4 small noise} U {7B€ + large noise}.

The first set contains policies that are close to the BC policy in terms of both reward and distance
in trajectory distribution space, and is expected to also contain near-optimal or optimal policies that
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improve on 7B€. We obtain it by adding a small amount of Gaussian noise to the BC policy’s

parameters. The second set is meant to represent the rest of the policy space that achieves rewards
ranging from zero to decent, but not near-optimal. It is constructed similar to the first, but with
much higher levels of noise. By tuning the noise level, this approach results in policies that cover
the remaining spectrum of performance (decent to near-zero) and distance to 75€ (in trajectory
distribution space).

We then define BRIDGE’s filtered offline confidence set

[refftine . — {’7‘( eI | [|p(n) — ¢(xB)|2 < radius} ,
using the L2, (rather than Hellinger) distance in trajectory distribution space for computability.

Online, preference-based learning. We estimate ¢(7) = E.p,. [¢(7)] by sampling 200 trajec-
tories 7 and averaging the returned embeddings. For massively increased performance, we do this
only once at the start of the online loop and then use cached versions. The order of operations in the
online loop is slightly different than as stated in theory and in the discrete case.

We first filter TT°fi"® to obtain the online confidence set,

e = {m € I | v € 1 : (g(m) — 6(n'), w1) + 1|6 (m) = $(m) |y, 2 0}

As we assume a known transition model, there are no bonus terms. The exploration scaling factor
~ can be chosen to increase (smaller ) or reduce (larger ) the speed at which the confidence set is
pruned.

Then, we sample a pair of policies from the set, (7!, 72) € II;. There are several ways to implement
sampling that follow the spirit of the theoretical algorithm. We have tested three:
o 7t = arg max(¢(n), w;) and 72 = random, picking a pair of the current estimated optimal
policy and a random other,

o (r!,7?) = argmax(p(m) — d(7?), wi) + Bllo(rt) — ¢(7"2)||\7;1, spiritually similar
to UCB, which picks the pair maximizing a 3-weighted combination of the difference in
estimated win probabilities and the uncertainty of that estimate,

* and perhaps closest to the theoretical algorithm, picking a pair purely based on the the
uncertainty, (1, 72) = arg max||¢(ml) — c;S(7r2)||\—,:1.

Although they show similar performance, on our environments and embeddings, the first performed
slightly better and is the one we pick throughout.

As in theory, we then sample a trajectory from the pair, receive the oracle preference o, = (7} =
72) (in our case, the higher true trajectory reward), and store the tuple of embedding differences
A¢y = ¢(m!) — ¢(m?) and preference signal (A¢y, 0;) in the online preference buffer DP*. To
increase convergence speed, we repeat this Nyopons = 10 many times for the same policy pair each
1teration.

We then learn w, on the preference buffer DP® using MLE and continual training (rather than
starting from scratch every episode) of 100 epochs per iteration.

Finally, we update the data matrix V; = V;_; + (Ag;)®2

A.4.3 AN EFFICIENT CALCULATION OF THE (SQUARED) HELLINGER DISTANCE IN THE
DISCRETE CASE

Here, we demonstrate how under the assumptions of our model there is a computationally tractable
method of calculating the Hellinger distances we need that avoids (intractable) iteration over the
entire trajectory space.
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Reducing Hellinger distance to a recursive scheme. The Hellinger distance between two dis-

o 1o . . . .
tributions P%,, P, is a measure of distance over the space of trajectories. Its square is defined
as

1 2
H*(Pp, Pha) =1— Y 7 (T)Po(7)
trajectories T

=1 - BO(Pp, Pha).

where the term of the sum is called the Bhattacharyya coefficient. Calculating this sum is normally
intractable, as the space of trajectories is too large to exhaustively compute anything over. In our
case, there is a way to not just calculate this sum (and therefore the Hellinger distance), but do so
very efficiently, and we show it here.

In an abuse of notation, we use the fact that we assume stationary, deterministic policies, to write
m(s¢) to refer to the action 7 chooses with probability 1 at state s;. We first note that }P’f{; =

do(s0) TTLg " 72 (ae|s:) P12 (se41 ¢, ar), where do(-) is the initial state distribution.

Our ultimate goal is to efficiently calculate the Bhattacharyya coefficient. Let 7, =

(s0,a0,---,at_1,St) be a trajectory of length ¢ that ends in s;. Let us write out the square-root
term
VP T (7) P (1) do(s0) m (arlse) Pt (sj+1l8¢, at) - do(so) H 72 (ag|se) P2(sj41]s¢, at)
f 1 §=0...t—1
= do(so) H Yag|se)P(sjt1]se, ar)m2(ar]se) P2(sj4+1]¢, ar).
7=0...t—1

Since 7! and 7% are deterministic, we can simplify it. Whenever 7!(s) # 72(s) for any s in the
trajectory 74, either 7! (s) or 72(s) are zero, which reduces their product to 0 and thus zeroes out the
entire term. Thus,

Py () PEs (12) = do(so) H \/P (sjslse, ™ (50)) P2 (sjq1lse, m2(50))L{m" (51) = 7° (1)}
7=0..

We define X (s) as the sum of the square root of the product of P, P? for all partial trajectories 7
of length ¢ ending in state s, i.e.:

Xi(s) := Z Py (1) PTs (7).
T+ ending in s

Claim. There is a recursive relationship:

Xir1(st41) = Z Xi(s)V/ P (seqalse, ©(50)) P2 (54150, 2 (50)) L{m" (1) = 7% ()}
st€S

Proof. For t = 0, the trajectories of length 0 are just the initial states, so by definition, Xy (s) =
do(s). Note that we can write X as a 1D vector of length |S]|.

For the induction step, by definition:

t
Xit1(se41) = > do(so H \/ P (sj+1ls5, a5)Ppa (5541185, aj)

T¢41 ending in s 41

We can split the product inside the parentheses into Hj:@,...,tq(-“)

\/P’;;l (St118¢, a)PTs (Se41]5es ar), and  split  the sum X gioins,., =
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D6y Dmay 2250.a0.....501.ar_, DY first summing over history up to time:

t—1

Xera(sea1) = ) > doso) [T--- |- \/11”?1 (st+1lt, ae)PEa (54115t ar)

s¢,ae \ $0,a0,...,8¢ 1,041 j=0

First, note that the term in brackets is exactly the definition of X;(s;), so we can substitute it.
Second, we can again use the fact that policies are deterministic, and that 7! (s)7?(s) is non-zero
(= 1) if and only if the two policies agree on that state, and thus

\/P’}ll(st+1|st,at)IP’§22 (St41lst,ar) = \/P1(3t+1|5t,Wl(st))Pz(SHl\SnWQ(St))']l{Wl(St) =m2(s¢) = ar}-

Combining these two insights, we get exactly the claim. O

Using the claim, if we have X;(sy) forallt = 0,..., H and states sy € S, we can calculate the
Bhattacharyya coefficient:

Y Xubm =Y Y R )P )

SHES sg €S Ty ending in sy

> \/]P”fall ()P (Th)

trajectories 7 of length H

= BO(Ppy, Ph).

Efficiently computing 2. We can use the recursive scheme we just proved above to efficiently
compute X (sg) for all sy, and thus also the Bhattacharyya coefficient BC(...) and finally the
Hellinger distance H?(...). First, treat X; as a vector of length |S|, where the i — th entry is X;(s;).
Then, define a matrix M such that

M g = \/P1(5’|5,ﬂl(s))P2(s’\5,7T2(5))]l{7r1(s) = 7r2(5)}.

Then, we have X; = M - Xo, Xo = M - X; = M?- X, ..., Xg = M . X, and X is simply the
vector of probabilities of the initial state distribution dy. Putting this all together, we get

S|
1 2
Hz( 7{31, 22) =1- Z [MHdo]i.

i=0
This way, we avoid having to do any computations over the entire trajectory space. Computa-
tional cost is merely building the matrix M once at the beginning based on 7!, 72, P! and P?
(O(|S]?)), computing M* (O(log H) matrix multiplications of O(|S|!°%27) each), and calculat-
ing Xy = MY X, with one final matrix multiplication, for a total computational complexity of
O(log H|S|'°82 ) and memory complexity of O(|S|?) — tractable for moderate-sized MDPs.

Intuition in our case of P! = P2. Our BRIDGE algorithm computes H 2(IP’E1 , IP’::) with the

same underlying transition distribution P. In that case,

P (i )P (Tar) = do(s0) 1:[ \/13(8.7‘+1|5j’Wl(sj))ls(5j+1|8j7WQ(Sj))]l{Wl(St) =m2(s¢) = ar}

(=)

H—

= do(s0) P(sjtlsj, a0)L{m' (s:) = 7°(s¢) = a;}
=0

[ay

J
= P(7y)1{x" and 7% agree on 7y }.
If a trajectory passes only through states where 7! and 72’s actions agree, we can call it an agreement

trajectory. Then, the squared Hellinger distance has a direct interpretation using the total probability
mass of agreement trajectories:
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H*(P% ,P%) =1- BO(PY ,PY)
=1 \/PT (ra)P% (i)
TH
= 1 — Prob(agreement trajectories under P).

The complex interpretation of Hellinger distance thus becomes a simple question:

What is the probability that a trajectory evolves for H steps without ever hitting a
state where " and 7% diverge?

B SIMPLIFIED SETUP FOR UNDERSTANDING REGRET ANALYSIS

In this section, we propose an analysis of the regret under a simplified setting, where the underlying
dynamic P* is known. We aim to build understanding of how the construction of the confidence set
over the policies from the offline learning estimation helps to reduce the number of policies to draw
from in the online learning setting. By ignoring the added complexity of the transition estimation,
we can highlight which part of our methods applies to the policies. The goal is to prepare the reader
for the proof of our algorithm BRIDGE in Appendix

B.1 SETUP FOR KNOWN DYNAMICS
B.1.1 OFFLINE ESTIMATION WITH KNOWN DYNAMICS

Assume we get the offline data DX = {7i}ien)- The underlying object describing the trajectories
is a Finite MDP Reward Free setting as in the main paper. Assume that the set of possible policies
is stationary and deterministic. Then under the fact that the underlying dynamic is known, the
confidence set from Theorem [.2] reduces to the following, by direct application of Corollary [C.5}
i.e., setting the radius around the MLE estimate 7,1, g from Equation .

We formalize this into the following lemma:

Lemma B.1 (Offline Policy Confidence Set under Known Dynamics). Let 72€ be the log-loss BC
estimator defined in Equation (7).
The policy set

n

Ofine r o 6-|S|-log(|Al-0~")
7 ZZ{W:H( P P*)S\/
contains 7 with probability at least 1 — 6.

Proof. Note that by symmetry

* BC BC *
H( ;*7 7ITD*):]{( ;*7 ?*)

Then the result follows from Corollary [C.5] O

B.1.2 ONLINE LEARNING WITH KNOWN DYNAMICS

Here we adapt our algorithm BRIDGE to the setting with known dynamics. This means we adapt
the approach from|Saha et al.| (2023) under known dynamics to constrain the set of policies to choose
from to our confidence set described in the previous section.

First, since the transitions are known, we define for this section:

o"" (1) = ¢(m) = E;pr, [0(7)]
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Offline Estimation

Lemma [B.1; Offline Policy Confi-
dence Set

- Defines the set of policies TT9Mne
- Corollary [C.5] = Contains true
policy 7* with probability 1 — ¢

Online Estimation

h

e N
Lemma [B.2; Optimal Policy Con- ( -
tainment Algorithm 2; BRIDGE (Known
- Ellipsoid CI Lemma [D.1 Model)
- Change of norm Lemma [D.2] - Starts with offline confidence set
- Conditioned on Lemma [B.1 - Computes policy set II; at each
. round
- Ensures 7* € II, for all rounds ¢ - Selects maximally informative pol-
- Combines offline confidence with icy pairs
online estimation N
& J
Regret Analysis
Vs v ~ ~
Lemma B.4 Feature Difference Theorem [B.5; Regret Analysis
Bound - Final bound:
- Leverage Distributional Dist. ~ T38|
Lemma [E]] o - V log(1+ 7))
& J
s == N

Key Insight:

- Algorithm leverages offline data to reduce explo-
ration cost

- With sufficient offline data, regret becomes con-
stant

- Feature dimension d amplifies offline data value
- Bridges gap between offline imitation and online
preference learning

Figure 9: Proof Overview for BRIDGE Algorithm with Known Dynamics

. —=P* . .
We also define the expected data matrix V', under the true transition dynamics P* as follows (see
Section D] for an overview of results about data matrices):

*

V= Lo+ S (olr) - 6(ed) (6(eh) — o(r)) "
=1
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Then we define the set of policies to draw from as:
IM; := {77 € H?iﬂjgne ‘VTF’ € H?ﬂ"e :
(o(m) = o), wi™) + e - [|é(m) = S(a)| =) 2 0}

where 7, := 2k3;(6) + oq,7(6) and g, 7(6) is defined as in Lemma|[D.2]
Lemma B.2 (Optimal Policy Containment). Conditioned on E,~ N EVP* N Eypine where:
T

 Ey- is the event defined in Lemmal|D.]]
* Ezp- is the event defined in LemmalDiZ‘
T

o Eypine == {1* € Hofﬂme
then
eIl Vte|[T)

Proof. This follows directly from Lemma 2 in|Saha et al.|(2023). We adapt the probability parameter
¢ to account for the additional condition that 7* € H(l)fl(‘;“e, which holds with probability at least 1 —9
according to Lemma|C.13 O

We now present the adapted version of BRIDGE for the known transition model:

Algorithm 2 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration (Known
Model)

Input: Offline dataset DX, time horizon T', true dynamics P*
Compute confidence set Hoﬂh"e using Lemma

Initialize V| ¢ kAL, > Initialize data matrix
fort=1,...,7Tdo

Compute wp % via constrained MLE (Equation (4 .)
Define policy set IT, based on [T and w?™

(n},7?)  arg maxy - em{||¢< N = 6 ey}
2
8: Sample trajectories Tt ~ P} Pﬁ, 72 ~ P, and obtain preference o, = I(7} = 77)

9:  Update matrix: V., ¢V, + (¢(n}) — ¢(n?))(é(x}) — $(x}))T
10: end for ]
11: return Best policy from II7 using final weight estimate w’.”

N AR M

B.2 REGRET ANALYSIS: BRIDGE (KNOWN MODEL)

We now present a regret analysis of the BRIDGE algorithm under known transition. We start by
stating the following lemma:

Lemma B.3. The regret of BRIDGE under known dynamic is upper bounded as follow:

Ry <4-(Br(0) + ar.a(8) - Y llé(m}) — o(xf)l| grev, -
te[T)

Proof. For ease of notation we define §*1¢ := ¢(7*) — ¢(n!). First we bound the instantenous
regret

2r; = (0% g, w*) + (6%2p, w*)
< (076, W) + (6770, i) + [lw” = Wi e <||5*’1¢||(Vf*)1 + ||5*’2¢||<Vf*)1>

~—

< (61, W$r°j> + (5*’2¢,W§mj> + (26B:(0) 4 ar,a(9)) - <||5*’1¢||(Vf*)_1 + ||5*’2¢||(Vf*)_1>
Lemma[D2]
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Then notice that choosing 7}, 72 as arg max together with the fact that 7* € TI; Lemma yield

21 < (5716, Wi 4+ (6726, wE™) + (268.(6) + a7,a(8)) - ("51’2¢'<vf*>—1)

Next using the fact that 7}, 77, 7* € II; we have the following constraints

(076, W) + 167 6 ey 20 i€ {1,2}
& (07, wi) < %||5*’L¢||(Vf*)—1 re{l2}
yielding
2r, < (268,(0) + az.a(0))[|6"2¢ll e+, < 4(2681(8) + a1.a(9) - 842] r-
Hence

Rr = Z ry <2 Br(6) + ar,qa(d Z |6 2¢H(*P*

te[T] te[T]

The remaining step in our analysis is to bound the term:

Z H(b ﬂ-t H(fp* -1 = Z

te[T) te[T]

V-1

A simple approach would be to use Assumption [T} which states that the feature map ¢ is bounded
in /3-norm by B. However, our offline confidence set construction in Lemmaprovides a more
powerful result: policies in our set have distributions that are close not only in Hellinger distance
but also in the resulting feature expectations.

This is precisely why we formulated our confidence set constraint using the square root of the
squared Hellinger distance - it yields a bound on the Lo norm of distribution differences. Through
Lemma|[F 1] we can translate bounds on Hellinger distance into bounds on the difference of feature
expectations in the /5-norm.

We formalize this connection in the following lemma:

Lemma B.4 (Feature Difference Bound Under Offline Constraints). For policies m}, w2 € TI"n

selected by our algorithm at each round t € [T, the sum of feature differences measured in the data
matrix norm is bounded as:

192B2T'|S|log(|A| - 6—1)
Z‘l(bﬂt )”(V )1<\/2d'10g<1+ n-d-\

te[T)

and |A| are the state and action

space sizes, and n is the number of offline samples.

Proof. First note

2
> l(a) =Sl ey < [T+ D 0(m) = oD e

te[T) te[T]

then notice the inequality

u<2log(l+u) u>1 = Z 1620 ) <2 Z log(1 + [|672 ]2 Rea )
te[T) te(T]
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Using the definition of Vf , we have

Vi = A Lixa+ 3 (6(x)) — (m2) (()) — $(n2)"

1€[t]
— V! +(6(m)) — $(72)) (d(m)) — p(x2))T
o *)1/2<1+ (VEY 2 () — o(m2)) (d(h) — ()T (VT *>1/2) vy
Using properties of determinant:
det(V(yy) = det(V, ) - det(I+ (V) "V/2((x}) — (x2))(@(x)) — $(x2)T (V] )~1/2)
= det(V, ) - (1+]l6(r}) = ()2 )

_ det(Vo) . H (1 + ||¢(7Ti) - (Z)(Wf)nivf*)fl)

s€E[t]
=
det(Vﬁl) _ . -
log |:det(V0):| = Z log(1 + [|¢(mg) — ¢(WS)H(V§”)—1)

sSEt]

‘We have for the determinant:

d
—P* 1 —P*
det(Viy) = J[ A < (d .Tr{vt+1})
i€[d]

Using linearity of trace:

Te{Viny} = T 4+ 3 Tr{(6(nh) — o(x2)((rh) — 6(x2)7}

s€E(t]

—d- A+ Y o) — o)

s€E[t]

Applying the corrected bound from Lemma [F.I}

lo(rt) — d(xD) 3 < (2V2- B -\ H2(P.  PTL))?
24 - |S] - log(|A]-671)
n
~ 192B2|S|log(| Al - 671)
n

< 8B?.

Using this tighter bound in our trace calculation:
192B2|S|log(|A| - 671)
' n
192B2t|S|log(|.A| - 671)
n-d- A )

Te{Vi, ) <d- A+t

:d)\<1—|-

Hence:

__p~ —p~
det(vt+1) Tr{vf+1}

1 —— < d-1 _

©8 [ det(Vp) | = 7% d

2 -1
o <A (1+192B £|S|log(|A| - 6 )>>

n-d-A\
192B%t|S|log(|A] - (5‘1)>

=d-log(A\) +d-1 1
og(A) + og(-i— A,
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Since det(Vp) = A9, the first logarithmic term cancels out:

det(VtH) _ 192B2t|S|log(|.A| - 671)
Og[det( Vo) =d-log |1+ A\

Therefore:

7P*
det(Vpyq)
pe ) S 20 log [ =i
> lotat) — oy, < 2-log | SGL TS
te[T)

§2d-1og(1+

192B2T|S|log(]A| - 671)
n-d-A

Taking the square root:

192B2T|S| log(|A| - 6-1)
Z] l6(n) = Sl e, < \/2d-1og (1 + —d

te(T

O

Theorem B.5 (Regret Analysis for BRIDGE under Known Model). Ler§ < 1/e and \ > B . Then,
with probability at least 1 — 0, the expected regret of Algorithm[2]is bounded by:

Ry < (2667(0) + ozdj(é))\/gd log (1 L 192B2T|S|log(|A| - 5_1)>

n-d-\

In asymptotic notation, this becomes:

Rp=0 <(W\/E + WB) dlog(TB/r6)4 log (1 + :"D)

where the probability parameter § accounts for the events

E,- —  LemmalD]
Efp* —  LemmalD2
Eoﬂime = {71' € HOfﬂme —  LemmalB1l

Remark B.6. This result demonstrates a significant improvement over [Saha et al.| (2023))’s bound

of O ( (W\/nB + WB) dlog(TB/né)\/T). The key advantage lies in the term |/log(1 + ZIS),
which approaches zero as n — oo, potentially yielding constant regret.

B.3 PRACTICAL REGRET ANALYSIS WITH FIXED OFFLINE DATA (KNOWN MODEL)

For a fixed offline dataset of size n, our regret bound scales with horizon T as:

RTO(F.% (chﬂgl))

where I' = (W+vkB + W B)dlog(T B/k¢). This bound reveals three distinct regimes:

1. Small T Regime (T'|S| < n - d): Using log(1 + x) ~ z for small x:

oo (eI o e )
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2. Transition Regime (T'|S| ~ n - d):
Rr=0O) =0 ((W\//@B + WB)dlog(TB/mS))
3. Large T Regime (T|S| > n - d):

Rr=0 (F . \/log(T))
is|

These regimes highlight two key insights: (1) with sufficient offline data (n = Q(=3)), regret dra-
matically improves from O(/log(T’)) to O(1) in the dependence on T'; and (2) feature dimension d

amplifies the value of offline data, allowing the same regret reduction with v/d times less data. This
explains why high-dimensional problems may benefit more significantly from offline data.

As n increases, regret transitions from logarithmic (O(log(T))) to sublinear (O(1/T'/n)) and even-

tually approaches O(1) when n > %. In the limiting case where n — oo, exploration becomes

unnecessary, and regret is bounded only by statistical error in the offline estimation.

C OFFLINE ESTIMATION

C.1 MAXIMUM LIKELIHOOD FOR DENSITY ESTIMATION

In this section, we present Maximum Likelihood Estimation (MLE) for density estimation that forms
the foundation of our concentration results. While these results are presented more extensively in
Foster et al.| (2024), we include them here for completeness and readability.

The analysis of MLE relies on standard concentration techniques following the well-established
work of [van de Geer| (2000) and Zhang| (2006), enhanced by new Freedman-type concentration
inequalities developed in [Foster et al.|(2024)) (Appendix B).

The key proof strategy connects MLE analysis to information-theoretic measures via Rényi
divergence of order 1/2. Specifically, the approach bounds expressions of the form —n -
log(E; g [e2 lo8(9(2)/97(2))]), which equals 5 D1 /2(gllg*). This term is bounded using Freedman-
type inequalities for adapted sequences, which provide high-probability bounds of the form

ZtT:,1 —log(E;_1[e=*Xt]) < Zthll X; + log(6~1). When combined with union bounds over &-
nets, this yields tight concentration results for the entire function class. The approach also leverages
connections to Hellinger distance through the identity H?(g, g*) = 1— [ \/g(2)g*(z)dz, providing
geometrically interpretable guarantees.
To handle infinite classes, we introduce a tailored notion of covering number for log-loss:
Definition C.1 (Log-Covering Number). For a class G C A(X), the class G’ C X is an e—cover if
for all g € G, there exists ¢’ € G’ such that Vo € X

log(g(x)/g'(z)) < €
The size of such cover is defined by Mg (G, €).

Consider the data ,, = {; };¢[,,) consisting of i.i.d copies of 2 ~ g* where g* € A(X). We have
aclass G C A(X) that may or may not contain g*. The density MLE estimator is defined as
G = 1 i 5
g = argmax Z og(g(x:)) ©)
i€[n]
Lemma C.2 (Maximum Likelihood Estimator Bound). The maximum likelihood estimator in Equa-
tion () has that with probability at least 1 — §,

{ 610g(2N10g(G,€) /67 1)

n

H?(5,¢*) < inf 4 2 inf log(1 + D, 2(g*
(9:97) < inf + 6}+ inf og(1+ Dyz2(g"(|9))

In particular, if G is finite, the maximum likelihood estimator satisfies

2 inf log(1 + Dya(g*
- +2inf og(1 + Dy2(g"[l9))
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Note that the term inf 4cg log(1 + D,2(g*||g)) corresponds to misspecification error, and is zero if
g eq.

C.2 MLE OBJECTIVE OF DATASET OF INDEPENDENT TRAJECTORIES

Given a data set of reward free trajectories DX = {7i}ic(m) of n trajectories of length H where

{1} ~iia T~ P}i. The distribution IF’}Z is assumed to be continuous w.r.t to Lebesque measure.
It is characterized by the policy density 7 = {m;};c(z] € II and the stationary transition density
P = P where II, P characterize the policy and transition density spaces. The log-likelihood of the
set with for a policy 7 and a transition P reads:

LS tog [P(si) - mifatst) T[T Plsilsiroaoy)m(ablsd)]

ze [n] 1<j<H

The maximum likelihood objective over the density class {P%} <, pep for the dataset DH

H
L3 99 DY (UG ED 9D ol CELENTE RN IR
i€[n] =0

i€[n] je[H]

C.3 CONCENTRATION BOUNDS

In this section we provide concentration bounds for the MLE estimators of the policies and the
transition model, as well as for our notion of concentrability coefficient. The important takeaway
is that the control of the error, i.e., the decay of these concentration bounds depends only on values
known to the user, which will allow us to compute confidence policy sets based on these bounds.

C.3.1 POLICY ESTIMATION

Define the log-loss behavioral cloning estimator for dataset DX as described in Section as
C=argmax } " log(mi(aj]s,)) )
i€[n] he[H]

which is from Equation (6) equivalent to performing maximum density estimation over the density
class {Pp. }remr. Similar to Theorem|C.1| (Foster et al., [2024), define the following

Definition C.3 (Policy Covering Number). For a class IT C {7, : S — A(A)}, we say that
Il C {7 : § = A(A)} is an e—cover if for all 7 € II there exists 7’ € II’ such that

log (”h(‘”s)) <e Y(s,a,h) €S x Ax [H]

mh(als)

We denote the size of the smallest such cover as N (I1, €)

We state the following theorem from (Foster et al., 2024, Appendix C):

Theorem C.4 (Generalization bound for logloss-BC). The Logloss BC estimator (Equation (7))
satisfies with probability > 1 — ¢

- log (2N, (11, €/ H) 5~
HQ(]P’;iC,]P’;*)ginf{GOg( Noot (11, ¢/ H)? )—i—e}
€ n

in particular, if 11 is finite
6-log(2-|IT] - 671)
n

H*(Ph. PR <

Proof. See (Foster et al., 2024] Appendix C). O

Corollary C.5 (Deterministic Stationary Tabular Policies). If I = IIZ, i.e the set of deterministic
tabular policies, for the log-loss BC estimator Equation it holds that with probability at least
1-4,

BC * . . .61
n

29



Under review as a conference paper at ICLR 2026

Proof. We have |15 | = | A|!S. O

If we have stochastic rather than deterministic policies, we need to determine log(No(ILg,€)).
This can be accomplished using a discretisation argument, where we create a finite e-net that ap-
proximates the continuous space of stochastic policies within the desired error tolerance.

C.3.2 TRANSITION MODEL ESTIMATION

Here we can give a similar argument as for the policy log loss BC estimator. We define the following
estimator

P =g 305 (1oulP(s 5] ®

which is from Eq. [f] equivalent to performing maximum density estimation over the density class
{]P’TIL* } pep. Similarly, we define the following notion of covering

Definition C.6 (Stationary Transition Log Covering Number). For a class of stationary transition
probability functions P C {P : S x A — A(S)} we define that P’ C {P: S x A — A(S)} isan
e-cover if for all P € P there exists P’ € P’ such that

P(s']s,a)

log| =———>+% ] <e V(s,5)€S,ac A
g(P/(S/|$7a/) — ( Y ) I

We denote the smallest such cover by Myrqns (P, €)

Assumption 4 (Realisability of Transition). We assume the true transition density to be in the model

classi.e P* € P

We can now give a similar guarantee as for the log loss policy estimate but for the transition estimate

Theorem C.7 (Generalisation Bound for MLE Transition Estimator). The MLE transition estimator
of Eq[8|satisfies with probability at least 1 — §

610g(2./\/trans(na e/H)éil) + 6}

]?IP’7r T.) < inf
@5 ) <int { :

Proof. Given a valid e-cover of P from definition [C.6] we have

5}1+1|5h)ah)
I log| ———————— 2 | <e-H
o8 (P}T») Z (P’ Sh+1|8haah)> =

h=1

this means that we get a valid € - H cover for the trajectory density class. The bound follows as a
direct application of Lemma|[C.2] O

Lemma C.8 (Transition Covering Number: Stationary Tabular Stochastic Transitions). For a class
of stationary transition probability functions P C {P : § x A — A(S) where |S x A| is finite
(tabular MDP), the e-cover from Definition|C.6|satisfies:

1
108N (P1) < - A1+ (8] = 1)l (7 +1)

Proof. The proof follow a standard geometric discretization argument for finite class of function
(see Chapter 5 Wainwright| (2019)) . For a given € > 0 we construct a geometric grid:

Ge = {6,0- exp(€/2), 0 exp(e), exp(3e/2), ..., b exp(ke/2)}

where § > 0 is the minimum probability and & is chosen such that the grid represents a discretization
of the continuous interval [0, 1] i.e

Sexp(ke/2) = k> M
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Thus the grid size is at most:

|Gl < {2@(1/5)} +1

€

For each state action pairs (a, s) define P(s;|s,a) = p; fori € |S|. Note that for the first 1, . . .

1 there exist ¢; := P’(s;|s,a) € Ge that satisfies by construction

exp(—e/2) < % < exp(e/2)

For the last state i = |S|, we need to determine qs| close enough to p;s;.
Let define S, := 157! g, and S, := 2157 p, we have the constraint
ps|=1-25,
gs|=1-5—-¢
From the bound on the first 1 — |S| elements we have
Sqexp(—€/2) < 5, < Sqexp(e/2)
For the ratio of the last probability
Ps| _ 1= 5
as) 1-8

we have the following condition such that we have % > exp(—¢)

1 —exp(—e¢)
exp(€/2) — exp(—e)
Similarly for the upper bound we have the condition

exp(e) — 1
S, <
"= exp(e) — exp(—€/2)

q —=

Combining both constraints we have

3, < min exp(e) — 1 7 exp(e) — 1
exp(e) — exp(—€/2) " exp(e) — exp(—e/2)
By Taylor approximation this boils down to
2
S, < =
=3

Hence we select only the combination of points that satisfies

;Sngl—é

a|’5|7

It remains to count the number of point we have in our cover i.e the first |S — 1] that satisfies our

constrains
(number of grid points)!® ! < |G[I¥171 < ( Ploge(l/a)w + 1) .
Across all state action pair and taking the logarithm
10g(Nirans (P, €)) < |S|JA|(S — 1) log ([W] N 1)

choosing § = O(e) yield the result.

O

Corollary C.9 (Stochastic, stationary, tabular transition setting). For finite |S X A| (tabular setting)
and assuming the transition density class to be stochastic and stationary we have with probability

at least1 — ¢

« « 21A|I Hé~1
n

where for the theoretical optimal constant Cipeory ~ 6
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Proof. From our lemma on the covering number of transition functions, we have:

"
10g Nieans (P, £/ H) < |S||AI(S| — 1) log (6 N 1)

For large £, we can approximate:
€

H H
log ( + 1) ~ log ()
€ €

610g(2) + 6/S||A|(|S| — 1) log (Z) + 6log(6~1) . 6}

Substituting this into our bound:

e>0

H*(P P}.) < inf { ~

= inf

{610g(2) +6Dlog(H) — 6D log(e) + 6log(d71) N 5}
e>0

n
where D = |S||A|(|S| — 1) for brevity.

To find the optimal €, we differentiate with respect to € and set to zero:

d [6log(2) 4+ 6Dlog(H) — 6D1 log (61 D
d [6log(2) 4+ 6Dlog(H) — 6D log(e) + 6log( )Jr€ __ 5D
de n ne
g _ 6D 6[S[JA|(|S| - 1)
Opt_ n - n
Substituting this optimal value back:
« .+ 6log(2) +6Dlog(H) —6Dlog (52) + 6log(6~! D
H2 (P PE.) < 0g(2) + 6D log(H) og (%2) + 6log( )+(L
n n
_ 6log(2) + 6D log(H) — 6D log(6D) + 6D log(n) + 6log(6*) + 6D
n
_ 6log(2) +6log(6~") + 6D log (2£) +6D

n

For large state spaces where |S| — 1 ~ |S|, and defining D = |S|?|.A], this becomes:

6log(2) + 6log(6~1) + 6D log (Zg) +6D

H*(P% Pp.) < -

For large n and f), the dominant term is M, and we can combine the logarithmic terms to
get:
S |S|?| Al log(nH§ 1)
ey 7 =0 e
Note that the constant 6 appears in the full derivation. This completes the proof. O

C.3.3 CONCENTRABILITY COEFFICIENT UPPER BOUND

Definition C.10 (Concentrability Coefficient). We define the following quantity as the “concentra-
bility coefficient”:

BC _« dp: (s, a)
C(m°%, ") = sup sup 4
-t dn. (s, a)
te[H] (s;a)eSxA:d} " (s,0)>0 “P* ’
which measures the maximum ratio between the state-action distributions induced by policies 75¢

and 7* under the true dynamics P*.
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Assumption 5 (Minimum Visitation Probability). There exists a constant Yy, > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy:

. Tt
min dp (8,a) > Ymin
(s,a,t):d;*’t(s,a)>0

Lemma C.11 (Concentrability Coefficient Bound). Consider a policy estimator 75€ satisfying
BC *
H 2( ;* ’ g*) S R
Then, under Assumption[3| the concentration coefficient is bounded by:

2vR

Ymin

OB, ") <1+

Proof. We will proceed by upper bounding the numerator using the condition on the Hellinger
distance followed by lower bounding with concentration the denominator.
For the upper bound note that

BC,t *,t BC,t *,t
sup|dp. " —dpt | =2-TV(dp. ", dp.")

a,s

Recalling that the state-action distribution d’;;f (s,a) is the marginal distribution of the trajectory
distribution at time step ¢t. Explictly:

dpl(s,a) = / PL. (1) dr—t =: Phu(sy = s,a; = a)

where 7_; denotes all time steps in the trajectory except for time ¢, and P%. (7) is the probability of
trajectory 7 under policy 7 and dynamics P*.

Hence
TI'BC t Tt 7rBC T
TV (dp. ", dp") =2 -TV(Pp. (st = s,ar = a),Ph.(s¢ = s,a; = a))
<2.TV(PE. P
<24/ H2(PRS,PR.) < 2VR
together with

By assumption[I] we have a lower bound on the minimum state-action visitation probability:

. Tt
min  d5(5,0) > Yuin
(s,a,t):d;*”’(s,a)>0

Finally, we combine the upper bound on the numerator and the lower bound from assumption |1 to
getV(a,s,t) st dp.'(a,s) > 0:

B¢t Tt
C(WBC ™) =1+ SUPa,s, ¢t |dp. " (s,a) —dp." (s, a)|

inf, s+ d}r;*’t(s, a)
2VR
inf, s+ d;r;*’t(s, a)
2VR

Ymin

<1+

<1+

This completes the proof, giving us a deterministic bound on the concentration coefficient that de-
pends on the Hellinger distance between trajectory distributions and the minimum visitation proba-
bility of the optimal policy. O
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C.3.4 CONFIDENCE SET CONSTRUCTION

In this section we will derive a distributional confidence set on the trajectory space in the form of
a hellinger ball, accounting for the error of the MLE density estimates 72C and P. We start by
presenting the following in between result

Lemma C.12 (Technical Results). Assume finite state and action pair: S X A . The following

upper bound is true: ¥Yr € Il with m* being the true policy and P*, P being the true and estimated
transition models:

H*(P%,Ph.) < H-C(m,7*) - H*(PY, ,P.)

where
d5l(s,a
C(m,7*) = sup sup L= t( L)
te[H] (s,a)GSXA:d;i’t(s,a)>0 dP*7 (87 CL)

Proof. We derive the proof in three steps:

Step 1.
HAELPE) S 3 Byt | (Pl P Clsan) )|
te[H—1]
Step 2.
B ezt | B2 (PCs000 P Clsta) )| £ COnn) B |12 (P, P (o))
Step 3.

* o 1 > *
H*(PY, PR ) > T Eray~art {H2 (P('Stvat%P ('|st7at)>:|

Proof Step 1:
H-1

1 —/ 1 — po(so) H w(at|st)\/ﬁ(st+1|at,st)P*(stH\st,at)dT
T

t=0

H?(P%, Pp.)

S P 120" m(oulse) Plseralar s0) P (seralse o)
.

MO(SO)Hf:BI m(az|st) P*(st41]5t, at)

H-1 A
P(5t+1|5t7at)

=1- / P (T) - — 7
T P-(7) g P*(s441, St,at)
Next define for ease of notation :

P<3t+1|5t7at)
P*(s¢11,5¢,a1)

'Yt(styat) 1:/ \/P(st+1‘5t7at)P*(StJrhstaat)dS/ Z/ P*(S/‘Suat) 'Oét(s/,Suat)dS/

s/

at(5t+1,at>3t) =

Notice that 7, is a BC coefficient i.e

1 _’Vt(styat) = HQ(p('lstaat)yP*('|staat))
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Using notation above:

(]PDTr o) =1 T~1P’" [ H 0% 5f+175t7at):|

Using conditional expectation (law of iterated expectatlon) we change the distribution in the expec-
tation from P, to the so called state-action distribution d7. To show this argument we show it for
state action pair (ag, So, $1). The rest follows by using the same idea:

H-1 H-1
E-pr, { H at(5t+175taat):| = Esg,00 [Eslso,ao {040(817807610)] 'Ealule:H,lﬂsl [ H at(8t+1»st7at):|:|
t=0 t=1

=/ po(so) - 771(a0|50)/ P*(s1|s0,a0) - ao(s1, 50, a0)
50,0

S1

H-1
'EU.lUT[Q:H,l]lSl [ H at(5t+1, Staat):|
t=1

= / to(s0) - m1(aolso) - Yo(s0, ao) - {””}
S0,a0
Notice that
1o (so) - m1(aglso) = /p}f,*dr[le,l] =: d}&?(so, ap) Marginal over (s, ag)

Hence using a recursiv argument we have

H-1
HQ(]}MP,P}T;*) =1- ]ETNIP;* [ H at(st—i-l)Staat):l
t=0
H-1

=1—- H Ed;’: ['yt(st,at)]
t=0
Usinge the fact that

1=z <D (1 —2) Vaiel0,1]

and by the fact that -y, € [0, 1]Vt we have

H-1
H (]P)'n' us ) S Ed;f(l —'}/t(staat))
t=0
H-1
= Ed}i’: |:H2(P('|st7at)7p*('St7at))
t=0
Proof Step 2:
E(St,at)Nd;’:[HQ(P(JStaat) |5t7at Zd (P(-‘s’a),P*("S,Cl))

=3 A s ) B2 (P, 0), P (], )

— d;f (87 CL) d7r ,t H2 *
= g dp(s,a) - HA(P(|s,a), P*(]s,a))
By definition of the concentrability coefficient:

dml(s,
C(m,m*) = sup sup #
te[H] (s,a)ESXA:dEZ‘t(s,a)>O dP*7 (57 CL)
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Therefore:

dpl(s,a) -
L2 < C(m,m*) Wt Y(s,a) where d}0 >0
dP*7 (57 a’)

Proof Step 3:
Starting from our previous expression:
H—-1

HQ(P;; ’Pflg*) =1- H Ed;**,t[%(st’at)]
t=0

Let’s denote
zi =1 —yi(s5,a;) = H*(P(:|si, a;), P*(-|si, a;))
Using the fact that (1 — z) < e~ * for all x, we have:
H H
[T =) <exp (— Z%)
i=1 i=1

By the second-order Taylor expansion of the exponential function:
H H L[ 2
exp (—Z.’Ll> <1- le + 3 (Z%)
=1 =1 i=1
Since x; < 1 for all 7, we know that Elel x; < H, which gives us:
H 2 H
1 H
J () < i ya
i=1 '

Therefore:

For the bound H?> (IP’}?: PT) > & Zfil x; to hold, we need:
H H

(12’)2% > Ly,

=1 =1

This is satisfied when:

This condition is typically met for good estimators where Hellinger distances are small. For large
H, the bound approaches 2.

Under this condition, we can establish:
1 H—-1
H*(P% ,Pp.) > 7 2_E
t=0

H?(P(-|si,a0), P* (51, a0))]

(st,a,,)~d’;i"[
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Lemma C.13 (Policy Density Confidence Set). Assume the following events hold:
E, = {H2( }Bic, }Bi) <R1(51)}, such that P(Ey) > 1 — 01,
By = {HQ(IP’E*, }T;*) < R2(52)}, such that  P(E5) > 1 — 0o,

where 78€ and P are estimators of the policy and the transition dynamics, respectively.

Then, under Assumption[3| the policy set

cl5::{7r:\/m<\/ﬁl+\/ﬁz-<1+\/(1+2m>ﬂ>}

TYmin

is a confidence set of level 1 — 6 =1 — (61 + 92), Le.,

P(r* € ) > 1 — (6, 4 6,).

Proof. For ease of notation, let us define:

H2(PR, PR) = (i, 1) = (m2, Bo)|
with [ [ =1 2o (um))

We can then decompose by the triangle inequality:
I(x*, P) = (x®, P)|| < |(x*, P) = (x*, P*)|| + [|(x*, P*) — (w®C, P*)|| + || (w®C, P*) — (x°C, )|
From Lemmal[C.12] we have:

I(x®C, P*) = (xC, P)|| < \/O(xBC,7*) - H - ||(x*, P) — (x", P")|

From Assumption [3]and our concentrability coefficient bound, we have:

C(ﬂ'BC,ﬂ'*) <1+ 2VIEa

Tmin
From event E{, we have:
Iz, P*) = (", P*)| < VR:
From event E5, we have:
Iz, P) = (=", P*)|| < VR2

Then, assuming events E7 N F5 hold jointly, with probability at least 1 — (41 + d3), we have:

(7%, P) = (*, P)| < v/R1 + V/Rs - <1+ \/<1+ 2\/RT> H)

min

Hence, by construction, the set:

T1§Mire (17) .= {7‘( ell:

|(z, P) — (x®¢, P)|| < VR:1 + VRa - (1+\/<1+2\/R71> H)}

TYmin

contains 7* with probability at least 1 — (01 + da). O
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C.4 PERFORMANCE GUARANTEES

We apply our method of constructing confidence sets based on distributional guarantees for maxi-
mum likelihood density estimation to the tabular reinforcement learning setting with state space S
and action space A. We consider deterministic stationary tabular policies (Il = II5) and stochas-
tic stationary tabular transitions, though the method is versatile to other settings with appropriate
adaptation of the corresponding covering numbers (cf. Theorems and [C.6).

Let 7BC be the log-loss BC estimator (Equation ) of the true policy 7*, and P be the MLE esti-
mator (Equation ) of the true transition model P*. The concentration bounds for these estimators
are, with probability at least 1 — §; and 1 — 95 respectively:

-1
H( }BB*C, )< Ry = 4-15] IOgn(V” o) (Corollary [C.3)
. 2. . 71
H*(PY ,P.) < Ry = 4 ISP+ | Al - log(nH0, ) (Corollary [C9)
n

Additionally, we make the following assumption about the minimum visitation probability under the
optimal policy:

Assumption 6 (Minimum Visitation Probability). There exists a constant Yy, > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy:

. ¥t
min dp."(8,a) 2 Ymin
(s,a,t):d5" (5,0)>0

Under this assumption, the concentrability coefficient is bounded by:

2- VR

Ymin

C(?TBC,W*) <1+

Theorem C.14 (Policy Confidence Set). Under the setting described above and Assumption|[6] with
01 = 03 = 0/2 and defining

o i= /3~ |S]-Tog (| A - 2/9)
8= /3~ ISP - |A[ - log(nH - 2/5)

The policy set

n;ﬁzfge;:{wng+@.(w(mﬁ)ﬂ)}

Ymin

is a confidence set of level 1 — 0 containing w* with probability at least 1 — §. The radius of this
confidence set is explicitly:

.« B 2a

Proof. The proof follows directly from Lemma by applying our bounds on H? (P}EBf , ]P’}** ) and
H? (IP”;; , IP”[;* ), along with our bound on the concentrability coefficient from Assumption @ Setting
01 = d3 = 0/2 and substituting the appropriate values gives us the result. O

D ONLINE ESTIMATION

The underlying setting is described in Section 3]
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D.1 ELLIPTICAL CONFIDENCE SET

For completeness and to make our paper self-contained, we provide a brief overview of the online
preference-based learning approach used in our method. The formulation presented in this section
closely follows the work of |Saha et al.| (2023) and [Faury et al. (2020), with adaptations to our
specific setting. We include this background to help the reader understand the elliptical confidence
set construction that forms a foundation for our theoretical analysis.

In the logistic model, a natural way of computing an estimator w; of w* given trajectory pairs
{(r},72)}i=] and preference feedback values {0, },_} is via maximum likelihood estimation. At
time ¢ the regularized log-likelihood (or negative cross-entropy loss) of a parameter w can be written
as:

t—1

£dw) = (orloa(o(6(r) — (7)), w)) — 5 w3

=1

+(1 = 0¢) log (1 = o ({p(r) = 6(77), w))),

where A > 0 is a regularization parameter. The function £} is strictly concave for A > 0. The max-

imum likelihood estimator w}E can be written as wM'E = arg max,,cpe £ (w). Unfortunately,

WMLE may not satisfy the boundedness assumption E], so we instead make use of a projected version
of wMLE, Following [Faury et al.| (2020), and recalling assumption |l we define a data matrix and a

transformation of WM given by

Vo= i\ + 3 (67) — 6(2)) (6(72) — 6(2)) "
=1
t—1
gu(w) = 3" o((6(rh) — 6(7), W) (B(7) — 6(72)) + Aw

(=1

Then, the projected parameter, along with its confidence set, is given by
j : ~ MLE
wy™ = argmin g (W) = g:(%;" ) [y
w st ||w||<W ’

Ci(0) ={ws.t. ||w— wf”vt < 2k5:(0)}

where 8;(0) = VAW + \/log(l/d) +2dlog (1 + £2). We restate a bound by [Faury et al. (2020)
that shows the probability of w, being in C;(d) for all ¢ > 1 can be lower bounded.

Lemma D.1 (Confidence Set Coverage). Let § € (0,1] and define the event that w, is in the
confidence interval C;(0) for all t € N:

Ew* = {Vt > I,W* € Ct(5)}
Then P(E,+) > 1— 0.

Proof. This follows from [Faury et al.[(2020) with a slight modification to account for our bounded
feature assumption. O

This elliptical confidence set construction, which has its roots in generalized linear bandits (Filipp1
et al., [2010; |[Faury et al.| [2020), forms a critical component of our online learning algorithm. By
maintaining and updating these confidence sets as new preference data is collected, our algorithm
can efficiently balance exploration and exploitation to identify the optimal policy. The confidence
bounds ensure that with high probability, the true reward parameter lies within our constructed
set throughout the learning process, which is essential for the regret guarantees we derive in the
following sections.
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D.2 NORM RELATION BETWEEN DATA MATRICES

For completeness, we restate key results from |Saha et al.| (2023) concerning the relationships be-
tween various data matrices that arise in our analysis. These results are included to ensure the
appendix is self-contained and to provide context for our subsequent analysis. The full proofs of
these results can be found in the original paper.

Saha et al.| (2023)) establishes relationships between three key matrices:

* V, - The empirical data matrix constructed from observed trajectories

—P* . o .
* V, -The expected data matrix under the true transition dynamics P*

s V- The expected data matrix under the estimated transition dynamics P,

These matrices are defined as follows:
t—1

Vi = mALi+ 3 (6(7) — 6(rD)) (6(78) — 6(7)) |

=1
V, =M+ (6(n}) — o)) (d(n}) — p(n?))

T

Ve=rMg+ > (67 (xf) — o7 (1)) (7 (n}) — o7 (n2))

Where ¢(m) represents the expected feature vector under policy 7 and the true transition dynamics
P*, while ¢** (1) represents the expected feature vector under policy 7 and the estimated transition
dynamics P;.

Saha et al.|(2023) introduces a precision event that relates the empirical matrix V7 to the expected

*

matrix V; :
7P*
Eyre ={Vy 22Vr+ 84B%dlog((1 + 2T)/8)14}

Under this event, they establish the following bound:

Lemma D.2 (Adapted from Saha et al.| (2023)) Corollary 1). Under assumption |l| conditioned on
event By« N Ecp+, for any t € [T
T

|w* — W’{JHV,IID* < 4kB(9) + agr(d),

where ag 1(8) = 20BW /dlog(T (1 + 2T')/6). Furthermore, if 5 < 1/e, then P(E,~ N Eope) >
T
1—0—dlog,T.

Additionally, Saha et al.| (2023)) relates norms based on the matrix Vf ’ with those based on V:
Lemma D.3 (Adapted from |Saha et al.[(2023) Lemma 3). Let & be the event that forallt € N,

t—1 2
. . . & 1
proj o proj . -
Wi — w. |y, < V2[lw Walpre + €§_1j4<34 (W,QWB78£3|A|S)> + -
where 5/ = W and € = m Then P (Eo) 2 1-46.

Note that the bonus function B is defined in Lemma D.4]
These norm relations from [Saha et al.| (2023) are essential in our regret analysis, as they allow us to
relate confidence bounds across different probability spaces and to bound the regret of our algorithm.
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D.3 TRANSITION ESTIMATION AND BONUS TERMS

Note that the offline estimator of the transition probabilities based on the log-loss MLE in Equa-
tion (3), when the state-action space is discrete, is equivalent to the following count-based estimator
(derivable using a simple Lagrange multiplier argument):

Noftine (5|5, @)
Nofﬂine (Sa a)

Notrine (8, a) := Z Z ]I{sz = s,az =a}

i€[n] he[H]

Nofﬂine ‘3 Cl Z Z ]I{Sh+1 - S Sh =S ah - Cl}

i€[n] he[H|

Pofﬂine(3/|57 a) =

where

This equivalence allows us to initialize the online estimation process with the count estimator from
the offline data (see line 3 in Algorithm[I]), yielding the combined estimator for the transition model:
. Notine (8']8, @) + Ny (s'|s, a

Pt(S/‘S,G) — ofﬂme( I ) ) t( | ) ) (9)
Nofﬂine(sa a) + Nt (57 (L)

From this estimator, we adapt two key lemmas from [Chatterji et al.|(2021)) that will define our notion
of bonus terms.

Lemma D.4 (Moment Transition Difference Error). Consider the transition count estimator I:’t from
Equation equation 9] Further assume the trajectory data follows a martingale structure adapted to
the natural filtration of the problem. For any fixed policy m € 11 and any scalar function f : T — R
such that | f(7)| < n, with probability at least 1 — § for all t € N:

Epy. [f(7)] = Eeg [f(7)] < Epr, > & a0 .0)| = Bi(m,n,0)

he[H]

where

Hlog(S| - |A]) + log (6log(N‘(Sh’ah?N'W"e(sh’ah)))
Nt(Sh, ah) + No ine(Shaah)

&, .0, (1,6) :=min | 2n,4n

The term By(m,n,0) serves as our "bonus” term.

Proof. Our combined estimator incorporates both online data (adapted to the natural filtration) and
offline data (assumed i.i.d.). We can artificially treat the offline data as though it were adapted to the
natural filtration as well, by considering it as “past” observations. This allows us to directly apply
the proof methodology from Chatterji et al.|(2021)) (Lemma B.1) to our combined count estimator.

The key insight is that the martingale structure of the estimation error is preserved when combining
offline and online counts, with the benefit of reduced variance due to the increased denominator
(Ni(sh,an) + Noffiine(Sh, ar)). This directly translates to tighter confidence bounds compared to
using only online data. O

We now present a stronger version of the lemma that holds uniformly for all policies 7.

Lemma D.5 (Uniform Moment Transition Difference Error). Consider the transition count estima-

tor P, from Equation equation @ Further assume the trajectory data follows a martingale structure
adapted to the natural filtration of the problem. For any scalar function f : T — R such that
|f(T)| < n and for any € > 0, with probability at least 1 — 6 for all t € N and all = € II:

Epy [£(7)] = Epg. [f(7)] < Epg. N & (0,0,6) | +e

he[H]

=:B¢(m,n,0,€)
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where

. H log([S] - | AJ) + 15 log ([ 1221 ) + log ( CLo8elonan )+ N (on.02)

,0,€) :=min | 21,4
Sarar (1:0,€) O Ni(sh,an) + Nogine(Sh, an)

Proof. The proof follows by applying similar techniques as in Lemma[D.4] but with additional care
to ensure uniformity across all policies.

As before, we can artificially treat the offline data as adapted to the natural filtration. The uniform
convergence over the policy class II is achieved by applying a covering argument and the union
bound, following the methodology in |Chatterji et al. (2021) (Lemma B.2). The additional term

|S|log ([4"1{—‘) appears due to this covering, which introduces an e-discretization of the policy
space.

The combined offline and online counts in the denominator (N¢(sp, ap) 4+ Notfine (Sh, an)) provide
tighter uniform confidence bounds compared to using online data alone. O

To provide further intuition, we elaborate on the meaning and significance of the terms By and B,
introduced in the previous lemmas. In reinforcement learning literature, these would be referred to
as the “empirical bonus” and “true bonus,” respectively. Both terms quantify the concentration of
our estimators around their true values.

The empirical bonus B, (mw,n,0) represents the expected sum of state-action-level uncertainty terms

! i (n, 6) under the estimated transition model P, Importantly, this term can be directly computed
from observed data.
In contrast, the true bonus By(m,7,0,¢) represents the expected sum of uncertainty terms
=t .. . . .
€s,.ay (1,0, €) under the frue transition model P*. This term cannot be directly computed as it
depends on the unknown true model.

For our regret analysis, we need to relate these two quantities. The following lemma provides a

crucial connection, showing that the empirical bonus B’t can be bounded in terms of the true bonus
B, uniformly across all policies 7.

Lemma D.6 (Relationship Between Empirical and True Bonus Terms). Let n, e > 0. For all policies
7 € 11 simultaneously and for all t € N, with probability at least 1 — §:

Bt (7T, m, 6) S QBt (71', 2H77) 57 6) +e€

Proof. Define the function f : 7 — R as:

=Y & o

he[H]

By construction, By(m,n,8) = Epr [f(7)]. Since &, ,, (n,0) < 27 for all state-action pairs, we
have |f(7)| < 2nH. /
Applying Lemma|D.5|with this f(7) and the bound 2nH:

Eey [£(7)] = Eep. [f(T)] S Erp. | Y Eupa, (21H,5,6) |+

he[H]

By definition, the right-hand side equals B, (7, 2Hn, 0, €) 4 €. Therefore:

Bt (ﬂ_v m, 5) - ]EIP”};t [f(T)]
< Epr, [f(7)] + Bi(m,2Hn, 5, ¢€) + ¢
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From Lemma|[D.4] we know that:
EP};* [f(T)] < EP;[% [f(T)] + Bt(ﬂ-v 7, 6) = Bt(ﬂ-> , 5) + Bt(ﬂ—a m, 6) = 2Bt(ﬂ-7 , 5)

This gives us:
Bt(w,n,(;) 2 t(7r 7,0) + By(w,2Hn,d,¢) + €
= —By(m,n,8) < By(m,2Hn,,¢) + ¢
= Bi(m,1,08) < By(m,2Hn,8,¢) + ¢

Therefore, the lemma statement follows. O

This lemma is instrumental for our regret analysis as it allows us to work with B; instead of B,. The
advantage is that B, involves expectations with respect to the true transition model P*, which makes
it more amenable to theoretical analysis. By establishing this relationship, we effectively account
for the transition estimation error and can focus on controlling the difference between empirical and
true moments, which is a more tractable problem in our analytical framework.

D.4 PoLICY SET II; AND PROOF OF LEMMA [£.3]
Recall that we define the policy set IT; to draw from in line 7 of Algorithm [T]as
II; == {7r € T1gfitine |V7T € Igfitine .
(8P (m) = 0P (n'), uf™) + 31 - 67 (m) — 67 () g
+ By(m,2WB,8") + By(n',2WB,8') > 0 }
where &' = §omtine /2| A|IS| and 19 is derived in Theorem 4.2} The radius -, is defined as

2
= V2(4RBUO) + aar () +2,| Y Z<Bf (”l’2WB 8£3|i1|3>> *g

ie{1,2} £=1

6onlme

where §’ = iawjg7 and e = Lz Then P (&) > 1 — 4.

t2rA+4

Then Lemma |4.5|states that with high probability, 7* € TI; V¢ € [T]

Proof of Lemma We begin by conditioning on the following events:

* Eoffiine = {7* € MM} from Theorem.
* E,» from Lemma[D.2](confidence set for w*)

. EVi* from Lemma (relation for data matrices)

Eo from Lemma (estimated norm relation)

&3 from Lemma (bounds on the bonus terms B;)

By the union bound, these five events hold simultaneously with probability at least 1 — 5.

By the optimality of 7*, we have for any 7'

0 <((m") = o), w") = (Epy- ¢(7) = Eprr ¢(7),w")

Then, by event & and defining f(7) := (¢(7),w*), we have from Assumption [T] that |f(7)| <
2W B, which yields:

(6(r*) = o(r'), w*) < (@7 (1) — 67 (n'), w*) + By(n*, 2W B, /2| A1) + By(n', 2W B, 6/2| A|1S1)
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where the probability parameter accounts for any 7/ € II, which covers the case of the offline
confidence set being the whole policy space (i.e., not having enough offline data for learning).

Next, we bound the term:
(@7 (%) — ¢ (x'), w*) = (¢F (r*) — ¢P2 (), wl™) + (¢F () — ¢P* (), w* — wi"™)

(), wf™) + 1167 (177) = 67 (1)l - ™ = 0|l

We can now use event £g:

t—1 2
) . o’ 1
Proj _ % proj . <
|lw} w* |y, < V2||wh w*”Vf +2 2 (Bg (7r,2W B, 8€3|A|5|>> + ;

Using events Ey» N Ee-, we get:
T

t—1 2
roj * A o’ 1
W™ — w* |57, < V2(46B4(8) + cva,r(6)) + 2 ; (Bg (77,2WB, 8€3|A|S)> + 5=

Putting these results together yields that 7* € II; for all £ € N under the event Figgine.
The probability of this event is at least 1 — 5§ by the union bound of all the events we conditioned
on. By rescaling § — ¢/5, we obtain the desired result with probability at least 1 — 0. O

D.5 REGRET BOUND

In this section, we provide a lemma as an intermediate step toward the full proof of the regret analysis
of BRIDGE. This lemma separates the upper bound on the regret into three distinct terms, each of
which we further analyze in Section [E]

Lemma D.7 (Regret Analysis). Under the following events:

offiine = {T* € H”fﬂ 7Y from Theorem.
* Ey+ from Lemmal[D.2)(confidence set for w*

E_p- from Lemma (relation for data matrices)
VT

&o from Lemma (estimated norm relation)
o & from Lemma( bounds on the bonus terms Bt )

the regret of BRIDGE Algorithm|l|is upper bounded by:

Rr<2- yr - [T Y [6P(x}) =P (nd)lg-1+ > D Bl AWB,0)

Term 1 te([T] i€{1,2} te[T]

Term 2 Term 3

where

yr = V245 - Br(6) + aqr(8)) + % +4 [ 3" > Bi(ni, AHWB,4,€)? + 24TeH*W B
i€{1,2} te[T]

and

* agr(8) =20BW \/dlog(T (1 + 2T)/0)

+ Br(8) = VAW + /log(1/6) +2d1og (1 + 122).
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Proof. We start by writing
2ry = (O(m%) — d(myp), w*) + ($(7*) — (7}, w")
= (@ () = 7 (), w*) + (67 (7%) — ¢7 (72), w") + 2(6" (77) — $(n7), w")
+ (67 () = p(m}), w*) + (97 (x2) — B2, w")
Then, by Lemma[D.4] we have with probability at least 1 — § for each of the following:
2 (") — P (7)), w*) < 2B,(n*, 4W B, §)
(67 () = ¢(m}), w*) < By(r}, AW B, )
(67 () = ¢(n}), w*) < By(r, AW B, )
By the union bound, with high probability:
2y < (¢F(n%) — Tt (x)), w*) + (¢ (1%) — T (n2), w*) + By(w}, AW B, 8) + By(n2, AW B, 6) + 2B,(x*, AW B, 6)
Next, we observe that:
(67 (77) = ¢ (x}), w) + (9 () — 9 (), w)
< (¢P(m) = @ (), wl) + (@7 (%) — o (), w™)
=, (167 (5%) = 0% (xDllys + 107 (5°) = % (1 )

Conditioning on the joint event & N E,,» N Er+, we have with high probability:

(67 (7*) = @™ (m}), w*) + (&7 (") — 67 (w}), ")
< (g7 (") — 67 (mh), wl) + (@7 (1) — 67 (x7), ™)
- (107(5°) = 6 ()l + 167 r7) = % ()l )
Using Lemma[D.4] again, the following holds with high probability:
2p(n*) — ¢F (%), W™ < 2B, (7, 4W B, §)
(07 (x}) = d(w}), wf™) < By(x} AW B.0)
(07 (x7) = (), wf™) < By(x}, AW B.0)
Putting everything together yields:
2re < 23 (6 7) = 6 D)l + 167 ) = 6P (D)l )
+2By(n},4W B, 8) + 2B, (72, 4W B, §) + 4B, (n*,4W B, §)
Under the event 7* € II; from Lemma4.5|and using the fact that 7} , 77 € II;, we have:

9y < yil|d (12) — P (wt)||vfl + 4B, (7}, AW B, 8) + 4By (72, 4W B, 6)

Hence, the regret is:

Ry = Z 2r,

te(T)
< Y (llo™(x2) = 7 (w2 +4Bi(x} AW B,5) + 4By (w} AW B,3))
te(T]
<ar [T lloP(n) — 6P (mhI2 + Y (4Bt 7l AW B, ) + AB,(x2, AW B, 5))

te[T) ¢ te[T]
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Note that by Lemma|[D.6] with high probability:
By(n},2WB,6)? < 4B,(n},AHW B, 6, €)? + 48¢ H*W B

Plugging this into ~,; yields Vi:

v < V2(4kB:(0) + aqr(d)) + %

t—1
+4,| > Bi(n}, AHW B, 6},¢) + B}(x?,AHW B, 8}) + 24(t — 1)H*W B
=1

This completes the proof of the claimed result. O

E REGRET ANALYSIS: THEOREM [E_T]

In this section, we present the complete regret analysis of our BRIDGE algorithm. We recommend
that readers first review Section [B] where we analyze a simplified setting in which the dynamics are
assumed to be known. This simplified case captures the core idea of our approach: constraining the
set of policies considered during online preference learning using a confidence interval derived from
offline behavioral cloning estimation (see Figure[T).

The key difference in the present analysis is that we now incorporate the estimation of the transition
model. Specifically, we first estimate the transition model offline and then use this estimate as the
starting point for online transition estimation. This approach reduces the error due to transition un-
certainty by a factor of O(1/4/n), which is the same rate of improvement we achieve for the policy
estimation through behavioral cloning. As we will show, this allows our algorithm to effectively
leverage offline demonstrations to reduce both sources of uncertainty, resulting in substantially im-
proved regret bounds.

Theorem E.1 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline
demonstrations with minimum visitation probability ymin > 0 for state-action pairs. With probabil-
ity at least 1 — 0, the regret of the algorithm is bounded by:

O (B2 H |82 -min {Z log(T)} + % \/LA|H>
Rp <2 ~p - T-log(1+ )
— d
Term 1
Term 2

~ TH H°?WBVT S|V/2| A4

+0 <H|S| ATH VT | w7 SECAT 1'“2”
7 Ymin VT Ymin n /

Term 3

where

yr =0 <(f£ + BW)\/dlog(T) + H*WB|S| - \/min {1og(T),

7 Ymin

}+Hm)

and we have set € = % to optimize the bound.

From this regret bound we can observe that as n — oo with fixed v, > 0: (i) Term 1 approaches
O((k + BW)+/dlog(T) + VHW B); (ii) Term 2, the logarithm approaches log(1) = 0; Term 3
all components approach zero. The overall regret bound exhibits a v/7 dependence as in|Saha et al.
(2023). However, this results in a regret bound that can be made arbitrarily small with sufficiently
high-quality offline data, changing the complexity of regret analysis without having access to an
offline expert dataset. This result helps in closing the gap between empirical results in applying RL
in real-world scenarios and theoretical works.
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From Lemma we analyze the three key terms in our regret bound: the confidence multiplier
(Term 1), the logarithmic determinant ratio (Term 2), and the bonus function summation (Term 3).
Each term is examined in detail in the following subsections.

1 )
Term 1 = vp = V2(4k - Br(0) + g1 (6)) + T4 > Y Bu(ri,AHWB, 6,¢)> + 24TcH*>W B

i€{1,2} te[T]
Term?2 = |T ||¢P*(7Tt1) —¢P‘(W?)||V*1
te[T] '
Term 3 = Z Z By (n!,4W B, §)
i€{1,2} te[T)

E.1 TERM 1: ASYMPTOTIC BOUND

We derive an asymptotic bound for Term 1 in Theorem [E.T|via Lemma[E.2] The auxiliary lemmata
used in the proof of Lemma[E.2]are found in Section [E. 1.1}

Lemma E.2. The asymptotic bound on vy can be expressed as:

v =O ((FE + BW)+/dlog(T) + H*W B|S)| - \/min {log(T),

7 Ymin

}wm)

Proof. We analyze each term in the expression for v separately.

Step 1: Analyze \/§(4I€ . ﬂT((S) + OL,LT((S))

Given:

aqr(8) = 20BW\/dlog(T(1 + 2T)/5)

Br(0) = VAW + \/log(l/é) + 2dlog <1 + W)

KA

For aq 1 (6), we have:

g1 () = 20BW\/dlog(T(1 + 2T)/6)
~0 (2OBW\/dlog(T2 /5))
0 (BW\/dlog(T/é))

For 7 (9), we have:

Br () = VAW + \/1og(1/5) + 2dlog (1 + Zf;)

2

) (for large enough 1)

2T'B
< VAW + \/10g(1/5) + 2dlog ( .

2
— VW + \/10g(1/5) + 2d1og(T) + 2dlog (iiz)

= O(VAW + /dlog(T) + log(1/6))

Therefore, this term becomes:

V2(4k - Br(8) + g1 (8))

Ok - (VAW + \/dlog(T) + log(1/6)) + BW+/dlog(T/5))
(kVAW + k/dlog(T) +log(1/8) + BW+/dlog(T/5))
((k + BW)+/dlog(T) + r+/log(1/5) + BW+/dlog(1/6))

(@]
(@]
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For a fixed confidence parameter 4, this simplifies to:

V2(4k - Br(6) + aqr(8)) = O((k + BW)+/dlog(T))

Step 2: Analyze 1

This term is (9(%) and becomes negligible for large 7" compared to other terms.

Step 3: Analyze 4\/2E (12 Sreqr Br(ml, AHW B, 6,€)2 + 24TeH2W B

Using the provided lemma on the sum of squared bonus terms, Lemma [E.3}

> D Br(m 4HWB.6,9? <O <(‘“5”/VB)217[2|5|2 - min {log(T), T })

i€{1,2} te[T) T+ Ymin

('5(16H2W232-H2|S|2-min{1og(:r), T })

7 Ymin

@} (16H4W2B25|2 - min {log(T)7 T })
T * Ymin

For the second term inside the square root:

96TeH*W B = O(TeH*W B)

Therefore:

4| 3" > Br(xi,AHWB,6,¢)? + 24TeH*W B
1€{1,2} te[T)

=440 <16H4W2B2|S|2 - min {log(T), }) + O(TeH2W B)

T Ymin

o (4\/16H4W232|S|2 .min{log(T), T }) +O(4VvTeH?WB)
7 Ymin
O~ (

16H*W B|S| - \/min {log(T), }) + O(VTeH?W B)

T * Ymin

=0 (HQWB|S| . \/min{log(T), - : : }) + O(VTeH?WB)

Step 4: Combine all terms

Combining all terms from Steps 1-3, we get:

T * Ymin

vr = O((k + BW)+/dlog(T)) + O (;,) +0 (HQWBS| : \/min {log(T), }) + O(VTeH?>W B)

Expressing this with O notation to hide logarithmic factors, and canceling O(1/T) = O(1):

yr =0 ((Ii + BW)+/dlog(T) + H*W B|S)| - \/min {log(T)7 } + VTEHQWB>

T * Ymin

O
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E.1.1 TERM 1 ASYMPTOTIC BOUND: AUXILIARY LEMMATA FOR LEMMA [E.2]

Lemma E.3 (Offline-Enhanced Bonus Term Bound). Let n be the number of offline demonstrations,
with a minimum visitation probability vy, > 0 for state-action pairs visited by the expert policy
7*. Then, with probability at least 1 — 28’, the sum of squared bonus terms satisfies:

H-1

2 anH 6log(HT
(0 0)) < 5207 (Ehog(IsILAl) + 131t (2150 ) 4 10g () )

T
'|Sreac/1| IOg (1 + >
T * Ymin

where | Syeqcn| is the number of state-action pairs with non-zero visitation probability under the expert
policy.

>

te[T] h=1

Proof. Step 1: Express Modified Bonus Terms with Offline Data. We define our modified bonus
term to incorporate offline data:

U
ggtl)l(g n, ) min (217’477\/]\7 ff(S a) +Nt(3 a))

where U = H log(|S||A|H) + | S| log (M) +1og (6lo§<t>)

Step 2: Express the Sum of Squared Bonus Terms. Following Pacchiano’s structure but with our
modified bonus terms:

ZZ(MMenﬁ))Q:

te[T] h=1

Nr g1 (s.0) JH1og(IS||A|H) + |S] log (42

Z Z min (4772’ 167° Noge(s,a) + ¢

seSacA t=1

) +log (6“’%“)))

Step 3: Rearrange to Account for Offline Data. The key insight: With offline data, we need to
adjust the indices of summation. For each state-action pair, we’ve already observed it Nog(s, a)
times in the offline dataset. Therefore:

> Z GRNCE n,5))2:

te[T] h=1
Noi(s,a)+Nry1(s,a) H 10g(|5‘ |A‘H> + |S| 10g + 10 6log(t’)
Z Z Z min (4772, 160> . ( ) ( 5 ) )

seSacA t'=No(s,a)+1

where ¢’ represents the total count (offline + online).

Step 4: Simplify Using Common Term. For clarity and following [Saha et al.| (2023) approach,
let’s define:

6log(HT) >

danH
V = Hlog(|S||A|H) + || log (Z) +log ( =

For sufficiently large ¢’, the min is dominated by the second term:
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Nofi(s,a)+Nr41(s,a) v Nott(s,a)+Nry1(s,a)
2 2
ZZ DI 7t LU AD D) DENEED DI
s€SacA =Not(s,a)+1 s€SacA t'=Nos(s,a)+1

Step 5: Use the Harmonic Sum Property. We know that Zl atl 1 < log ( ) Therefore:

Nait(s,a)+Nr 41 (s,a)
i ZTH % <o (Noff(S, a) + NT+1(S>G’)> = log (1 + NTHM)

=Nofr(s,a)+1 Nogi(s, a) Not (s, a)

Step 6: Apply the Minimum Visitation Probability. With our assumption that dg;’t (s,a) > Ymin
for all state-action pairs visited by the expert policy, we have:

Noff(57 CL) >n-H- “Ymin V(Sa a) € Sreach
where Sieaen 1S the set of state-action pairs with non-zero visitation probability under the expert
policy.

Therefore:

Nri1(s,a) Nri1(s,q)
log (1 4+ LT ) < g (1 4+ LT
o ( - Noff(sv CL) =08 + n+H - Ymin V(S’ Cl) € Sreach

Step 7: Apply Jensen’s Inequality. We know >, Nr1(s,a) = TH (total state-action visits in
online learning).

By Jensen’s inequality and the concavity of log(1 + x):

N S, a Zsa NT+1(S,0,)
Z log (1 + T+1()) < | Sreach| - log (1 4 26.0) €S

(s,a)€S, - H - Ymin |Sreach| - 7+ H * Ymin
9 reach

Since }- g o e g Nr+1(8,0) < TH:
N S,a TH
Z IOg 1+ M < |Sreach| 'log 1+
n'H"Ymin |Sreach| 'n'H’f)/min
(5,a) € Sreach
Simplifying:
NT+1 (Sa a) T
1 1+ —— ) < |5 -1 14 —4——F——
Z o8 ( * n-H- “Ymin B | each| ©8 + |Sreach| * T Ymin

(87(1) € Sreach

For unreachable states, we can use Pacchiano’s original bound, but these contribute negligibly to
regret as optimal policies don’t visit them.

Step 8: Final Bound. Substituting back:

IS £ ? 2 T
Z Z(Sth,ath 677’6)) < 16n 'V"STCaCh"log 1+TL"7 .

te[T] h

Substituting V' and accounting for approximation constants:

50



Under review as a conference paper at ICLR 2026

H-1

2 inH 6log(HT
(60 eem)” < 3207 (1080131141 + 13110 (221 410 (2ET)) )

T
"Sreach| 1Og (1 + )
T * Ymin

This completes our proof, showing explicitly how offline data (through n) and minimum visitation
probability 7, reduce the bound on bonus terms, thereby reducing regret. O

>

te[T] h=1

Lemma E.4 (Offline-Enhanced Squared Bonus Term Bound). Ler n,e > 0 and §,6' € (0,1). Let
n be the number of offline demonstrations with minimum visitation probability ~min > 0 for state-
action pairs visited by the expert policy. Define E5(8") be the event that for allt € Nand i € {1,2}:

t—1
Z Z (Bg(ﬁ,n,é/ﬁ?’,e))Q < 12n*H? (1.41n1n (2 (max (4n°Ht,1))) + ln 5 —|— 1)

ie{1,2} £=1

T
+ 64772H‘Sreach| 1Og (1 + )
T * Ymin

. (Hlog(|S||AH) +15]log q‘”iHD +log (%gszT)))

Proof. We follow |Saha et al.|(2023) proof structure, beginning with the martingale analysis and then
applying our offline-enhanced bounds.

Then P(E5(8')) > 1 — 207,

Observe that the bonus terms can be expressed as:

5\’ 5\’ =l 5 1\
B,(n! B, (n2 E ¢
( £(7T27777 6376)> ( Z(ﬂ-éu"% 6376)> = ( S%Np,TNP;:};("S%) [h_ gsib,ai (67777 73 )‘| )

H— 5 2
@ 5
+ <]E91Np T~ P ﬁ(l 2) [2_:1 gs?wai(eﬂ% £3 )‘|>

Using Jensen’s inequality (as in the original proof):
H-1 o 5 2 H-1 o 5 \2
E. i ) gf i(canvi) SHE b ) (55 i(@ﬂv))
( Si~p,T~Ppﬁ(~|S’i) Lz_:l Snoh 03 SENP’TNPPE('\SE) ; Shoh &

Following the martingale analysis of Pacchiano, we define:
H—-1

PO _g i G )
E T i Clsh) [Z St (0710

h=1

H-1

(<00 n)

. . 2
Since §5 a(e 7,0) < 2n, we have |D§z)| < 8n?H and Varg’)( he1 (fie)a (e, 77,5)) ) <
h?
16n*H?2.
Applying the Uniform Empirical Bernstein Bound (as in the original proof), we get:

h=1

t—1
) 1 2
D{) < E (€0, (n.9)
; £ T 2 s () 2 Sopuay (670)

h=1

+ 0 (Latuin (2 (oox (4272.1))) + 10 57 )
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Therefore, with high probability fori € {1,2}:
Hol o ) t—1 H-1 )
E . Z (§§)a (6777,5)) <2y ( (€., )) +dn°H
sip TP, Cls) 523 N T (=1 h=1

+6n°H (1.4ln In (2 (max (47]2Ht, 1))) +In (5/2)

Combining for both policies, with probability 1 — 24”:

t—1 t—1 H-1
3 S Bumaae) <2 Y SN (€0 (en )
i€{1,2} =1 i€{1,2} £=1 h=1

+ 12n*H? <1.41n In (2 (max (47}2Ht, 1))) +In 5—/2 + 1)

Now, using Lemma[E.3] we have:
t—1 H—1

2 T
Z Z (fgi zgh (e, )) < 160*V - |Sreach| - log (1 + " Yo )

{=1 h=1

where V' = H log(|S||A|H) + | S| log ([‘MIHD +log (M)

Substituting this bound and combining terms:

Z Z (Bg(ﬂ'é,n,(S/ﬂS))Q < 120°H? (1.41nln (2 (max (4172Ht, 1)) + ln55—'/2 + 1)

1€{1,2} =1

T
+ 647> HV - | Sreacn]| - log (1 + >
T+ Ymin
Expanding V:

Z Z (Bg(ﬂé,nﬁ/ﬁg))z < 1292 H? (1,4111111 (2 (max (42 Ht,1))) + 11156%/2 + 1)
ie{1,2} £=1

T
+ 640> H - |Sreach| log (1 + > .
T * Ymin

(Hlog(S||A|H) +15]log G‘”’EHD +log (61‘%((5HT))>

O

Lemma E.5 (Asymptotic Bound for Offline-Enhanced Squared Bonus Terms). With n offline
demonstrations and minimum visitation probability " in, the sum of squared bonus terms is bounded
as:

3 S(Be(ﬂéi,m&/ﬁ?’,e)f§@<n2H2|SIQ~min{log(T), 1)

n .
i€{1,2} £=1 Ymin

where @() , 071, and €71, as well as constant factors.

Proof. We start from the detailed bound of Lemma[E.4

1
Z Z (Be(mg,m, 5/63))2 < 12n*H? (1.4lnln (2 (max (4n*Ht,1))) + In 57’2 + 1)
ie{1,2} £=1

4nH 6log(HT
+ 64n°H (Hlog(|S|A|H) + |S|log ({Z-D + log (Og((s))) | Sreach| log (1 +

52
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Analyzing each term:

Step 1: First term analysis. The first term is:

12n° H? <1.4lnln (2 (max (4n*Ht,1))) + In % + 1> = O(n*H?loglog(T))

Since log log(T') grows extremely slowly, and we’re using O notation which hides logarithmic fac-
tors, this term is dominated by O(n?H?).

Step 2: Second term analysis. For the second term, we have:

T
C-1*H -V - |Sreach| - log (1—|— )
TV Ymin

€

where C'is a constant and V' = (Hlog(|S|\A|H) + 1S log ([zmHD +1og (610g((SHT))).

anH
€

Within the factor V, the dominant term is |S|log ([
asymptotically:

D since it scales with |S|. Therefore,

vV =0(l)

Upper bounding |Sqeacn| < |S] as requested, the second term becomes:

- T
O<772H2|S|2-10g <1+ )>
T Ymin

Step 3: Analysis of log (1 + n~an,m)' We need to consider different regimes for this logarithmic
term:

Case 1: Small offline dataset (n - yyin < 1)

T T
log [ 1+ ~ log
7 Ymin T+ Ymin

= 10g(T) - log(n : 'anin)
= O(log(T))

Case 2: Balanced regime (n - yin = 1)

T 1
log <1 + > ~ log <1 + > =0(1)
7 Ymin Ymin

Case 3: Large offline dataset (n - yin > T)
Here we can use the approximation log(1 + x) ~ x for small z:

T T T
log (1 n ) ~ —0 ( )
7 Ymin T * Ymin T+ Ymin

Combining these cases, we can express the behavior of this term as:

T T
log <1 + ) =0 (min {log(T), })
N * Ymin T+ Ymin

Step 4: Combining all terms. The first term @(nzH %) is dominated by the second term when
|S| > 1 and T is non-trivial. Therefore, our final asymptotic bound is:

2 5(35(”5%5/63))2 < @(ﬁ2H2|52-min {log(T), T })

n . .
i€{1,2} £=1 “Ymin

This bound correctly captures how the offline data affects the regret across different regimes. For
small n relative to T', we recover a bound similar to the standard one with log(T"). For large enough

n, the bound improves to nf —, showing a linear reduction in the bound as n increases. [
min
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E.2 TERM 2: ASYMPTOTIC BOUND

We derive an asymptotic bound for Term 2 in Theorem via Lemma The auxiliary lemma
used in the proof of LemmaE.6]is found in Section[E.2.1]

Lemma E.6 (Upper Bound on Term 2). The term 2 has the following asymptotic result

IEN mln{ , log( )}+W)>

VT Ymin

(’)<32
T3 167 (xt) - 0Pl < \|Tlos (14

te(T)

d

with the most important part, as n — o0 i.e the offline data set goes to oo the asymptotic regret is
log(1) =0

Proof. We follow standard argument from [Lattimore & Szepesvari| (2020).
We start with the inequality

u<2log(l+u) u>1 = Y |[lom|3<2- ) log(l+||om3)
te[T) te(T)

Using the definition of V; we have

Vir = A Lixa + 3 072 = V4 ompon? = 72 (1 + vl/zaﬁtaﬂfvlﬂ) /2
1€[t]

Using properties of determinant:

det(Viy1) = det(V;) - det(I + V=Y25m,6nl V=12) = det(V;) - (1 + ||57Tt||v_1) = det(Vp) - H (1+ ||57Ts||2—t_1)

s€E(t]
&
det(V}H)} 2
log | —————| = 1+ [|67s||% -
e 30+ o)
We have for

det(Vig1) = H A < ( TT{VtH})

where using linearity of trace
Tr{Vin} =Tr{A} + > Tr{6n¥?} =d- A+ Y ||om]]3
s€(t] s€(t]
We notice that

l6m 13 = (o7 (w}) — 67 (x2)|13
= (|7 (m}) — 70 (m}) + 670 (n}) — ¢70 (22) + 97 (n2) — $70 (x2) 3
< 2l|¢™ (me) — o0 (m) |13 + 970 (x}) — o7 (n2)13
we can control
6T (m}) — To (D)2 < 4- R - B2

from lemma [F1] linking the hellinger ball with the contraint moments, together with lemma [E.7] for
the tabular setting yield

— Radius = &+ B . _ 2
R =Rad N <1+\/H <1+%m_n_\/ﬁ>>
o= /4-]5|-log(]A] - 2/9)
Bi=\/4-[S]%-|A] - log(nH - 2/)
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Now with result Lemma|[E.7] we have

. . . t t2
l¢"" () — o™ (m)|3 < O (132 - H - |S[? -log(|S||Al/3) - Op(Fr, m,7*)* ((n+t>2 + <n+t)2.n>)

Hence in asymptotic notation

2|67 () — ¢ (mo)lI3 + |67 (m}) — 670 (x2)]13
< 2)|¢" (m) — oo (m) |13 + 9T (m}) — ¢To (w23

- , |- B> \JJA| - H
§O<B Al .”(”+t)+ VT Ymin

Note that we need to sum over ¢ € [T'] hence

> (26" () - (w3 + 6™ (xh) - 6™ (x2)3)
te[T]

~ . . 2 A/ .
<O(B* - H-|S*- mln{T lo (T)} + TS5 Al H
\/n"Ymin

by using

Lt T T
Zim——ln 1+ —
nn+t) n n

t=1

This expression behaves differently depending on the relationship between 1" and n:

1. When T < n: Using In(1 + z) ~ « for small x, we get

2. When T > n: Wehave In (1+ ) ~1In (£), so the sum is dominated by

A unified bound that works across all regimes is:
T
T
Z <min {,log(T)}>
= n(n +1t) n

Hence the final bound yields

\/T > 6P () - ¢P ()l

te[T]

V1 Ymin

B2 H.|SP - min { L, log(T)} + TISLBVIALH W))

o
< A|Tlog <1+

d
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E.2.1 TERM 2 ASYMPTOTIC BOUND: AUXILIARY LEMMA FOR LEMMA [E.§]

Lemma E.7 (Bound on Feature Expectation Difference). Let ¢ : T — R with max, ||¢(7)| < B
be a feature map, Py be the count-based estimator from n offline trajectories following policy m*

under dynamics P*, and Pt be the combined estimator after t additional online interactions. Then,
with probability at least 1 — 0:

167(r) = o)1 < O (B2 IS 1ok(1SI1A1/8) - Cr(Fr o (ot + s ))

where Cp(Frp,m,7*) is the concentration coefficient accounting for distribution shift.
Furthermore, when combined with an additional error term of O (%), the overall bound simplifies
to O (%) for all practical regimes.

Proof. We divide the proof into several steps:

Step 1: Martingale Structure and Concentration Bounds. Let F; be the o-algebra generated by
all information available after ¢ interactions. For each state-action-next-state triplet (s, a, "), define:

Xi(s,a,8") =1{s; = s,a; = a,8,41 = s’} — P*(§'|s,a) - I{s; = s,a; = a}

This forms a martingale difference sequence with respect to filtration {F; }!_;:

E[X;(s,a,s")|Fi—1] =0

The offline estimator can be expressed as:

ﬁ Z X;(s,a,s")

PO(S/|S7G) - P*(5/|3’a) = N
of fline i€offline
By Hoeffding-Azuma inequality, for any (s, a) with Ny fiine(s,a) > 0, with probability at least

4 .
1 = srsprar

2log(4]S[?|A[/9)
Noffline(sa a)

|Py(s|s,a) — P*(s]s,a)| < \/

Similarly, for the online-only estimator P2""¢(/|s, a) = W with probability at least 1 —
S .
2[STPTA[

210g(4]S[21A]/5)
Ni(s,a)

‘Ptonline(sl|5’ CL) - P*(S,|S, CL)| < \/

Step 2: Bounds on Total Variation Distance. By union bound over all next states, with probability
at least 1 — m:

1Po(-]s,a) = P*([s,a)lly = Y |Po(s'|s, @) = P*(s'|s,a)]

<) \/zlog<45|2|A|/6>

Noffline(sva)

Similarly for the online estimator:

2log(4[S[*|Al/95)
Ni(s,a)

1P (s, a) = P*(]s,a) |1 < |S] - \/
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Using triangle inequality:
1P (s, a) = Po(ls, @)l < [P (s, a) — P* (s, )l + [|P*(-|s, a) = Po(-]s, @)

21og(4]5]%|A[/9) 21og(4]5]%|A[/9)
< . .
- |S| \/ Nt(S,CL) + |S| Noffline(saa)

Step 3: Combined Estimator Analysis. The combined estimator can be expressed as:

Noffline(5/|85 Cl) + Nt(8/|57 a’)

By(s|s,a) =
t( | ) Noffline(saa)+Nt(Saa)
_ Noffline(sya) . Noffline(8/|s7a) Nt<s7a) . Nt(s/lsaa)
Nogfine(s,a) + Ni(s,a)  Nogpiine(s,a) — Noggiine(s,a) + Ne(s,a)  Ne(s,a)
= (1 —ay(s,a)) - Py(s']s,a) + ay(s,a) - PP"(s'|s, a)
Where ay(s,a) = Noffzmi;(,sa’)a—s)-Nt(s,a)' Thus:

Pi(s'|s,a) — Py(s']s,a) = (1 — ay(s,a)) - Po(s'|s,a) + ay(s, a) - PO (s |s,a) — Py(s']s, a)

= (s, a) - (PP"e(s'|s, a) — Po(s']s, a))

Therefore:

I17:(1s,0) = PoCls, )l = auls, @)« | B2 (s, @) = Bo(-ls, )
< ay(s,a) - <S| : \/21‘)%(4|5|2A|/5) +18]- \/210g(4|5|2AI/5)>

Nt(s,a) Nofflin6(87a)

Step 4: Accounting for Visitation Distributions. For precise analysis, we express the counts in
terms of visitation frequencies:

Noffli”e(s’ CL) =n- lu’g;fline(sa Cl) -H
Ni(s,a) =t pjline(s,a) - H

online

Tt

T line(S, @) are the average state-action visitation frequencies. This

Where ,ug;flme(s,a) and p
gives:

t- /J’Z)F:Lline (S’ a)

n- /'Lg;fline(s7 CL) +i- /J’:;Lline(s7 a’)

(s, a) =

Assuming the states in the support of policy 7 have visitation frequencies lower-bounded by some
constant ¢ > 0 for both offline and online regimes:

1P(-]s, a) — Po(cls,a)s < ——C— . |5]. \/210g(4|52|A|/6) _ ( L, )

“n-c+t-c c-H % ﬁ
Lt \/2log<4|5|2|A/5> 1
S ontt c H Vi n

_ log(SI[A[/5) ¢ (1 1
oo B ()

Step 5: Feature Expectation Difference. We begin with the telescoping decomposition:
167 () = 6™ ()2 = [|Ernry, [#(7)] — Ernry [6(7)]]l2
< B-H-Egapag, |IPi(1s.0) = PoCls, 0]
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To handle the distribution shift, we use the concentration coefficient:

d= (s,a) 2
*) P

By Cauchy-Schwarz inequality:

E(s,a)"“d’lgt [f(Sa a’)] < CT(]:T> T, 77*) : \/E(S.,a)"‘#g;flinc [f(87 a’)2]

Applying this to our bound:

|67 (x) = 6 (m)ll2 < B H - Cr(Fr,m,7°) - JE@,Ww* 12415, @) = PoC-]s. ) 3]

of fline

From Step 4, we have:

1B:Cls,0) = BoCcls. )l < O (|5|2 2 () (G ) )

o (ise SIS (L (1 2 1)

:0<S|2.10g(|5||14/5)_< t of L ))

H (n+t)?2  (n+t)2tn (n+1)*n

For large n and ¢, the middle term is dominated by the other two, so:

| Pi(-]s,a) — Po(:|s,a)||2 < O <S|2 log(|S]|A[/9) (( t N 2 ))

H n+t)?2  (n+t)n

Substituting back:

p, Po 2 2 2 *\2 2 log(|5]|A[/9) . t £
16" () = oM I < B 122 Cr(From? -0 (s RASAD (L L)

e (32 H - ISP 10g(|S|A1/8) - Cr(Fr,m7*)? ((niwz G :;2 n>)

Step 6: Analysis for Different Regimes. Let’s examine the bound for different regimes:

When n > t (dominant offline data):

|67 (x) = 6™ (w3 < O (B? +H - |S[? 1og(|S||Al/9) - Cr(Fr,m,7")? nt>

When t > n (dominant online data):

167 (r) — 0" (x) 1 < O (B - ISP 1ou(ISI1AI/0) - Cr(Fromx”)? 1 )

Step 7: Combined with Additional Error Term. When combined with an additional error term of
O (1), we analyze the combined bound by comparing the orders:
When ¢ < n (early online learning):
t t 1
CE R T
t2 2 1
n

——— <
(n+t)?2-n nd
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Therefore, O (1) dominates.

When ¢ ~ n (balanced regime):

Both terms are O (1).

When ¢ >> n (predominantly online learning):
t ot 1
(n+t)2 " 2 ¢
t2 t2

~ —

(n+t)2-n  t2-n

Since ¢ > n, we have % < %, so the second term % dominates our derived expression. When
combined with an additional error term of O (%), both terms are of the same order, giving an overall
bound of O (). O

E.3 TERM 3: ASYMPTOTIC BOUND

We derive an asymptotic bound for Term 3 in Theorem [E.T|via Lemmal[E.8] The auxiliary lemmata
used in the proof of Lemma E.8]are found in Section[E.3.1]

Lemma E.8 (Asymptotic Bound for Offline-Enhanced Bonus Terms). Let Es be the event from
Lemma which occurs with probability at least 1 — 25. Then, by setting ¢ = %, the following
asymptotic bound holds:

S" 4By(n} ASB,8) + 4B, (n},4S B, )

te(T]
~ |A|TH H°?SBVT Toa(T) (S AM
O <H|S| n- '}/min \/n Ymin + H SB T 1/4

Proof. Starting with the bound from &s:

> ABy(n},4SB,5) + ABy(n},4SB,6) < €T + Y _ 8By(r},8HSB,J,¢) + 8By(n},8HSB, 5, )
te[T) te[T)

From Lemma[E.9] we have:

> 8By(n!,8HSB, 6,€) + 8By (w7, 8HSB, 0, ¢)
te(T)

N 5/2 1/2] f11/4
O<H|S| LAIWTI.{JFHnSff H?SB-T - /log al 1';3' )

We sete = % to optimize the bound, which makes ¢ = 1 = O(1). This constant term is dominated
by the other terms for large 7'.

Additionally, setting € = % affects the log (%) =log(32H2SB - T) term inside the bound.
This adds a log(T") factor, which is already absorbed in the O notation.
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Therefore, our final asymptotic bound is:

N 4B, (n},4SB,6) + 4B,(n?,45B, )

te(T]

; AITH _HSBVT ;IS
< H + H*SB-T-+/lo

0 < |S| T+ Ymin * VT Ymin S 1/4

This bound shows three distinct terms scaling with offline data:

1. The first term scales as f and represents the primary benefit of offline data for covered
regions

2. The second term also scales as \F and captures the improved martingale concentration

3. The third term scales as # and accounts for the diminishing probability of encountering
uncovered regions

For sufficiently large n, the bound improves, but it’s important to note that the third term has a direct
linear dependence on 7' (modulo logarithmic factors). This term dominates for large 7" unless n
scales appropriately with 7'. Specifically, with n = ©(T*), the third term becomes O(1), and with

n = O(T?), the overall bound becomes O(+/T log(T)), which is near-optimal.

This demonstrates that with sufficient high-quality offline data scaling appropriately with the horizon
T, the sum of bonus terms can be made arbitrarily small, fundamentally improving the regret bound.
O

E.3.1 TERM 3 ASYMPTOTIC BOUND: AUXILIARY LEMMATA FOR LEMMA [E.§]

Lemma E.9 (Offline-Enhanced Bonus Term Summation Bound). Let £ from Lemma be the
event that for all T € N:

> 4ABy(n}, AW B,8) + 4B,(x}, AW B, 8) < €T+ > 8By(n},8HW B,0,€) + 8B,(r},8HW B, 5, €)
te[T] te[T]

Let n be the number of offline demonstrations with minimum visitation probability vpyin > 0 for

state-action pairs visited by the expert policy. Then, invoking Lemma [E10 and Theorem [ET1) Es
occurs with probability at least 1 — 20, and:

> 8Bi(n},8HWB, 6,¢) + 8By (w7, 8HW B, 4, ¢)
te(T]

H—-1
<8y (Z 13 ?h ot (€:8HWB,8) + 3 é?ma? h(g,SHWB,(S)) +1
h=1 =

te[T]

where I incorporates the benefit of offline data:

. 5/2 1/2| f|1/4
I=0 w.,_}]?WB.\/T.M
VT Ymin nl/4

with P(E°) = O (TH -4/ WW) representing the probability that at least one state-action
pair encountered during online learning lacks good offline coverage.

Furthermore, with probability at least 1 — 26:
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> 8Bi(n{,8HWB, 6,¢) + 8By (w7, 8HW B, 4, €)
te[T]

2H2W B log(HT T
< 2048HWB\/Hlog(|S|A|H) + 18] log (3W> +log (Gog()> - |Saen|
€

d T Ymin

5/2 1/2 1/4

o (HPWBYT | o o SP2LA
VT Ymin 1/4

Using O notation to hide logarithmic factors and simplifying:
> 8By(n},8HWB, 6,€) + 8By (w7, 8HW B, 4, €)

te(T)

_ TH H52W B 1/2 1/4
go(ms ATH W \F+H2WB VT '8||A>

7 * Ymin vV T * Ymin 1/4

This bound demonstrates how offline data benefits reinforcement learning through three mecha-
nisms:

1. Reducing exploration needs for well-covered regions (first term)
2. Improving martingale concentration for covered state-action pairs (second term)

3. Decreasing the probability of encountering poorly-covered regions (third term)

All terms approach zero as n — oo, though at different rates: the first two terms scale as \F while

the third term scales as — /4 This confirms that with sufficient high-quality offline data, the entire
bound can be made arbitrarily small, fundamentally improving sample complexity in reinforcement
learning.

Proof. We follow the structure of the original proof, adapting it to incorporate our offline-enhanced
bounds.

Step 1: Set up the martingale difference sequences. Consider the martingale difference se-
quences:
H-1
{B,(n},8HW B, 6, ) Zgi o (€ SHWB, 0},
h=1 !
and
H—1
{By(n? SHWB,5,¢) = > €% . (¢, SHWB,0)}2,

St % h
h=1
Each has norm upper bound 32H?W B, since &; 4 (€, 7, ) < 2 and therefore >, &, a, (€,7,6) <
2Hn.

Step 2: Apply anytime Hoeffding inequality with improved bounds. Consider the martingale
difference sequences:

H-1
{By(r},8HW B, 6, €) Zgi o, (6. 8HWB,8)},
h=1 o

and

H-1
{By(n? SHWB,6,¢) = > €% . (¢, SHWB, )},
t,h
h=

t,h?
1
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By Lemmal[E.12] which accounts for both covered and uncovered state-action pairs, with probability
at least 1 — 9 for all T' € N simultaneously:

> " 8B(r},8HW B, 8,€) + 8By(n}, 8HW B, 4, €)
te[T]

<8y (Z §9 w1 (€SHWB3)+ Z v, (e,SHWB,5)> +1

th th
te[T] \h=1 h=1

where I incorporates our rigorous analysis of martingale concentration with offline data from

LemmalE. 12}

_ H5/2WB T 81/2 1/4
I=0 J_FH?WB.\/T.&
\/n * Ymin n1/4

The second term accounts for the probability P(E°) = O | TH - w that at least one

state-action pair encountered during online learning lacks good offline coverage, while maintaining
the proper v/ 1" scaling in the regret bound.

Step 3: Apply our offline-enhanced bound. Now, to bound the remaining empirical error terms,
we apply Theorem|[E.11] For each policy 7}, i € {1,2}:

> Zgi“h i (&, 8HWB,S)

te[T] h=1

2
< 64HWB\/H log(|S|IA|H) + || log (32HWB) +log (MHY“))

)
T

: |Sreach‘ -2
* Ymin

Step 4: Combine the bounds. Summing over both policies:

Y (Zé“ . (6 8HWB,0) + Z&”h afh(e,SHWB,5)>

te[T] h=1

2H2W B log(HT T
<5.2. 64HWB\/Hlog(S||AH) + 18] log (SGW) +log (6‘“5((5)> VSl 20—

: |Sreach| .
7 Ymin

2H2W B log(HT T
= 2048HWB\/H10g(|S|A|H) +15]log (”V) +log (6Og(($)>
€

Step 5: Express the complete bound. Therefore, with probability at least 1 — 24:

> 8By(n},8HWB, 6,¢) + 8By (w7, 8HW B, 4, €)
te[T]

32H?W B 6log(HT T
< 2048HWB\/H10g(IS|AIH) + |S| log (€> + log (Og()> : |Sreach| ’

d * Ymin
5/2 1/2| g|1/4
O(H WBVT | porop g 1SI"2IA )

V n- melIl 1/4
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Using O notation to hide logarithmic factors and simplifying:

> 8By(n},8HWB, 6,¢) + 8By (w7, 8HW B, 4, ¢)

te[T]
N TH HS/QWB 81/2 1/4
so(ms ATH | T | w7 SECAT 1'“4‘
n- ,len n- len /4

This bound demonstrates several key insights:

1. Sublinear Regret: All terms scale as /7', maintaining the crucial sublinear dependence on the
horizon. This ensures that our regret doesn’t grow linearly with 7.

2. Offline Data Benefits: All terms decrease as n increases, but at different rates:

* The first two terms decrease at rate ﬁ and capture the direct benefit of offline data for
state-action pairs with good coverage

* The third term decreases at the slower rate of # and accounts for the diminishing prob-
ability of encountering poorly-covered state-action pairs

3. Complete Dependence on Offline Data: Unlike traditional online-only bounds, our analysis
shows that all components of the regret can be reduced with sufficient offline data.

With sufficient high-quality offline data (n — oo with fixed i, > 0), all terms approach zero, con-
firming that offline data can fundamentally change the sample complexity of reinforcement learn-
ing. O

Lemma E.10. Let n, e > 0. For all m simultaneously and for all t € N, with probability 1 — 6,
By(m,n,68) < 2By(m,2Hn, 0,€) + €

Proof. Recall that,

H-1
By (777 7, 5) = Eslwp,rwl?”ﬁt(-\sl) [Z ggfL),a;L (7% 5)‘| .

h=1
Let f : I — R be defined as,

H-1

=2 &a )

h=1

It is easy to see that f(7) € (0,2nH] for all 7 € T'. Therefore, a direct application of Lemma 13 in
Saha et al.|(2023) implies that with probability at least 1 — § and simultaneously for all 7, and ¢t € N,

H-1

Bt(w,ﬂ, 0) < Egynprmbr(-|s1) [Z 5&),% (n,6)
h=1

+ By(m,2Hn,d,€) + €

Since fgg(e,n,é) > 52 )( ,0)foralle > 0, s,a € S x Aand fs a(e 7,d) is monotonic in 1 we
conclude that,

Esinprnbr(]s1) [2 :gé;“an 1,0

H—
—E51~P,T~P"('\51) 2 : éh,ah 6 77’

< Eslr\/p,TN]P"('\sl) [Z Sh, ah 2Hn76)]

= By(m,2Hn, 6, ¢)

Combining these inequalities the result follows. O
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Lemma E.11 (Offline-Enhanced Non-Squared Bonus Term Bound). Let n be the number of offline
demonstrations with minimum visitation probability ymin > 0 for state-action pairs visited by the
expert policy. Then, with probability at least 1 — 0:

2H2SB log(HT
Z Z €0 . (e, 8HSB,5) < 64HSB\/H log(|S||A|H) + |S|log (365) +log <6°g§))
[T] h=1

T

7 Ymin

‘ Sreuch | -2

Proof. We follow the approach shown in the provided image, adapting it to incorporate offline data.
Starting with our modified definition of bonus terms that incorporate offline data:

U
(t) = mi
£ (e, 8) = min (2’77477\/ Nogr(s, a) + Nt(s,@)

where U = H log(|S||A|H) + | S| log (3’2H SB) + log ( og(t )) Rewriting the sum by grouping
state-action pairs:

NT+1 S a)
U
0
tEZT] ; €0, .. (e, 8HSB,0) ;SQGZA ; min (16HSB BHSBY | s H)

For sufficiently large values of Nog(s, a) + ¢, the minimum is dominated by the second term:

NT+1(S,(Z) NT+1(S (1

U 1
>N > 32HSB Nalea) ¥ =32HSBVU-> > > N DT

seSacA t=1 s€ES acA t=1
The key adaptation now is to reindex the sum to account for offline visits:

Nrii(s,a) Nott(s,a)+N1y1(s,a)

XY Y ——-YY X =

s€SacA  t=1 Oﬁ(s’a)+t s€Sa€A  t'=Ny(s,a)+1

where ' represents the total count (offline + online). Using the property of the sum of inverse square
roots and the minimum visitation assumption:

Nett(s,a)+Nry1(s,a)

\/ ofi(8,a) + Nry1(s,a) *2\/N0ff (s,a)

o

t/:Noff(S7a)+1

< 2v/Nog(s,a) + Nri1(s, a)

N s, a)
<2 741l -/ Nogi(s, a)

Noff(S CL
NT+1 S, CL

<2 Y offsa VSG € Sreach
n - H - Ymin

Applying Jensen’s inequality:

N s,a) Zsa Sread Nry1(s,a)
Z 2 T+1 Y offs a <2 ‘Sreach‘ \/ )€ Srn

(8,a) € Sreach H - Jmin n-H- Ymin
TH
<2-|S5 N
= ‘ reach‘ n-H- i
T
=2 ‘Sreach‘ :
T * Ymin
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Substituting back:
T
> Z €D, a0, (€,8HSB,8) < 32HSBVU - 2 - | Sreach| - :
te[T] h=1 Ymin
T
= 64HSBVU - |Sreach| - :
Expanding U:
> Z ¢ ., (e.8HSB,5)
te[T] h=1
32H?SB 6log(HT T

< 64HSB\/H10g(|S||A|H) + /S| log (E> + log (Ogé)) | Sreacn| - 2 .
This completes the proof. O

Lemma E.12 (Martingale Concentration with Offline Data). Let { X;}]_, be the martingale differ-
ence sequence defined as:

X, = By(x!,8HW B, 6, ¢) Z g(” . (e.8HWB,9)

Let n be the number of offline trajectories with minimum visitation probability Vmin for state-action
pairs visited by the expert policy. Then, with probability at least 1 — §:

5/2 1/2] f11/4
< O m + H2WB.- VT - M
VA i ni/i

where the first term captures the direct benefit of offline data for state-action pairs with
good coverage, and the second term accounts for the diminishing probability P(E€) =

. |S|2].Al log(n) . . . P . .
O (TH ==—="—"| of encountering state-action pairs with insufficient offline coverage.

Proof. We introduce a novel approach that substantially improves upon standard martingale concen-
tration bounds by leveraging offline data. We begin by comparing our approach with the standard
method used by Pacchiano.

Saha et al| (2023)’s Approach (Standard Method): The conventional approach uniformly
bounds each element of the martingale difference sequence:
' H-1
By(r}, 8SHWB,5,¢) = Y €% . (e, SHWB,8)| < 32H*WB
he1 t,h>"t,h

| X:| =

This bound is derived by noting that & ,(€,7,6) < 2n, yielding >, &, a,(€,7,0) < 2Hn, and
applying triangle inequality. This leads to a martingale concentration term in the regret bound that
is O(H?>W BV/T) and, crucially, does not improve with offline data.

Our Improved Approach: We recognize that with offline data, we can obtain substantially tighter
bounds by conditioning on appropriate events. This leads to a martingale concentration term that
explicitly decreases with offline data, approaching zero as n — oo.

Step 1: Define data-dependent events and calculate their probabilities.

We define two complementary events:
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» Event E': ”All state-action pairs encountered in all 7" episodes have good offline coverage”
(i.e., Nogr(8,a) > ¢ 1 - Ymin for some constant ¢ > 0)

* Event E°: At least one state-action pair encountered lacks good offline coverage”

To calculate P(E€), we leverage our MLE concentration bound for transition models (Corollary

C.9):

2 —1
HQ(P;;*’ T )<O(|S |A‘1Og(nH6 >>

n

The crucial insight is that we can relate this Hellinger distance to the probability of encountering
state-action pairs with insufficient offline data. Using the relationship between Hellinger distance,
total variation distance, and event probabilities:

1. Hellinger distance bounds total variation: TV(P, Q) < v/2 - H(P, Q) 2. Total variation bounds
event probability differences: |P(A) — Q(A)| < TV(P,Q)

Let A, , be the event “state-action pair (s, a) has insufficient offline data coverage.” Under the true

model P* and with enough offline data sampled from a policy close to 7*, the probability P7. (As.a)
is negligible. Therefore:

P (Asa) < PP (Asa) + V(P  PR.) < O(H(PE , PF.))

Using our Hellinger distance bound:

. 2 -1

P n

By union bound across all T - (H — 1) state-action pairs encountered:

P(EC)ST'(Hl)'pn_O<TH. |S|2|A|log(”)>

n

Key Insight 1: The probability of encountering any state-action pair with insufficient offline cover-
age decreases as n increases, at a rate of approximately ﬁ

Step 2: Establish conditional bounds on martingale differences.

Case 1: Under Event E (Good Offline Coverage). When all state-action pairs have good offline
coverage:

U
ggtl)l(g n, ) min (277’477\/]\7 ff(S a) +Nt(3 a))

/ U
< min (217, 4n >
C* T * Ymin

For sufficiently large n, the second term in the min dominates:

U
€0 (e,n,0) < dny | ———
C* T * Ymin

_ o [ 1 v/H - og(ISIIA] +log(1/9)
V1 Ymin
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Therefore, forn = SHW B:

T

-1

X,/ |E = |By(n},8HWB,8,¢) - > €9 . (¢, SHWB,3) ’E
t,ho %
h=1
H—-1 H-1 )
< i (t) L ;
- ET~IP’Tt [Z Esh’ah T ESi,Mi,h
P [h=1 h=1

0.0 (HWB-¢H~log<|S|A|> +1og<1/5>>

o <H2WB - /H 1og([S[[A]) + 10g(1/5)>

VTV Ymin

Case 2: Under Event £° (At Least One Poorly Covered State-Action). Here, we revert to Pac-
chiano’s standard bound:

|X:|| E¢ < 32H*WB =M

Key Insight 2: Under event E (which occurs with high probability for large n), the martingale

. . B . . 1
differences are much smaller than Pacchiano’s uniform bound, specifically by a factor of N

Key Innovation: By conditioning on events F and E°, we can precisely quantify how the martin-
gale concentration improves with offline data through two mechanisms:

1

1. The magnitude of martingale differences under E scales as T

2. The probability of event £ decreases as n increases, at a rate of approximately ﬁ

This conditional analysis is fundamentally different from Pacchiano’s approach, which uses a sin-
gle worst-case bound regardless of offline data. Our approach precisely captures how offline data
reduces both the magnitude of exploration bonuses and the probability of encountering state-action
pairs that require large exploration.

Step 3: Apply Azuma-Hoeffding inequality conditionally.

The Azuma-Hoeffding inequality for bounded martingale differences states that for a martingale
difference sequence {X;}~ ; with | X;| < ¢; almost surely:

)\2
P 2 A S 2€Xp _TQ
2% 41 G

Applying this conditionally on event E, where | X;| < M, for all ¢:

P X FE ) <2exp (—2>
P 2-T-M:2

Similarly, conditionally on event E°, where | X;| < M:

)\2
P E7) < 2exp (‘m)

T
> x
t=1

Step 4: Apply the law of total probability.

T

>

t=1

> A

>\
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T
th >\

t=1

> A

E) . P(E)

By the law of total probability:
T
> X E)~P(E)+P<
t=1
A2 A2

T
P ( th > /\> =P (
t=1
2TM2) PIE) + 2exp (_2TM2) - PIEY)

< 2exp (—
To obtain an overall bound of §, we allocate d/2 to each term.

For the first term:

2exp (_A> P(B) <

0
2.7 - M2 2

X .
P\T2 T M2 ) = 2 P(E)

_ A\? -1 2. P(E)
o.r-Mm2 = %\

:>)\>M,L~\/2-T-log <2P;(E)>
For the second term:

2exp (- X )P <

[NCRIS)

2T M2

2
5
— <
:eXp( 2-T-M2) =3 P(EY)

Step 5: Derive the combined bound.
For the bound to hold with probability at least 1 — §, we need:

v (- o2t (T g o g (2B
gMn.m+M.\/Q.T.bg(2-iwc>)

Substituting our expressions for M,, and M:

H*WB - /H -1og(|S]|A]) - T - log(1/5) P(E¢)
AgO( NixE >+O<H2WB.\/T.log< 5 >)

Using our bound on P(E°):

\<o <H2WB - /H -log(|S][A]) ~T~log(1/6)) .

\/n'vmin
TH . /52 Allog(nHs-1)
O|H*WB- |T-log 5 -

68



Under review as a conference paper at ICLR 2026

Step 6: Analyze the asymptotic behavior.

Starting with the second term of our bound:

TH . . JISELAog(nHs—)
n

0

O|H*WB. |T-log

Step 6.1: Expand the logarithm inside the second term.

TH . JISEAlog (1)

. [18121 A log(nH5-1) : _

log n — log TH +log |S|2|A| log(nH5—1)

6 5 -
2 ~1

= log rH =+ Elog |S|?| Al log(nHo~")

o 2 n
Step 6.2: Extract /T from the square root.
2 -1
HQWBM P"g (T(sH ) +5log ('5| [Allog(n 0 ))]
n

2 -1
= H*WB-VT- \/log (T) + %log <|S| Al log(nH¢ ))

n

be-

Step 6.3: Analyze the behavior for large n. For large n, the term log ( w)

comes negative because n grows faster than the logarithmic term.

\/log (f) ;10g<8| A| loS(nHa )>
m Viog(T))

H?WB - VT - O(\/log(T)) = O(H*W B - VT)

Therefore:

This gives us:

Step 6.4: Incorporate P(E°) correctly. We know that P(E°) = O (TH 4/ ‘Sl?lAnl”g("))

To properly account for this probability in the bound, we can express the term as:

H>WB -VT - /|log <TH> \/ |S| |A| log(n
) /\3| |A\1og(n

_ 3 ISP/ZIAI”‘*
1/21 411/4
:c’)(H?WB VT L 1';3' )

Step 7: Combine these results for our final bound.

We now have two key terms in our bound for martingale concentration:
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2 . . . .
A< O H2*WB - /H -1og(|S]|A]) - T - log(1/6) N
\/n'FYmin
|5|1/2|A1/4>

/4

@(HQWB-\/:F.

Simplifying the first term and using O notation to hide logarithmic factors:

- 5/2 . ~ 1/2] f11/4
A< O m +0 HQWB-\/T~M
VT Ymin nl/4

Therefore, with probability at least 1 — §:

T
S,
t=1

- ( H2 . WB-VT 1/2] g]1/4
<0 L\/»_FH?WB.\/T.M
VT Ymin ?11/4

This bound reveals several key insights:

1. Sublinear Regret: Both terms scale as v/7", maintaining the crucial sublinear dependence

on the horizon. This ensures that our regret doesn’t grow linearly with 7T'.

. Offline Data Benefits: Both terms decrease as n increases, but at different rates:

* The first term decreases at rate ﬁ and captures the direct benefit of offline data for

state-action pairs with good coverage
* The second term decreases at the slower rate of # and accounts for the diminishing
probability of encountering poorly-covered state-action pairs

. Complete Dependence on Offline Data: Unlike [Saha et al.| (2023)’s bound, which has

an irreducible term independent of offline data, our bound shows that a/l components of
martingale concentration can be reduced with sufficient offline data.

. Different Decay Rates: The different decay rates (ﬁ vs. —7) suggest that the second

term will eventually dominate for very large n, setting the ultimate rate at which offline
data can improve performance.

This confirms that with sufficient high-quality offline data (n — oo with fixed ymin > 0), the entire
martingale concentration bound approaches zero, eliminating this component of regret entirely. [

F AUXILIARY MATHEMATICAL RESULTS

F.1

BRIDGING OFFLINE CONFIDENCE SETS AND ONLINE CONSTRAINTS

Lemma F.1 (Hellinger Ball to Moment Constraints: Linear Embedding). Define a random variable
xon (A, A).

Assume f: A — R and || f||oo < B < o0

Consider two distributions P, QQ with densities that are continuous with respect to Lebesgue measure.
Further assume:

Then

and

H*(P|Q) <R
[Epf(z) —Eqf(z)|2 <2v2-B-Vd-R
HCOVP(JC(J:))_COVQ(f(x))”op SGdBZ 2R
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Proof. For the squared norm on first moment, the following holds true
s ~Eafla= | | 1)0(@) gtz
< [ 15 @)ao@) e
<Vd-B- [ pe) - a(w)lds

=2TV(P,Q)

Using the classical result/Sason & Verdu| (2016)) together with our constraint

TV(P,Q) < v2H*(P||Q) < V2R

yield the first result.

For the covariance we follow a similar approach only for matrices. Define g(z) := f(x)f(x)? then
[Epg(z) —Eqg(2)lop = | /g(ff)(p(ff) —q(x))dz]lop

= sw o ([ o@)ote) - atets o

llvll2=1

/ o7 (@) (@) To(p(z) — g(z))de

= sup
llvll2=1

<A imequ. SUD / (0, £@))?] - [p() — q(a)|de

llvll2=1

< sup / 1£@)2] - |p() - g(a)|de

llvll2=1

<2.d-B*TV(P,Q)<2-d-B*-vV2-R

Using definition of covariance matrix we have

ICovp(f) = Covo(f)llop = IEP[f 1] —Eq[f 7]+ Ep fEpfT —EQfEqQ " [lop
<|Ep[ffT] = EQlf f op + IEPSEpfT —EQfEQ /S llop
<2:d-B* V2 R+ |EpfEpfT —EQ/EQS" |lop

in order to bound the last term we have
IEpfEpfT —EQfEQf" lop = IEpfEpfT —EpfEqf" +EpfEQfT —EQfEQf” llop
< |Epf(EpfT —EofMllop + (Erf —EqEq S lop
<|[Epfllz-|Epf —Eqfllz + |Eqfll2- [Erf — Eqfll2
<2-Vd B-|[Epf —Eqfl>
<4.-d-B*>-V2-R

G DISCLAIMER ON LLM USAGE

LLMs were used for light language editing.
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